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Abstract

We prove that, assuming the Unique Games Conjecture (UGC), every problem in the class
of ordering constraint satisfaction problems (OCSP) where each constraint has constant arity is
approximation resistant. In other words, we show that if ρ is the expected fraction of constraints
satisfied by a random ordering, then obtaining a ρ′ approximation, for any ρ′ > ρ is UG-hard.

For the simplest ordering CSP, the Maximum Acyclic Subgraph (MAS) problem, this
implies that obtaining a ρ-approximation, for any constant ρ > 1/2 is UG-hard. Specifically, for
every constant ε > 0 the following holds: given a directed graph G that has an acyclic subgraph
consisting of a fraction (1− ε) of its edges, it is UG-hard to find one with more than (1/2 + ε)
of its edges. Note that it is trivial to find an acyclic subgraph with 1/2 the edges, by taking
either the forward or backward edges in an arbitrary ordering of the vertices of G. The MAS
problem has been well studied and beating the random ordering for MAS has been a basic open
problem.

An OCSP of arity k is specified by a subset Π ⊆ Sk of permutations on {1, 2, . . . , k}. An
instance of such an OCSP is a set V and a collection of constraints each of which is an ordered
k-tuple of V . The objective is to find a global linear ordering of V while maximizing the number

of constraints ordered as in Π. A random ordering of V is expected to satisfy a ρ = |Π|
k! fraction.

We show that, for any fixed k, it is hard to obtain a ρ′-approximation for Π-OCSP for any
ρ′ > ρ. The result is in fact stronger: we show that for every Λ ⊆ Π ⊆ Sk, and an arbitrarily
small ε, it is hard to distinguish instances where a (1 − ε) fraction of the constraints can be
ordered according to Λ; from instances where at most a ρ + ε fraction can be ordered as in Π.
A special case of our result is that the Betweenness problem is hard to approximate beyond
a factor 1/3. The results naturally generalize to OCSPs which assign a payoff to the different
permutations.

Finally, our results imply (unconditionally) that a simple semidefinite relaxation for MAS
does not suffice to obtain a better approximation.
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1 Introduction

We begin by discussing our results about the simplest ordering constraint satisfaction problem —
Maximum Acyclic Subgraph — that involves local ordering constraints on pairs of variables.

1.1 Maximum Acyclic Subgraph

Given a directed acyclic graph G, one can efficiently order (“topological sort”) its vertices so that
all edges go forward from a lower ranked vertex to a higher ranked vertex. But what if a few, say
fraction ε, of edges of G are reversed? Can we detect these “errors” and find an ordering with few
back edges? Formally, given a directed graph whose vertices admit an ordering with many, i.e.,
1 − ε fraction, forward edges, can we find a good ordering with fraction α of forward edges (for
some α → 1)? This is equivalent to finding a subgraph of G that is acyclic and has many edges,
and hence this problem is called the Maximum Acyclic Subgraph problem.

It is trivial to find an ordering with fraction 1/2 of forward edges: take the better of an arbitrary
ordering and its reverse. This gives a factor 1/2 approximation algorithm for Maximum Acyclic
Subgraph. (This is also achieved by picking a random ordering of the vertices.) Despite much
effort, no efficient ρ-approximation algorithm for a constant ρ > 1/2 has been found for Maximum
Acyclic Subgraph. The existence of such an algorithm has been a long-standing and central
open problem in the theory of approximation algorithms. In this work, we prove a strong hardness
result that rules out the existence of such an approximation algorithm assuming the Unique Games
conjecture. Formally, we show the following:

Theorem 1.1. Conditioned on the Unique Games conjecture (UGC), the following holds for every
constant γ > 0. Given a weighted directed graph G with m edges, it is NP-hard to distinguish
between the following two cases:

1. There is an ordering of the vertices of G with at least a (1 − γ) fraction of the edges (in
weight) directed forward (or equivalently, G has an acyclic subgraph with at least a (1 − γ)
fraction of the weight).

2. For every ordering of the vertices of G, there are at most (1/2+γ) fraction of forward edges in
weight (or equivalently, every subgraph of G with more than (1/2 + γ) fraction of the weights
contains a directed cycle).

To the best of our knowledge, the above is the first tight hardness of approximation result for an
ordering/permutation problem. As an immediate consequence, we obtain the following hardness
result for the complementary problem of Min Feedback Arc Set, where the objective is to
minimize the number of back edges.

Corollary 1.2. Conditioned on the Unique Games conjecture, for every C > 0, it is NP -hard to
find a C-approximation to the Min Feedback Arc Set problem.

Combining the unique game integrality gap instance of Khot-Vishnoi [26] along with the UG
reduction, we obtain SDP integrality gaps for Maximum Acyclic Subgraph problem. Our
integrality gap instances also apply to a related SDP relaxation studied by Newman [33]. This
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SDP relaxation was shown to obtain an approximation better than half on random graphs which
were previously used to obtain integrality gaps for a natural linear program [32].

1.2 General ordering constraints

Building on these techniques and the work of Raghavendra [35], we obtain tight UGC based hardness
results for the entire class of Ordering Constraint Satisfaction Problems (OCSP).

An ordering constraint satisfaction problem (OCSP) Λ of arity k is specified by a constraint
payoff function P : Sk → [0, 1] where Sk is the set of permutations of {1, 2, . . . , k}. An instance
of such an ordering CSP consists of a set of variables V and a collection of constraint tuples, T ,
each of which is an ordered k-tuple of V . The objective is to find a global ordering σ of V that
maximizes the expected payoff E[P (σ|T )] for a random T ∈ T where σ|T ∈ Sk is the ordering of the
k elements of T induced by the global ordering σ. This is just the natural extension of CSPs to the
world of ordering problems. For generality, we allow payoff functions with range [0, 1] instead of
{0, 1} which would correspond to True/False constraints. Without loss of generality, by reordering
the inputs of any constraint we may assume that the permutation σ which maximizes P (σ) is the
identity, id.

As with CSPs, we say that an ordering CSP of arity k and payoff function P is approximation
resistant if its approximation threshold equals

Eα∈Sk
[P (α)]

P (id)
,

which is the ratio that can be obtained by choosing a random ordering.

Note that in this language, Maximum Acyclic Subgraph corresponds to the simplest ordering
CSP: the arity 2 ordering CSP with payoff function that gives value 1 to the identity permutation
and 0 to its reverse.

Our main result is that every ordering CSP, of arity bounded by a fixed k, is approximation
resistant. Specifically, for every such OCSP, outperforming the trivial approximation ratio achieved
by random ordering is Unique Games-hard.

Theorem 1.3 (Main). Let k be a positive integer and let Λ be a OCSP associated with a payoff
function P : Sk → [0, 1] on the set of k-permutations, Sk. Let Λmax = maxα∈Sk

P (α) be the
maximum payoff of P , and Λrandom = Eα∈Sk

P (α) the average payoff of P (expected value achieved
by a uniform random ordering).

Then for every ε > 0, the following hardness result holds. Given an instance of the OCSP
specified by payoff function P that admits an ordering with payoff at least Λmax − ε, it is Unique
Games-hard to find an ordering of the instance that achieves a payoff of at least Λrandom + ε with
respect to the payoff function P .

A special case of our result is that the Betweenness problem is hard to approximate beyond a
factor 1/3. The Betweenness problem consists of constraints of the form “j lies between i and k”
corresponding to the subset {123, 321} of S3.

Indeed, our result holds in a more general setting where the OCSP could consist of a mixture
of predicates — a formal statement appears in Section 8 (Theorem 8.4).
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1.3 Related work

Maximum Acyclic Subgraph is a classic optimization problem, figuring in Karp’s early list of
NP-hard problems [22]; the problem remains NP-hard on graphs with maximum degree 3, when
the in-degree plus out-degree of any vertex is at most 3. Maximum Acyclic Subgraph is also
complete for the class of permutation optimization problems, MAX SNP[π], defined in [34], that can
be approximated within a constant factor. It is shown in [32] that Maximum Acyclic Subgraph
is NP-hard to approximate within a factor greater than 65

66 .

Turning to algorithmic results, the problem is known to be efficiently solvable on planar
graphs [27, 21] and reducible flow graphs [36]. Berger and Shor [5] gave a polynomial time al-
gorithm with approximation ratio 1/2 + Ω(1/

√
dmax) where dmax is the maximum vertex degree in

the graph. When dmax = 3, Newman [32] gave a factor 8/9 approximation algorithm.

The complementary objective of minimizing the number of back edges, or equivalently deleting
the minimum number of edges in order to make the graph a DAG, leads to the Min Feedback Arc
Set (FAS) problem. This problem admits a factor O(log n log logn) approximation algorithm [37],
where n is the number of vertices, based on bounding the integrality gap of the natural covering
linear program for FAS; see also [11]. Using this algorithm, one can get an approximation ratio of
1
2 + Ω(1/(log n log log n)) for Maximum Acyclic Subgraph.

Charikar, Makarychev, and Makarychev [7] gave a factor (1/2 + Ω(1/ log n))-approximation
algorithm for Maximum Acyclic Subgraph. In fact, their algorithm is stronger: given a digraph
with an acyclic subgraph consisting of a fraction (1/2 + δ) of edges, it finds a subgraph with at
least a fraction (1/2 + Ω(δ/ log n)) of edges. This algorithm, and specifically an instance showing
tightness of its analysis from [7], is used as the combinatorial gadget for our hardness result for
MAS.

Apart from Maximum Acyclic Subgraph, another OCSP that has received some attention is
the Betweenness problem. Betweenness is an OCSP where all the constraints are of the form
“X appears between Y and Z” for variables X,Y and Z. Chor and Sudan [9] gave a semidefinite
programming based factor 1

2 approximation algorithm for Betweenness on instances that are
promised to be perfectly satisfiable; a simpler algorithm with the same guarantee was given by
Makarychev [28]. Recently, Guruswami and Zhou [15] proved that the extension of MAS to higher
arities, with constraints of the form xi1 < xi2 < · · · < xik , can be approximated within a factor
greater than 1/k! on bounded-degree instances. They extend this to prove that all ordering CSPs
of arity 3 (with arbitrary payoff functions) can be approximated beyond their random ordering
threshold on bounded-degree instances.

1.3.1 Approximation resistance

Our main result is that every ordering CSP is approximation resistant under the UGC. In con-
trast, in the world of CSPs over fixed domains (such as Boolean CSPs), there are CSPs which are
approximable beyond the random assignment threshold. There is by now a rich body of work on
approximability of CSPs, though we are quite far from a complete classification of which CSPs are
approximation resistant and which ones admit a non-trivial approximation algorithm that beats
the trivial random assignment algorithm. But we now know fairly broad classes of CSPs which are
approximation resistant, as well as those that are not. We mention some of these results below.
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H̊astad [17] proved many important CSPs to be approximation resistant, including Max 3SAT,
Max 3LIN (whose predicate stipulates that the parity of 3 literals is 0), and in fact any binary 3CSP
whose predicate is implied by the parity constraint x ⊕ y ⊕ z = 0, Max k-set splitting for k > 4,
etc. Complementing H̊astad’s hardness result for 3-CSPs, Zwick [38] gave approximation algorithms
outperforming a random assignment for every 3-ary predicate not implied by parity, thereby leading
to a precise classification of approximation resistant Boolean 3-CSPs. The situation for arity 4 and
higher gets more complicated as one might imagine. Hast succeeds in characterizing 355 out of 400
different predicate types for binary 4CSPs [16].

It is known that every 2CSP, even over non-binary domains, can be approximated better than
the random assignment threshold [13, 10, 18]. The approximation threshold of 2CSPs (such as Max
Cut) remained a fascinating mystery until recent progress based on the Unique Games conjecture
tied it to the integrality gap of semidefinite programming (SDP) relaxations [24, 2, 35]. In fact,
under the UGC, Raghavendra showed the general result [35] that for every CSP, the approximation
threshold equals the integrality gap of a natural SDP relaxation. Unfortunately, determining this
integrality gap itself is often an extremely challenging task, so this does not immediately tell us
which CSPs are approximation resistant (even assuming the UGC).

An elegant result of Austrin and Mossel [4] states that under the UGC any CSP whose satisfying
assignments can support a pairwise independent distribution is approximation resistant. Using this,
Austrin and H̊astad [3] (see also [19]) showed that most k-ary predicates (a fraction approaching 1
for large k) are approximation resistant under the Unique Games conjecture.

Our main contribution in this work is to extend the above-mentioned result of Raghavendra [35]
to ordering CSPs. Executing this plan requires several new ideas which we elaborate on in Section 2.
Roughly stated, we prove that for ordering CSPs, the existence of a certain kind of “weak” SDP
integrality gap implies a corresponding Unique Games-hardness. We are then able to construct
instances whose integrality gap is close to the random ordering threshold. Together, these two
results imply that all ordering CSPs are approximation resistant, assuming the UGC.

1.4 Organization

We begin with an outline of the key ideas of the proof in Section 2. In Section 3, we review the
definitions of influences, noise operators and restate the Unique Games conjecture. The groundwork
for our reduction is laid in Section 4 and Section 5, where we define influences for orderings, and
multiscale gap instances respectively. We present the dictatorship test in Section 6, and convert
it to a UG-hardness result in Section 7. Using this UG-hardness result we later, in Section 12
establish present SDP integrality gaps for Maximum Acyclic Subgraph.

Towards generalizing these hardness results, we begin with formal definition of OCSPs and the
natural semidefinite program for OCSPs in Section 8. The construction of dictatorship tests for
an OCSP starting from an object termed as multi-scale gap instance is presented in Section 9. An
important part of the soundness analysis is done in Section 10 and is based on the ideas of [35].
Finally, in Section 11, we exhibit the needed explicit construction of multi-scale gap instances for
every OCSP.
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2 Proof Overview

At the heart of all UG-hardness results lies a dictatorship testing result for an appropriate class
of functions. As is standard we use [m] to denote {1, . . . ,m}. A function F : [m]R → [m] is
said to be a dictator if F(x) = xi for some fixed i. A dictatorship test (DICT) is a randomized
algorithm that, given a function F : [m]R → [m], makes a few queries to the values of F and
distinguishes between whether F is a dictator or far from every dictator. While Completeness of
the test refers to the probability of acceptance of a dictator function, Soundness is the maximum
probability of acceptance of a function far from a dictator. The approximation problem one is
showing UG-hardness for determines the nature of the dictatorship test needed for the purpose.

