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Abstract

An input-oblivious proof system is a proof system in which the proof does not depend on
the claim being proved. Input-oblivious versions of NP andMA were introduced in passing by
Fortnow, Santhanam, and Williams (CCC 2009), who also showed that those classes are related
to questions on circuit complexity. Their definition followed a work of Chakaravarthy and Roy
(STACS 2006), who defined an input-oblivious version of S2.

In this note we wish to highlight the notion of input-oblivious proof systems, and initiate
a more systematic study of them. We begin by describing in detail the results of Fortnow
et al., and discussing their connection to circuit complexity. We then extend the study to input-
oblivious versions of IP , PCP, and ZK, and present few preliminary results regarding those
versions.

Keywords: NP, IP, PCP, ZK, P/poly, MA, BPP, RP, E, NE, EXP, NEXP.

Contents

1 Introduction 1
1.1 The case of NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Other input-oblivious proof systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Connection to circuit lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization and a piece of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Input-Oblivious NP-Proof Systems (ONP) 4

3 Input-Oblivious Interactive Proof Systems (OIP) 5

4 Input-Oblivious Versions of PCP and ZK 7
4.1 Input-Oblivious PCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Input-Oblivious ZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Bibliography 10

∗Partially supported by the Israel Science Foundation (grant No. 1041/08).
†Research supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 23 (2011)



1 Introduction

Various types of proof systems play a central role in the theory of computation. In addition to
NP-proof systems, which provide the definitional pillar of NP, probabilistic proof systems giving
rise to classes such as IP,ZK and PCP have also played a major role. (For further background,
see [8, Chap. 9].)

In all these cases, the verification procedure is personificated by a player, called the verifier,
which interacts (implicitly or explicitly) with a more powerful entity, called the prover. The nature
of this interaction may vary according to the type of proof system being considered, but in all
cases the interaction may depend on a common input, which represents the claim being proved
and verified. In particular, in all cases, the actions of the prescribed prover may depend on this
common input.

In this work, following the work of Fortnow, Santhanam, and Williams [6], we ask how is the
expressive power of these proof system effected when the prescribed prover is only given the length
of the claim to be proved. We stress that we restrict the power of the prover being referred to
in the completeness condition, but maintain the original formulation of the soundness condition.
That is, we ask what is the power of input-oblivious provers in each of these proof systems. We
start with the case of NP, studied in [6].

1.1 The case of NP

Recall that S ∈ NP if there exists a polynomial-time (verification) procedure V and a polynomial
p such that

Completeness: For every x ∈ S there exists w ∈ {0, 1}p(|x|) such that V (x,w) = 1.

Soundness: For every x 6∈ S and every w, it holds that V (x,w) = 0.

We ask whether (for this procedure V or for an alternative one) it holds that for every n ∈ N

there exists w ∈ {0, 1}p(n) such that for every x ∈ Sn
def
= S ∩ {0, 1}n it holds that V (x,w) = 1.

Such a string w may be considered a universal NP-witness (for all x ∈ Sn), and its existence yields
a poly(n)-sized circuit for deciding Sn (i.e., S ∈ P/poly). But does every set in NP ∩ P/poly
have such universal NP-witnesses? Denoting the class of sets having input-oblivious NP-proofs by
ONP , Fortnow et al. [6] showed that

Theorem 1.1 (on the power of input-oblivious NP-proofs [6]):

1. ONP = NP if and only if NP ⊂ P/poly.

2. If NE 6= E, then ONP 6= P.

3. RP ⊆ ONP ⊆ NP ∩ P/poly.

While the proofs of all items of Theorem 1.1 are quite easy, we find the foregoing assertions quite
interesting. In particular, we highlight the fact that the first item provides a uniform complexity
formulation of the conjecture NP 6⊂ P/poly. We mention that it is not clear whether or not
ONP = NP ∩ P/poly; ditto whether or not BPP ∩ NP ⊆ ONP (or whether “BPP ⊆ NP
implies BPP ⊆ ONP”).
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1.2 Other input-oblivious proof systems

While the first part of this note is devoted to surveying the input-oblivious aspect of the work of
Fortnow et al. [6], in the second part we define and study input-oblivious versions of various forms
of probabilistic pproof systems. In particular, we consider input-oblivious versions of interactive
proof systems (i.e., IP), zero-knowledge proof systems (i.e., ZK), and probabilistically checkable
proof systems (i.e., PCP).

