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Abstract

A Boolean function f : Fn
2 → F2 is called an affine disperser for

sources of dimension d, if f is not constant on any affine subspace
of Fn

2 of dimension at least d. Recently Ben-Sasson and Kopparty
gave an explicit construction of an affine disperser for d = o(n). The
main motivation for studying such functions comes from extracting
randomness from structured sources of imperfect randomness. In this
paper, we show another application: we give a very simple proof of a
3n− o(n) lower bound on the circuit complexity (over the full binary
basis) of affine dispersers. The same lower bound 3n− o(n) (but for a
completely different function) was given by Blum in 1984 and is still
the best known.

The main technique is to substitute variables by linear functions.
This way the function is restricted to an affine subspace of Fn

2 . An
affine disperser for d = o(n) then guarantees that one can make n −
o(n) such substitutions before the function degenerates. It remains to
show that each such substitution eliminates at least 3 gates from a
circuit.
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1 Introduction

Proving lower bounds on the circuit complexity of explicitly defined Boolean
functions is one of the most famous and difficult problems in theoretical
computer science. In 1949 Shannon [14] showed by a counting argument
that almost all Boolean functions have circuits of size Ω(2n/n). Still, we
have no example of an explicit function requiring super-linear circuit size.
Moreover, only a few proofs of linear lower bounds are known. We review
some of them is Sect. 3. The best lower bound 3n−o(n) for the basis B2 was
proved by Blum in 1984 [3], the current record lower bound 5n−o(n) for the
basis U2 = B2 \{⊕,≡} was given in 2002 by Iwama, Lachish, Morizumi, and
Raz [10, 8, 7].

All bounds mentioned above are proved by the gate elimination method.
The main idea of this method is the following. One considers a Boolean
function on n variables from a certain class of functions and shows that for
any circuit computing this function setting some variables to constants yields
a sub-function of the same type and eliminates several gates. Usually, a gate
is eliminated just because one of its inputs becomes a constant. By induction,
one concludes that the original circuit must have many gates. Though this
method is essentially the only known method for proving non-trivial lower
bounds for general circuit complexity, as many authors note it is unlikely
that it will allow to prove non-linear bounds.

In this paper, we prove a 3n−o(n) lower bound on the circuit complexity
of a Boolean function f : Fn

2 → F2 that is not constant on any affine sub-
space of Fn

2 of dimension at least d = o(n). Such functions are called affine
dispersers for sources of dimension d. The proof of a lower bound is much
simpler than the proof of the currently strongest lower bound 3n−o(n) given
by Blum in 1984 [3]. However, it is not easy to construct explicitly an affine
disperser for small d. Only recently Ben-Sasson and Kopparty [2] presented
a construction for d = o(n).

The main idea of the proof is as follows. Consider an affine disperser
f for d = o(n). We know that f is not constant on any affine subspace
of Fn

2 of dimension at least d. Hence for any I1, . . . , In−d ⊆ {1, . . . , n} and
c1, . . . , cn−d ∈ F2, f is not constant on affine subspace

{x ∈ Fn
2 |

⊕
i∈Ik

xi = ck, for all 1 ≤ k ≤ n− d}

of dimension at least d. We consequently find substitutions of the form
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xik =
⊕

i∈Ik xi⊕ck so that at least 3 gates are eliminated under each of them
from the current circuit. This way we eliminate at least 3n− o(n) gates.

To find a substitution under which at least 3 gates are eliminated we just
take the topologically first non-linear gate R of a circuit. Since it is the first
such gate, both its inputs P and Q are linear functions. By an appropriate
substitution, we make P constant which also makes R constant. This kills
P , R and all the successors of R, i.e., at least 3 gates in total. In the example
below, one can make a substitution x1 = x2 ⊕ 1. Then P evaluates to 0, R
evaluates to 0 and T is eliminated. The formal proof is given in Section 4.

x1 x2 x3 x4

≡P ⊕Q

∧R

T

Similar ideas (substituting variables by linear functions) were used by Bo-
yar and Peralta [4] for proving lower bounds on the multiplicative complexity
of Boolean functions. The multiplicative complexity of a Boolean function
is defined as the smallest number of ∧ gates in a circuit over {∧,⊕, 1} com-
puting this function. Again, one can show by a counting argument that the
multiplicative complexity of almost all Boolean functions is about 2n/2 [5],
while the best known lower bound for an explicit function is n − 1. As an
easy consequence we obtain a lower bound n − d − 1 on the multiplicative
complexity of an affine disperser.

