
Correlation testing for affine invariant properties on Fn
p in the high

error regime

Hamed Hatami
School of Computer Science, McGill University, Montréal, Canada

hatami@cs.mcgill.ca

Shachar Lovett
Institute of Advanced Study, Princeton, USA

slovett@ias.edu

Abstract

Recently there has been much interest in Gowers uniformity norms from the perspective of
theoretical computer science. This is mainly due to the fact that these norms provide a method
for testing whether the maximum correlation of a function f : Fn

p → Fp with polynomials of
degree at most d ≤ p is non-negligible, while making only a constant number of queries to the
function. This is an instance of correlation testing. In this framework, a fixed test is applied
to a function, and the acceptance probability of the test is dependent on the correlation of the
function from the property. This is an analog of proximity oblivious testing, a notion coined by
Goldreich and Ron, in the high error regime.

We study in this work general properties which are affine invariant and which are correlation
testable using a constant number of queries. We show that any such property (as long as the
field size is not too small) can in fact be tested by the Gowers uniformity test, and hence having
correlation with the property is equivalent to having correlation with degree d polynomials for
some fixed d. We stress that our result holds also for non-linear properties which are affine
invariant. This completely classifies affine invariant properties which are correlation testable.

The proof is based on higher-order Fourier analysis, where we establish a new approximate
orthogonality for structures defined by linear forms. In particular, this resolves an open problem
posed by Gowers and Wolf. Another ingredient is a nontrivial extension of a graph theoretical
theorem of Erdös, Lovász and Spencer to the context of additive number theory.
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1 Introduction

Blum, Luby, and Rubinfeld [2] made a beautiful observation that given a function f : Fnp → Fp,
it is possible to inquire the value of f on a few random points, and accordingly probabilistically
distinguish between the case that f is a linear function and the case that f has to be modified
on at least ε > 0 fraction of points to become a linear function. Inspired by this observation,
Rubinfeld and Sudan [15] defined the concept of property testing which is now a major area of
research in theoretical computer science. Roughly speaking to test a function for a property means
to examine the value of the function on a few random points, and accordingly (probabilistically)
distinguish between the case that the function has the property and the case that it is not too
close to any function with that property. Interestingly and to some extent surprisingly these tests
exist for various basic properties. The first substantial investigation of property testing occurred
in Goldreich, Goldwasser, and Ron [4] who showed that several natural combinatorial properties
are testable. Since then there has been a significant amount of research on classifying the testable
properties in combinatorial and algebraic settings.

Studying property testing in algebraic setting requires understanding the density of linear struc-
tures in subsets of Abelian groups. It is possible to express the density of those structures by certain
analytical averages. Analyzing these averages and understanding the relations between them is the
core of many problems and results in additive combinatorics and analytic number theory, and many
tools and theories are developed for this purpose. The theory of uniformity, initiated by the proof
of Szemerédi’s theorem [16], plays an important role in this area, and it was a major breakthrough
when Gowers [6] introduced a new notion of uniformity in a Fourier-analytic proof for Szemerédi’s
theorem.

Gowers’ work initiated an extension of Fourier analysis, called higher-order Fourier analysis. In
the classical Fourier-analysis of Fnp , a function is expressed as a linear combination of the characters
of Fnp which are exponentials of linear polynomials. In higher-order Fourier analysis, the linear
polynomials are replaced by higher degree polynomials. Higher-order Fourier expansions are very
useful in studying averages that are defined through linear structures. However for these expansions
to be useful one needs some kind of orthogonality, or at least an approximation of it. The works
of Green and Tao [10] and Kaufman and Lovett [12] provide an approximate orthogonality that
can be used to analyze averages such as EX∈Fnp [f1(X) . . . fm(X)] in a straightforward manner when
proper higher-order Fourier expansions of f1, . . . , fm are known. However it is not a priori clear
that these results can be applied to analyze more general averages of the form

EX1,...,Xk∈Fnp

[
f1

(
k∑
i=1

λ1,iXi

)
. . . fm

(
k∑
i=1

λm,iXi

)]
, (1)

where λi,j ∈ Fp are constants. Such averages arise naturally when one studies linear structures in
subsets of Abelian groups.