We define the input-oblivious version of IP, which we denote OIP, as an interactive proof
system in which the actual interaction takes place before the input is revealed to the prover (and
the verifier). For this class, we obtain the following sharp characterization.

Theorem 1.2 (on the power of input-oblivious interactive proofs): OIP = IP ∩ P/poly.

Considering the zero-knowledge restriction of OIP, we define the class OZK (i.e., the input-
oblivious version of ZK), and show that it is unlikely to contain all of OIP. In particular, OZK \
BPP may only contain sets for which it is hard to find yes-instances. On the other hand, assuming
that NE 6⊆ BPE and that one-way functions exist, the class OZK extends beyong BPP .

We also consider OPCP , the input-oblivious version of PCP [log, O(1)]. Finally, we observe that
Item 2 of Theorem 1.1 also holds for the class OPCP ; in fact, a more general statement can be
proved, but it is unclear whether or not ONP = OPCP (and even whether RP ⊆ OPCP).

Related work. As mentioned above, Fortnow, Santhanam, and Williams [6] defined the class
ONP , and proved Theorem 1.1. They also defined the class OMA, the input-oblivious version of
Merlin-Arthur games (MA), and showed that ONP = NP if and only if NP ⊆ OMA. However,
their main interest was actually in the class ONP/1 (cf. [6, Thm. 11]) as well as in other classes of
the form C/1 (cf. [6, Thm. 12]). In particular, in [6, Thm. 11] they show that, for every c, it holds
that NP has no size nc circuits if and only if ONP/1 has no size nc circuits.

Prior to [6], Aaronson [1] defined an input-oblivious version of NP ∩ coNP, which he denoted
YP , and proved an analog of Theorem 1.1 for this class (see [1, Thm 4.4]). He also explicitly
discusses the view of input-oblivious proof systems as “untrusted advice”, which is emphasized in
Section 1.3 below.

Chakaravarthy and Roy [5] considered an input-oblivious version of the symmetric alternation
class S2, and showed that this new class, denoted O2, contains BPP . They also showed that if
NP ⊂ P/poly, then the Polynomial-time Hierarchy collapses to O2. We note that it is not clear
how O2 relates to NP , but it is syntactically obvious that O2 contains the class ONP .

1.3 Connection to circuit lower bounds

An additional motivation for the study of input-oblivious proof systems comes from their con-
nection to circuit complexity. As we explain below, input-oblivious proof systems may be viewed
as a restriction of P/poly to advice strings that can be verified. As such, it turns out that, while
input-oblivious proof systems are strictly weaker than P/poly, there are cases in which the the com-
putational limitations of input-oblivious proof systems imply corresponding limitations on P/poly.
Thus, proving that certain classes do not have small circuits is equivalent to proving that these
classes have no input-oblivious proof systems. Details follow.

Recall that P/poly may be viewed as the class of sets that can be decided by a Turing machine
that takes advice. The advice is an arbitrary string of polynomial length, which may depend on
the length of the input but not on the input itself. Consider the function f : N→ {0, 1}∗ that maps
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each input length to its corresponding advice string. The definition of P/poly places no restrictions
on the complexity of computing f , and in particular f is not even required to be computable. This
feature of the advice makes P/poly a powerful class, which can even compute functions that are
not computable by Turing machines.

It is a natural question to ask what happens when we place computational restrictions on f .
The first restriction that may come to mind is to require that f(n) is computable in time poly(n).
However, restricting P/poly in this way results in the class P, and is therefore not very interesting.

