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Abstract

We show two new direct product results in two different models of communication complexity.
Our first result is in the model of one-way public-coin model. Let f ⊆ X ×Y ×Z be a relation
and ε > 0 be a constant. Let R1,pub

ε (f) represent the communication complexity of f , with worst
case error ε in this model. We show that if for computing fk (k independent copies of f) in this

model, o(k · R1,pub
1/3 (f)) communication is provided, then the success is exponentially small in k.

To our knowledge this is the first time a strong direct product result holding for all relations has
been shown in any model of communication complexity. We show a new tight characterization of
communication complexity in this model which strengthens on the tight characterization shown
in J., Klauck, Nayak [JKN08]. We use this new characterization to show our direct product
result and this characterization may also be of independent interest.

Our second direct product result is in the model of two-way public-coin communication
complexity. We show a direct product result for all relations in this model in terms of a new
complexity measure that we define. Our new measure is a generalization to non-product distri-
butions, of the two-way product subdistribution bound of J., Klauck and Nayak [JKN08]. Our
direct product result therefore generalizes to non-product distributions, their direct product
result in terms of the two-way product subdistribution bound. As an application of our new
direct product result, we reproduce (via completely different arguments) strong direct product
result for the set-disjointness problem which was previously shown by Klauck [Kla10]. We show
this by showing that our new complexity measure gives tight lower bound of Ω(n) for the set-
disjointness problem on n-bit inputs. In addition we show that many previously known direct
product results in this model are uniformly implied and often strengthened by our result.
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1 Introduction

Can computing k simultaneous instances of a problem be done more efficiently than just comput-
ing them in parallel? This question has been very well studied in many models of computation,
first for being a natural, fundamental and interesting question in itself and second for the many
implications it has for some other important questions. One way to pose this question for
bounded error computation models is as follows. Let the resource required for solving a single
instance with constant success be c; then if o(kc) resource is provided for solving k instances
together, is the overall success exponentially small in k? This is referred to as the direct product
question. We consider this question in two models of communication complexity: the one-way
public-coin model and the two-way public-coin model.

The one-way public-coin model

Let f ⊆ X × Y × Z be a relation and ε > 0. Let Alice with input x ∈ X and Bob with
input y ∈ Y wish to compute a z ∈ Z such that (x, y, z) ∈ f . In this model Alice sends a
single message to Bob who outputs z and Alice and Bob use pubic coins. We answer the direct
product question for all relations f in this model in the following manner. Let R1,pub

ε (f) denote
the communication of the best protocol P which achieves this with error at most ε (over the
public-coins) for any input (x, y).

Theorem 1.1 Let f ⊆ X × Y × Z be a relation and ε > 0 be a constant. Let k be a natural
number. Then,

R1,pub

1−2−Ω(ε3k)
(fk) = Ω

(
k ·
(
ε2 · R1,pub

ε (f)−O(1)
))

.

To our knowledge this is the first time a direct product statement has been made for all relations
in any model of communication complexity1. This question can be considered open for more
than thirty years since 1979 when the model of communication complexity was first defined by
Yao [Yao79]. We present below some previous results which are now implied and strengthened
by our result above.

1. J., Klauck, Nayak [JKN08] introduced the so called one-way subdistribution bound and
showed a direct product result in terms of the one-way subdistribution bound under prod-
uct distributions. The one-way subdistribution bound forms a lower bound on R1,pub

ε (f)
and hence our result implies their’s.

2. Gavinsky [Gav08] proves direct product for one-way distributional communication com-
plexity of a certain class of relational problems under the uniform distribution. Gavinsky
used his result to show communication v/s entanglement trade-off for communication pro-
tocols. Since our result holds for all relations it implies (in fact with stronger parameters)
the result of Gavinsky.

3. De Wolf [dW05] proves a strong direct product theorem for the one-way public-coin ran-
domized communication complexity of the Index function. Ben-Aroya, Regev, and de
Wolf [BARdW08] derive a similar direct product theorem for the one-way quantum com-
munication complexity of Index. Since Index captures the notion of VC-dimension, similar
results follow for the one-way distributional (classical and quantum) communication com-
plexity of any Boolean function under the worst case product distribution. These results
for classical communication complexity are implied by our result above.

4. J., Radhakrishnan, and Sen [JRS05] show optimal direct sum for all relations in the one-
way public coin communication complexity. A direct sum is a weaker question to direct
product and asks the following. Let the resource required for solving a single instance with

1Note that in case R1,pub
1/3 (f) ≥ 1 is a constant, then the corresponding direct product statement R1,pub

1−2−Ω(k)(f
k) =

Ω(k) is easily argued.
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constant success be c; then if o(kc) resource is provided for solving k instances together, is
the overall success is at most a constant? (In direct product the overall success is required
to be exponentially small in k). [JRS05] also show similar optimal direct sum result for one-
way entanglement assisted quantum communication complexity of all relations; however
quantum communication complexity is beyond the scope of this work.

Our techniques

We follow a natural argument for showing the direct product result. Let us say there are totally
k coordinates (instances) and we condition on success on l = d · k (d is a small constant)
coordinates. If the overall success in these l coordinates is already as small as we want then
we are done and stop. Otherwise we try to exhibit another coordinate j outside of these l
coordinates such that the success in the j-th coordinate, even conditioned on the success in
the l coordinates, is bounded away from 1. This way the overall success keeps going down and
becomes exponentially small eventually.

We do this argument in the distributional setting where one is concerned with average error
over the inputs coming from a specified distribution rather than the worst case error over all
inputs. The distributional setting can then be related to the worst case setting by the well
known Yao’s principal. Let µ be a hard distribution on X × Y, possibly non-product across X
and Y. Let us consider the inputs for fk drawn from the distribution µk (k independent copies
of µ). Now consider a one-way protocol for fk with communication o(kc) and condition on a
typical message string m from Alice. Conditioned on this message m and also on success in l
coordinates, we analyze how the distribution of Alice and Bob’s inputs on a typical coordinate j
(outside the l coordinates) looks like. We argue that this distribution is still hard enough, that
is Bob will make constant error on this coordinate whichever way he tries to give an answer.
We are able to identify some key properties in such a distribution, concerning its relationship
to µ, and argue that any distribution with these properties must be a hard distribution, given
that µ is a hard distribution.

We do this last argument by showing a new tight characterization of one-way public-coin
communication complexity for all relations. We introduce a new measure of complexity which
we call the robust conditional relative min-entropy bound (rcment). We show that this bound
is equivalent, up to constants, to R1,pub

ε (f) (for any constant ε > 0). This bound forms lower
bound on the one-way subdistribution bound of J., Klauck, Nayak [JKN08] where they also
show that their bound is equivalent, up to constants, to R1,pub

ε (f).
One key difficulty that is faced in the argument outlined above is that while Bob is making a

decision on the jth coordinate, he can use his inputs in other coordinates while making this deci-
sion. Since µ could be a non-product distribution, Bob’s inputs in other coordinates potentially
provide him information about Alice’s inputs, in addition to the information obtained from the
message from Alice. This difficulty is overcome by splitting the distribution µ into a convex
combination of several product distributions. The particular way in which we split distributions
leads us to consider the conditional distributions (conditioned on Bob’s inputs) in the definition
of rcment. This idea of splitting a non-product distribution into convex combination of product
distributions has been used in several previous works to handle non-product distributions in
different settings [Raz92, Raz98, BJKS02, Hol07, BBR10].

The two-way public-coin model

In this model Alice on input x and Bob on input y exchange messages using pubic coins and at the
end agree on a common output z. Let R2,pub

ε (f) denote the communication of the best protocol
P which achieves this with error at most ε (over the public-coins) for any input (x, y). We show
a direct product result in terms of a new complexity measure that we introduce: the ε-error two-
way conditional relative entropy bound of f with respect to distribution µ, denoted crent2,µε (f).
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The measure crent2,µε (f) forms a lower bound (upto constants) on R2,pub
ε (f). Although this result

is not an optimal direct product result that one may desire, we show how many previously known
direct product results in the two-way model follow as a consequence of our result.

1. Recently Klauck [Kla10] showed a direct product result for the set disjointness problem. In
the set disjointness problem, Alice with input x ∈ {0, 1}n and Bob with input y ∈ {0, 1}n
are supposed to determine if x and y intersect when viewed as characteristic vectors of
subsets of [n]. This is arguably one of the most well studied problems in communication
complexity. We show that our new complexity measure crent gives tight lower bound for
the set-disjointness problem (in section 5). This combined with the direct product in terms
of crent, implies strong direct product result for the set disjointness problem for its two-way
public-coin communication complexity. We point here that the arguments used in [Kla10]
are arguably specifically geared to handle the set disjointness problem. In contrast our
result is much more general as we further argue below.