A dictatorship test (also referred to as long code test) serves as a gadget to be used in the
reduction from Unique Games. In unique games, the input consists of a graph whose vertices are
to be labeled, so as to satisfy the maximum number of constraints given on the edges. Given a
UG instance Φ, a standard reduction technique is to introduce a dictatorship test gadget for each
vertex in the instance Φ. We refer the reader to the work of Khot et al. [24] for an example of a
long code based UG-hardness reduction.

Every ordering O of [m]R can be viewed as a function from [m]R to {1, 2, . . . ,mR}. For the
purpose of defining influence of orderings, we define m2R functions F [s,t] : [m]R → {0, 1} as follows:

F [s,t](x) =

{
1 if s 6 O(x) 6 t

0 otherwise
(1)

Given an ordering O : [m]R → {1, . . . ,mR} of [m]R, the ith coordinate of the input is said to
be influential on O if it has a large influence (> τ) on any of the functions F [s,t]. Here influence
of a coordinate on a function F [s,t] refers to the traditional notion of influence for real valued
functions on [m]R. Roughly speaking, the influence of the ith coordinate is the expected variance
of the output of the function F [s,t] on fixing all but the ith coordinate randomly and varying the
ith coordinate (see Section 3). An ordering O is said to be τ -pseudorandom (far from a dictator)
if it has no coordinate of influence at least τ .

For the sake of concreteness, let us consider the UG-hardness reduction to Maximum Acyclic
Subgraph. In this case, we introduce mR vertices {(b, z)| z ∈ [m]R} for each vertex b of the Unique
Games instance Φ. Let O be an ordering of all the vertices of the resulting instance of Maximum
Acyclic Subgraph. Let Ob denote the induced ordering on the block of vertices {(b, z)| z ∈ [m]R}
corresponding to a UG vertex b. The intent is to use Ob to decode a label for the UG vertex b.

Usually, in a long code based UG-hardness reduction, a small candidate set of labels is decoded
for a vertex b is given by the set of influential coordinates for the function corresponding to b.
Hence, for the notion of influences for orderings to be useful, it is necessary that any given ordering
Ob of [m]R does not have too many influential coordinates. Towards this, in Lemma 4.3 we show
that the number of influential coordinates is bounded (after certain smoothening). Further this
notion of influence is well suited to deal with orderings of multiple long codes instead of one — a
crucial requirement in translating dictatorship tests to UG-hardness.
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2.1 Maximum Acyclic Subgraph

Let us describe the proof strategy for the UG-hardness of Maximum Acyclic Subgraph. Given
an ordering O of the vertices of a directed graph G = (V,E), let Val(O) refer to the fraction of the
edges E that are oriented correctly in O.

Designing the appropriate dictatorship test for Maximum Acyclic Subgraph amounts to the
following: Construct a directed graph over the set of vertices V = [m]R (for some large constants
m, R) such that:

– For a Dictator ordering O of V , which is defined by using one of the coordinates of each
vertex to give the ordering, Val(O) ≈ 1

– For any ordering O which is far from a dictator, Val(O) ≈ 1
2 .

Recall that our definition of influential coordinates for orderings can be used to formalize the
notion of being “far from dictator functions.” Under this definition, we obtain a directed graph on
[m]R (a dictatorship test) for which the following holds:

Theorem 2.1. (Soundness) If O is any τ -pseudorandom ordering of [m]R, then Val(O) 6 1
2 +oτ (1).

This dictatorship test yields tight UG-hardness for the Maximum Acyclic Subgraph prob-
lem. Furthermore, using the SDP gap instance for Unique Games from the work of Khot-Vishnoi [26],
the hardness reduction yields an integrality gap instance for a natural SDP relaxation (see Subsec-
tion 3.2) of Maximum Acyclic Subgraph.

Now we describe the design of the dictatorship test in greater detail. At the outset, the ap-
proach is similar to recent work on Constraint Satisfaction Problems(CSPs) [35]. Fix a constraint
satisfaction problem Λ. Starting with an integrality gap instance = for the natural semi-definite
program for Λ, [35] constructs a dictatorship test DICT=. The Completeness of DICT= is equal to
the SDP value sdp(=), while the Soundness is close to the integral value opt(=).

Since the result of [35] applies to arbitrary CSPs, a natural direction would be to pose the
Maximum Acyclic Subgraph as a CSP. Maximum Acyclic Subgraph is fairly similar to a
CSP, with each vertex being a variable taking values in domain [n] and each directed edge a con-
straint between 2 variables. However, the domain, [n], of the CSP is not fixed, but grows with input
size. We stress here that this is not a superficial distinction but an essential characteristic of the
problem. For instance, if Maximum Acyclic Subgraph was reducible to a 2-CSP over a domain
of fixed size, then we could obtain a approximation ratio better than a random assignment [18].

Towards using techniques from the CSP result, we define the following variant of Maximum
Acyclic Subgraph:

Definition 2.2. A q-ordering of a directed graph G = (V,E) consists of a map O : V → [q]. The
value of a q-ordering O is given by

valq(O) = Pr
(u,v)∈E

(
O(u) < O(v)

)
+

1

2
Pr

(u,v)∈E

(
O(u) = O(v)

)
In the q-Order problem, the objective is to find an q-ordering of the input graph G with maximum
value.
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The choice to give half credit for edges where the two endpoints are mapped to the same value
is motivated by two similar reasons. The first reason is that the constraint is neither violated nor
fulfilled and the second is that the constraint is satisfied with probability 1

2 if we choose a random,
full ordering, that respects the partial ordering defined by the given q-ordering.

On the one hand, the q-Order problem is a CSP over a fixed domain that is similar to Maximum
Acyclic Subgraph. However, to the best of our knowledge, for the q-Order problem, there are no
known SDP gaps, which constitute the starting point for the results in [35]. For any fixed constant
q, Charikar, Makarychev and Makarychev [7] construct directed acyclic graphs G (i.e., with value
of the best ordering equal to 1) such that the value of any q-ordering of G is close to 1

2 , say at
most 1

2 + η. We call such a graph an (η, q)-pseudorandom DAG. For the rest of the discussion, let
us fix one such graph G on m vertices. Notice that the graph G does not serve as an integrality
gap example for the natural SDP relaxation of either the Maximum Acyclic Subgraph or the
q-Order problem.

As the graph G has only m vertices, and an ordering of value ≈ 1, it has a good q-ordering for
q = m. Viewing G as an instance of the m-Order CSP (corresponding to predicate < and =), we
obtain a directed graph, G, on [m]R. Loosely speaking, G is similar to a direct product of R copies of
G and hence the given good m-ordering of G ensures that the dictator m-orderings O : [m]R → [m]
given by O(z) = zi for some i ∈ [R], yield value ≈ 1 on G. In other words, the dictator orderings
have value ≈ 1 on G, implying the completeness of the dictatorship test.

Now let us turn to the soundness analysis. Fix a τ -pseudorandom ordering O. Obtain a q-
ordering O∗ by the following coarsening process: Divide the ordering O into q equal blocks, and
map the vertices in the ith block to value i. The crucial observation relating O and O∗, which relies
on the fact that we have some noise in the construction, is as follows (proven in Lemma 6.3):

Coarsening Observation: “For a τ -pseudorandom ordering O, valq(O∗) ≈ val(O).”

Note that val(O)− valq(O∗) is clearly bounded by the fraction of edges whose both endpoints fall
in the same block, during the coarsening. Using the Gaussian noise stability bounds of [30], we
obtain a bound for the fraction of such edges, thereby proving the above observation. From the
above observation, in order to prove val(O) ≈ 1

2 for a τ -pseudorandom ordering O, it is enough to
bound valq(O∗). Recall that the q-order problem is a CSP over a finite domain. Consequently, the
soundness analysis of Raghavendra [35] can be used to show that valq(O∗) is at most the value of
the best q-ordering for the original graph G, which is close to 1

2 .

Summarizing the key ideas, we define the notion of influential coordinates for orderings, and then
use it to construct a dictatorship test for orderings based on a certain gap instance for MAS. Using
Gaussian noise stability bounds, we relate the value of a pseudorandom ordering to a related CSP,
and then apply techniques from [35]. Instantiating the gap instance with the (η, q)-pseudorandom
DAG G finishes the proof.

2.2 Ordering Constraint Satisfaction Problems

The techniques developed in the case of Maximum Acyclic Subgraph, along with ideas from
[35], yields an approach to proving UG-hardness results for general ordering CSPs. In a general
ordering CSP, a set of local ordering constraints such as “i is before j” or “i is between j and k”
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are given, and the goal is to find an ordering that satisfies the maximum number of constraints (see
Section 8 for a formal definition).

First, as in the case of Maximum Acyclic Subgraph, for every OCSP Λ, it is possible to
define a related CSP Λq over the domain [q] for every positive integer q. Roughly speaking, the
CSP Λq consists of the problem of finding the q-Order that achieves the maximum payoff. Given
a q-Order O, of an instance = of Λ-OCSP we use valq(O) to denote its objective value (fraction of
constraints satisfied). Further, let optq(=) denote the optimum value of a q-Order for the instance
=.

In case of constraint satisfaction problems (CSP), the work of Raghavendra [35] established
a black-box reduction from an integrality gap instance for a certain canonical SDP relaxation to
a matching UG-hardness result. However, constructing integrality gap instances for OCSPs is in
itself a challenging task. In this light, for every OCSP, we exhibit a black-box reduction to a
UG-hardness result starting from what we refer to as a multiscale gap instance — a weaker object
than an SDP integrality gap. Formally, a multiscale gap is defined as follows:

Definition 2.3. An instance = of a Λ-OCSP is a (q, c, s)-multiscale gap instance if sdp(=) > c and
optq(=) 6 s. Here the SDP value refers to the optimum of a canonical SDP relaxation, described
in Section 8.3.

It is not difficult to see that an integrality gap instance = with sdp(=) = c and opt(=) = s (as
opposed to optq(=) = s), is a (q, c, s)-multiscale gap instance for all q (see Claim 8.6). Hence, a
multiscale gap instance is formally easier to construct than an integrality gap instance. We give a
reduction that obtains a UG-hardness result for an OCSP Λ starting with a multiscale gap instance
for it. Specifically, we prove the following:

Theorem 2.4. If there exists a (q, c, s)-multiscale gap instance = for an OCSP Λ, then for every
η > 0, it is UG-hard to distinguish Λ-OCSP instances with optimum at least c− η from instances
with optimum at most s+ η +O(q−η).

To show Theorem 2.4, we give a black box reduction that converts the instance = with SDP
solution (V ,µ) into a dictatorship test DICTεV ,µ with completeness c − η and soundness at most
s+ η +O(q−η). Further all the predicates checked by the dictatorship test DICTεV ,µ belong to the
family of predicates corresponding to the OCSP Λ.

Let m denote the number of variables in the instance =. The dictatorship test DICTεV ,µ is
constructed by viewing the instance = as a CSP over a domain of size m. Specifically DICTεV ,µ is

an instance of Λ-OCSP over the set of variables indexed by [m]R for an integer R. The m-orderings
of [m]R given by the dictator functions have an objective value close to the SDP value (c − η in
this case, the η loss is due to some noise added by the dictatorship test). To perform the soundness
analysis, we appeal to the coarsening observation above. By using this observation, we can relate
the value of an ordering O of =, to the value of the q-Order Oq obtained by coarsening O. Finally,
using a proof strategy along the lines of [35], we relate the value valq(Oq) of the q-Order Oq of [m]R

to the optimum q-Order value optq(=) of the instance =.

Starting from the dictatorship test DICTεV ,µ, the UG-hardness result for OCSP Λ can be
obtained exactly along the lines of Maximum Acyclic Subgraph. Therefore, we omit the proof
of the UG-hardness result from this presentation.
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In Section 11, we exhibit an explicit construction of multiscale gap instances for every OCSP,
which, when plugged into Theorem 2.4, give our main result on the approximation resistance of all
OCSPs under the UGC.

Theorem 2.5. For all positive integers q, k, for all η > 0, and every OCSP Λ of arity k, there
exists a (q,Λmax,Λrandom + η)-multiscale gap instance = of Λ.

The core of the above gap instance is our construction of a distribution D on [m]k with the
following properties (here k, q are positive integers, η > 0 can be arbitrarily small, and m is a large
enough integer):

– Completeness: Pr(x1,x2,...,xk)∈D
[
xi < x2 < · · · < xk

]
= 1

– Soundness: For every permutation π ∈ Sk and every q-ordering Oq of [m], the probability
over random linear extensions of Oq that a sample (x1, x2, . . . , xk) ∈ D is ordered according
to π is at most 1

k! + η.

Theorem 2.4 and Theorem 2.5 together imply the main UG-hardness result for all OCSPs and
hence we obtain Theorem 1.3.

3 Preliminaries

For a positive integer q, ∆q denotes the set of corners of the q-dimensional simplex, i.e., ∆q =
{ei| i ∈ [q]} where ei is the unit vector in the ith dimension. Let Nq denote the convex hull of the
set ∆q; in other words Nq is the q-dimensional simplex. More generally, for a set S we use N(S) to
denote the set of probability distributions over the set S. For two sets A,B, let AB denote the set
of functions from B to A. For notational convenience, if B = [n] then we write An instead of A[n].
Let oτ (1) denote a term that goes to 0 as τ → 0, while keeping all other parameters fixed.

We use boldface letters z to denote vectors z = (z(1), . . . , z(R)). A q-ordering O of the graph G
consists of a map O : V → [q]. Note that the map O need not be injective or surjective. If the map
O is a injection, then it corresponds to an ordering of the vertices V . In a q-ordering O, an edge
e = (u, v) is a forward edge if O(u) < O(v).