A second natural restriction is requiring the function f to be verifiable. In other words, we
require that although we may not be able to compute the advice efficiently, we can at least verify
its correctness. This idea can be realized in few possible ways, and our notions of input-oblivious
proof systems can be thought as such realizations

The notions of input-oblivious proof systems (e.g., ONP) may be useful towards studying
the circuit complexity of the their standard counterparts (resp., NP), because on the one hand
these input-oblivious proof systems are strictly weaker than P/poly, and on the other hand they
retains much of the power of P/poly. As an example, consider the class ONP, On the one hand,
ONP is contained in NP , and is therefore strictly weaker than P/poly (since it can not decide
uncomputable functions). On the other hand, Theorem 1.1 shows that if P/poly contains NP,

then so does ONP , and this is sense ONP is quite powerful. A particulary interesting corollary
of this theorem is that proving circuit lower bounds for NP is equivalent to separating ONP from
NP .

The foregoing discussion is not resticted to ONP . In Section 3 we consider the class OIP,
which is the input-oblivious version of IP. The class OIP may also be thought of as the class
that results from restricting the advice of P/poly (i.e., the above function f) to be verifiable by an
interactive protocol. We show that

OIP = IP ∩ P/poly , which equals PSPACE ∩ P/poly.

This equality can be interpreted as saying that OIP as a powerful restriction of P/poly. It also
implies that proving circuit lower bounds for PSPACE is equivalent to separating OIP from IP.

An additional example is the class OMA, the input-oblivious version of MA (see Section 3).
The class OMA may also be thought of as the class that results by restricting the advice of P/poly
to be verifiable by in probabilistic polynomial-time (rather than in determinstic polynomial-time).
Babai et al. [4] showed that if EXP ⊆ P/poly then EXP =MA, and their proof implicitly yields
the stronger conclusion EXP = OMA (as observed by [6]). The latter result may be viewed as
saying that OMA, while being a restriction of P/poly, is still sufficiently powerful to contain EXP
if P/poly contains EXP . This implies that in order to prove circuit lower bounds for EXP , it
suffices to separate EXP from OMA.

Similarly, Impagliazzo et al. [10] showed that NEXP ⊆ P/poly implies NEXP = MA, and
implicitly that NEXP ⊆ P/poly implies NEXP = OMA (as observed by [6]). This result too
may be interpreted as saying that in order to prove circuit lower bounds for NEXP , it suffices to
separate NEXP from OMA.

We conclude that input-oblivious proof systems such as ONP , OMA, and OIP can be viewed
as powerful restrictions of P/poly, and therefore may serve as a useful target for research on lower
bounds.

1.4 Organization and a piece of notation

In Section 2 we survey the study of input-oblivious NP-proof systems (ONP), which goes back
to [6]. The study of general input-oblivious interactive proof systems (i.e., OIP) and the special
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case of input-obliviousMA are presented in Section 3. Other forms of input-oblivious probabilistic
proof systems are investigated in Section 4.

Recurring notation. For an arbitrary set S ⊆ {0, 1}∗ and n ∈ N, we denote by Sn the set
S ∩ {0, 1}n.

2 Input-Oblivious NP-Proof Systems (ONP)

The content of this section appeared in [6], but our presentation is somewhat different. (We also
call attention to an open problem at the end of this section.) In continuation to the discussion in
the introduction, the input-oblivious version of NP-proof systems is defined as follows:

Definition 2.1 (input-oblivious NP-proofs – ONP): A set S has an input-oblivious NP-proof sys-

tem if there exists a polynomial-time algorithm V and a polynomial p such that the following two

conditions hold.

Completeness: For every n ∈ N, there exists w ∈ {0, 1}p(n) such that for every x ∈ Sn
def
= S∩{0, 1}n

it holds that V (x,w) = 1. We call w a universal witness.

Soundness: For every x 6∈ S and every w, it holds that V (x,w) = 0.

The class ONP consists of all sets having input-oblivious NP-proof systems.

Clearly, ONP ⊆ NP∩P/poly, since the “universal NP-witnesses” (guaranteed by the completeness
condition) can be used as non-uniform advice. We next establish all other claims of Theorem 1.1:

Claim 2.2 RP ⊆ ONP.