2. When µ is a product distribution, crent2,µε (f) forms an upper bound (upto constants) on the
two-way subdistribution bound of J., Klauck, Nayak [JKN08]. Hence our direct product
result generalizes to non-product distributions, the direct product result of [JKN08] for
their two-way product subdistribution bound and in particular implies their result. It was
pointed in [JKN08] that their result provides a unified view of several recent works on
the topic, simultaneously generalizing and strengthening them. These works include the
strong direct product property for the rectangle/corruption bound for Boolean functions
due to Beame et al. [BPSW07].

3. Shaltiel [Sha03] gave strong direct product theorem for the discrepancy bound for com-
munication complexity under the uniform distribution. The discrepancy bound under
product distributions (in particular under the uniform distribution) is upper bounded by
the rectangle bound which in turn is upper bounded (upto constants) by the crent. There-
fore our result implies and strengthens on Shaltiel’s result and in particular implies strong
direct product for the Inner Product function (IPn(x, y) =

∑
i xi · yi mod 2) since for this

function the discrepancy bound under the uniform distribution is Ω(n).

Our techniques to show the direct product in the two-way model are quite similar to the tech-
niques in the one-way model. However in the two-way model we do not present an upper bound
on the public-coin communication complexity in terms of the new measure crent.

Other related work

Parnafes, Raz, and Wigderson [PRW97] prove a direct product result when a different algorithm
works for each of the different instances and each algorithm is only provided communication at
most the communication complexity of single instance (with constant error). In their result the
bound on the success probability is shown to behave like 2k/c for the communication complexity
c of the problem at hand. Lee, Shraibman and Spalek [LSS08] have shown strong direct product
for the discrepancy bound under arbitrary distributions and Viola and Wigderson [VW08] have
extended it to the multiparty case. Recently Sherstov [She11] showed strong direct product
for the generalized-discrepancy bound. For deterministic protocols it is known that k times the
square root of the deterministic communication complexity of a function f is needed to compute
k instances of f (see, e.g., [[KN97], Exercise 4.11, page 46]). It is also straightforward to show
that the deterministic one-way communication complexity of every function f has the direct sum
property. In a sequence of results [JRS03, HJMR09, BBR10, BR10] the direct sum property
for all relations in the two-way public-coin model has been almost shown, however the optimal
direct sum result holding for all relations is still open. Direct sum result for all relations in the
public-coin SMP model has been shown in [JRS05] both for classical and quantum protocols.
In the SMP (simultaneous message passing) model, Alice with input x and Bob with input y,
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each send a message to a Referee who outputs z. Direct sum results for all relations in the
private-coin SMP model has been shown in [JK09] both for classical and quantum protocols. In
a weak direct product theorem, one shows that the success probability of solving k instances of
a problem with the resources needed to solve one instance (with constant success) goes down
exponentially with k. Klauck [Kla04] shows such a result for the rectangle/corruption bound
for all functions and all distributions in the two-way model and [JKN08] extend this result for
all relations and for all distributions in the same model.

Indeed above is only an incomplete list of the many interesting results concerning direct
product and related questions in communication complexity.

Organization

In section 2 we provide some information theory and communication complexity preliminaries
that we need. We refer the reader to the texts [CT91, KN97] for good introductions to these
topics respectively. In section 3 we introduce our new bound for one-way communication, show
that it tightly characterizes one-way public-coin communication complexity and show our direct
product result. In section 4 we introduce our new bound for two-way communication and show
a direct product result in its terms. In section 5 we present the strong direct product for set
disjointness as an application of our two-way direct product result.

2 Preliminaries

Information theory

Let X ,Y be sets and k be a natural number. Let X k represent X × · · · × X , k times. Let µ
be a distribution over X which we denote by µ ∈ X . We let µ(x) represent the probability of
x under µ. The entropy of µ is defined as S(µ) = −

∑
x∈X µ(x) logµ(x). Let X be a random

variable distributed according to µ which we denote by X ∼ µ. We use the same symbol to
represent a random variable and its distribution whenever it is clear from the context. For
distributions µ, µ1 ∈ X , µ ⊗ µ1 represents the product distribution (µ ⊗ µ1)(x) = µ(x) · µ1(x)
and µk represents µ ⊗ · · · ⊗ µ, k times. The `1 distance between distributions µ, µ1 is defined
as ||µ − µ1||1 = 1

2

∑
x∈X |µ(x) − µ1(x)|. The relative entropy between λ ∈ X and µ is defined

as S(λ||µ) =
∑
x∈X λ(x) log λ(x)

µ(x) . The relative min-entropy between λ and µ is defined as

S∞(λ||µ) = maxx∈X log λ(x)
µ(x) . It is easily seen that S(λ||µ) ≤ S∞(λ||µ). Let λ, µ ∈ X × Y. We

use µ(x|y) to represent µ(x, y)/µ(y). Let XY ∼ µ, here we assume that X ∈ X and Y ∈ Y.
We use µx and Yx to represent Y | X = x. The conditional entropy of Y given X, is defined as
S(Y |X) = Ex←XS(Yx). We use the following properties of relative entropy.

Fact 2.1 1. Relative entropy is jointly convex in its arguments, that is for distributions
λ1, λ2, µ1, µ2,

S(pλ1 + (1− p)λ2 || pµ1 + (1− p)µ2) ≤ p · S(λ1||µ1) + (1− p) · S(λ2||µ2) .

2. Let XY,X1Y 1 ∈ X × Y. Relative entropy satisfies the following chain rule,

S(XY ||X1Y 1) = S(X||X1) + Ex←XS(Yx||Y 1
x ) .

This in-particular implies, using joint convexity of relative entropy,

S(XY ||X1 ⊗ Y 1) = S(X||X1) + Ex←XS(Yx||Y 1) ≥ S(X||X1) + S(Y ||Y 1) .

3. For distributions λ, µ : ||λ− µ||1 ≤
√
S(λ||µ) and S(λ||µ) ≥ 0.

4



4. Substate theorem [JRS02]: Let λ, µ be distributions. For every δ > 0, there exists a
distribution λδ such that S∞(λδ||µ) ≤ O( 1

δ (S(λ||µ) + 1)) and ||λδ − λ||1 ≤ δ.

Let X,Y, Z be random variables. The mutual information between X and Y is defined as

I(X : Y ) = S(X) + S(Y )− S(XY ) = Ex←XS(Yx||Y ) = Ey←Y S(Xy||X).

The conditional mutual information is defined as I(X : Y | Z) = Ez←ZI(X : Y | Z = z). Random
variables XY Z form a Markov chain Z ↔ X ↔ Y iff I(Y : Z| X = x) = 0 for each x in the
support of X. The following fact is often used in our proofs.

Fact 2.2 Let λ, µ ∈ X be distributions. Then
∑
x∈X :λ(x)<µ(x) λ(x) log λ(x)

µ(x) ≥ −1 .

One-way communication complexity

Let f ⊆ X × Y × Z be a relation. We only consider complete relations that is for each (x, y) ∈
X × Y, there exists at least one z ∈ Z such that (x, y, z) ∈ f . In the one-way model of
communication there is a single message, from Alice with input x ∈ X to Bob with input
y ∈ Y, at the end of which Bob is supposed to determine an answer z such that (x, y, z) ∈ f .
Let ε > 0 and let µ ∈ X × Y be a distribution. We let D1,µ

ε (f) represent the distributional
one-way communication complexity of f under µ with expected error ε, i.e., the communication
of the best deterministic one-way protocol for f , with distributional error (average error over
the inputs) at most ε under µ. Let R1,pub

ε (f) represent the one-way public-coin communication
complexity of f with worst case error ε, i.e., the communication of the best one-way public-coin
protocol for f with error for each input (x, y) being at most ε. The following is a consequence
of the min-max theorem in game theory [KN97, Theorem 3.20, page 36].

Lemma 2.3 (Yao principle) R1,pub
ε (f) = maxµ D

1,µ
ε (f).

The following result follows from the arguments in Braverman and Rao [BR10]. We sketch its
proof.