Given an ordering O of the vertices of a directed graph G or more generally variables in an
OCSP, we use val(O) to denote the fraction of constraints satisfied byO. Furthermore, for a directed
graph G, let opt(G) denote the largest value of val(O) for an ordering O of the vertices of the G.
The quantities valq(O) and optq(G) are defined analogously for q-Order O using Definition 2.2.

Observation 3.1. For all directed graphs G, and integers q 6 q′, optq(G) 6 optq′(G) 6 opt(G)

While the first part of the inequality is trivial, let us elaborate on the latter half. Given a
q′-ordering O∗, construct a full ordering O by using a random permutation of the elements within
each of the q′ blocks, while retaining the natural order between the blocks. It is easy to check that
the expected value of the ordering O is exactly equal to valq(O∗), thus proving the latter half of
the inequality.
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3.1 Noise Operators and Influences

Let Ω denote the finite probability space corresponding to the uniform distribution over [m]. Let
{χ0 = 1, χ1, χ2, . . . , χm−1} be an orthonormal basis for the space L2(Ω) of real valued functions
over [m] with the inner product

〈f, g〉 = E
x∈[m]

[f(x)g(x)] .

For σ ∈ {0, 1, . . . ,m− 1}R, define

χσ(z) =
∏
k∈[R]

χσk(z(k)) .

Every function F : ΩR → R can be expressed as a multilinear polynomial as

F(z) =
∑
σ

F̂(σ)χσ(z) .

The L2-norm of F in terms of the coefficients of the multilinear polynomial is

||F||22 =
∑
σ

F̂2(σ) .

For sake of brevity, we denote 〈m〉 = {0, 1, . . . ,m− 1}. For σ ∈ 〈m〉R, we define its “weight” |σ| as

|σ| =
∣∣ {i ∈ [R] | σi 6= 0}

∣∣ .
Definition 3.2. For a function F : ΩR → R, define

Infk(F) = E
z
[Var
z(k)

[F ]] =
∑

σ:σk 6=0

F̂2(σ) .

Here Varz(k) [F ] denotes the variance of F(z) over the choice of the kth coordinate z(k).

Definition 3.3. For a function F : ΩR → R, define the function TρF as follows:

TρF(z) = E[F(z̃) | z] =
∑

σ∈〈m〉R
ρ|σ|F̂(σ)χσ(z)

where each coordinate z̃(k) of z̃ = (z̃(1), . . . , z̃(R)) is equal to z(k) with probability ρ and with the
remaining probability, z̃(k) is a random element from the distribution Ω.

It is useful for us that indicator functions of small support that have no influential coordinates
are not very stable under the noise operator Tρ.

Lemma 3.4. For every ε > 0, there exists a µ0 > 0 such that for all µ < µ0 the following holds:
Let F : [m]R → [0, 1] be any function with E[F ] = µ, and

Infk(T1−εF) 6 τ

for all k ∈ {1, 2, . . . , R}. Then,

||T1−2εF||22 6 µ1+ε/2 + oτ (1).
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Proof. The lemma essentially follows from the Majority is Stablest theorem (see Theorem 4.4
in [31]). We have

||T1−2εF||22 =
∑

σ∈〈m〉R
(1− 2ε)2|σ|F̂2(σ) 6

∑
σ∈〈m〉R

(1− ε)|σ|F̂(σ)(1− ε)2|σ|F̂(σ)

6 E[(T1−εF)(x)T1−ε(T1−εF)(x)] .

Since the influences of T1−εF are low, we can apply Theorem 4.4 from [31] to bound the last
expression by noise stability in Gaussian space Γ1−ε(µ)

E[(T1−εF)T1−ε(T1−εF)] 6 Γ1−ε(µ) + oτ (1).

By Theorem B.5 from [31], Γ1−ε(µ) is bounded by µ1+ε/2 for µ small enough compared to ε,
establishing the desired bound. �

We have the following immediate consequence of Lemma 3.4.

Lemma 3.5. Let F ,G : [m]R → [0, 1] be any two functions satisfying the assumption of Lemma 3.4
and let x,y be random vectors in [m]R whose marginal distributions are uniform over [m]R but are
arbitrarily correlated. Then,

E
x,y

[T1−2εF(x)T1−2εG(y)] 6 µ1+ε/2 + oτ (1).

Proof. The quantity in question is upper bounded by ||T1−2εF||2||T1−2εG||2 by the Cauchy-Schwarz
inequality. The result now follows from the previous lemma. �

The following lemma is useful in bounding the number of influential coordinates of a function.

Lemma 3.6 (Sum of Influences Lemma). Given a function F : [m]R → [0, 1], if H = T1−εF then

R∑
k=1

Infk(H) 6
1

2e ln 1/(1− ε)
6

1

ε
.

Proof. Let F(x) =
∑

σ F̂(σ)χσ(x) denote the multilinear expansion of F . The function H is given

by H(x) =
∑

σ(1− ε)|σ|F̂(σ)χσ(x). Hence we get,

R∑
i=1

Infi(H) =
R∑
i=1

∑
σ,σi 6=0

(1− ε)2|σ|F̂2(σ) =
∑
σ

(1− ε)2|σ||σ|F̂2(σ)

6 max
σ∈〈m〉R

(
(1− ε)2|σ||σ|

)
·
∑
σ

F̂(σ)2 6 max
σ

(1− ε)2|σ||σ|

The function h(x) = x(1 − ε)2x achieves a maximum at x = −1/2 ln(1 − ε). Substituting we get∑R
i=1 Infi(H) 6 1

2e ln 1/(1−ε) 6
1
ε . �
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3.2 Semidefinite Program

We use the following natural SDP relaxation of the Maximum Acyclic Subgraph problem.
Given a directed graph G = (V,E) with |V | = n, the program has n variables {bu,i| i ∈ [n]} for
each vertex u ∈ V , and a unit vector I representing the constant 1. In the intended solution, we
have bu,i = I and bu,j = 0 for all j 6= i, if u is assigned the ith location in the ordering.

MAS-SDP Relaxation

maximize E
e=(u,v)∼E

[ ∑
i<j

i,j∈[n]

〈bu,i, bv,j〉+
1

2

∑
i∈[n]

〈bu,i, bv,i〉
]

(MAS− SDP)

subject to 〈bu,i, bu,j〉 = 0 ∀ u ∈ V, i, j ∈ [n], i 6= j (2)

〈bu,i, bv,j〉 > 0 ∀ u, v ∈ V, i, j ∈ [n] (3)∑
i∈[n]

‖bu,i‖22 = 1 ∀u ∈ V , (4)

〈bu,i, I〉 = ‖bu,i‖22 ∀u ∈ V, i ∈ [n] , (5)

‖I‖22 = 1 (6)

The above semidefinite program has the same set of constraints as the relaxations for Max Dicut
[12], Linear Equations Mod p [1] and Unique Games [23, 8].

The program can also be written succinctly in terms of distributions over local integral assign-
ments. Specifically, define a set of probability distributions µ = {µe| e ∈ E} over [n]2, one for each
edge. The probability distribution µe is to be thought of as a distribution over local assignments
to the vertices of the edge e.

LC Relaxation for Maximum Acyclic Subgraph

maximize E
e=(u,v)∼E

[
Pr

(xu,xv)∈µe

{
xu < xv

}
+

1

2
Pr

(xu,xv)∈µe

{
xu = xv

}]
(7)

subject to 〈bu,i, bv,j〉 = Pr
(xu,xv)∈µe

{
xu = i, xv = j

}
(e = (u, v) ∈ E, i, j ∈ [n]) .

µe ∈ N([n]2) ∀e ∈ E

3.3 Unique Games Conjecture

Let us give a formal definition of the constraint satisfaction problem that underlies this famous
conjecture.

Definition 3.7. An instance of Unique Games represented as Φ = (AΦ∪BΦ, E,Π, [R]), consists
of a bipartite graph over node sets AΦ,BΦ with the edges E between them. Also part of the instance is
a set of labels [R] = {1, . . . , R}, and a set of bijections πa→b : [R]→ [R] for each edge e = (a, b) ∈ E
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where a ∈ AΦ and b ∈ BΦ. (We will sometimes we also denote the bijection πa→b for an edge
e = (a, b) by πe. )

An assignment A : AΦ ∪ BΦ → [R] of labels to vertices is said to satisfy an edge e = (a, b) if
πa→b(A(a)) = A(b). The objective is to find an assignment A of labels that satisfies the maximum
number of edges.

For sake of convenience, we use the following version of the Unique Games Conjecture which
was shown to be equivalent to the original conjecture [25].

Conjecture 3.8 (Unique Games Conjecture). For every δ > 0, the following problem is NP-hard
for a sufficiently large choice of R: Given a bipartite Unique Games instance Φ = (AΦ∪BΦ, E,Π =
{πa→b : [R]→ [R] | e = (a, b) ∈ E}, [R]) with number of labels R, distinguish between the following
two cases:

– (1− δ)-strongly satisfiable instances: There exists an assignment A of labels such that for 1− δ
fraction of vertices w ∈ AΦ are strongly satisfied, i.e., all the edges (w, v) are satisfied.

– Instances that are not δ-satisfiable: No assignment satisfies more than a δ-fraction of the edges
E.

4 Orderings and their influences

In this section, we develop the notions of influences for orderings and prove some basic results about
them.

Definition 4.1. Given an ordering O of vertices V , its q-coarsening is a q-ordering O∗ obtained
by dividing O into q contiguous blocks, and assigning label i to vertices in the ith block. Formally,
if M = |V |/q then

O∗(u) =
⌊O(u)

M

⌋
+ 1

For an ordering O of points in [m]R, we have functions F [s,t] : [m]R → {0, 1} for integers s, t
defined by (1). For the sake of brevity we write F i for F [i,i], and F = (F1, . . . ,Fq).

Definition 4.2. For an ordering O of [m]R, define the set of influential coordinates Lτ (O) as
follows:

Lτ (O) = {k | Infk(T1−εF [s,t]) > τ for some s, t ∈ Z}

An ordering O is said to be τ -pseudorandom if Lτ (O) is empty.

It is not difficult to see that we can bound the number of influential coordinates.

Lemma 4.3. (Few Influential Coordinates) For any ordering O of [m]R, we have |Lτ (O)| 6 400
ετ3

Proof. For integers s, t, δ1, δ2 such that |δi| < τ
8m

R, let f = T1−εF [s,t] and g = T1−εF [s+δ1,t+δ2].
Now,

Infk(f − g) 6 ||f − g||22 6 ||F [s,t] −F [s+δ1,t+δ2]||22 = Pr
z

[F [s,t](z) 6= F [s+δ1,t+δ2](z)] 6 τ/4
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Hence, using a2 6 2(b2 + (a− b)2), we get:

Infk(f) =
∑

σ:σk 6=0

f̂2(σ) 6 2

∑
σk 6=0

ĝ2(σ) +
∑
σk 6=0

(
f̂(σ)− ĝ(σ)

)2

 6 2 · Infk(g) + τ/2

Thus, if Infk(f) > τ , then Infk(g) > τ/4. It is easy to see that there is a set N = {F [s,t]} of size at

most 100/τ2 such that for every F [s′,t′] there is a F [s,t] ∈ N such that max |s− s′|, |t− t′| < τmR

8 .

Further, by Lemma 3.6, each function T1−εF [s,t] has at most 4
ετ coordinates with influence more

than τ/4. Hence, |Lτ (O)| 6 400
ετ3 . �

Claim 4.4. For any τ -pseudorandom ordering O of [m]R, its q-coarsening O∗ is also τ -pseudorandom.

Proof. Since the functions {F [·,·]} with respect to the ordering O∗ are a subset of the same functions
with respect to O we have Sτ (O∗) ⊆ Sτ (O). �

5 Gap Instances for Maximum Acyclic Subgraph

In this section, we construct acyclic directed graphs with no good q-ordering. These graphs are
crucial in designing the dictatorship test in Section 6. Actually, in Section 11, we construct such
instances for ordering constraints of higher arity which in particular proves the existence of the
needed graphs. In particular, Lemma 5.3 below is a special case of Theorem 11.1 when the arity
k equals 2. However, for self-contained treatment of the MAS result, we present the specialized
construction for graphs separately in this section. Even though it is of little importance for our
applications, we note that the constants obtained in this section are superior to those of the general
construction.

Definition 5.1. For η > 0 and a positive integer q, an (η, q)-pseudorandom DAG is a weighted
directed graph G = (V,E) with the following properties:

opt(G) = 1 and optq(G) 6
1

2
+ η .

Clearly, if opt(G) = 1, then the value of the LC relaxation for MAS (from Section 3.2) on G
is also at least 1. Thus, a pseudorandom DAG as above gives a “weak” integrality gap, where the
optimum for q-orderings is small. Specifically, an (η, q)-pseudorandom DAG is also a (q, 1, 1/2+η)-
multiscale gap instance for MAS, in the sense of Definition 2.3. The formal claim, along with certain
smoothness properties of the SDP solution, is made at the end of this section in Corollary 5.4. We
now turn to the construction of (η, q)-pseudorandom DAGs.

The cut norm of a directed graph, G, represented by a skew-symmetric matrix W , is defined as

||G||C = max
xi,yj∈{0,1}

∑
ij

xiyjwij .

We need the following theorem from [7] relating the cut norm of a directed graph G to opt(G).
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Theorem 5.2 (Theorem 3.1, [7]). If a directed graph G on n vertices has a maximum acyclic

subgraph with at least a 1
2 + δ fraction of the edges, then, ||G||C > Ω

(
δ

logn

)
.

The following lemma constructs (η, q)-pseudorandom DAGs from graphs that are the “tight
cases” of the above theorem.

Lemma 5.3. Given η > 0 and a positive integer q, for every sufficiently large n, there exists a
directed graph G = (V,E) on n vertices such that opt(G) = 1, optq(G) 6 1

2 + η .