Proof: Let S ∈ RP . Using error reduction, we obtain a polynomial-time algorithm A and a
polynomial p such that for every x ∈ S it holds that Prr∈{0,1}p(|x|) [A(x, r)=1] > 1− 2−|x| (whereas

A(x, r) = 0 for every x 6∈ S and r). Thus, there exists a string r ∈ {0, 1}p(n) such that A(x, r) = 1
for every x ∈ Sn, which yields the desired universal NP-witness (w.r.t V = A).

Claim 2.3 ONP = NP if and only if NP ⊂ P/poly.

Proof: Clearly, if ONP = NP , then NP = ONP ⊂ P/poly. The proof of the opposite direction
uses one main idea of the proof of the Karp–Lipton theorem [11] (i.e., NP ⊂ P/poly implies
that the Polynomial-time Hierarchy collpases to its second level). We follow the presentation in [8,
Sec. 3.2.3], where the hypothesis is shown to yield polynomial-size circuits for finding NP-witnesses.
Specifically, consider any NP-complete set S, and recall that searching NP-witnesses for x ∈ S is
reducible to deciding S; that is, there exists a relation R such that S = {x : ∃w (x,w) ∈R} and
solving the search problem associated with R is reducible to deciding S (cf. [8, Thm. 2.16]). Now,
assuming that NP ⊂ P/poly, it follows that this search problem can be solved by polynomial-
sized circuits (i.e., by applying the said reduction and using the circuits guaranteed for deciding
S ∈ NP ⊂ P/poly).

The input-oblivious NP-proof system for S will use these (witness finding) circuits as universal
witnesses; that is, consider V such that V (x,w) = 1 if and only if w is a description of a circuit
Cw and (x,Cw(x)) ∈ R, and use w as a universal witness for length n if it describes a poly(n)-size
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witness-finding circuit for instance length n. Finally, since S is NP-complete (and S ∈ ONP), it
follows that NP = ONP .1

Claim 2.4 If NE 6= E (resp., NE 6⊆ BPE), then ONP 6= P (resp., ONP 6⊆ BPP).

Proof: Let S ∈ NE \ E (resp., S ∈ NE \ BPE), and let V be a polynomial-time algorithm and c
be a constant such that x ∈ S if and only if there exists w ∈ {0, 1}N , where N = 2c|x|, such that
V (x,w) = 1. Defining

S′ def
= {xy : x∈S ∧ |y|=2|x| − |x|}, (1)

we show that S′ ∈ ONP. Consider a procedure V ′ such that V ′(xy, uwv) = 1 if and only if
|y| = 2|x|−|x| and V (x,w) = 1; that is, on input x′ and w′, the procedure V ′ accepts x′ if and only
if |x′| is a power of two and w′ contains a substring that is a NE-witness for the membership of
the log2 |x

′|-bit long prefix of x′ in the set S. Note that if xy ∈ S′ (and |y| = 2|x| − |x|), then there
exists wx ∈ {0, 1}

|xy|c such that V (x,wx) = 1. Then, letting wn = w0n · · ·w1n ∈ {0, 1}2
n ·2cn

such
that V (x,wx) = 1 if (and only if) x ∈ Sn, it holds that wn is a universal NP-witness for length 2n:
Indeed, for every z ∈ S′

2n it holds that V ′(z,wn) = 1, whereas for every z 6∈ S′ and w it holds that
V ′(z,w) = 0. The claim follows, since S′ 6∈ P (resp., S′ 6∈ BPP).

Remark 2.5 (on sparse sets): The proof of Claim 2.4 can be used to show that every sparse NP-set

is in ONP, where a set S is sparse if |Sn| ≤ poly(n). The key idea is that if proving membership

of any n-bit long string (in Sn) can be done by using one of poly(n)-many NP-witnesses, then

concatenating these witnesses yields a universal NP-witness. The same argument can be applied to

show that NE = ONE, where ONE is the universal witness analogue of NE (and so the number of
yes-instances of a specific length is polynomial in the length of the corresponding NE-witnesses).