Lemma 2.4 (Braverman and Rao [BR10]) Let f ⊆ X × Y × Z be a relation and ε > 0.
Let XY ∼ µ be inputs to a one-way private-coin communication protocol P with distributional
error at most ε. Let M represent the message of P. Let θ be the distribution of XYM and let

Pr
(x,y,i)←θ

[
log

θ(i|x)

θ(i|y)
> c

]
≤ δ.

There exists a deterministic one-way protocol P1 for f with inputs distributed according to µ,
such that the communication of P1 is c+O(log(1/δ)), and distributional error of P1 is at most
ε+ 2δ.

Proof: [Sketch] First we obtain a public-coin protocol P ′ from protocol P. In P ′ Alice on
input x wants Bob to sample messages from distribution Mx = (M | X = x). Bob on input y
knows the distribution My = (M | Y = y). This is achieved by doing arguments similar to the
ones while proving Theorem 3.1 in [BR10] (Mx serves as P and My serves as Q), except that
Bob only considers points inside the curve of 2cMy. Alice in a single message sends c+O(log 1

δ )

hashes. This ensures that the error in Bob generating the right message, whenever log θ(i|x)
θ(i|y) ≤ c

is at most δ. Therefore the overall distributional error is at most ε+ 2δ. Now by appropriately
fixing the public-coin we get deterministic one-way protocol P1 with distributional error at most
ε+ 2δ and communication at most c+O(log 1

δ ).
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Two-way communication complexity

Let f ⊆ X × Y × Z be a relation. As mentioned before we only consider complete relations.
In the two-way model of communication, Alice with input x ∈ X and Bob with input y ∈ Y,
communicate at the end of which they are supposed to determine a common answer z (as a
function of the message transcript) such that (x, y, z) ∈ f . Let ε > 0 and let µ ∈ X × Y be
a distribution. We let D2,µ

ε (f) represent the two-way distributional communication complexity
of f under µ with expected error ε, i.e., the communication of the best deterministic two-way
protocol for f , with distributional error (average error over the inputs) at most ε under µ. Let
R2,pub
ε (f) represent the two-way public-coin communication complexity of f with worst case

error ε, i.e., the communication of the best two-way public-coin protocol for f with error for
each input (x, y) being at most ε. The following is a consequence of the min-max theorem in
game theory [KN97, Theorem 3.20, page 36].

Lemma 2.5 (Yao principle) R2,pub
ε (f) = maxµ D

2,µ
ε (f).

3 One-way communication

Definitions

We make here the necessary definitions for this section. Let f ⊆ X × Y × Z be a relation,
µ, λ ∈ X × Y be distributions and ε, δ > 0.

Definition 3.1 (One-way distributions) Distribution λ is called one-way for distribution µ
if for all (x, y) in the support of λ we have µ(y|x) = λ(y|x).

Note that in a one-way protocol if the inputs are drawn from µ and we condition on a message
transcript from Alice, then the resulting distribution would be one-way for µ.

Definition 3.2 (Error of a distribution) Error of distribution µ with respect to f , denoted
errf (µ), is defined as

errf (µ)
def
= min

{
Pr

(x,y)←µ
[(x, y, g(y)) /∈ f ] | g : Y → Z

}
.

Let µ be the distribution of inputs for Alice and Bob. Let Bob make an output depending on
his input, without any communication from Alice. Then errf (µ) represents the least error that
Bob must make.

Definition 3.3 (Robust conditional relative min-entropy) The δ-robust conditional rel-
ative min-entropy of λ with respect to µ, denoted rcmentµδ (λ), is defined to be the minimum
number c such that

Pr
(x,y)←λ

[
log

λ(x|y)

µ(x|y)
> c

]
≤ δ.

Definition 3.4 (Robust conditional relative min-entropy bound) The ε-error δ-robust
conditional relative min-entropy bound of f with respect to distribution µ, denoted rcmentµε,δ(f),
is defined as

rcmentµε,δ(f)
def
= min {rcmentµδ (λ)| λ is one-way for µ and errf (λ) ≤ ε} .

The ε-error δ-robust conditional relative min-entropy bound of f , denoted rcmentε,δ(f), is defined
as

rcmentε,δ(f)
def
= max

{
rcmentµε,δ(f)| µ is a distribution over X × Y

}
.
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We often use the above definition in the following way. Let λ be a distribution which is one-way
for µ and with rcmentµδ (λ) < rcmentµε,δ(f). Then errf (λ) > ε.

The following bound was defined in [JKN08] where it was referred to as the one-way sub-
distribution bound. We call it differently here for consistency of nomenclature with the other
bound.

Definition 3.5 (Relative min-entropy bound) The ε-error relative min-entropy bound of
f with respect to distribution µ, denoted mentµε (f), is defined as

mentµε (f)
def
= min {S∞(λ||µ)| λ is one-way for µ and errf (λ) ≤ ε} .

The ε-error relative min-entropy bound of f , denoted ment(f), is defined as

mentε(f)
def
= max {mentµε (f)| µ is a distribution over X × Y} .

Lemma 3.1 For every λ, µ and δ > 0 we have rcmentµδ (λ) ≤ (S∞(λ||µ)+1)/δ, hence rcmentµε,δ(f) =
O(mentµε (f)) and rcmentε,δ(f) = O(mentε(f)).

Proof: Let XY ∼ λ and X ′Y ′ ∼ µ. Then using Part 2. of Fact 2.1 we have,

S∞(λ||µ) ≥ S(λ||µ) ≥ Ey←Y S(Xy||X ′y) = E(x,y)←λ log
λ(x|y)

µ(x|y)
.

Therefore using Fact 2.2 and Markov’s inequality we get Pr(x,y)←λ[log λ(x|y)
µ(x|y) > (S∞(λ||µ) +

1)/δ] < δ. Hence rcmentµδ (λ) ≤ (S∞(λ||µ) + 1)/δ. The other relationships follow from defini-
tions.

New characterization

In this section we show a new characterization of one-way public-coin communication complexity
in terms of rcment. The following lemma which lower bounds distributional communication
complexity using ment appears in [JKN08].

Lemma 3.2 Let f ⊆ X × Y × Z be a relation and µ ∈ X × Y be a distribution and ε, k > 0.
Then,

D1,µ
ε(1−2−k)(f) ≥ mentµε (f)− k.

We show the following key lemma which upper bounds distributional communication complexity
using rcment.

Lemma 3.3 Let f ⊆ X × Y × Z be a relation and µ ∈ X × Y be a distribution and ε, δ > 0.
Then,

D1,µ
ε+4δ(f) ≤ rcmentε,δ(f) +O(log

1

δ
) .

Proof: We start with the following key claim where we produce a desired split of µ into several
distributions which are one-way for µ. This will enable us to obtain a one-way protocol with
small communication as we show later.

Claim 3.4 There exists a natural number k and a Markov chain M ↔ X ↔ Y , where M ∈ [k]
and XY ∼ µ, such that

1. for each i ∈ [k] : errf (Pi) ≤ ε, where Pi = (XY | M = i) and

2. Pr(x,y,i)←θ

[
log θ(i|x)

θ(i|y) > rcmentε,δ(f) + log 1
δ

]
≤ 2δ, where θ is the distribution of XYM .
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Proof: Let c = rcmentε,δ(f). Let us perform a procedure as follows. Start with i = 1.

1. Let us say we have collected distributions P1, . . . , Pi−1, each one-way for µ, and positive
numbers p1, . . . , pi−1 such that µ ≥

∑i−1
j=1 pjPj . If µ =

∑i−1
j=1 pjPj then set k = i− 1 and

stop.

2. Otherwise let us express µ =
∑i−1
j=1 pjPj + qiQi, where Qi is a distribution, one-way for µ.

Since rcmentQiε,δ(f) ≤ c, we know that there is a distribution R, one-way for Qi (hence also

one-way for µ), such that rcmentQiδ (R) ≤ c and errf (R) ≤ ε. Let r = max{q| Qi ≥ qR}.
Let Pi = R, pi = qi ∗ r, i = i+ 1 and go back to step 1.

It can be observed that for each new i, there is a new x ∈ X such that Qi(x) = 0. Hence the

above process converges after at most |X | iterations. At the end we have µ =
∑k
i=1 piPi.