Our first result is an extension of the results of Green and Tao [10] which can be applied to such
general averages. Then, we apply these techniques to determine which Gowers norms of f1, . . . , fm
one needs to bound in order to guarantee that the average in (1) is small. Our result in particular
improves a result of Gowers and Wolf [7] and settles a conjecture posed by them.

Gowers’ notion of uniformity has an interesting implication in the context of property testing.
The Gowers norm of a function can be expressed as an average of values of this function on a
few random sample points. There are theorems which show that a bounded function has non-
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negligible Gowers uniformity norm if and only if it has a non-negligible correlation with a low
degree polynomial. These two facts show that having correlation with low degree polynomials
is testable. Our main result is that, roughly speaking, the only correlation testable families of
functions are the ones that can be tested by Gowers uniformity norms.

The tests that we study in this article are slightly different in nature from the typical statements
in the area of property testing. Typically in property testing the goal is to distinguish the functions
that are in a set D (structured) from the functions that are in a non-negligible distance from every
element in D. For example linearity testing [2], probably the most celebrated result in this area,
says that it is possible to test whether a function f : Fn2 → F2 is linear or that it has to be modified
on at least a non-negligible fraction of all points in order to become a linear function. In this article,
we are interested in a different kind of tests. Here we seek a weaker structure in the function, and
having correlation with an element in D replaces the usual condition of actually being in D. This
is in the spirit of proximity oblivious testing, a notion introduced by Goldreich and Ron [5] in the
context of graph properties.

1.1 Notations

The complex unit disk is denoted by D = {z ∈ C : |z| ≤ 1}. We denote elements of Fnp by x, y, z,

where x = (x(1), . . . , x(n)). We frequently need to work with the elements of (Fnp )k which we regard

as vectors with k coordinates. We denote these by x = (x1, . . . , xk) ∈ (Fnp )k. Capital letters X, Y ,

etc are used to denote random variables. For an element m ∈ Fp, let ep(m) := e
2πi
p
m

. We denote
by f, g, . . . functions from Fnp to C, and by f, g, . . . functions from Fnp to Fp. By f := ep(f) we mean
f(x) = ep(f(x)). The bias of a function f : Fnp → C is defined as

bias(f) :=
∣∣∣EX∈Fnp [f(X)]

∣∣∣ . (2)

The bias of a function f : Fnp → Fp is defined to be bias(f) := bias(ep(f)). The inner product of two
functions f, g : Fnp → C is defined as

〈f, g〉 := EX∈Fnp [f(X)g(X)]. (3)

The correlation of a function f : Fnp → C with a set D of functions from Fnp to C is defined as

‖f‖u(D) := sup
g∈D
|〈f, g〉| . (4)

By an abuse of notation, if D is a set of functions from Fnp to Fp, we define

‖f‖u(D) := sup
g∈D
|〈f, ep(g)〉| .

Note that ‖ · ‖u(D) is always a semi-norm.
For two vector spaces V and W over Fp, let Lin(V,W ) denote the set of all linear transformations

from V to W . Let Aff(n,Fp) denote the group of all invertible affine transformations from Fnp to
itself. For a function f : Fnp → C, and an A ∈ Aff(n,Fp), we denote by Af the function that maps
x to f(Ax).

2



1.2 Gowers Uniformity Norms

Gowers uniformity norms are defined in the more general setting of arbitrary finite Abelian groups.

Definition 1.1 (Gowers uniformity norms). Let G be a finite Abelian group and f : G → C. For
an integer k ≥ 1, the k-th Gowers norm of f , denoted ‖f‖Uk is defined by

‖f‖2kUk := E

 ∏
S⊆[k]

Ck−|S|f

(
X +

∑
i∈S

Yi

) , (5)

where C denotes the complex conjugation operator, and X,Y1, . . . , Yk are independent random vari-
ables taking values in G uniformly at random.