Proof. Charikar et al (Section 4, [7]) construct a directed graph, G = (V,E), on n vertices whose
cut norm is bounded by O (1/ log n). The graph is represented by the skew-symmetric matrix W ,

where wij =
∑n

k=1 sin π(j−i)k
n+1 . It is easy to verify that for every 0 < q < n,

∑n
k=1 sin

(
πqk
n+1

)
> 0.

Thus, wij > 0 whenever i < j, implying that the graph is acyclic (in other words, opt(G) = 1).

We bound optq(G) as follows. Let optq(G) = 1
2 + δ and let O : V → [q] be the optimal q-

ordering. Construct a (multi)graph H on q vertices with a directed edge from O(u) to O(v) for
every edge (u, v) ∈ E with O(u) 6= O(v). Now, using Theorem 5.2, the cut norm of H is bounded

from below by Ω
(

δ
log q

)
. Moreover, since O is a partition of V , the cut norm of G is at least the

cut norm of H. Thus, Ω
(

δ
log q

)
6 ||H||C 6 ||G||C 6 O (1/ log n). This gives δ 6 O

(
log q
logn

)
implying

that optq(G) 6 1
2 + O

(
log q
logn

)
. Choosing n sufficiently large (specifically n > qΩ(1/η)) gives the

required result. �

We now have the following corollary to Lemma 5.3, which shows how to obtain a “smooth”
SDP gap instance from the (η, q)-pseudorandom DAG.

Corollary 5.4. For every η > 0 and positive integer q, there exists a (q, 1− η, 1/2 + η)-Multiscale
Gap instance with a corresponding SDP solution V = {bu,i| u ∈ V, i ∈ [|V |]} and µ = {µe|e ∈ E}
of objective value 1− η which further satisfies

‖bu,i‖22 = 1/|V | for all u ∈ V, i ∈ [|V |] . (8)

Proof. Let G = (V,E) be the graph obtained by taking b = d1/ηe disjoint copies of the graph
guaranteed by Lemma 5.3 and letm = |V |. Note that the graph still satisfies the required properties:
opt(G) = 1, optq(G) 6 1

2 + η. The ordering, O, that satisfies every edge of G is obtained by taking
the good ordering inside any copy and letting each copy have contiguous places in the ordering. Let
D denote the distribution over labelings obtained by shifting O by a random offset cyclically. For
every u ∈ V, i ∈ [m], Pr[D(u) = i] = 1/m. Further, every directed edge is satisfied with probability
at least 1− 1/b > 1− η. Being a distribution over integral labelings, D gives rise to a set of vectors
satisfying the constraints in (8). The graph G along with these vectors form the claimed multiscale
gap instance. �

6 Dictatorship Test for MAS

Let G = (V,E) be a (q, 1− η, 1/2 + η)-multiscale gap instance on m vertices, where m is divisible
by q, with corresponding SDP solution (V ,µ) as guaranteed by Corollary 5.4. Using the graph G
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and the SDP solution, we construct a dictatorship test DICTεG on [m]R as follows.

DICTεG Test:

– Pick an edge e = (u, v) ∈ E at random from G.

– Sample ze = {zu, zv} from the product distribution µRe , i.e. For each 1 6 k 6 R, z
(k)
e =

{z(k)
u , z

(k)
v } is sampled using the distribution µe given by µe(i, j) = 〈bu,i, bv,j〉.

– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically, sample

the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1− 2ε), z̃

(k)
u = z

(k)
u , and with the

remaining probability z̃
(k)
u is a new sample from Ω.

– Introduce a directed edge z̃u → z̃v. (alternatively test if O(z̃u) < O(z̃v))

Note that since the test takes a form of a directed edge, DICTεG can be viewed as a weighted
Maximum Acyclic Subgraph instance where the weight of a particular directed edge z̃u → z̃v is
the probability the above test outputs it. Let us first establish that the test indeed accepts dictator
orderings with high probability.

Lemma 6.1.
Completeness(DICTεG) > 1− η − 4ε

Proof. A dictator m-ordering O is given by O(z) = z(j). With probability (1−2ε)2, z̃
(j)
u = z

(j)
u and

z̃
(v)
u = z

(j)
v . As the value of the ordering of G is at least 1− η, the lemma follows. �

Theorem 6.2. (Soundness Analysis) For every ε > 0, there exists sufficiently large m, q such that:
For any τ -pseudorandom ordering O of [m]R,

val(O) 6 optq(G) +O(q−
ε
2 ) + oτ (1).

Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗ and remember
that we write F i for F [i,i]. The result follows from Lemma 6.3 and Lemma 6.4 shown below.

Lemma 6.3. For every ε > 0, there exists sufficiently large m, q such that: For any τ -pseudorandom
ordering O of [m]R

val(O) 6 valq(O∗) +O(q−
ε
2 ) + oτ (1)

where O∗ is the q-coarsening of O.

Proof. The loss in val(O) due to coarsening is because for some edges e = (z, z′) which are oriented
correctly in O, fall into same block during coarsening, i.e. O∗(z) = O∗(z′). Thus we can write

val(O) 6 valq(O∗) +
1

2
Pr
(
O∗(z̃u) = O∗(z̃v)

)
Pr
(
O∗(z̃u) = O∗(z̃v)

)
=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F i(z̃u) · F i(z̃v)

]
=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

[
T1−2εF i(zu) · T1−2εF i(zv)

]
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As O∗ is a q-coarsening of O, for each value i ∈ [q], there are exactly 1
q fraction of z for which

O∗(z) = i. Hence for each i ∈ [q], Ez[F i(z) = 1
q ]. Further, since the ordering O∗ is τ -pseudorandom,

for every k ∈ [R] and i ∈ [q], Infk(T1−εF i) 6 τ . From Corollary 5.4 we know that zu and zv
individually are uniformly distributed and hence using Lemma 3.5, for sufficiently large q, the
above probability is bounded by q · q−1− ε

2 + q · oτ (1) = O(q−
ε
2 ) + oτ (1) . �

We proceed with the other essential lemma to prove Theorem 6.2.

Lemma 6.4. For every choice of m, q, ε, and any τ -pseudorandom q-ordering O∗ of [m]R,

valq(O∗) 6 optq(G) + oτ (1) .

In Section 10 we give a proof of the more general Lemma 9.4 and to avoid duplication of
arguments we here only give a sketch of the main ideas behind the proof of Lemma 6.4.

The q-ordering problem is a CSP over a finite domain, and is thus amenable to techniques of
[35]. Specifically, consider the payoff function P : [q]2 → [0, 1] defined by: P (i, j) = 1 for i < j,
P (i, j) = 0 for i > j and P (i, j) = 1

2 otherwise.

First, we can extend the domain of the payoff [q]2 to N2
q using the following multilinear extension:

P (x,y) =
1

2

∑
i=j

x(i)y(j) +
∑
i<j

x(i)y(j) ,

for all x = (x(1), . . . , x(q)) y = (y(1), . . . , y(q)) ∈ Nq.
Let F [s,t] : [m]R → {0, 1} denote the functions associated with a τ -pseudorandom q-ordering

O∗ and recall that we write F i for F [i,i], and F = (F1, . . . ,Fq). Arithmetizing valq(O∗) in terms
of functions F i we get:

valq(O∗) = E
e

E
zu,zv

E
z̃u,z̃v

[1

2

∑
i=j

F i(z̃u) · F j(z̃v) +
∑
i<j

F i(z̃u) · F j(z̃v)
]

= E
e

E
zu,zv

E
z̃u,z̃v

[
P (F(z̃u),F(z̃v))

]
where the expectation is over the edge e = (u, v), zu, zv, z̃u, and z̃v. If we denote H = T1−εF ,
then, using the multilinearity of P to transfer the expectation inside the application of P , we can
rewrite the preceding expression as:

valq(O∗) = E
e

E
zu,zv

[
P (H(zu),H(zv))

]
Being functions on a product space [m]R, F ,H can be expressed as vectors of multilinear polyno-
mials in variables xi,j , i ∈ [m], j ∈ [R] where xi,j is the indicator variable for the event that the jth

input takes the value i. Let F and H denote the vector of multilinear polynomials associated with
the functions F and H respectively.

Let {bu,i |u ∈ V, i ∈ [m]} denote the SDP solution associated with the (q, 1 − η, 1/2 + η)-
multiscale gap instance G. We exhibit a randomized rounding RoundF of this SDP solution into a
q-order for the graph G. If RoundF (G) denotes the expected value of the ordering returned by the
rounding scheme, then we show that RoundF (G) ≈ valq(O∗). Clearly, the expected value of the
q-ordering returned by the rounding scheme has value at most optq(G). Hence we get

valq(O∗) 6 RoundF (G) + oτ (1) 6 optq(G) + oτ (1) .
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The rounding scheme RoundF proceeds as follows: Pick R random Gaussian vectors, and project
the SDP solution along these directions. For each vertex v ∈ V , the values of the projections of
corresponding vectors {bv,i| i ∈ [m]} are fed as inputs to the multilinear polynomial H, to obtain
a vector pv in Rq. The pv is rounded to a point p∗v on the q-dimensional simplex Nq using a fairly
natural procedure. Finally, the vertex v is assigned a label ` ∈ [q] by independently sampling from
the distribution p∗v.

The vector of multilinear polynomials H has no input coordinates with influence greater than
τ , since the ordering O∗ is τ -pseudorandom. Furthermore, since H = T1−εF , the polynomial H is
close to a low degree polynomial.

Roughly speaking, the invariance principle of Mossel [30] asserts that low-degree and low-
influence polynomials cannot distinguish between two distributions over inputs with matching mo-
ments up to order two. More precisely, the distribution of the output of the multilinear polynomial
H depends only on the first two moments of the distribution of inputs. Note that the distribution
used in the dictatorship test is inspired by the vectors {bu,i }. This leads to closeness in the distri-
bution of H when applied to the Gaussians used in Round and H applied to evaluate the payoff of
a pseudorandom ordering O?. This, in turn, implies that RoundF (G) ≈ valq(O∗), completing the
outline of the proof of Lemma 6.4.

Lemma 6.4 asserts that the value of the q-ordering is bounded by optq(G) + oτ (1) for all τ -
pseudorandom functions F = (F1, . . . ,Fq) that correspond to a q-ordering. Specifically, for each
z ∈ [m]R, F(z) is a corner of the simplex; F(z) ∈ ∆q.

For the Unique Games hardness reduction, we need the above lemma to hold for the more
general class of functions that take values in Nq - the q-dimensional simplex, and indeed we need
the following stronger claim.

Claim 6.5. For a function F : [m]R → Nq satisfying Infk(T1−εF) 6 τ for all k ∈ [R],

E
[1

2

∑
i=j

F i(z̃u)F j(z̃u) +
∑
i<j

F i(z̃u)F j(z̃u)
]
6 optq(G) + oτ (1)

where the expectation is over the edge e = (u, v), zu, zv, z̃u, and z̃v.

We give the proof of the above claim in the more general setting (see Lemma 10.5) of OCSP’s
in Section 10.

7 Hardness Reduction for Maximum Acyclic Subgraph

In this section we describe how to turn the dictator test of the previous section into a UG-hardness
result for Maximum Acyclic Subgraph. This is a quite standard procedure and hence we do
not repeat the argument for the case of general k-ary ordering constraints.

Let G = (V,E) be a (q, 1−η, 1/2 +η)-multiscale gap instance, and V = {bv,i} and µ = {µe|e ∈
E} be the corresponding SDP solution as guaranteed by Corollary 5.4. Let m = |V |.

Let Φ = (AΦ ∪BΦ, E,Π = {πe : [R]→ [R]|e ∈ E}, [R]) be a bipartite Unique Games instance.
Towards constructing a Maximum Acyclic Subgraph instance Ψ = (V, E) from Φ, we introduce
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a long code for each vertex in BΦ. Specifically, the set of vertices V of the directed graph Ψ is
indexed by BΦ × [m]R.

Hardness Reduction:
Input: Unique Games instance Φ = (AΦ ∪ BΦ, E,Π = {πe : [R]→ [R]|e ∈ E}, [R]).
Output : Directed graph Ψ = (V, E) with set of vertices : V = BΦ × [m]R and edges E given by
the following verifier:

– Pick a random vertex a ∈ AΦ. Choose two neighbors b, b′ ∈ BΦ of a independently at
random. Let π = πa→b and π′ = πa→b′ denote the permutations on the edges (a, b) and (a, b′)
respectively.

– Pick an edge e = (u, v) ∈ E at random from G.

– Sample ze = {zu, zv} from the product distribution µRe , i.e. For each 1 6 k 6 R, z
(k)
e =

{z(k)
u , z

(k)
v } is sampled using the distribution µe given by µe(i, j) = 〈bu,i, bv,j〉.

– Obtain z̃u, z̃v by perturbing each coordinate of zu and zv independently. Specifically, sample

the kth coordinates z̃
(k)
u , z̃

(k)
v as follows: With probability (1 − 2ε), z̃

(k)
u = z

(k)
u , and with the

remaining probability z̃
(k)
u is a new sample from Ω.

– Introduce a directed edge (b, π(z̃u)) → (b′, π′(z̃v)), where for a vector z =
(z(1), z(2), · · · , z(R)) ∈ [m]R, and a permutation σ of [R], σ(z) ∈ [m]R is defined by
σ(z)(i) = z(σ−1(i)).

Theorem 7.1. For every η > 0, there exists choice of parameters ε, q, δ such that:

– Completeness: If Φ is a (1− δ)-strongly satisfiable instance of Unique Games, then there
is an ordering O for the graph Ψ with value at least (1− 5η). i.e. val(Ψ) > 1− 5η.

– Soundness: If Φ is not δ-satisfiable, then no ordering to Ψ has value more than 1
2 + 4η, i.e.

val(Ψ) 6 1
2 + 4η.

In the rest of the section, we present the proof of the above theorem. To begin with, we fix the
parameters of the reduction.