Let us define M ∈ [k] such that Pr[M = i] = pi. Let us define XY ∈ X × Y correlated
with M such that (XY | M = i) ∼ Pi. It is easily checked that XY ∼ µ. Also since each Pi is
one-way for µ, XYM form a Markov chain M ↔ X ↔ Y . This shows Part 1. and it remains
to show Part 2. Let θ be the distribution of XYM . Let us define

1. B = {(x, y, i)| log Pi(x|y)
µ(x|y) > c+ log 1

δ },

2. B1 = {(x, y, i)| log Pi(x|y)
Qi(x|y) > c},

3. B2 = {(x, y, i)| µ(y)
qiQi(y)

> 1
δ }.

Since qiQ(x, y) ≤ µ(x, y),

Pi(x|y)

µ(x|y)
=
Pi(x|y)

Qi(x|y)
· Qi(x|y)

µ(x|y)
=
Pi(x|y)

Qi(x|y)
· Qi(x, y)µ(y)

Qi(y)µ(x, y)
≤ Pi(x|y)

Qi(x|y)
· µ(y)

qiQi(y)
.

Therefore B ⊆ B1 ∪B2. Since for each i, rcmentQiδ (Pi) ≤ c, we have

Pr
(x,y,i)←θ

[(x, y, i) ∈ B1] ≤ δ.

For a given y, let iy be the smallest i such that µ(y)
qiQi(y)

> 1
δ . Then,

Pr
(x,y,i)←θ

[(x, y, i) ∈ B2] =
∑
y

qiyQiy (y) <
∑
y

δµ(y) = δ.

Hence, Pr(x,y,i)←θ[(x, y, i) ∈ B] < 2δ. Finally we note that,

Pi(x|y)

µ(x|y)
=
θ(x|(y, i))
θ(x|y)

=
θ(x|y)θ(i|(x, y))

θ(i|y)θ(x|y)
=
θ(i|x)

θ(i|y)
.

Now consider the following one-way private-coin protocol P1 for f with inputs drawn from dis-
tribution µ. In P1 Alice on input x generates i from the distribution (M | X = x) and sends i
to Bob. Note that from Part 1. of the above claim, conditioned on Alice’s message being i, the
joint distribution of the inputs of Alice and Bob is Pi. Bob on input y and receiving message i,
gives the best possible output assuming distribution of Alice’s inputs being (X| M = i, Y = y).
Since for all i, errf (Pi) ≤ ε, the distributional error of P1 is at most ε. Now using Lemma 2.4 we
get a deterministic protocol P2 for f , with distributional error at most ε+4δ and communication
at most d = rcmentε,δ(f) +O(log 1

δ ).

We can now conclude our characterization.
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Theorem 3.5 (New characterization) Let f ⊆ X × Y × Z be a relation and ε > 0. Then,

ment2ε(f)− 1 ≤ R1,pub
ε (f) ≤ rcmentε/5,ε/5(f) +O(log

1

ε
) .

Hence
R1,pub
ε (f) = Θ(mentε(f)) = Θ(rcmentε,ε(f)) .

Proof: The first inequality follows from Lemma 3.2 (set k = 1) and maximizing both sides
over all distributions µ and using Lemma 2.3 (Yao principal). The second inequality follows
from Lemma 3.3 (set ε = ε, δ = ε) and maximizing both sides over all distributions µ and using
Lemma 2.3. The other relations now follow from Lemma 3.1 and from the fact that the error
in public-coin randomized one-way communication complexity can be made a constant factor
down by increasing the communication by a constant factor.

Strong direct product

In this section we show strong direct product theorem for one-way public-coin communication
complexity. We start with the following key theorem.

Theorem 3.6 (Direct product in terms of ment and rcment) Let f ⊆ X × Y × Z be a
relation and µ ∈ X ×Y be a distribution. Let 0 < 4

√
80δ < ε < 0.5 be constants, k be a natural

number and rcmentµε,ε(f) ≥ 4/δ. Then

mentµ
k

1−(1−ε/2)bδkc(f
k) ≥ δ · k · rcmentµε,ε(f) .

Proof: Let c = rcmentµε,ε(f). Let λ ∈ X k × Yk be a distribution which is one-way for µk and

with S∞(λ||µk) < δck. We show that errfk(λ) ≥ 1− (1− ε/2)bδkc. This shows the desired.
Let B be a set. For a random variable distributed in Bk, or a string in Bk, the portion

corresponding to the ith coordinate is represented with subscript i. Also the portion except
the ith coordinate is represented with subscript −i. Similarly portion corresponding to a subset
C ⊆ [k] is represented with subscript C. For joint random variables MN , we let Mn to represent
M | (N = n) and also MN | (N = n) and is clear from the context.

Let XY ∼ λ. Let us fix g : Yk → Zk. For a coordinate i, let the binary random variable
Ti ∈ {0, 1}, correlated with XY , denote success in the ith coordinate. That is Ti = 1 iff
XY = (x, y) such that (xi, yi, g(y)i) ∈ f . Using Claim 3.7 below we get that the overall success
is upper bounded as desired:

Pr[T1 × T2 × · · · × Tk = 1] ≤ Pr[Ti1 × Ti2 × · · · × Tik′ = 1] ≤ (1− ε/2)k
′
.

Claim 3.7 Let k′ = bδkc. There exists k′ distinct coordinates i1, . . . , ik′ such that Pr[Ti1 =
1] ≤ 1− ε/2 and for each r < k′,

1. either Pr[Ti1 × Ti2 × · · · × Tir = 1] ≤ (1− ε/2)k
′
,

2. or Pr[Tir+1
= 1| (Ti1 × Ti2 × · · · × Tir = 1)] ≤ 1− ε/2.

Proof: Let us say we have identified r < k′ coordinates i1, . . . ir. Let C = {i1, i2, . . . , ir}. Let
T = Ti1 × Ti2 × · · · × Tir . If Pr[T = 1] ≤ (1 − ε/2)k

′
then we will be done. So assume that

Pr[T = 1] > (1− ε/2)k
′ ≥ 2−δk.

Let X ′Y ′ ∼ µ. Let X1Y 1 = (XY | T = 1). Let D be uniformly distributed in {0, 1}k and
independent of X1Y 1. Let Ui = X1

i if Di = 0 and Ui = Y 1
i if Di = 1. Let U = U1 . . . Uk.

Below for any random variable X̃Ỹ , we let X̃Ỹd,u, represent the random variable obtained by
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appropriate conditioning on X̃Ỹ : for all i, X̃i = ui if di = 0 otherwise Ỹi = ui if d = 1 .
Consider,

δk + δck > S∞(X1Y 1||XY ) + S∞(XY ||(X ′Y ′)⊗k)

≥ S∞(X1Y 1||(X ′Y ′)⊗k) ≥ S(X1Y 1||(X ′Y ′)⊗k)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1Y 1)d,u,xC ,yC ||((X ′Y ′)⊗k)d,u,xC ,yC ) (from Part 2. of Fact 2.1)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S(X1

d,u,xC ,yC ||X
′
d1,u1,xC ,yC ⊗ . . .⊗X

′
dk,uk,xC ,yC

) (from Part 2. of Fact 2.1)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)

∑
i/∈C

S((X1
d,u,xC ,yC )i||X ′di,ui) (from Part 2. of Fact 2.1)

=
∑
i/∈C

E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC )i||X ′di,ui) . (3.1)

Also

δk > S∞(X1Y 1||XY ) ≥ S(X1Y 1||XY ) = Ed←DS(X1Y 1||XY )

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S(Y 1

d,u,xC ,yC || Yd1,u1,xC ,yC ⊗ . . .⊗ Ydk,uk,xC ,yC ) (from Part 2. of Fact 2.1)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)

∑
i/∈C

S((Y 1
d,u,xC ,yC )i||Ydi,ui) (from Part 2. of Fact 2.1)

=
∑
i/∈C

E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC )i||Y ′di,ui) . (3.2)

From Eq. 3.1 and Eq. 3.2 and using Markov’s inequality we get a coordinate j outside of C such
that

1. E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC
)j ||X ′dj ,uj ) ≤

2δ(c+1)
(1−δ) ≤ 4δc, and

2. E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC
)j ||Y ′dj ,uj ) ≤

2δ
(1−δ) ≤ 4δ.

Therefore,

4δc ≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC )j ||X ′dj ,uj )

= E(d−j ,u−j ,xC ,yC)←(D−jU−jX1
CY

1
C)E(dj ,uj)←(DjUj)| (D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((X1

d,u,xC ,yC )j ||X ′dj ,uj ).