2 General Setting

By Bn we denote the set of all Boolean functions f : Fn
2 → F2. A circuit over

a basis Ω ⊆ B2 is a directed acyclic graph with nodes of in-degree 0 or 2.
Nodes of in-degree 0 are marked by variables from {x1, . . . , xn} and are called
inputs. Nodes of in-degree 2 are marked by functions from Ω and are called
gates. There is also a special output gate where the result is computed. The
size of a circuit is its number of gates. By CΩ(f) we denote the minimum
size of a circuit over Ω computing f . The two most commonly studied bases
are B2 and U2 = B2 \ {⊕,≡}.
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We call a function f ∈ B2 degenerate if it does not depend essentially on
some of its variables, i.e., there is a variable xi such that the sub-functions
f |xi=0 and f |xi=1 are equal. It is easy to see that a gate computing a de-
generate function from B2 can be easily eliminated from a circuit without
increasing its size (when eliminating this gate one may need to change the
functions computed at its successors). The set B2 contains the following
sixteen functions f(x, y):

• six degenerate functions: 0, 1, x, x⊕ 1, y, y ⊕ 1;

• eight functions of the form ((x ⊕ a)(y ⊕ b)) ⊕ c, where a, b, c ∈ F2

(throughout all the paper we write xy instead of x ∧ y); we call them
∧-type functions;

• two functions of the form x ⊕ y ⊕ a, where a ∈ F2; these are called
⊕-type functions.

An example of simplifying a circuit is given below. We assign x2 the value
1. Then Q computes the constant 1, so P and R compute x1 ⊕ 1. These 3
gates can be eliminated from the circuit. After that S computes (x1⊕1)⊕x4,
i.e., x1 ≡ x4, while T computes (x1 ⊕ 1)S. The negation sign on the wire
from x1 to T is intended to reflect the fact that the binary function computed
at T is not just xy as in the picture, but (x⊕ 1)y.

x1 x2 x3

x4⊕P ∨Q

∧R ⊕S

∧T

x1 x4

≡S

∧T

¬

x2 = 1

Below we state several simple but important facts illustrated in this ex-
ample.

• The substitution x2 = 1 trivializes the gate Q (i.e., makes it constant),
so not only Q is eliminated, but also all its successors. At the same
time, P is not trivialized, but becomes a degenerate function. This
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illustrates the difference between ⊕- and ∧-type gates and explains
why currently best lower bounds for circuits over U2 are stronger than
those for circuits over B2.

• While simplifying a circuit under a substitution one may need to change
the functions computed at gates.

• The resulting circuit depends on neither x2 nor x3, though only x2 was
substituted.

3 Known Lower Bounds

Below we review some of the known lower bounds on circuit complexity and
in each case indicate a property of a Boolean function that is important
for the proof. We concentrate on the circuit size, while there are many
other models, such as formulas, branching programs, monotone circuits, and
constant-depth circuits, where functions with other interesting properties are
needed. Note that apart from the properties described below, each function
for which one would like to prove a lower bound by the gate elimination
method must also satisfy the following natural property: it must remain
essentially the same after replacing a variable by a constant (this is needed
to proceed by induction).

• Schnorr [13] proved a 2n−c lower bound on CB2 for a function satisfying
the following property: for any two different input variables xi and xj,
there are at least three different sub-functions among

f |xi=0,xj=0, f |xi=1,xj=0, f |xi=0,xj=1, f |xi=1,xj=1 .

This property is needed to argue that the top of a circuit, restricted to
any two variables xi and xj, cannot look like this:

xi xj

That is, at least one of xi and xj must also feed some other gate (as
otherwise one would get at most two different subfunctions w.r.t. xi
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and xj). One then assigns a constant to this variable and kills two
gates. A 2n− c lower bound follows by induction.

There are many natural functions satisfying this property, e.g., MODn
m,r,

for m ≥ 3, defined as follows:

MODn
m,r(x1, . . . , xn) = 1 iff

n∑
i=1

xi ≡ r (mod m) .

• The first result Paul proved in [11] is a 2n− o(n) lower bound for the
storage access function: for a ∈ Flogn

2 and x ∈ Fn
2 , f(a, x) = xā, where

ā is the number from {0, . . . , n − 1} whose binary representation is a,
and xā is the corresponding bit of a. An important property of this
function is that for any input variable xi, when all the bits of a are
already assigned, the output of f either equals xi or does not depend
on xi at all. This allows to substitute xi not only by a constant, but
by an arbitrary function.

• Stockmeyer [15] proved a 2.5n−c lower bound on CB2 for many symmet-
ric functions. He essentially uses the fact that for symmetric functions
substituting xi = h, xj = h ⊕ 1 for a function h is the same as just
saying that xi ⊕ xj = 1.