Note that, while every co-sparse is in P/poly, it is unclear whether every co-sparse NP-set is in
ONP , where a set S is called co-sparse if |Sn| ≥ 2n − poly(n). We mention that relative to a
random oracle, there exists a co-sparse set in NP \ ONP.

Open Problem 2.6 Does ONP contain all co-sparse NP-sets?

3 Input-Oblivious Interactive Proof Systems (OIP)

In this section we introduce and study the input-oblivious version of IP. When defining an input-
oblivious version of IP, we should make sure that the verifier does not communicate the input
to the prover, who does not get it. The simplest way to guarantee this feature is to decouple the
interaction into two stages: In the first stage, both parties are only presented with the length of
the input, and in the second stage the verifier is given the actual input but is disconnected from
the prover. Thus, the verifier is decomposed into two parts, denoted V1 and V2, and its decision
regarding the input x is written as V2(x, (P, V1)(1

|x|)), where (P, V1)(1
n) denotes the output of V1

after interacting with the prover P on common input 1n. (Note that the said output of V1 may
contain its entire view of the interaction with P , and that without loss of generality V2 may be
deterministic (since its coins may be tossed and recorded by V1).)

1We use the fact that if S′ is Karp-reducible to a set in ONP , then S′ ∈ ONP . This is obvious if the reduction is
length-regular (i.e., it maps instances of the same length to instances of the same length). In general, when reducing S′

to S, we may use as universal witnesses for S′
n the concatenation of universal witnesses for Sm for m = 1, ..., poly(n).
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Definition 3.1 (input-oblivious interactive proofs – OIP): A set S has an input-oblivious inter-

active proof system if there exists a probabilistic polynomial-time interactive machine V1 and a

polynomial-time algorithm V2 such that the following two conditions hold.

completeness: There exists a strategy P such that, for every x ∈ S, it holds that Pr[V2(x, (P, V1)(1
|x|))=

1] ≥ 2/3.

If the latter probability always equals 1, then we say that the system has perfect completeness.

soundness: For every x 6∈ S and every strategy P , it holds that Pr[V2(x, (P, V1)(1
|x|)=1] ≤ 1/3.

The class OIP consists of all sets having input-oblivious interactive proof systems.

As in the case of ONP , the soundness condition of OIP maintains the analogous condition of IP.

Theorem 3.2 (on the power of input-oblivious interactive proofs): OIP = IP ∩ P/poly. Fur-

thermore, each set in IP ∩ P/poly has an input-oblivious interactive proof system with perfect
completeness.

Proof: To see that OIP is contained in P/poly, we first apply error reduction to an input-oblivious
interactive proof system for any S ∈ OIP such that the error probability on instances of length n
is smaller than 2−n. Thus, there exists an output of V1 (after interacting with P on 1n), denoted
y, such that for every x ∈ {0, 1}n it holds that x ∈ S if and only if V2(x, y) = 1. This output (i.e.,
y) can be used as non-uniform advice, which implies that S ∈ P/poly.

We now assume that S ∈ IP ∩ P/poly, and let {Cn} be a family of polynomial-size circuit
deciding S. On common input 1n, the (input oblivious) prover sends Cn to the verifier V1, and
proves to it that Cn is correct (i.e., that for every x ∈ {0, 1}n it folds that Cn(x) = 1 iff x ∈ S).
Note that the latter assertion can be verified in polynomial-space, and hence it can be proved by
an interactive proof (with perfect completeness) [15, 16]. The output of V1 equals Cn if V1 were
convinced by the proof, and is the identically zero circuit otherwise. Finally, on input x and y
(representing V1’s output), algorithm V2 outputs Cy(x), where Cy is the circuit represented by the
string y. Thus, S ∈ OIP (and furthermore S has an input-oblivious interactive proof with perfect
completeness).