And,

4δ ≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC )j ||Y ′dj ,uj )

= E(d−j ,u−j ,xC ,yC)←(D−jU−jX1
CY

1
C)E(dj ,uj)←(DjUj)| (D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d,u,xC ,yC )j ||Y ′dj ,uj ).

Now using Markov’s inequality, there exists set G1 with Pr[D−jU−jX
1
CY

1
C ∈ G1] ≥ 1−0.2, such

that for all (d−j , u−j , xC , yC) ∈ G1,

1. E(dj ,uj)←(DjUj)| (D−jU−jX1
CY

1
C)=(d−j ,u−j ,xC ,yC)S((X1

d,u,xC ,yC
)j ||X ′dj ,uj ) ≤ 40δc, and

2. E(dj ,uj)←(DjUj)| (D−jU−jX1
CY

1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d,u,xC ,yC
)j ||Y ′dj ,uj ) ≤ 40δ.

Fix (d−j , u−j , xC , yC) ∈ G1. Conditioning on Dj = 1 (which happens with probability 1/2) in
inequality 1. above we get,

Eyj←Y 1
j |(D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((X1

d−j ,u−j ,yj ,xC ,yC )j ||X ′yj ) ≤ 80δc. (3.3)

Conditioning on Dj = 0 (which happens with probability 1/2) in inequality 2. above we get,

Exj←X1
j |(D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d−j ,u−j ,xj ,xC ,yC )j ||Y ′xj ) ≤ 80δ.
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Using concavity of square root we get,

Exj←X1
j |(D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)||(Y 1

d−j ,u−j ,xj ,xC ,yC )j − Y ′xj ||1 ≤
√

80δ. (3.4)

Let X2Y 2 be such that X2 ∼ (X1
d−j ,u−j ,xC ,yC

)j and (Y 2| X2 = xj) ∼ Y ′xj . From Eq. 3.4 we get,

||X2Y 2 − ((X1Y 1)d−j ,u−j ,xC ,yC )j ||1 ≤
√

80δ. (3.5)

We claim the following which we prove in a bit.

Claim 3.8

Pr
(x,y)←X2Y 2

[
log

X2Y 2(x|y)

µ(x|y)
> c

]
≤ 200δ +

√
80δ < ε.

Using above claim and the fact that from constructionX2Y 2 is one-way for µ we get rcmentµε (X2Y 2) <
c. Hence, errf (X2Y 2) ≥ ε and therefore using Eq. 3.5,

errf (((X1Y 1)d−j ,u−j ,xC ,yC )j) ≥ ε−
√

80δ ≥ 3ε

4
.

Since conditioned on (Y 1
d−j ,u−j ,xC ,yC

)j , the distribution (X1Y 1)d−j ,u−j ,xC ,yC is product across

the X k and Yk parts, we have,

Pr[Tj = 1| (1, d−j , u−j , xC , yC) = (TD−jU−jXCYC)] ≤ 1− errf (((X1Y 1)d−j ,u−j ,xC ,yC )j).

Therefore overall

Pr[Tj = 1| (T = 1)] ≤ 0.8(1− 3ε

4
) + 0.2 ≤ 1− ε/2.

We return to the proof of Claim 3.8.

Proof of Claim 3.8: Let X3Y 3 = ((X1Y 1)d−j ,u−j ,xC ,yC )j . From Eq. 3.3 we have,

80δc ≥ Ey←Y 3S(X3
y ||X ′y) = E(x,y)←X3Y 3 log

X3
y (x)

µ(x|y)
.

Using Fact 2.2 and Markov’s inequality on above we get,

161δ ≥ 80δc+ 1

c/2 + 1/δ
≥ Pr

(x,y)←X3Y 3

[
log

X3
y (x)

µ(x|y)
>
c

2
+

1

δ

]
. (3.6)

Now assume for contradiction that,

200δ +
√

80δ < Pr
(x,y)←X2Y 2

[
log

X2
y (x)

µ(x|y)
> c

]
.

Using Eq. 3.5 we get,

200δ < Pr
(x,y)←X3Y 3

[
log

X2
y (x)

µ(x|y)
> c

]
. (3.7)

Using Eq. 3.6, Eq. 3.7 and since c ≥ 4/δ we get,

39δ < Pr
(x,y)←X3Y 3

[
log

X2
y (x)

X3
y (x)

>
c

2
− 1

δ
≥ 1

δ

]
.
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Therefore there exists a y such that,

39δ < Pr
x←X3

y

[
log

X2
y (x)

X3
y (x)

>
1

δ

]
.

But this is not possible since both X2
y and X3

y are probability distributions.

We now ready to state and prove the main result of this section.

Theorem 3.9 (Strong direct product for one-way public-coin communication complexity)
Let f ⊆ X ×Y ×Z be a relation. Let 0 < 4

√
80δ < ε < 0.5 be constants, k be a natural number.

Let δ′ = (1− ε/10)bδkc + 2−k. Then,

R1,pub
1−δ′ (f

k) = Ω
(
k · (δ · R1,pub

ε (f)−O(1))
)
.

In other words,
R1,pub

1−2−Ω(ε3k)
(fk) = Ω

(
k ·
(
ε2 · R1,pub

ε (f)−O(1)
))

.

Proof: Let µ1 be a distribution such that D1,µ1
ε (f) = R1,pub

ε (f). Let µ be a distribution such
that rcmentµε/5,ε/5(f) = rcmentε/5,ε/5(f). Then,

δ · k · R1,pub
ε (f) = δ · k · D1,µ1

ε (f)

= O(δ · k · rcmentε/5,ε/5(f)) (from Lemma 3.3)

= O(δ · k · rcmentµε/5,ε/5(f))

= O(mentµ
k

1−(1−ε/10)bδkc(f
k) + k) (from Theorem 3.6)

= O(D1,µk

1−(1−ε/10)bδkc−2−k(fk) + k) (from Lemma 3.2)

= O(R1,pub
1−δ′ (f

k) + k) .

Hence R1,pub
1−δ′ (f

k) = Ω
(
k · (δ · R1,pub

ε (f)−O(1))
)
.

4 Two-way communication

In this section we discuss the two-way public-coin model. We begin with the necessary defini-
tions.

Definitions

Let f ⊆ X × Y × Z be a relation, µ, λ ∈ X × Y be distributions and ε > 0. Let XY ∼ µ and
X1Y1 ∼ λ be random variables. Let S ⊆ Z.

Definition 4.1 (Error of a distribution) Error of distribution µ with respect to f and an-
swer in S, denoted errf,S(µ), is defined as

errf,S(µ)
def
= min

{
Pr

(x,y)←µ
[(x, y, z) /∈ f ] | z ∈ S

}
.
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Let µ the distribution of inputs of Alice and Bob conditioned on a message transcript in a
two-way deterministic protocol. Then if Alice and Bob give an answer in S, they make error on
at least errf,S(µ) fraction of the inputs.

Definition 4.2 (Essentialness of an answer subset) Essentialness of answer in S for f
with respect to distribution µ, denoted essµ(f, S), is defined as

essµ(f, S)
def
= 1− Pr

(x,y)←µ
[there exists z /∈ S such that (x, y, z) ∈ f ].

Above essµ(f, S) represents the fraction of inputs according to µ for which any correct answer
must lie in S. For example essµ(f,Z) = 1.

Definition 4.3 (One-way distributions) λ is called one-way for µ with respect to X , if for
all (x, y) in the support of λ we have µ(y|x) = λ(y|x). Similarly λ is called one-way for µ with
respect to Y, if for all (x, y) in the support of λ we have µ(x|y) = λ(x|y).

Definition 4.4 (SM-like) λ is called SM-like (simultaneous-message-like) for µ, if there is a
distribution θ on X × Y such that θ is one-way for µ with respect to X and λ is one-way for θ
with respect to Y.

Let the inputs of Alice and Bob be distributed according to µ. Then note that conditioned on
any message transcript in a two-way deterministic protocol, the resulting distribution on the
inputs will be SM-like for µ.

Definition 4.5 (Conditional relative entropy) The Y-conditional relative entropy of λ with
respect to µ, denoted crentµY(λ), is defined as

crentµY(λ)
def
= Ey←Y1

S((X1)y||Xy).

Similarly the X -conditional relative entropy of λ with respect to µ, denoted crentµX (λ), is defined
as

crentµX (λ)
def
= Ex←X1

S((Y1)x||Yx).