Parameters : Fix ε = η/100. Let τ, q be the constants obtained from Theorem 7.5 below. Finally,
let us choose δ = min{η/4, ηε2τ8/109}.

7.1 Completeness

In order to show that val(Ψ) > 1 − 5η, we instead show that valm(Ψ) > 1 − 5η, which, by
Observation 3.1, implies the required result.

By assumption, there exists labelings to the Unique Game instance Φ such that for 1−δ fraction
of the vertices a ∈ AΦ all the edges (a, b) are satisfied. Let A : BΦ ∪ AΦ → [R] denote one such
labeling. Define an m-ordering of Ψ as follows:

O(b, z) = z(A(b)) ∀b ∈ BΦ, z ∈ [m]R
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Clearly the mapping O : V → [m] defines an m-ordering of the vertices V = BΦ × [m]R. To
determine valm(O), let us compute the probability of acceptance of a verifier that follows the above
procedure to generate an edge in E and then checks if the edge is satisfied. Arithmetizing this
probability, we can write

valm(O) =
1

2
Pr
(
O(b, π(z̃u)) = O(b′, π′(z̃v))

)
+ Pr

(
O(b, π(z̃u)) < O(b′, π′(z̃v))

)
With probability at least (1 − δ), the verifier picks a vertex a ∈ AΦ such that the assignment
A satisfies all the edges (a, b). In this case, for all choices of b, b′ ∈ N(a), π(A(a)) = A(b) and
π′(A(a)) = A(b′). Let us denote A(a) = l. By definition of the m-ordering O, we get O(b, π(z)) =
(π(z))(A(b)) = z(π−1(A(b))) = z(l) for all z ∈ [m]R. Similarly for b′, O(b′, π′(z)) = z(l) for all z ∈ [m]R.
Thus we get

valm(O) > (1− δ) ·
(1

2
Pr
(
z̃(l)
u = z̃(l)

v

)
+ Pr

(
z̃(l)
u < z̃(l)

v

))
With probability at least (1 − 2ε)2, we have z̃

(l)
u = z

(l)
u and z̃

(l)
v = z

(l)
v . Further, note that each

coordinate z
(l)
u , z

(l)
v is generated according to the local distribution µe for the edge e = (u, v).

Substituting in the expression for valm(O) we get,

valm(O) > (1− δ)(1− 2ε)2 E
e=(u,v)

[
Pr

(xu,xv)∈µe

{
xu < xv

}
+

1

2
Pr

(xu,xv)∈µe

{
xu = xv

}]
Recall that the SDP solution (V ,µ) have an objective value at least (1−η). Thus for small enough
choice of δ and ε , we have valm(O) > 1− 5η.

7.2 Soundness

Let O be an ordering of Ψ with val(O) > 1
2 + 4η. Using the ordering, we will obtain a labeling

A for the Unique Games instance Φ. Towards this, we build machinery to deal with multiple
long codes. For b ∈ BΦ, define Ob as the restriction of the map O to vertices corresponding to
the long code of b. Formally, Ob is a map Ob : [m]R → Z given by Ob(z) = O(b, z). Similarly,
for a vertex a ∈ AΦ, let Oa denote the restriction of the map O to the vertices N(a) × [m]R, i.e.
Oa(b, z) = O(b, z).

7.2.1 Multiple Long Codes

Throughout this section, we fix a vertex a ∈ AΦ and analyze the long codes corresponding to all
neighbors of a. For ease of notation, for a neighbor b ∈ N(a), we use πb to denote the permutation

πa→b along the edge (a, b). Let F [s,t]
b denote the functions associated with the ordering Ob. Define

functions F [s,t]
a : [m]R → R as follows:

F [s,t]
a (z) = Pr

b∈N(a)

(
Oa(b, πb(z)) ∈ [s, t]

)
= E

b∈N(a)
[F [s,t]
b (πb(z))]

Definition 7.2. Define the set of influential coordinates Lτ (Oa) as follows:

Lτ (Oa) = {k
∣∣ Infk(T1−εF [s,t]

a ) > τ for some s, t ∈ Z}

An ordering Oa is said to be τ -pseudorandom if Lτ (Oa) is empty.
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Lemma 7.3. For any influential coordinate k ∈ Lτ (Oa), for at least τ
2 fraction of b ∈ N(a), πb(k)

is influential on Ob. More precisely, πb(k) ∈ Lτ/2(Ob).

Proof. As the coordinate k is influential on Oa, there exists s, t such that Infk(F
[s,t]
a ) > τ . Recall

that F [s,t]
a (z) = Eb∈N(a)[F

[s,t]
b (πb(z))]. Using convexity of Inf this implies, Eb∈N(a)[Infπb(k)(F

[s,t]
b )] >

τ . All the influences Infπb(k)(F
[s,t]
b ) are bounded by 1, since each of the functions F [s,t]

b take values

in the range [0, 1]. Therefore for at least τ/2 fraction of vertices b ∈ N(a), we have Infπb(k)(F
[s,t]
b ) >

τ/2. This concludes the proof. �

Lemma 7.4. For any vertex a ∈ AΦ, |Lτ (Oa)| 6 800
ετ4 .

Proof. From Lemma 7.3, for each coordinate k ∈ Lτ (Oa) there is a corresponding coordinate πb(k)
in Lτ/2(Ob) for at least τ/2 fraction of the neighbors b. Further from Lemma 4.3, the size of each
set Lτ/2(Ob) is at most 400/ετ3. By double counting, we get that |Lτ (Oa)| is at most 800/ετ4. �

It is in fact not difficult to get a better bound than obtained in Lemma 7.4 by applying an
extension of Lemma 4.3 directly to the function Fa. Note that the lemma does not apply directly
as Oa is not an ordering but a set of orderings. This extension is not difficult but the improvement
in parameters is not a real concern to us.

Theorem 7.5. For all ε, η > 0, there exists constants q, τ > 0 such that for any vertex a ∈ AΦ, if
Oa is τ -pseudorandom then val(Oa) 6 optq(G) + η/4.

Proof. The proof outline is similar to that of Theorem 6.2. Let O∗a denote the q-coarsening of Oa.
Then we can write,

val(Oa) 6 valq(O∗a) +
1

2
Pr
(
O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))

)
The q-coarsening O∗a is obtained by dividing the order Oa into q-blocks. Let [1 = p1 + 1, p2], [p2 +
1, p3], . . . , [pq + 1, pq+1 = m] denote the q blocks. For the sake of brevity, let us denote F ia =

F [pi+1,pi+1]
a and F ib = F [pi+1,pi+1]

b . In this notation, we can write:

Pr
(
O∗a(b, πb(z̃u)) = O∗a(b′, πb′(z̃v))

)
=
∑
i∈[q]

E
e=(u,v)

E
b,b′

E
zu,zv ,z̃u,z̃v

[
F ib(πb(z̃u)) · F ib′(πb′(z̃v))

]
=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

E
z̃u,z̃v

[
F ia(z̃u) · F ia(z̃v)

]
=
∑
i∈[q]

E
e=(u,v)

E
zu,zv

[
T1−2εF ia(zu) · T1−2εF ia(zv)

]
As the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF ia) 6 τ . Hence
by the fact that zu and zv are uniformly distributed and using Lemma 3.5, the above value is less
than O(q−

ε
2 ) + oτ (1).
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Now we bound the value of valq(O∗a). In terms of the functions F ib, the expression for valq(O∗a)
is as follows:

valq(O∗a) = E
[1

2

∑
i=j

F ib(πb(z̃u)) · F jb′(πb′(z̃v)) +
∑
i<j

F ib(πb(z̃u)) · F jb′(πb′(z̃v))
]

= E
[1

2

∑
i=j

F ia(z̃u) · F ja(z̃v) +
∑
i<j

F ia(z̃u) · F ja(z̃v)
]

Again, since the ordering Oa is τ -pseudorandom, for every k ∈ [R] and i ∈ [q], Infk(T1−εF ia) 6 τ .
Hence by Claim 6.5, the above value is bounded by optq(G) + oτ (1). From the above inequalities,

we get val(Oa) 6 optq(G) +O(q−
ε
2 ) + oτ (1), which finishes the proof. �

7.2.2 Defining a Labeling

Define the labeling A for the Unique Games instance Φ as follows: For each a ∈ AΦ, A(a) is a
uniformly random element from Lτ (Oa) if it is non-empty, and a random label otherwise. Similarly
for each b ∈ BΦ, assign A(b) to be a random element of Lτ/2(Ob) if it is nonempty, else an arbitrary
label.

If val(O) = Ea∈AΦ
[val(Oa)] > 1

2 + 4η, then for at least 2η fraction of vertices a ∈ AΦ, we have
val(Oa) > 1

2 + 2η. Let us refer to these vertices a as good vertices. From Theorem 7.5, for every
good vertex the order Oa is not τ -pseudorandom. In other words, for every good vertex a, the set
Lτ (Oa) is non-empty. Further by Lemma 7.3 for every label l ∈ Lτ (Oa), for at least τ/2 fraction of
the neighbors b ∈ N(a), πb(l) belongs to Lτ/2(Ob). For every such b, the edge (a, b) is satisfied with
probability at least 1/|Lτ (Oa)| × 1/|Lτ/2(Ob)|. By Lemma 4.3 and Lemma 7.4, this probability is
at least ετ4/800 × ετ3/3200. Summarizing the argument, the expected fraction of edges satisfied
by the labeling A is at least ηε2τ8/10240000. By a small enough choice of δ (the soundness of the
original UG instance), this yields the required result and completes the proof of Theorem 7.1.

8 Ordering CSPs

In this section, we outline the ideas of the proof of Theorem 1.3. To this end, we begin by formally
defining a class of ordering constraint satisfaction problems.

8.1 Formal Definitions

Definition 8.1. An Ordering Constraint Satisfaction Problem (OCSP) Λ is specified by a proba-
bility distribution over the family of payoff functions P : Sk → [0, 1] on the set Sk of permutations
on k elements. The integer k is referred to as the arity of the OCSP Λ.

An example of a OCSP would be all instances that contain 75% of constraints of the form “i
before j”and 25% of constraints of the form “i between j and k.” Hence the definition not only fixes
the set of predicates but also the proportion of each predicate that appears in an instance.

Let us use the notation P ∼ Λ to denote a payoff sampled from the distribution Λ. Notice that
every payoff P ∼ Λ is assumed to be on the set of permutations of exactly k elements. However,
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there is no loss of generality since for every q 6 k, a payoff on set Πq of permutations on q elements
can be expressed as a payoff on Sk by including dummy variables.

Let Πk→N denote the set of one to one maps from [k] → N. The domain of a payoff function
P can be extended naturally from the set of permutations Sk to Πk→N. In particular, an injective
map f ∈ Πk→N, along with the standard ordering on the range N induces a permutation πf on [k].
To extend the payoff, just define P (f) = P (πf ) for all f ∈ Πk→N.

Definition 8.2 (Λ-Ordering-ConstraintSatisfactionProblem (OCSP)). An instance = of
Ordering Constraint Satisfaction Problem Λ is given by = = (V,P) where

– V = {y1, . . . , ym} is the set of variables that need to be ordered. Thus an ordering O is a one
to one map from V to natural numbers N.

– P is a probability distribution over constraints/payoffs applied to subsets of at most k variables
from V. More precisely, a sample P ∼ P would be a payoff function from Λ, applied on a
sequence of variables yS = (ys1 , . . . , ysk). If O|S denotes the injective map from yS → N
obtained by restricting O to yS, then the payoff returned is P (O|S).

Moreover, the type of a payoff P ∼ P sampled from P, is identical to the distribution associ-
ated with the OCSP Λ.

For a payoff P ∈ P, we define V(P ) ⊆ V to denote the set of variables on which P is applied. The
objective is to find an ordering O of the variables that maximizes the total weighted payoff/expected
payoff, i.e.,

E
P∼P

[
P (O|P )

]
Here O|P denotes the ordering O restricted to the variables in V(P ). We define the value opt(P)
as

opt(=)
def
= max
O:ΠV→N

E
P∼P

P (O|P ) .

Observe that if the payoff functions P are predicates, then maximizing the payoff amounts
to maximizing the number of constraints satisfied. We use the notions “payoff function” and
“constraint” interchangeably. As noted earlier, by reordering the inputs, we can assume that P (σ)
is maximized when σ is the identity, id.

Definition 8.3. Given an OCSP Λ, let

Λmax = E
P∼Λ

[P (id)] Λrandom = E
P∼Λ

E
σ∈Sk

[P (σ)]

With these definitions, we can state the following general UG-hardness for OCSPs.

Theorem 8.4 (General UG-hardness). For every η > 0 and every OCSP of bounded arity k, the
following holds: Given an instance of the OCSP Λ that admits an ordering with payoff at least
Λmax − η, it is Unique Games-hard to find an ordering of the instance that achieves a payoff of at
least Λrandom + η.

Notice that Theorem 1.3 corresponds to the special case where the probability distribution Λ
consists of a single payoff function. For the sake of exposition, we present the proof of Theorem 1.3
here. The proof of the more general Theorem 8.4 is essentially the same.
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8.2 Relation to CSPs

An ordering O can be thought of as an assignment of values from [m] to each variable yi such that
yi 6= yj for all i 6= j. By suitably extending the payoff functions P ∈ Λ, it is possible to eliminate
the “one to one” condition (yi 6= yj whenever i 6= j). More precisely, we extend the domain of
payoff functions P ∈ Λ from Πk→[m] to N[k] - the set of all maps from [k] to N.

Given an arbitrary function f : [k] → N, define a probability distribution Df on the set of
permutations Sk by the following random procedure:

1. For each j ∈ N with f−1(j) 6= φ, pick a uniform random permutation πj of elements in f−1(j).

2. Concatenate the permutations πj in the natural ordering on j ∈ N to obtain the permutation
π ∈ Sk. For a payoff P ∈ Λ, define

P (f) = E
π∼Df

[P (π)] (9)

With this extension of payoff functions, the following lemma shows that optimizing over all
orderings is equivalent to optimizing over all assignments of values in [m] to variables {y1, . . . , ym}.