The class OMA. The class OMA, defined by [6], is the input-oblivious version of MA, which
in turn is a randomized version of NP (in which the final verification of witnesses is probabilistic).
In terms of input-oblivious interactive proofs (i.e., OIP), the class OMA contains sets having a
uni-directional interactive proof system of perfect completeness (in which, first the prover sends a
message, and then the verifier tosses some coins). We observe that Lautemann’s argument [14],
which has been used to show BPP ⊆MA, allows showing that BPP ⊆ OMA.

Proposition 3.3 BPP ⊆ OMA.

Proof: Let S ∈ BPP and consider an algorithm A such that Prr∈{0,1}p(|x|) [A(x, r) = χS(x)] >

1 − 2−|x|, where χS(x) = 1 is x ∈ S and χS(x) = 0 otherwise. Recall that the standard argument
asserts that for every x ∈ S there exists s1, ..., sp(|x|) ∈ {0, 1}

p(|x|) such that for every r ∈ {0, 1}p(|x|)

it holds that
∨

i∈[p(|x|)] A(x, r⊕si) = 1, whereas for any x 6∈ S and s1, ..., sp(|x|) ∈ {0, 1}
p(|x|) it holds

that Prr∈{0,1}p(|x|) [
∨

i∈[p(|x|)] A(x, r⊕si) = 1] is smaller than p(|x|)/2|x|. We just note that, for every

n ∈ N, there exists s1, ..., sp(|x|)+|x| ∈ {0, 1}
p(|x|) such that for every x ∈ Sn and every r ∈ {0, 1}p(|x|)

it holds that
∨

i∈[p(|x|)+|x|] A(x, r⊕si) = 1.
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4 Input-Oblivious Versions of PCP and ZK

In this section, we consider input-oblivious versions of the classes PCP (Probabilistically Checkable
Proofs) and ZK (Zero-Knowledge interactive proofs). In both cases, we provide evidence that the
said classes extend beyond the obvious (e.g., beyond P), but note that they are unlikely to contain
all of ONP.

4.1 Input-Oblivious PCP

For sake of simplicity, we focus on PCP system of logarithmic randomness complexity and constant
query complexity, and identify such systems with the term PCP.

Definition 4.1 (input-oblivious probabilistically checkable proofs – OPCP): A set S has an input-

oblivious PCP system if there exists a probabilistic polynomial-time oracle machine V of logarithmic

randomness complexity and constant query complexity such that the following two conditions hold.

Completeness: For every n ∈ N there exists an oracle πn such that, on input any x ∈ Sn and access

to the oracle πn, machine V always accepts x.

Soundness: For every x 6∈ S and every oracle π, on input x and access to oracle π, machine V
rejects x with probability at least 1

2 .

The class OPCP consists of all sets having input-oblivious PCP systems.

Clearly, OPCP ⊆ ONP , but the converse may not hold. It is not even clear that every sparse
NP-set is in OPCP . Still, Claim 2.4 extends to OPCP .

Proposition 4.2 (on the power of input-oblivious PCPs): If NE 6= E (resp., NE 6⊆ BPE), then

OPCP 6= P (resp., OPCP 6⊆ BPP).

Proof: Recalling the construction used in the proof of Claim 2.4, we obtain a set S′ in ONP that
has the following additional property: There exist a polynomial-time computable length-preserving
function, denoted f , such that f maps all n-bit long strings to a polynomial-time constructible set
of representatives while maintaining membership in S′; that is, the following conditions hold.

1. The set {f(z) : z ∈ {0, 1}n} is poly(n)-time constructible;

2. z ∈ S′ if and only if f(z) ∈ S′.