• A function for which Blum [3] proved a 3n− o(n) lower bound on CB2

(a similar function was also used by Paul [11]) is defined as follows. Let
a, b, c ∈ Flogn

2 , x ∈ Fn
2 , p, q, r ∈ F2. Then

f(a, b, c, p, q, r, x) = q((xāxb̄) ∨ (pxb̄(xc̄ ⊕ r))) ∨ (1⊕ q)(xā ⊕ xb̄) .

For any xi and xj, one can get xi⊕xj as well as xixj from f by assigning
some of the remaining variables.

• Kojevnikov and Kulikov [9] proved a 7n/3−c lower bound for functions
with high multiplicative complexity. Any circuit computing such a
function must have several ∧-type gates. This allows to assign different
weights to ⊕- and ∧-type gates when counting the number of gates that
are eliminated.

• Schnorr [13] proved a 3n−c lower bound on CU2 for the parity function.
A property that helps here is that an optimal circuit cannot contain a
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variable of out-degree exactly 1. Indeed, if such a variable xi existed,
one could substitute all the other variables to trivialize the unique
gate fed by xi. This would make the function independent of xi, a
contradiction.

• Zwick [16] proved a 4n−c lower bound for all MODn
m,r functions, m ≥ 3.

He noticed that any optimal circuit for such a function can contain only
a constant number of out-degree 1 variables. This allows to remove
such variables from the consideration by using a circuit complexity
measure equal to the number of gates minus the number of out-degree
1 variables.

• Iwama, Lachish, Morizumi, and Raz [10, 8, 7] used Zwick’s circuit com-
plexity measure to prove a lower bound 5n− o(n) on CU2 for strongly
two-dependent functions, i.e., functions satisfying the following prop-
erty: for any two variables all the four sub-functions resulting by fixing
the values of these variables are different. This property guarantees
that a top of a circuit cannot look like this:

xi xj

∨ ∧

This case is the main bottleneck in Zwick’s proof. An explicit con-
struction of a strongly two-dependent function was previously given
by Savicky and Zak [12]. In fact, this function is even k-mixed, for
k = n − o(n): for any subset of k variables, all the 2k sub-functions
w.r.t. these k variables are different. Recently, Amano and Tarui [1]
showed that this property is not enough for proving stronger than 5n
lower bounds on CU2 by constructing a function of circuit complexity
5n+ o(n) that is k-mixed, for k = o(n).

4 A 3n− o(n) Lower Bound

In this section we consider only circuits over B2. Let µ(C) = s(C) + N(C),
where s(C) is the size (number of gates) of C and N(C) is the number of input
variables of C with out-degree at least 1.
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Lemma. Let P be a gate of a circuit C that is a ⊕-type gate that depends
only on ⊕-type gates of out-degree 1 and variables. Then there is a variable
xj and a (possibly empty) subset of variables I ⊆ {1, . . . , n} \ {j} such that
for any constant c ∈ F2, the substitution xj =

⊕
i∈I xi ⊕ c makes the gate P

constant and reduces N(C) by at least 1.

Proof. Clearly P computes a function
⊕

i∈I xi ⊕ xj ⊕ c0 for some 1 ≤ j ≤ n,
I ⊆ {1, . . . n} \ {j}, c0 ∈ F2. We analyse the effect of reducing C under the
substitution xj =

⊕
i∈I xi ⊕ c, for c ∈ F2. Let S be the set of gates that P

depends on. Clearly S contains at least |I| − 1 gates (as
⊕

i∈I xi⊕ c0 cannot
be computed by less than |I|−1 gates). To simplify C under the substitution
xj =

⊕
i∈I xi ⊕ c, we eliminate the gate P (as it now computes the constant

c⊕ c0) and all its successors (as they now compute degenerate functions).
To reduce N(C) by 1, we need to replace xj by

⊕
i∈I xi ⊕ c. For this, we

eliminate all the gates from S (they were needed only for computing P since
they had out-degree 1). and add |I| − 1 gates computing

⊕
i∈I xi. We then

use them instead of xj. Clearly, the resulting circuit outputs the same as the
initial circuit for all x ∈ Fn

2 such that xj =
⊕

i∈I xi ⊕ c.

An example of such simplification is given below (I = {2, 3, 4, 5}, j = 1).

x1 x2

x3

x4 x5Q R ⊕

⊕ ⊕

⊕P

x2 x3

x4

x5

x1

Q R

⊕

⊕

⊕
x1 =

⊕5
i=2 xi

Theorem. Let f : Fn
2 → F2 be an affine disperser for sources of dimension

d, let A be an affine subspace of Fn
2 of dimension D, and let C be a circuit

with n inputs such that ∀x ∈ A,C(x) = f(x). Then

µ(C) ≥ 4(D − d) .