Lemma 8.5. For an instance = = (V,P) of a Λ-OCSP with |V| = m, we have

max
O∈ΠV→N

E
P∈P

P (O|P ) = max
f∈[m]V

E
P∈P

P (f|P )

Here [m]V denotes the set of all functions from V to [m].

Proof. For every injective map O : V → N, there is an injective map O′ : V → [m] corresponding
to the permutation induced by O. Clearly, the objective value of O is the same as O′. Since
O′ ∈ [m]V , we have

max
O∈ΠV→N

E
P∈P

P (O|P ) 6 max
f∈[m]V

E
P∈P

P (f|P )

As the payoff of an arbitrary function f : V → [m], is defined as an expectation of the payoff of
permutations the reverse inequality follows finishing the proof. �

By virtue of Lemma 8.5, the Λ-OCSP instance = = (V,P) is transformed into a constraint
satisfaction problem over variables V, albeit over a domain [m] whose size is not fixed. Specifically,
the problem of finding an optimal ordering O for the Λ-OCSP instance can be reformulated as
computing

opt(=) = max
y∈[m]V

E
P∈P

[
P (yV(P ))

]
(10)

Here P refers to the extended payoff function as defined in (9). For the sake of convenience, we use
yP as a shorthand for yV(P ).

Taking the analogy with CSPs a step further, one can define a CSP Λq for every positive integer
q > 0. Given an instance = = (V,P) of Λ-OCSP, the corresponding Λq problem is to find a q-
ordering that maximizes the expected payoff. Formally, the goal of the Λq-CSP instance = is to
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compute an assignment y ∈ [q]m that maximizes the following:

optq(=) = max
y∈[q]m

E
P∈P

[
P (yP )

]
(11)

The following claim is an easy consequence of the above definitions:

Claim 8.6. For every Λ-OCSP instance = = (V,P), and integers q 6 q′

optq(=) 6 optq′(=) 6 opt(=) ,

Further, if |V| = m then optm(=) = opt(=).

8.3 SDP Relaxation

Inspired by the interpretation of a Λ-OCSP as a CSP over a large domain, one can formulate a
generic semidefinite program along the lines of [35]. The details of the generic semidefinite program
are described here.

Given a Λ-OCSP instance = = (V,P), the goal is to find a collection of vectors {bi,a}i∈V,a∈[m]

in a sufficiently high dimensional space and a collection {µP }P∈supp(P) of distributions over local

assignments. For each payoff P ∈ P, the distribution µP is a distribution over [m]V(P ) corresponding
to assignments for the variables V(P ). We write Prx∈µP {E} to denote the probability of an event
E under the distribution µP .

LC Relaxation

maximize E
P∼P

E
x∼µP

P (x) (LC)

subject to 〈bs,i, bs′,j〉 = Pr
x∼µP

{
xs = i, xs′ = j

}
(P ∈ supp(P), s, s′ ∈ V(P ), i, j ∈ [m]) .

(12)

µP ∈ N([m]V(P )) ∀P ∈ supp(P)

We claim that the above optimization problem can be solved in polynomial time. To show this
claim, let us introduce additional real-valued variables µP,x for P ∈ supp(P) and x ∈ [m]V (P ). We
add the constraints µP,x > 0 and

∑
x∈[m]V (P ) µP,x = 1. We can now make the following substitutions

to eliminate the distributions µP ,

E
x∼µP

P (x) =
∑

x∈[m]V (P )

P (x)µP,x , Pr
x∼µP

{
xi = a

}
=

∑
x∈[m]V (P )

xi=a

µP,x ,

Pr
x∼µP

{
xi = a, xj = b

}
=

∑
x∈[m]V (P )

xi=a,xj=b

µP,x .

After substituting the distributions µP by the scalar variables µP,x, it is clear that an optimal
solution to the relaxation of P can be computed in time poly(mk, |supp(P)|) using standard results
about semi-definite programming.
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The LC relaxation succinctly encodes several constraints. In the following claim, we present
some of the additional properties that a feasible solution to LC can be assumed to satisfy.

Claim 8.7. Given a feasible solution {bs,i|s ∈ V, i ∈ [m]}, µ = {µe|e ∈ E} to the LC relaxation,
the vectors can be transformed to another SDP solution {b∗s,i} with the same objective value such
that for some unit vector I the following hold:

〈b∗s,i, b∗s,j〉 = 0 ∀ i, j ∈ [m], i 6= j∑
i∈[m]

〈b∗s,i, b∗s,i〉 = 1

∑
i∈[m]

b∗s,i = I ∀s ∈ V ,

〈b∗s,i, I〉 = ‖b∗s,i‖22 ∀s ∈ V, i ∈ [m] ,

‖I‖22 = 1

We do not formally verify this claim but any reader that doubts the claim can include these
conditions, as they are of the correct form, into LC. In any case from now on we assume that the
conditions of Claim 8.7 are fulfilled.

Note that an integrality gap instance to the above relaxation would be an Λ-OCSP instance,
=, such that sdp(=) is “large” while opt(=) is “small.” A multiscale gap instance on the other
hand has much weaker properties — only requiring optq(=) to be small — thus making it easier
to construct. Recall Definition 2.3 of multiscale gap instances: An instance = of a Λ-OCSP is a
(q, c, s)-multiscale gap instance if sdp(=) > c and optq(=) 6 s.

8.3.1 Smoothing Gap Instances

Let us start with a definition.

Definition 8.8. For α > 0, a (q, c, s)-multiscale gap instance = = (V,P) over m variables is said
to be α-smooth if for every P ∈ P and x ∈ [m]k, µP,x > α.

Here we outline a transformation on a multiscale gap instance =∗ to another multiscale gap
instance = with certain special properties including α-smoothness. In particular, the lemma implies
that the smoothness parameter of the resulting solutions is α = η

10mk .

Lemma 8.9. For all η > 0 the following holds, given a (q, c, s)-multiscale gap instance =∗ =
(V∗,P∗) of a Λ-OCSP, for large enough m, there exists a (q, c−η/5, s+η/5)-multiscale gap instance
= = (V,P) on m variables, an SDP solution {bs,i}s∈V,i∈[m], {µP }P∈supp(P) and a vector I satisfying

〈bv,i, bv,i〉 =
1

m
∀v ∈ V, i ∈ [m] , (13)

µP,x >
η

10mk
∀P ∈ P, x ∈ [m]k , (14)

and

E
P∼P

E
x∼µP

P (x) > c− η

5
optq(=) 6 s+

η

5

27



Note that although I does not appear in the claim explicitly it does so implicitly by our as-
sumption that the conditions of Claim 8.7 are valid.

Proof. Intuitively, the SDP solution corresponding to instance = assigns each of the variables yi ∈ V
each of the locations in [m] with equal probability. The instance = is constructed by taking many
copies of =∗ and joining them side by side such that cyclic shifts of orderings obtain around the
same payoff.

More formally, let L = d20
η e and set V = V∗ × [L]. The distribution P is obtained by simply

the product distribution of P∗ and the uniform distribution over [L]. That is, for every p =
(y1, y2, . . . yk) in the support of P∗ and for every l ∈ [L], PrP((y1, l), (y2, l), . . . , (yk, l)) = PrP∗(p)/L.

Let O be an optimal ordering for =. Let m = |V| = L|V∗|. For every i ∈ [m], define ordering
O∗(i) : V → [m] to be O∗(v, k) = i + k|V| + O(v) (addition modulo m). Since, except for at most

one copy of P∗, every other constraint is ordered as in O, the payoff of O∗(i) is at least c− η/20.

Further, since the q-ordering value of P is simply the average of the q-ordering values of the
individual pieces, valq(P) 6 s.

To construct the vectors, we consider the distribution over assignments obtained by taking,
with probability 1 − η/10, one of O∗(i) with equal probability and taking a completely random

assignment with probability η/10. It is easy to see that the probability y ∈ V is assigned a ∈ [m]
is exactly 1/m. Further, since we take a completely random assignment with probability η/10, for
any constraints p ∈ P and x ∈ [m]k, the distribution assigns x to p with probability at least η

10mk .
The payoff obtained by this distribution is at least (1−η/10)(c−η/20) > c−η/5. The distribution
over assignments naturally gives vectors satisfying the required constraints. �

9 Dictatorship Test for OCSP

In this section, we construct a dictatorship test for an OCSP Λ starting with a multiscale gap
instance = for the problem. Formally, let =∗ = (V∗,P∗) be a (q, c, s) multiscale gap instance with
|V| = m. Let = = (V,P) denote the (q, c− η

5 , s+ η
5 )-multiscale gap instance, which is α = η/10mk-

smooth, obtained from Lemma 8.9. Let (V ,µ) denote the SDP solution associated with the instance
=. Define a dictatorship test DICTεV ,µ on orderings O of [m]R as follows:
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DICTεV ,µ Test

Let = = (V,P) denote a (q, c− η
5 , s+ η

5 )-multiscale gap instance for OCSP Λ, which is α = η/10mk-
smooth. Let (V ,µ) denote the SDP solution associated with the instance =.

– Sample a payoff P from the distribution P. Let V(P ) = S = {s1, s2, . . . , sk}.

– Sample zS = {zs1 , . . . , zsk} from the product distribution µRP , i.e. For each 1 6 j 6 R,

z
(j)
S = {z(j)

s1 , . . . , z
(j)
sk } is sampled using the local distribution µP on [m]V(P ).

– For each si ∈ S and each 1 6 j 6 R, sample z̃jsi as follows: With probability (1−ε), z̃(j)
si = z

(j)
si ,

and with the remaining probability z̃
(j)
si is a uniform random element from [m].

– Query the ordering values O(z̃s1), . . . ,O(z̃sk).

– Return the Pay-Off : P
(
O
(
z̃s1
)
, . . . ,O

(
z̃sk
))

9.1 Completeness analysis

It is fairly simple to check that the completeness of the dictatorship test DICTεV ,µ is close to the
SDP value of =. Specifically, we now show,

Lemma 9.1.
Completeness(DICTεV ,µ) > val(V ,µ)− εk = c− η

5
− εk

Proof. A dictator m-ordering O is given by O(z) = z(j). The expected payoff returned by the
verifier DICTεV ,µ on O is given by

E
P∈P

E
zS

Ẽ
zS

[
P
(
O
(
z̃s1
)
, . . . ,O

(
z̃sk
))]

= E
P∈P

E
zS

Ẽ
zS

[
PS

(
z̃(j)
s1 , . . . , z̃

(j)
sk

)]
With probability (1− ε)k, z̃(j)

si = z
(j)
si for each si ∈ S. Hence a lower bound for the expected payoff

is given by

E
P∈P

E
zS

Ẽ
zS

[
P
(
O
(
z̃s1
)
, . . . ,O

(
z̃sq
))]
> (1− ε)k E

P∈P
E
zS

[
P
(
z(j)
s1 , . . . , z

(j)
sq

)]
The jth coordinates z

(j)
S = {z(j)

s1 , . . . , z
(j)
sq } are generated from the local probability distribution µP .

Thus we get,

E
P∈P

E
zS

[
P
(
z(j)
s1 , . . . , z

(j)
sq

)]
= E

P∈P
E

x∈µP

[
P (x)

]
= val(V ,µ) (15)

The expected payoff is at least (1− ε)k · val(V ,µ) > val(V ,µ)− εk. �
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9.2 Soundness of dictatorship test

Let us state our soundness claim.

Theorem 9.2. (Soundness Analysis) For every ε > 0, for any τ -pseudorandom ordering O of
[m]R,

val(O) 6 optq(=) +O(q−
ε
2 ) + oτ (1).

This theorem is an immediate consequence of Lemma 9.3 and Lemma 9.4 below and let us turn
to the first of these statements.

Lemma 9.3. For every ε > 0, for any τ -pseudorandom ordering O of [m]R

val(O) 6 valq(O∗) +

(
k

2

)
q−

ε
2 + oτ (1)

where O∗ is the q-coarsening of O and k denotes the arity of the OCSP Λ.

Proof. Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-ordering O∗.
Note that the loss due to coarsening arises because for some payoffs P the k variables in V(P )

do not fall into distinct bins during coarsening. Let us upper bound the probability that some two
of the variables queried, z̃si and z̃sj , fall into same block during coarsening, i.e. O∗(z̃si) = O∗(z̃sj ).
Observe that,

Pr
(
O∗(z̃si) = O∗(z̃sj )

)
=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

E
z̃si ,z̃sj

[
F i(z̃si) · F i(z̃sj )

]
=
∑
i∈[q]

E
P∈P

E
zsi ,zsj

[
T1−2εF i(zsi) · T1−2εF i(zsj )

]
As O is a q-coarsening of O, for each value i ∈ [q], there is exactly a 1

q -fraction of z for which

O∗(z) = i. Hence for each i ∈ [q], Ez[F i(z) = 1
q ]. Further, since the ordering O∗ is τ -pseudorandom,

for every j ∈ [R] and i ∈ [q], Infj(T1−εF i) 6 τ . Hence using Lemma 3.5 and the fact that zsi
and zsj are uniformly distributed, for sufficiently large q, the above probability is bounded by

q · q−1− ε
2 + q · oτ (1). By a simple union bound, the probability that two of the queried values fall in

the same bin is at most
(
k
2

)(
q · q−1− ε

2 + q · oτ (1)
)

. As all the payoffs are bounded by 1 in absolute

value, we can write

val(O) 6 valq(O∗) + Pr
(
∃i, j ∈ [k] such that O∗(z̃si) = O∗(z̃sj )

)
6 valq(O∗) +

(
k

2

)
q−

ε
2 + oτ (1)

�

We now state the second lemma needed to prove Theorem 9.2. The proof of this lemma is
postponed to Section 10.