Definition 4.6 (Conditional relative entropy bound) The two-way ε-error conditional rel-
ative entropy bound of f with answer in S with respect to distribution µ, denoted crent2,µε (f, S),
is defined as

crent2,µε (f, S)
def
= min

{
crentµX (λ) + crentµY(λ) | λ is SM-like for µ and errf,S(λ) ≤ ε

}
.

We use the above definition as follows. Let λ be SM-like for µ and crentµX (λ) + crentµY(λ) < c.
Then errf,S(λ) > ε.

The following bound is analogous to a bound defined in [JKN08] where it was referred to as
the two-way subdistribution bound. We call it differently here for consistency of nomenclature
with the other bounds. [JKN08] typically considered the cases where S = Z or S is a singleton
set.

Definition 4.7 (Relative min entropy bound) The two-way ε-error relative min entropy
bound of f with answer in S with respect to distribution µ, denoted ment2,µε (f, S), is defined as

ment2,µε (f, S)
def
= min {S∞(λ||µ)| λ is SM-like for µ and errf,S(λ) ≤ ε} .

The following is easily seen from definitions and Part 2. of Fact 2.1.

Lemma 4.1

crentµX (λ) + crentµY(λ) ≤ 2 · S∞(λ||µ) and crent2,µε (f, S) ≤ 2 ·ment2,µε (f, S).
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The following lemma states that when µ is a product distribution then ment is upper bounded
by crent.

Lemma 4.2 Let µ be a product distribution across X and Y. Then,

ment2,µε (f, S) = O

(
1

ε
(crent2,µε/2(f, S) + 1)

)
.

Proof: Let µ = µ1 ⊗ µ2, where µ1 ∈ X and µ2 ∈ Y. Let λ be a distribution such that
crentµX (λ)+crentµY(λ) = crent2,µε/2(f, S); λ is SM-like for µ and errf,S(λ) ≤ ε/2. Since λ is SM-like

for µ, it is easily verified that λ is also a product distribution across X and Y. Let λ = λ1⊗ λ2,
where λ1 ∈ X and λ2 ∈ Y. Using Part 4. of Fact 2.1 we get that there exists distributions
λ′1 and λ′2 such that S∞(λ′1||µ1) ≤ O( 1

ε (S(λ1||µ1) + 1)), S∞(λ′2||µ2) ≤ O( 1
ε (S(λ2||µ2) + 1)),

||λ′1 − λ1||1 ≤ ε
4 and ||λ′2 − λ2||1 ≤ ε

4 . Let λ′ = λ′1 ⊗ λ′2. Note that λ′ is SM-like for µ. Since
||λ′ − λ||1 ≤ ε

2 and errf,S(λ) ≤ ε/2, we have errf,S(λ′) ≤ ε. Now,

S∞(λ′||µ) = S∞(λ′1||µ1) + S∞(λ′2||µ2) = O

(
1

ε
(S(λ1||µ1) + S(λ2||µ2) + 1)

)
= O

(
1

ε
(crentµX (λ) + crentµY(λ) + 1)

)
= O

(
1

ε
(crent2,µε/2(f, S) + 1)

)
Therefore ment2,µε (f, S) = O

(
1
ε (crent2,µε/2(f, S) + 1)

)
.

4.1 Strong direct product

We start with the following theorem.

Theorem 4.3 (Direct product in terms of ment and crent) Let f ⊆ X ×Y ×Z be a rela-
tion, µ ∈ X ×Y be a distribution and S ⊆ Z. Let 0 < ε < 1/3, 0 < 200δ < 1 and k be a natural
number. Fix z ∈ Zk. Let the number of indices i ∈ [k] with zi ∈ S be at least δ1k . Then

ment2,µ
k

1−(1−ε/2)bδδ1kc(f
k, {z}) ≥ δ · δ1 · k · crent2,µε (f, S) .

Proof: Let c = crent2,µε (f, S). Let λ ∈ X k × Yk be a distribution which is SM-like for µk

and with S∞(λ||µk) < δδ1ck. We show that errfk,{z}(λ) ≥ 1 − (1 − ε/2)bδδ1kc. This shows the
desired.

We use similar notations as in the previous section. Let XY ∼ λ. For a coordinate i, let the
binary random variable Ti ∈ {0, 1}, correlated with XY , denote success in the ith coordinate.
That is Ti = 1 iff XY = (x, y) such that (xi, yi, zi) ∈ f . Using Claim 4.4 we conclude the desired
upper bound on the overall success:

Pr[T1 × T2 × · · · × Tk = 1] ≤ Pr[Ti1 × Ti2 × · · · × Tik′ = 1] ≤ (1− ε/2)k
′
.

Claim 4.4 Let k′ = bδδ1kc. There exists k′ distinct coordinates i1, . . . , ik′ such that Pr[Ti1 =
1] ≤ 1− ε/2 and for each r < k′,

1. either Pr[Ti1 × Ti2 × · · · × Tir = 1] ≤ (1− ε/2)k
′
,

2. or Pr[Tir+1 = 1| (Ti1 × Ti2 × · · · × Tir = 1)] ≤ 1− ε/2.

Proof: Let us say we have identified r < k′ coordinates i1, . . . ir . Let C = {i1, i2, . . . , ir}. Let
T = T1 × T2 × · · · × Tr . If Pr[T = 1] ≤ (1 − ε/2)k

′
then we will be done. So assume that

Pr[T = 1] > (1 − ε/2)k
′ ≥ 2−δδ1k. Let X ′Y ′ ∼ µ. Let X1Y 1 = (XY | T = 1). Let D be

uniformly distributed in {0, 1}k and independent of X1Y 1. Let Ui = X1
i if Di = 0 and Ui = Y 1

i
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if Di = 1. Let U = U1 . . . Uk. Below for any random variable X̃Ỹ , we let X̃Ỹd,u, represent

the random variable obtained by appropriate conditioning on X̃Ỹ : for all i, X̃i = ui if di = 0
otherwise Ỹi = ui if d = 1 . Let I be the set of indices i such that zi ∈ S. Consider,

δδ1k + δδ1ck > S∞(X1Y 1||XY ) + S∞(XY ||(X ′Y ′)⊗k)

≥ S∞(X1Y 1||(X ′Y ′)⊗k) ≥ S(X1Y 1||(X ′Y ′)⊗k)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1Y 1)d,u,xC ,yC ||((X ′Y ′)⊗k)d,u,xC ,yC ) (from Part 2. of Fact 2.1)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S(X1

d,u,xC ,yC ||X
′
d1,u1,xC ,yC ⊗ . . .⊗X

′
dk,uk,xC ,yC

) (from Part 2. of Fact 2.1)

≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)

∑
i/∈C,i∈I

S((X1
d,u,xC ,yC )i||X ′di,ui) (from Part 2. of Fact 2.1)

=
∑

i/∈C,i∈I

E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC )i||X ′di,ui) . (4.1)

Similarly,

δδ1k + δδ1ck >
∑

i/∈C,i∈I

E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC )i||Y ′di,ui) . (4.2)

From Eq. 4.1 and Eq. 4.2 and using Markov’s inequality we get a coordinate j outside of C but
in I such that

1. E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC
)j ||X ′dj ,uj ) ≤

2δ(c+1)
(1−δ) ≤ 4δc, and

2. E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC
)j ||Y ′dj ,uj ) ≤

2δ(c+1)
(1−δ) ≤ 4δc.

Therefore,

4δc ≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((X1

d,u,xC ,yC )j ||X ′dj ,uj )

= E(d−j ,u−j ,xC ,yC)←(D−jU−jX1
CY

1
C)E(dj ,uj)←(DjUj)| (D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((X1

d,u,xC ,yC )j ||X ′dj ,uj ).

And,

4δc ≥ E(d,u,xC ,yC)←(DUX1
CY

1
C)S((Y 1

d,u,xC ,yC )j ||Y ′dj ,uj )

= E(d−j ,u−j ,xC ,yC)←(D−jU−jX1
CY

1
C)E(dj ,uj)←(DjUj)| (D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d,u,xC ,yC )j ||Y ′dj ,uj ).

Now using Markov’s inequality, there exists set G1 with Pr[D−jU−jX
1
CY

1
C ∈ G1] ≥ 1−0.2, such

that for all (d−j , u−j , xC , yC) ∈ G1,

1. E(dj ,uj)←(DjUj)| (D−jU−jX1
CY

1
C)=(d−j ,u−j ,xC ,yC)S((X1

d,u,xC ,yC
)j ||X ′dj ,uj ) ≤ 40δc, and

2. E(dj ,uj)←(DjUj)| (D−jU−jX1
CY

1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d,u,xC ,yC
)j ||Y ′dj ,uj ) ≤ 40δc.