Proof. We prove the inequality by induction on D. The base case D ≤ d is
trivial. Consider now the case D ≥ d + 1. Take a circuit C computing f on
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⊕P

⊕Q

∧P

xi xj

∧P

Q

xi xj

Q

∧P

xi xj

∧P

Case 1 Case 2.1 Case 2.2.1 Case 2.2.2 Case 2.3

Figure 1: All cases of the proof

A with the minimal possible µ(C). Assume without loss of generality that C
does not contain degenerate gates (all such gates can be eliminated without
increasing µ(C)). Note also that C cannot compute a linear function. Indeed,
if C computed a function of the form

⊕
i∈I xi ⊕ c, then f would be constant

on affine space A′ = {x ∈ A :
⊕

i∈I xi = c} of dimension at least D − 1 ≥ d.
Thus, C contains at least one ∧-type gate.

In the following we find a substitution of the form
⊕

i∈I xi ⊕ c under
which C is reduced to C ′ such that µ(C) ≥ µ(C ′) + 4 and C(x) = C ′(x) for
all x ∈ A′ = {x ∈ A :

⊕
i∈I xi = c}. Since A′ has dimension at least D − 1,

we conclude by induction that µ(C) ≥ 4(D − 1 − d) + 4 = 4(D − d). Note
that any gate that becomes constant under such substitution cannot be an
output gate, as otherwise C would compute a linear function.

Consider a topological order on all the gates of C and let P be the first
gate in this order that is not a ⊕-type gate of out-degree 1. Since it depends
only on ⊕-type gates and input variables, functions computed at both inputs
of P are of the form

⊕
i∈I1 xi ⊕ c1 and

⊕
i∈I2 xi ⊕ c2. Below we consider five

cases, Fig. 1 shows all of them.

• Case 1. P is a ⊕-type gate of out-degree at least 2. Then it clearly
computes a function of the form

⊕
i∈I xi⊕c. Making P constant allows

us to eliminate P and the (at least 2) immediate successors. By the
lemma above, making P constant reduces µ by at least 4.

• Case 2. P is an ∧-type gate.

– Case 2.1. One of the inputs of P is a gate Q. Then Q is a
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⊕-type gate. By making Q the constant (as in the lemma) which
trivializes P we kill P , Q, and all the successors of P . Also, N(C)
is reduced by at least 1, hence µ is reduced by at least 4.

– Case 2.2. Both inputs of P are variables xi and xj, and at least
one of them (say, xi) has out-degree at least 2. Assigning xi the
constant which trivializes P kills all the successors of xi and all
the successors of P . Clearly N(C) is reduced by at least 1. We
need to show that s(C) is reduced by at least 3. This is clearly true
if P has out-degree at least 2. So assume that the only successor
of P is a gate Q and consider two sub-cases.

∗ Case 2.2.1. Q is not fed by xi. Then P and Q are eliminated
as well as at least one other successor of xi.

∗ Case 2.2.2. Q is fed by xi. Then Q becomes constant (as
both its inputs are constants) and so all its successors are also
eliminated.

– Case 2.3. Both inputs of P are out-degree 1 variables xi and xj.
By assigning xi the constant which trivializes P we eliminate P
and all its successors and reduce N(C) by at least 2. Hence µ is
reduced by at least 4.

Corollary. Any circuit over B2 computing an affine disperser for d = o(n)
has at least 3n− o(n) gates.

Proof. Let C be a circuit computing an affine disperser for d = o(n) and let
D = n. Then

s(C) = µ(C)−N(C) ≥ 4(n− d)− n = 3n− d .

It is also easy to see that by the same method one can prove a lower bound
n − o(n) on the multiplicative complexity of affine dispersers, for d = o(n).
For this, we just make n−o(n) linear substitutions each time killing the first
∧-type gate.
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5 Further Directions

It would be interesting to improve the presented lower bound by a more
involved case analysis or to find another property of Boolean functions im-
plying a stronger than 3n lower bound. An (apparently) easier problem is to
close one of the following gaps (see [15], [6], [16]):

2.5n− c ≤ CB2(MODn
3 ) ≤ 3n+ c,

4n− c ≤ CU2(MODn
4 ) ≤ 5n+ c .

Also it is still not known whether C(MODn
p ) is strictly greater than C(MODn

q )
for primes p > q. Note however that any symmetric function can be com-
puted by a circuit (over B2) of size 4.5n+ o(n) [6].

It would also be interesting to find a Boolean function of multiplicative
complexity at least cn, for a constant c > 1.
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