Lemma 9.4. For every choice of m, q, ε, and any τ -pseudorandom q-ordering O∗ of [m]R, valq(O∗) 6
optq(=) + oτ (1).
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10 Soundness Analysis for q-Orderings

In this section, we give the proof of Lemma 9.4 and Lemma 6.4. As Lemma 6.4 is a special case
of Lemma 9.4, we restrict ourselves to the proof of Lemma 9.4 which completes the soundness
analysis for the dictatorship test for arbitrary OCSPs. The proof of Lemma 9.4 closely resembles
the soundness analysis of dictatorship tests for the case of Generalized CSPs in [35]. However,
in [35], the dictatorship test is analyzed for functions with domain [q]R and range Nq. In our
application, we are interested in functions whose domain is [m]R while the output is in Nq for
some q. Hence Lemma 9.4 is not a formal consequence of the lemmas in [35]. We start with some
preliminaries and tools.

10.1 Invariance Principle

The following invariance principle is an immediate consequence of Theorem 3.6 in the work of
Isaksson and Mossel [20].

Theorem 10.1. (Invariance Principle [20]) Let Ω be a finite probability space with the least non-
zero probability of an atom at least α 6 1/2. Let L = {`1, `1, . . . , `m} be an ensemble of random
variables over Ω. Let G = {g1, . . . , gm} be an ensemble of Gaussian random variables satisfying the
following conditions:

E[`i] = E[gi] E[`2i ] = E[g2
i ] E[`i`j ] = E[gigj ] ∀i, j ∈ [m]

Let K = log(1/α). Let F = (F1, . . . , Fd) denote a vector valued multilinear polynomial and let
Hi = (T1−εFi) and H = (H1, . . . ,Hd). Further assume that Infi(H) 6 τ and Var[Hi] 6 1 for all
i.

If Ψ : Rd → R is a Lipschitz-continuous function with Lipschitz constant C0 (with respect to the
L2-norm). Then, ∣∣∣E [Ψ(H(LR))

]
− E

[
Ψ(H(GR))

]∣∣∣ 6 Cd · C0 · τ ε/18K = oτ (1)

for some constant Cd depending on d.

10.2 Payoff Functions

For the sake of the proof, we extend the payoff functions P corresponding to the CSP Λq to a
multilinear polynomial on Nkq . Specifically, the payoff functions P ∈ Λq are defined over the set

[q]k where k is the arity of Λ. Given a payoff function P : [q]k → [0, 1], we define a function
P ′ : Rqk → R follows:

– Define the function P ′ on Nkq as a multilinear polynomial.

P ′(x1, . . . ,xk) =
∑
β∈[q]k

P (β)

k∏
i=1

x(i,βi) ∀{x1, . . . ,xk} ∈ Nkq
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Note that when the inputs belong to ∆k
q the sum only contains one nonzero element and we

have the following simpler definition.

– The function P ′ on ∆k
q equals:

P ′(eβ1 , . . . , eβk) = P (β) ∀β ∈ [q]k

Abusing notation, we use P ∈ Λq to denote both the payoff function over [q]k and the corre-
sponding multilinear function (the P ′ defined above) over Nkq . The domain of the input to P will
hopefully be clear from the context.

10.3 Local and Global Distributions

Now, we describe two ensembles of random variables, namely the local integral ensembles LP for
each payoff P , and a global Gaussian ensemble G.

Definition 10.2. For every payoff P ∈ P of size at most k, the Local Distribution µP is a distri-
bution over [m]V(P ). In other words, the distribution µP is a distribution over assignments to the
CSP variables in set V(P ). The corresponding Local Integral Ensemble is a set of random variables
LP = {`s1 , . . . , `sk} each taking values in ∆m.

Definition 10.3. The Global Ensemble G = {gs|s ∈ V, j ∈ [m]} are generated by setting gs =
{gs,1, . . . , gs,m} where

gs,j = 〈I, bs,j〉+ 〈bs,j − 〈I, bs,j〉I, ζ〉

and ζ is a normal Gaussian random vector of appropriate dimension.

It is easy to see that the local and global integral ensembles have matching moments up to
degree two. Let `s,j denote the jth component of `s.

Lemma 10.4. For any set P ∈ P, the global ensemble G matches the following moments of the
local integral ensemble LP

E[gs,j ] = E[`s,j ] = 〈I, bs,j〉 E[g2
s,j ] = E[`2s,j ] = 〈I, bs,j〉

E[gs,jgs′,j′ ] = E[`s,j`s′,j′ ] = 〈bs,j , bs′,j′〉 ∀j, j′, s, s′

Proof. The statement of the expectations of the expressions involving the `-variables are easy to
check. For the expressions involving the g-variables we need the fact that

E[〈b, ζ〉〈b′, ζ〉] = 〈b, b′〉

and E[〈b, ζ〉] = 0 for any vectors b and b′. The quantity that requires some calculation to compute
is E[gs,jgs′,j′ ] which equals

〈I, bs,j〉〈I, bs′,j′〉+ 〈bs,j − 〈I, bs,j〉I, bs′,j′ − 〈I, bs′,j′〉I〉 = 〈bs,j , bs′,j′〉.

�
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Note that local distributions µP for different payoffs P ∈ P do not fit together to form a global
distribution and in fact when applying Theorem 10.1 we use this theorem on each term in the
payoff function locally. From this we can conclude that the value obtained by the global ensemble
on each local condition gives about the same expected contribution to the objective function as the
local distribution specific for that constraint.

10.4 Putting It All Together

Finally, we now show the following lemma which forms the core of the soundness argument in
Lemma 9.4 and is a generalization of the Claim 6.5.

Lemma 10.5. For a function F : [m]R → Nq satisfying Infj(T1−εF) 6 τ for all j ∈ [R],

E
P∈P

E
zS

Ẽ
zS

[
P
(
F
(
z̃s1
)
, . . . ,F

(
z̃sk
))]
6 optq(=) + oτ (1).

Before proving this lemma let us establish Lemma 9.4.

Proof. (Of Lemma 9.4.) Let F [s,t] : [m]R → {0, 1} denote the functions associated with the q-
ordering O∗. The expected payoff returned by the verifier in the dictatorship test DICTεV ,µ is given
by,

valq(O∗) = E
P∈P

E
zS

Ẽ
zS

[
P
(
F
(
z̃s1
)
, . . . ,F

(
z̃sk
))]

.

Further, since the ordering O∗ is τ -pseudorandom, for every j ∈ [R] we have Infj(T1−εF i) 6 τ , and
thus Lemma 10.5 concludes the proof. �

Let us turn to establishing Lemma 10.5.

Proof. (Of Lemma 10.5.) Let us denote H = T1−εF . Let F(x),H(x) denote the multilinear
polynomials corresponding to functions F ,H, respectively, where the variables xi,j for i ∈ [R] and
j ∈ [m] can be thought of as indicator variables whether the jth input equals i. Let us denote,

DICTεV ,µ(F) = E
P∈P

E
zS

Ẽ
zS

[
P
(
F
(
z̃s1
)
, . . . ,F

(
z̃sk
))]

Each vector zsi is independently perturbed to obtain z̃si . The payoff functions P are multilinear
when restricted to the domain Nq. Consequently, we can write

DICTεV ,µ(F) = E
P∈P

E
zS

[
P
(

Ẽ
zs1

[F
(
z̃s1
)
|zs1 ], . . . , Ẽ

zs1

[F
(
z̃sq |zsk ]

))]
= E

P∈P
E
zS

[
P
(
H
(
zs1
)
, . . . ,H

(
zsk
))]

The last equality is due to the fact Ez̃si
[F(z̃si)|zsi ] = T1−εF(zsi) = H(zsi). For each s ∈ S,

the coordinates of zs are generated by the distribution µP . Therefore the above expectation can

33



be written in terms of the polynomial H applied to an instance of the integral ensemble LP .
Specifically, we can write

DICTεV ,µ(F) = E
P∈P

E
zS

[
P
(
H
(
zs1
)
, . . . ,H

(
zsk
))]

= E
P∈P

E
LRP

[
P
(
H
(
`Rs1
)
, . . . ,H

(
`Rsk
))]

(16)

The following procedure RoundF returns an ordering for the original Λ-OCSP instance =.

RoundF Scheme

Input: A Λ-OCSP instance = = (V,P) with m variables and an SDP solution {bv,i}, {µP }.

Truncation Function Let fN : Rq → Nq be a Lipschitz-continuous function such that for all
x ∈ Nq, fN(x) = x. Clearly, a function fN of this nature can be constructed with a Lipschitz
constant Cq depending on q.

Scheme Sample R vectors ζ(1), . . . , ζ(R) with each coordinate being i.i.d normal random vari-
able.
For each v ∈ V do

– For all 1 6 j 6 R and i ∈ [m], compute the projection g
(j)
v,i of the vector bv,i as follows:

g
(j)
v,i = 〈I, bv,i〉+

[
〈(bv,i − 〈I, bv,i〉I), ζ(j)〉

]
– Evaluate the function H = T1−εF with g

(j)
v,i as inputs. In other words, compute pv =

(pv,1, . . . , pv,q) as follows:
pv = H(gv)

– Round pv to p∗v ∈ Nq by using the Lipschitz-continuous truncation function fN : Rq → Nq.

p∗v = fN(pv) .

– Assign the Λ-OCSP variable v ∈ V the value j ∈ [q] with probability p∗v,j .

Let RoundF (V ,µ) denote the expected payoff of the ordering returned by the rounding scheme
RoundF on the SDP solution (V ,µ) for the Λ-OCSP instance =. By definition, we have:

RoundF (V ,µ) 6 optq(=) (17)

In the remainder of the proof, we show the following inequality:

RoundF (V ,µ) > DICTεV ,µ(F)− oτ (1)

Along with Equation (17), this would imply that DICTεV ,µ(F) is less than optq(=) + oτ (1), thus
showing the required claim. To this end, we arithmetize the value of RoundF (V ,µ). Notice that
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the gi are nothing but samples of the Global Ensemble G associated with =. By definition, the
expected payoff is given by

RoundF (V ,µ) = E
P∈P

E
GRP

[
P
(
fN
(
H(gRs1)

)
, . . . , fN

(
H(gRsk)

))]
. (18)

We show that the quantities in equation (16) and equation (18) are roughly equal. Fix a payoff
P ∈ P. Let ΨP : Rqk → R be a Lipschitz continuous function defined as follows:

ΨP (p1,p2, · · · ,pk) = P
(
fN
(
p1

)
, . . . , fN

(
pk
))

∀p1, . . .pk ∈ Nq .

Applying the invariance principle (Theorem 10.1) with the ensembles LP , GP , Lipschitz continuous
functional Ψ and the vector of kq multilinear polynomials given by (H,H, . . . ,H) where H =
(H1, . . . ,Hq), we get the required result:

RoundF (V ,µ) = E
P∈P

E
GRP

[
ΨP

(
H
(
gRs1
)
, . . . ,H

(
gRsk
))]

> E
P∈P

E
LRP

[
ΨP

(
H
(
`Rs1
)
, . . . ,H

(
`Rsk
))]
− oτ (1) (∵ InvariancePrinciple(Theorem 10.1))

= E
P∈P

E
LRP

[
P
(
H
(
`Rs1
)
, . . . ,H

(
`Rsk
))]
− oτ (1) (∵ ΨP (p1, . . . ,pk) = P (p1, . . . ,pk) if ∀i,pi ∈ Nq)

= DICTεV ,µ(F)− oτ (1) (∵ Equation 16)

�

11 Constructing Multiscale Gap Instances for general OCSP

In this section, we prove the below theorem, which is the last piece to complete the proof of
Theorem 2.5. We remind the reader that the step moving from the dictator test to the UG-hardness
is completely analogous to the transition done in Section 7 for Maximum Acyclic Subgraph,
and is not presented in this paper.

Theorem 11.1. For every η > 0 and positive integers q, k, there is a m = m(k, q, η) and a
distribution, D, over k-tuples of [m] such that:

– The support of D is contained in the set of strictly increasing k-tuples of [m].

– For any f : [m] → [q], let Df denote the distribution over permutations of [m] obtained by
extending f as in Section 8.2. For any σ = (σ1, σ2, . . . σk) ∈ Sk,∣∣∣∣ Pr

y∈Df ;(d1,d2,...dk)∈D
[y(dσ1) < y(dσ2) < . . . y(dσk)]− 1

k!

∣∣∣∣ 6 η
Note that the k = 2 case of the above theorem is the content of Lemma 5.3. Before delving into

the proof of the above theorem, let us see why it implies a proof of Theorem 2.5.
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Proof. (Proof of Theorem 2.5) Let P be the payoff associated with OCSP Λ and remember that
it is maximized by the identity permutation. Let m = m(k, q, η/k!) and D be the distribution as
promised by Theorem 11.1 and let = = ([m], D) be an OCSP instance with payoff P . Almost by
definition, the value obtained by the trivial ordering of [m] is the maximal possible P (id). Certainly,
the SDP value can only be higher.

Now, viewing = as an instance of the OCSP Λ, define f to be an optimal q-ordering of =. Then,
optq(=) can be bounded as follows:

optq(=) = val(f) = EDEπ∈Df
[P (π)] 6

∑
σ

P (σ)

k!
+ η 6 Λrandom + η .

�

Let us now turn to the proof of Theorem 11.1.

We set m = ks for some integer s to be chosen depending on q and η and we think of [m] as
the s-tuples of [k], ordered by the lexicographic ordering of the tuples. For an integer r, 0 6 r 6 s,
a k-adic interval of order r is an interval of [m] specified by an element α ∈ [k]r and denotes the
subset of [k]s whose first r coordinates match those in α. It is easy to check that for every r and
α, such a set is, in fact, an interval of [m] (due to the lexicographic ordering) and is of length ks−r.
For r = 0, it is the entire set [m] and for r = s, such a set consists of a single element. A random
k-adic interval of order r is a k-adic interval of order r where α is chosen uniformly at random from
[k]r.

Every k-adic interval, I, of order r strictly smaller than s naturally contains k disjoint k-adic
intervals of order r + 1, denoted by I1, I2, . . . Ik in the order of they appear in I. A random k-adic
sub-interval, J , is obtained by picking one of these k sub-intervals uniformly at random. Let us
define our distribution.