Fix (d−j , u−j , xC , yC) ∈ G1. Conditioning on Dj = 1 (which happens with probability 1/2) in
inequality 1. above we get,

Eyj←Y 1
j |(D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((X1

d−j ,u−j ,yj ,xC ,yC )j ||X ′yj ) ≤ 80δc. (4.3)

Conditioning on Dj = 0 (which happens with probability 1/2) in inequality 2. above we get,

Exj←X1
j |(D−jU−jX1

CY
1
C)=(d−j ,u−j ,xC ,yC)S((Y 1

d−j ,u−j ,xj ,xC ,yC )j ||Y ′xj ) ≤ 80δc. (4.4)

Let X2Y 2 = ((X1Y 1)d−j ,u−j ,xC ,yC )j . Note that X2Y 2 is SM-like for µ. From Eq. 4.3 and
Eq. 4.4 we get that

crentµX (X2Y 2) + crentµY(X2Y 2) ≤ c.
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Hence, errf (((X1Y 1)d−j ,u−j ,xC ,yC )j) ≥ ε. This implies,

Pr[Tj = 1| (1, d−j , u−j , xC , yC) = (TD−jU−jXCYC)] ≤ 1− ε.

Therefore overall
Pr[Tj = 1| (T = 1)] ≤ 0.8(1− ε) + 0.2 ≤ 1− ε/2.

We can now state and prove the main result of this section.

Theorem 4.5 (Direct product in terms of D and crent) Let f ⊆ X ×Y ×Z be a relation,
µ ∈ X × Y be a distribution and S ⊆ Z. Let 0 < ε < 1/3 and k be a natural number. Let
δ2 = essµ(f, S). Let 0 < 200δ < δ2. Let δ′ = 3(1− ε/2)bδδ2k/2c. Then,

D2,µk

1−δ′(f
k) ≥ δ · δ2 · k · crent2,µε (f, S)− k .

Proof: Let crent2,µε (f, S) = c. For input (x, y) ∈ X k × Yk, let b(x, y) be the number of indices
i in [k] for which there exists zi /∈ S such that (xi, yi, zi) ∈ f . Let

B =
{

(x, y) ∈ X k × Yk| b(x, y) ≥ (1− δ2/2)k
}
.

By Chernoff’s inequality we get,

Pr
(x,y)←µk

[(x, y) ∈ B] ≤ exp(−δ22k/2).

Let P be a protocol for fk with inputs XY ∼ µk with communication at most d = (kcδδ2/2)−k
bits. Let M ∈M represent the message transcript of P. Let

BM = {m ∈M| Pr[(XY )m ∈ B] ≥ exp(−δ22k/4)}.

Then Pr[M ∈ BM ] ≤ exp(−δ22k/4). Let

B1
M = {m ∈M| Pr[M = m] ≤ 2−d−k}.

Then Pr[M ∈ B1
M ] ≤ 2−k. Fix m /∈ BM ∪ B1

M . Let zm be the output of P when M = m.
Let b(zm) be the number of indices i such that zm,i /∈ S. If b(zm) ≥ 1 − δ2k/2 then success
of P when M = m is at most exp(−δ22k/4) ≤ (1 − ε/2)bδδ2k/2c. If b(zm) < 1 − δ2k/2 then
from Theorem 4.3 (by setting z = zm and δ1 = δ2/2), success of P when M = m is at most
(1− ε/2)bδδ2k/2c. Therefore overall success of P is at most

δ′ = 2−k + exp(−δ22k/4) + (1− 2−k − exp(−δ22k/4)(1− ε/2)bδδ2k/2c ≤ 3(1− ε/2)bδδ2k/2c.

We point that when µ is a product distribution, the result above and Lemma 4.2 imply the
direct product result of [JKN08] in terms of ment2,µε (f, S).

5 Strong direct product for set disjointness

In this section we present an application of Theorem 4.5 to show a strong direct product result
for two-way public-coin communication complexity of the set-disjointness function. For a string
x ∈ {0, 1}n we let x also represent the subset of [n] for which x is the characteristic vector. The
set disjointness function disjn : {0, 1}n × {0, 1}n → {0, 1} is defined as disjn(x, y) = 1 iff the
subsets x and y do not intersect.
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Theorem 5.1 (Strong Direct product for set disjointness) Let k be a natural number.

Then R2,pub
1−2−Ω(k)(disj

k
n) = Ω(k · n).

Proof: Let n = 4l− 1 (for some integer l). Let T = (T1, T2, I) be a uniformly random partition
of [n] into three disjoint sets such that |T1| = |T2| = 2l − 1 and |I| = 1. Conditioned on
T = t = (t1, t2, {i}), let X be a uniformly random subset of t1 ∪ {i} and Y be a uniformly
random subset of t2 ∪ {i}. Note that X ↔ T ↔ Y is a Markov chain. It is easily seen that
essXY (disjn, {1}) = 0.75. Therefore using Theorem 4.5, Lemma 5.2 (below) and Lemma 2.5
(Yao principal) we conclude the desired,

R2,pub
1−2−Ω(k)(disj

k
n) = Ω(k · n).

Lemma 5.2 crent2,XY1/70 (disjn, {1}) = Ω(n).

Proof: Our proof follows on similar lines as the proof of Razborov [Raz92] showing linear lower
bound on the rectangle bound for set-disjointness (see e.g. [KN97], Lemma 4.49). However there
are important differences since we are lower bounding a weaker quantity.

Let δ = 1/(200)2. Let X ′Y ′ be such that crentXYX (X ′Y ′) + crentXYY (X ′Y ′) ≤ δn and X ′Y ′

is SM-like for XY . We will show that errdisjn,{1}(X
′Y ′) = Pr[disjn(X ′Y ′) = 0] ≥ 1/70. This

will show the desired. We assume that Pr[disjn(X ′Y ′) = 1] ≥ 0.5 otherwise we are done
already. Let A,B ∈ {0, 1} be binary random variables such that A ↔ X ↔ Y ↔ B and
X ′Y ′ = (XY | A = B = 1).

Claim 5.3

1. Pr[A = B = 1, disjn(XY ) = 0]

=
1

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 1] Pr[B = 1| T = t, Yi = 1].

2. Pr[A = B = 1, disjn(XY ) = 1]

=
3

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 0] Pr[B = 1| T = t, Yi = 0].

Proof: We first show part 1.

Pr[A = B = 1, disjn(XY ) = 0] = Pr[A = B = 1, XI = YI = 1]

= Et=(t1,t2,{i})←T Pr[A = B = 1, Xi = Yi = 1| T = t]

= Et=(t1,t2,{i})←T Pr[Xi = Yi = 1| T = t] Pr[A = B = 1| T = t,Xi = Yi = 1]

=
1

4
Et=(t1,t2,{i})←T Pr[A = B = 1| T = t,Xi = Yi = 1]

=
1

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 1] Pr[B = 1| T = t, Yi = 1].

Now we show part 2. Note that the distribution of (XY | disjn(X,Y ) = 1) is identical to the
distribution of (XY | XI = YI = 0) (both being uniform distribution on disjoint x, y such that
|x| = |y| = l). Also Pr[disjn(XY ) = 1] = 3 Pr[XI = YI = 0]. Therefore,

Pr[A = B = 1, disjn(XY ) = 1] = Pr[disjn(XY ) = 1] Pr[A = B = 1| disjn(XY ) = 1]

= 3 Pr[XI = YI = 0] Pr[A = B = 1| XI = YI = 0] = 3 Pr[A = B = 1, XI = YI = 0]

= 3Et=(t1,t2,{i})←T Pr[A = B = 1, Xi = 0, Yi = 0| T = t]

= 3Et=(t1,t2,{i})←T Pr[Xi = 0, Yi = 0| T = t] Pr[A = B = 1| T = t,Xi = 0, Yi = 0]

=
3

4
Et=(t1,t2,{i})←T Pr[A = B = 1| T = t,Xi = 0, Yi = 0]

=
3

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 0] Pr[B = 1| T = t, Yi = 0].
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Claim 5.4 Let B1
x = {t2| S(X ′t2 ||Xt2) > 100δn}, B1

y = {t1| S(Y ′t1 ||Yt1) > 100δn}.