(Referring to the set S′ as defined in Eq. (1), consider f(xy) = x0|y|, where |y| = 2|x| − |x|.) Thus,
proving membership of an arbitrary n-bit long string in S′ reduces to proving membership in S′

of the corresponding representative, which means that we need only take care of poly(n)-many
instance-witness pairs. Applying the PCP Theorem (cf. [3, 2]) to the inputs in the range of f
along with corresponding NP-witnesses, we obtain the desired input-oblivious PCP. Specifically, on
input z, the verifier computes r ← f(z), determines the index of r in the set {f(s) : s ∈ {0, 1}|z|},
and accesses the corresponding portion of the proof oracle, where the latter portion contains the
proof oracle produced for the input f(z) using a corresponding NP-witness (which may just be a
universal NP-witness for length |z| = |f(z)|).
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Digest. The proof of Proposition 4.2 does not use the fact that S′ ∈ ONP, but rather uses
the additional structure guaranteed by the polynomial-time computable function f . This seems
required since in standard PCP constructions the proof oracle depends on the input (and not
only on the corresponding NP-witness).2 Note that it is even unclear whether RP is in OPCP ,
although clearly P ⊆ OPCP . On the other hand, we note that Condition (1) can be relaxed such

that it is only required that the set Rn
def
= {f(z) : z ∈ {0, 1}n} has poly(n)-size (rather than being

poly(n)-time constructible). Actually, it suffices to required that |Rn ∩ Sn| ≤ p(n), for some fixed
polynomial p (and all n). This relaxation is shown to suffice by using a suitable hashing scheme to
map elements of Rn to indices in, say, [3p(n)] such that no two elements are mapped to the same
index, and using these indices as in the proof of Proposition 4.2. Specifically, we use a poly(n)-size
family of efficiently computable hashing functions, Hn, that map {0, 1}n to [3p(n)] such that for
every two distinct a, b ∈ {0, 1}n it holds that Prh∈Hn

[h(a)=h(b)] < 1/2p(n).3 On input z ∈ {0, 1}n,
the modified verifier computes r← f(z), selects uniformly h ∈ Hn, and accesses the portion of the
proof oracle that corresponds to (h, h(r)), which is supposed to contain a proof that there exists
w ∈ Rn ∩Sn such that h(f(w)) = v, where v ← h(r). Note that the latter NP-assertion refers only
to h and v (and n), and so we may use any NP-witness for it (and obtain a corresponding PCP oracle
proof). Hence, the completeness condition is satisfied by a proof oracle that is a concatenation of
proofs for the various possible values of (h, v), whereas on input z ∈ Sn the verifier always accesses
a portion that corresponds to a valid assertion (since it uses v = h(f(z))). The soundness condition
holds because any z 6∈ Sn is mapped with constant probability to an h ◦ f -image (for a random
h ∈ Hn) that has no h ◦ f -preiamge in Rn ∩ Sn.

Let us end this subsection by re-iterating that, while P ⊆ OPCP clearly holds, it is even unclear
whether RP is in OPCP . More generally, we ask:

Open Problem 4.3 Does OPCP = ONP?

4.2 Input-Oblivious ZK

The class OZK consists of sets having an input-oblivious interactive proof system in which the
prescribed prover is zero-knowledge in the standard (complexity oriented) sense.4 This definition
requires efficient simulation of the (prescribed) verifier’s view of the interaction, based solely on the
verifier’s actual input. (Indeed, here we refer to the verifier as the combination of the two stages,
denoted V1 and V2, and note that this combined verifier gets the actual input (rather than merely
its length).)5

Clearly, BPP ⊆ OZK (since any set in BPP has an input-oblivious interactive proof system in
which the prescribed prover does nothing, and hence is easily simulatable). It turns out that OZK
is likely to extend beyond BPP , but this occurs only in the case of sets for which it is hard to find
yes-instances of any desired length.

Proposition 4.4 (on the power of input-oblivious zero-knowledge proofs):

2Thus, it is not clear that a universal NP-witness yields a universal PCP proof oracle.
3Such constructions are presented in [9, 12, 13, 17].
4The standard (complexity theoretic) definition of zero-knowledge requires efficient simulation of the view of the

prescribed verifier (of the interaction with the prover); a stronger definition, commonly used in cryptography (cf. [7,
Sec. 4.3.1]), requires efficient simulation of the view of arbitrary probabilistic polynomial-time adversaries. We note
that our positive results extend also to the general (i.e., adversarial verifier) notion of zero-knowledge.