Definition 11.2. The distribution Ds is a distribution over k-tuples from [m] for m = ks defined
as follows.

1. Pick a random r uniformly in 0 6 r 6 s− 1

2. Pick a random k-adic interval I of order r from [k]s

3. Pick xj uniformly at random from the k-adic sub-interval Ij of I, for j = 1, 2, . . . , k.

4. Output (x1, x2, . . . xk)

The first claim of Theorem 11.1 follows immediately from the definition since the elements
chosen are always in increasing order in the lexicographic ordering of [m].

In the rest of this section, we prove that, for the distribution Ds, no function f : [m] → [q]
obtains more than negligible advantage over random with respect to any permutation π (for large
enough s).

Fix a particular function f : [m] → [q]. For p ∈ [q] and an interval I, let µp(I) denote the
fraction of I mapped to p by f . The following lemma is the heart of our analysis.
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Lemma 11.3. For a random k-adic interval I chosen as in Definition 11.2 and a random k-adic
sub-interval, J , of I, we have

q∑
p=1

E
I,J

[
|µp(I)− µp(J)|

]
6

√
q

s

Proof. Let βr,p be E[µp(I)2] when I is a random k-adic interval of order r. Note first that as
E[X]2 6 E[X2] and

µp(I) = EJ [µp(J)],

where the expectation is over a random k-adic subinterval J of I, we have that βr+1,p > βr,p. Now,
for any p ∈ {1, 2, . . . , q}, and a random k-adic interval I of order r and a random k-adic subinterval
J of I,

E
I,J

[
|µp(I)− µp(J)|

]
6
(
E
I,J

[
(µp(J)− µp(I))2

])1/2
=

E
I

[
1

k

k∑
j=1

(µp(Ij)− µp(I))2

]1/2

=

E
I

[
1

k

k∑
j=1

µp(Ij)
2 − µp(I)2

]1/2

= (βr+1,p − βr,p)1/2

Thus, averaging over the choice of random r ∈ {0, 1, . . . , s− 1} and summing over all values p
in the range [q], we have

q∑
p=1

E
I,J

[
|µp(I)− µp(J)|

]
6

1

s

q∑
p=1

s−1∑
r=0

(βr+1,p − βr,p)1/2

6
1

s

q∑
p=1

(s−1∑
r=0

1

)1/2(s−1∑
r=0

(
βr+1,p − βr,p

))1/2

6
1√
s

q∑
p=1

β1/2
s,p 6

√
q

s

(q−1∑
p=1

βs,p

)1/2
=

√
q

s
.

�

Next we have the following lemma.

Lemma 11.4. Given non-negative numbers a
(j)
i , b

(j)
i , i ∈ [q], j ∈ [k] such that for every j,∑

i a
(j)
i =

∑
i b

(j)
i = 1, we have

∑
σ∈[q]k

∣∣∣∣∣∣
k∏
j=1

a
(j)
σ(j) −

k∏
j=1

b
(j)
σ(j)

∣∣∣∣∣∣ 6
k∑
j=1

q∑
i=1

∣∣∣ a(j)
i − b

(j)
i

∣∣∣ .
where σ(j) denotes the jth element of the k-tuple σ.
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Proof. The proof follows by an induction over k. The two sides of the expression are equal for
k = 1. For k > 1,

∑
σ∈[q]k

∣∣∣∣ k∏
j=1

a
(j)
σ(j) −

k∏
j=1

b
(j)
σ(j)

∣∣∣∣ 6 ∑
σ∈[q]k

∣∣∣∣a(1)
σ(1)

k∏
j=2

a
(j)
σ(j) − a

(1)
σ(1)

k∏
j=2

b
(j)
σ(j)

∣∣∣∣+

∣∣∣∣a(1)
σ(1)

k∏
j=2

b
(j)
σ(j) − b

(1)
σ(1)

k∏
j=2

b
(j)
σ(j)

∣∣∣∣


=
(∑
i∈[q]

a
(1)
i

)
·
∑

σ∈[q]k−1

∣∣∣∣k−1∏
j=1

a
(j+1)
σ(j) −

k−1∏
j=1

b
(j+1)
σ(j)

∣∣∣∣+

( k∏
j=2

( q∑
i=1

b
(j)
i

)) q∑
i=1

∣∣∣a(1)
i − b

(1)
i

∣∣∣
=

∑
σ∈[q]k−1

∣∣∣∣k−1∏
j=1

a
(j+1)
σ(j) −

k−1∏
j=1

b
(j+1)
σ(j)

∣∣∣∣+

q∑
i=1

∣∣∣a(1)
i − b

(1)
i

∣∣∣
6

k∑
j=2

q∑
i=1

∣∣∣a(j)
i − b

(j)
i

∣∣∣+

q∑
i=1

∣∣∣a(1)
i − b

(1)
i

∣∣∣ (by induction hypothesis)

=
k∑
j=1

q∑
i=1

∣∣∣a(j)
i − b

(j)
i

∣∣∣ .
�

We can now finish the proof of Theorem 11.1 using the above two lemmas. For any σ ∈ [q]k, let
Pr(σ) denote the probability of the event f(xj) = σ(j) when x = (x1, x2, . . . xk) is chosen according
to the distribution Ds. For an interval I, let Pr(σ, I) denote the above probability conditioned on
Ds choosing I in step 2. Since xj is chosen uniformly from the k-adic sub-interval Ij of I, we have

Pr(σ, I) =
∏k
j=1 µσ(j)(Ij). Now

∑
σ

∣∣∣∣Pr(σ)− E
I

[∏
j

µσ(j)(I)
]∣∣∣∣ =

∑
σ

∣∣∣ E
I
[Pr(σ, I)]− E

I

[∏
j

µσj (I)
] ∣∣∣

6 E
I

[ ∑
σ

∣∣∣Pr(σ, I)−
∏
j

µσ(j)(I)
∣∣∣ ]

= E
I

[ ∑
σ

∣∣∣∏
j

µσ(j)(Ij)−
∏
j

µσ(j)(I)
∣∣∣ ]

6 E
I

[ k∑
j=1

∑
p∈[q]

∣∣∣µp(Ij)− µp(I)
∣∣∣] (By Lemma 11.4)

6 k
√
q/s (By Lemma 11.3)

For any permutation π ∈ Sk, the value of the q-ordering f with respect to π, valπt (Ds, f) =∑
σ Pr(σ)Payoffπ(σ). Since Payoff takes values in [0, 1], from the above argument,∣∣∣∣∣ valπt (D, f)−

∑
σ

Payoffπ(σ)E
I

[
Πjµσj (I)

] ∣∣∣∣∣ 6 k√q/s.
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Further, since the value of the second factor in the terms of the sum depends on which values
appear in σ and not their order, the sum is independent of the permutation π, and we get∣∣valπt (D, f)− 1

k!

∣∣ 6 k√q/s.

Choosing s greater than k2q/η2, we immediately obtain the statement of Theorem 11.1.

Remark 11.5. In Lemma 5.3, we constructed an (η, q)-pseudorandom DAG, which corresponds
to the k = 2 case of Theorem 11.1, with n 6 qO(1/η) vertices. The above construction gives an
instance of size ks = kO(k2q/η2) which is exp(O(q/η2)) for constant k. This is somewhat worse than
the size of the DAG construction from Section 5. But the above construction works for all k, and
since we treat q, η as constants, the exact dependence of the size on these parameters does not
matter for our applications.

12 SDP Integrality Gap

In this section, we construct integrality gaps for the MAS − SDP relaxation using the hardness
reduction from Unique Games. Specifically, we show the following result.

Theorem 12.1. For any γ > 0, there exists a directed graph G such that the value of semi definite
program (MAS− SDP) is at least 1− γ, while opt(G) 6 1

2 + γ.

The proof uses a bipartite variant of the Khot-Vishnoi [26] Unique Games integrality gap
instance as in [35, 29]. Specifically, the following is a direct consequence of [26].

The integrality gap instance Φ = (AΦ ∪ BΦ, E,Π = {πe : [R] → [R] | e ∈ E}, [R]) presented
in [26] is not bipartite. To obtain a bipartite Unique Games instance Φ′, duplicate the vertices by
setting AΦ = {(b, 0)|b ∈ V } and BΦ = {(b, 1)|b ∈ V }. Further for each edge (a, b) ∈ E, introduce
two edges ((a, 0), (b, 1)) and ((a, 1), (b, 0)) in Φ′. The SDP solution for the bipartite instance Φ′ is
obtained by assigning the vector corresponding to b ∈ V to both vertices (b, 0) and (b, 1). Except
for these minor modifications, the following theorem is a direct consequence of [26]

Theorem 12.2. [26] For every δ > 0, there exists a UG instance, Φ = (AΦ ∪ BΦ, E,Π = {πe :
[R]→ [R] | e ∈ E}, [R]) and vectors {vb,`} for every b ∈ BΦ, ` ∈ [R] and a unit vector I such that
the following conditions hold:

– No assignment satisfies more than δ fraction of constraints in Π.

– For all b, b′ ∈ BΦ, `, `
′ ∈ [R] , 〈vb,`,vb′,`′〉 > 0 and if ` 6= `′, 〈vb,`,vb,`′〉 = 0.

– For all b ∈ BΦ ,
∑

`∈[R] vb,` = I and 〈vb,`, I〉 = ‖vb,`‖22.

– The SDP value is at least 1− δ: Ea∈AΦ,b,b′∈BΦ

[∑
`∈[R]〈vb,πa→b(`),vb′,π′

a→b′ (`)
〉
]
> 1− δ

Proof of Theorem 12.1. Let G be a (η, t)-multiscale gap instance with m vertices. Apply Theo-
rem 12.2, with a sufficiently small δ to obtain a UGC instance Φ and SDP vectors {vb,`|b ∈ BΦ, ` ∈
[R]}. Consider the instance Ψ constructed by running the UG-hardness reduction in Section 7 on
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the UG instance Φ. The set of vertices of Ψ is given by BΦ × [m]R. Set M = |BΦ| × mR and
N = |BΦ|.

The program MAS−SDP on the instance Ψ contains M vectors {W(b,z)
i |i ∈ [M ]} for each vertex

(b, z) ∈ BΦ × [m]R

Define a solution to MAS − SDP as follows: Set the vector I to be the corresponding vector

in the instance Φ. For each vertex (b, z) of the graph Ψ define SDP vectors {W(b,z)
i |i ∈ [M ]} as

follows:

W
(b,z)
i =

{∑
z`=i

vb,` ∀i ∈ [m], (b, z) ∈ BΦ × [m]R

0 ∀i /∈ [m]

Now we check that the SDP vectors {W(b,z)
i } satisfy conditions 2–6 of the MAS− SDP relaxation.

– (Constraint 3) Since the vectors {vb,`} have non-negative dot-product, the vectors {W(b,z)
i }

have non-negative inner-products too.

– (Constraint 2) For a fixed b and z, the vectors {W(b,z)
i } are constructed by partitioning the

vectors {vb,`} and assigning the vector sum over the partitions. Hence, for any i, j, the vectors

W
(b,z)
i and W

(b,z)
j sum over disjoint set of `. Thus,

〈W(b,z)
i ,W

(b,z)
j 〉 = 〈

∑
z`=i

vb,`,
∑
z`′=j

vb,`′〉 = 0 .

– (Constraint 4) For every vertex (b, z) we have,∑
i,j∈[M ]

〈W(b,z)
i ,W

(b,z)
j 〉 =

∑
`,`′∈[R]

〈vb,`,vb,`′〉 =
∑
`∈[R]

〈vb,`,vb,`〉 = 1 .

– (Constraint 5) For i /∈ m, we have W
(b,z)
i = 0, thereby trivially satisfying constraint 5. For

i ∈ [m], we can write:

〈I,W(b,z)
i 〉 =

∑
z`=i

〈I,vb,`〉 =
∑
z`=i

‖vb,`‖22 .

Due to orthogonality of the vectors {vb,i} for every vertex b ∈ BΦ, we get

〈W(b,z)
i ,W

(b,z)
i 〉 = 〈

∑
z`=i

vb,`,
∑
z`=i

vb,`〉 =
∑
z`=i

‖vb,`‖22 = 〈I,W(b,z)
i 〉

– (Constraint 6) is satisfied by choice of I.

To prove that the SDP value is close to 1, we first fix a particular choice of a ∈ AΦ, b, b′ ∈ BΦ.
Set π = πa→b, π

′ = πa→b′ . The SDP value of edges from (b, ∗) to (b′, ∗) is:
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E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉 = E

e∈G
E

z̃u,z̃v

∑
i<j

〈(
∑
z̃`u=i

vb,`), (
∑
z̃`′v =j

vb′,`′)〉

>
∑
`

(〈vb,π(`),vb′,π′(`)〉) E
e∈G

Pr
z̃u,z̃v

[z̃`u < z̃`v]

With probability at least (1 − 2ε)2, z̃u = zu, z̃v = zv. Further, since the coordinates of zu, zv are
generated from the multiscale gap instance, G, Pr[z`u < z`v] > 1− η. Hence,

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉 > (1− 2ε)2(1− η)

∑
`

〈vb,π(`),vb′,π′(`)〉

Thus, the expected payoff over the whole instance is:

E
a,b,b′

E
e∈G

E
z̃u,z̃v

∑
i<j

〈W(b,π(z̃u))
i ,W

(b′,π′(z̃v))
j 〉 > (1− 2ε)2(1− η) E

a∈AΦ,b,b′∈BΦ

∑
`

〈vb,π(`),vb′,π′(`)〉

> (1− 2ε)2(1− η)(1− δ) .

Hence for sufficiently small choice of parameters ε, η and δ, the SDP value for Ψ is greater than
1 − γ. On the other hand, the soundness analysis in Section 7 (Theorem 7.1) implies that the
integral optimum for Ψ is at most 1

2 + γ with sufficiently small choice of ε, η and δ. �
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