B2
x = {t| Pr[A = 1| Xi = 1, T = t] <

1

3
Pr[A = 1| Xi = 0, T = t]}.

B2
y = {t| Pr[B = 1| Yi = 1, T = t] <

1

3
Pr[B = 1| Yi = 0, T = t]}.

1. Pr[A = B = 1, T2 ∈ B1
x] < 1

100 Pr[A = B = 1].

2. Pr[A = B = 1, T1 ∈ B1
y ] < 1

100 Pr[A = B = 1].

3. Let t2 /∈ B1
x, then Pr[T ∈ B2

x| T2 = t2] < 1
100 .

4. Let t1 /∈ B1
y , then Pr[T ∈ B2

y | T1 = t1] < 1
100 .

Proof: We show the proof of part 1. and part 2. follows similarly. Let T ′ = (T | A = B = 1).
Note that X ′ ↔ T ′ ↔ Y ′ is a Markov chain. Also for every (x, y) : (T | XY = (x, y)) is
identically distributed as (T ′| X ′Y ′ = (x, y)). Consider,

δn ≥ Ey←Y ′S(X ′y||Xy) = Ey←Y ′S((X ′T ′)y||(XT )y)

≥ E(y,t)←(Y ′T ′)S(X ′y,t||Xy,t) = Et←T ′S(X ′t||Xt) = Et2←T ′2S(X ′t2 ||Xt2).

Therefore using Markov’s inequality,

1

100
> Pr[T ′2 ∈ B1

x] = Pr[T2 ∈ B1
x| A = B = 1] =

Pr[T2 ∈ B1
x, A = B = 1]

Pr[A = B = 1]
.

We show the proof of part 3. and part 4. follows similarly. Fix t2 /∈ B1
x. Then,

100δn ≥ S(X ′t2 ||Xt2) ≥
∑
i/∈t2

S((X ′t2)i||(Xt2)i).

Let R = {i /∈ t2| S((X ′t2)i||(Xt2)i) > 0.01}. From above |R|2l <
1

100 . For i /∈ R ∪ t2,

S((X ′t2)i||(Xt2)i) ≤ 0.01 ⇒ ||(X ′t2)i − (Xt2)i||1 ≤
√

0.01 = 0.1

⇒ Pr[(X ′t2)i = 1] ≥ 0.4 ≥ 1

3
Pr[(X ′t2)i = 0] (since Pr[(Xt2)i = 1] = 0.5)

⇒ Pr[Xi = 1| T2 = t2, A = 1] ≥ 1

3
Pr[Xi = 0| T2 = t2, A = 1]

⇒ Pr[A = 1| T2 = t2]

Pr[Xi = 1| T2 = t2]
Pr[Xi = 1| T2 = t2, A = 1] ≥ 1

3

Pr[A = 1| T2 = t2]

Pr[Xi = 0| T2 = t2]
Pr[Xi = 0| T2 = t2, A = 1]

⇒ Pr[A = 1| Xi = 1, T2 = t2] ≥ 1

3
Pr[A = 1| Xi = 0, T2 = t2].

Therefore i /∈ R ∪ t2 implies t = (t1, t2, {i}) /∈ B2
x. Hence,

Pr[T ∈ B2
x| T2 = t2] ≤ Pr[i ∈ R| T2 = t2] =

|R|
2l

<
1

100
.
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Claim 5.5 1. Let Bad1x = 1 iff T2 ∈ B1
x otherwise 0. Then

Et=(t1,t2,{i})←T Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad1x

≤ 6

100
Et=(t1,t2,{i})←T Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t].

2. Let Bad1y = 1 iff T1 ∈ B1
y otherwise 0. Then

Et=(t1,t2,{i})←T Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad1y

≤ 6

100
Et=(t1,t2,{i})←T Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t].

3. Fix t2 /∈ B1
x. Let Tt2 = (T | T2 = t2). Let Bad2x = 1 iff T ∈ B2

x otherwise 0. Then

Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad2x

≤ 2

100
Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t].

4. Fix t1 /∈ B1
y . Let Tt1 = (T | T1 = t1). Let Bad2y = 1 iff T ∈ B2

y otherwise 0. Then

Et=(t1,t2,{i})←Tt1 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad2y

≤ 2

100
Et=(t1,t2,{i})←Tt1 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t].

Proof: We show part 1. and part 2. follows similarly. Note that for all t,

Pr[A = 1| T = t] = Pr[Xi = 0| T = t] Pr[A = 1| Xi = 0, T = t]

+ Pr[Xi = 1| T = t] Pr[A = 1| Xi = 1, T = t].

Hence Pr[A = 1| T = t] ≥ 1
2 Pr[A = 1| Xi = 0, T = t]. Similarly Pr[B = 1| T = t] ≥ 1

2 Pr[B =
1| Yi = 0, T = t]. Consider,

Et=(t1,t2,{i})←T Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad1x

≤ 4Et=(t1,t2,{i})←T Pr[A = 1| T = t] Pr[B = 1| T = t]Bad1x

= 4Et=(t1,t2,{i})←T Pr[A = B = 1| T = t]Bad1x

= 4 Pr[A = B = 1, T2 ∈ B1
x]

≤ 4

100
Pr[A = B = 1] (from Claim 5.4)

≤ 8

100
Pr[A = B = 1, disjn(XY ) = 1] (since Pr[disjn(X ′Y ′) = 1] ≥ 0.5)

=
6

100
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 0] Pr[B = 1| T = t, Yi = 0] (from Claim 5.3)

We show part 3. and part 4. follows similarly. Note that :

1. Pr[B = 1| Yi = 0, T = (t1, t2, {i})] is independent of i for fixed t2. Let us call it c(t2).

2. Pr[A = 1| T = (t1, t2, {i})] is independent of i for fixed t2. Let us call it r(t2).

3. Distribution of (X| T2 = t2) is identical to the distribution (X| T2 = t2, XI = 0). Hence
Et=(t1,t2,{i})←Tt2 Pr[A = 1| T = t] = Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t].
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Fix t2 /∈ B1
x. Consider,

Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t]Bad2x

= c(t2)Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t]Bad2x

≤ 2c(t2)Et=(t1,t2,{i})←Tt2 Pr[A = 1| T = t]Bad2x

= 2c(t2)r(t2)Et=(t1,t2,{i})←Tt2Bad
2
x

≤ 2

100
c(t2)r(t2) (from Claim 5.4)

=
2

100
c(t2)Et=(t1,t2,{i})←Tt2 Pr[A = 1| T = t]

=
2

100
c(t2)Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t]

=
2

100
Et=(t1,t2,{i})←Tt2 Pr[A = 1| Xi = 0, T = t] Pr[B = 1| Yi = 0, T = t].

We can now finally prove our lemma. Let Bad = 1 iff any of Bad1x, Bad
1
y, Bad

2
x, Bad

2
y is 1,

otherwise 0.

Pr[A = B = 1, disjn(XY ) = 0]

=
1

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 1] Pr[B = 1| T = t, Yi = 1] (from Claim 5.3)

≥ 1

4
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 1] Pr[B = 1| T = t, Yi = 1](1−Bad)

≥ 1

36
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 0] Pr[B = 1| T = t, Yi = 0](1−Bad)

≥ 84

3600
Et=(t1,t2,{i})←T Pr[A = 1| T = t,Xi = 0] Pr[B = 1| T = t, Yi = 0] (from Claim 5.5)

=
7

225
Pr[A = B = 1, disjn(XY ) = 1] (from Claim 5.3).

This implies

Pr[disjn(X ′Y ′) = 0] = Pr[disjn(XY ) = 0| A = B = 1]

=
Pr[disjn(XY ) = 0, A = B = 1]

Pr[A = B = 1]

≥ 7

225
· Pr[disjn(XY ) = 1, A = B = 1]

Pr[A = B = 1]

=
7

225
· Pr[disjn(X ′Y ′) = 1] ≥ 1

70
.

Open questions

Some key questions that arises naturally from this work are:

1. Is it true that our new complexity measure crent is polynomially tight for the two-way
public-coin communication complexity? If this is true we would get the following strong
direct product result for all relations f : R2,pub

1−2−Ω(k)(f
k) = Ω(k · poly(R2,pub

ε (f))), which will
already be a significant step forward in this question.
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2. It will be interesting to find if the measure crent is tight for some other important functions
and relations which will lead to corresponding strong direct product results for them.
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