5A stronger requirement (which mandates simulating the first stage based solely on the length of the actual input)
is discussed in Remark 4.6.
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1. If S ∈ OZK and there exists a probabilistic polynomial-time algorithm A such that Pr[A(1n) ∈
Sn] ≥ 2/3 holds for all sufficiently large n, then S ∈ BPP.

2. If S ∈ ZK and |Sn| ≤ 1 for all sufficiently large n, then S ∈ OZK. Thus, if NE 6⊆ BPE and

one-way functions exist, then OZK 6⊆ BPP.

Proof: For the negative result of Part 1 we may weaken the definition of zero-knowledge, and
only consider simulating the output of the first stage (rather than the verifier’s view of this stage).
That is, referring to the notation in Definition 3.1, we consider the requirement that, on input
x ∈ S, one can efficiently simulate (P, V1)(1

|x|); that is, there exists a probabilistic polynomial-time
machine M such that {M(x)}x∈S and {(P, V1)(1

|x|)}x∈S are computationally indistinguishable (by
polynomial-size circuits). Let S and A be as in Part 1, and let P, V1,M be as above (and V2 as in
Definition 3.1). Actually, we assume (w.l.o.g.) that the interactive proof has error probability at
most 0.1 (rather than at most 1/3). Then, for all but finitely many z ∈ S and all x ∈ {0, 1}|z|, it
holds that

Pr[V2(x,M(z))=1] = Pr[V2(x, (P, V1)(1
|z|))=1]± 0.01,

because otherwise x can be incorporated in a small circuit that distinguishes M(z) from (P, V1)(1
|z|).

Thus, for all but finitely many x, it holds that

Pr[V2(x,M(A(1|x|)))=1] = Pr[V2(x, (P, V1)(1
|x|))=1] ± 0.35,

because Pr[A(1|x|) ∈ S|x|] > 0.66. This suggests an efficient probability decision procedure for S:

On input x, invoke V2(x,M(A(1|x|))), and rule accordingly. Observing that this decision procedure
has error probability at most 0.1 + 0.35 = 0.45, it follows that S ∈ BPP.

Turning to Part 2, we first consider a set S ∈ ZK such that |Sn| ≤ 1, and show that it is
in OZK. On input 1n, the prover first determines the unique n-bit string in Sn (or halts if no
such string exists), sends it to the verifier, then the two parties proceed using the standard zero-
knowledge proof, and at the end the verifier (i.e., V2) checks whether the input equals the n-bit
long string sent by the prover (at the beginning of the interaction). Thus, S ∈ OZK. Lastly,
assuming NE 6⊆ BPE (and the existence of one-way functions), we obtain a set S ∈ ZK \ BPP
such that |Sn| ≤ 1 (by combining a twist on the construction presented in the proof of Claim 2.4
with a standard zero-knowledge proof for sets in NP).6

Remark 4.5 (OZK may extend beyond ONP): While OZK ⊆ OIP holds trivially, assuming

that NE 6= ESPACE yields that OZK extends beyond NP. Analogously to the proof of Part 2

in Proposition 4.4, the foregoing assumption yields a unary set in PSPACE \ NP, and using

zero-knowledge proofs for sets in IP (cf. [7, Thm. 4.4.12]) we are done.

Remark 4.6 (strong zero-knowledge): We say that an input-oblivious interactive proof system is

strongly zero-knowledge if one can efficiently simulate the verifier’s view of the first stage based

solely on 1|x| (rather than based on x). It is easy to see that such proof systems exist only for sets

in BPP, even if it is only required to efficiently simulate the verifier’s output of the first stage (i.e.,
(P, V1)(1

|x|)) based on 1|x|.

6Given S′ ∈ NE \ BPE , consider the unary set S = {12|x|+idx(x)−1 : x ∈ S′}, where idx(x) is the index of x in the
standard lexicographic order of all |x|-bit strings. Clearly S ∈ NP \ BPP and |Sn| ≤ 1. Recall that the standard
construction of zero-knowledge proofs for sets in NP uses any one-way function [7, Sec. 4.4].
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