In this article we are only interested in the case where G = Fnp . These norms were first defined
in [6] in the case where G is the group ZN . Note that ‖f‖U1 = |E[f(X)]|, and thus ‖ · ‖U1 is a
semi-norm rather than a norm. The facts that the right-hand side of (5) is always non-negative,
and that for k > 1, ‖ · ‖Uk is actually a norm are easy to prove, but certainly not trivial (see [6] for
a proof).

Let us explain the relevance of the uniformity norms to the area of property testing. The goal
in property testing is to obtain certain information about a function by “reading” its values only
on a small number of points. The simplest case is that of testing correlation with linear functions.
For a ∈ Fnp , let `a : Fnp → Fp be the corresponding linear function, defined as `a(x) =

∑n
i=1 a(i)x(i).

Let Linear = {`a : a ∈ Fnp} be the set of linear functions. Let f : Fnp → Fp be a function, and let
f = ep(f). The correlation of f with linear functions is given by

‖f‖u(Linear) = max
`a∈Linear

|〈f, ep(`a)〉| = max
a∈Fnp

bias(f − `a),

which is the same as the absolute value of the maximal Fourier coefficient of f . It is known [2, 6]
that the correlation of f with linear functions is related to the U2 norm of f . Specifically, for every
ε > 0,

• Direct Theorem: If ‖f‖u(Linear) ≥ ε, then ‖f‖U2 ≥ ε.

• Inverse Theorem: If ‖f‖U2 ≥ ε, then ‖f‖u(Linear) ≥ ε2.

These two facts together show that ‖f‖U2 gives a rough estimate for the maximum correlation of
f with linear functions. Recall that

‖f‖4U2 = ‖ep(f)‖4U2 = E[ep(f(X + Y + Z)− f(X + Y )− f(X + Z) + f(X))],

where X,Y, Z ∈ Fnp are uniformly chosen. In other words, the joint distribution of f(X + Y +
Z), f(X + Y ), f(X + Z), f(X) allows to distinguish between the case that f has correlation at least
ε with linear functions, and the case where f has correlation at most δ = ε2/2 (say) with linear
functions. Hence, correlation with linear functions is “testable with just 4 queries to f” (for every
ε > 0).

Similar to the case of linear functions, correlation with degree d polynomials can be tested by
the Ud+1 uniformity norm. The main ingredient is the inverse theorem for Fnp which was proved
in [1, 18]. Let Polyd(Fnp ) be the set of polynomials of degree at most d over Fnp . These results show
that, as long as p > d (i.e. the field is not too small), for every ε > 0,
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• Direct Theorem: If ‖f‖u(Polyd(Fnp )) ≥ ε, then ‖f‖Ud+1 ≥ ε.

• Inverse Theorem: If ‖f‖Ud+1 ≥ ε, then ‖f‖u(Polyd(Fnp )) ≥ δ(ε) > 0.

The exact dependency of δ(ε) on ε is currently unknown, but crucially δ does not depend on n.
Analogously to the case of linear functions and U2, we get that the joint distribution of (f(X +∑

i∈I Yi) : I ⊆ [d + 1]) where X,Y1, . . . , Yd+1 ∈ Fnp are uniformly chosen, distinguishes the case
where f has noticeable correlation (≥ ε) with degree d polynomials, from the case where f has
negligible correlation (≤ δ(ε)/2) with degree d polynomials, for every ε > 0. Hence, correlation
with polynomials of total degree d is testable with just 2d+1 queries to f (for every ε > 0).

An equivalent qualitative formulation of the direct and inverse theorems stated above is as
follows. Let (fn : Fnp → Fp)n∈N be a sequence of functions. Then as long as d < p we have that

lim
n→∞

‖ep(fn)‖u(Polyd(Fnp )) = 0⇐⇒ lim
n→∞

‖ep(fn)‖Ud+1 = 0.

It will be convenient to express our results in such terms.

1.3 Correlation testable properties

The above discussion motivates the general definition of correlation testable properties. Let D =
{Dn}n∈N be a family of sets, where each Dn is a set of functions from Fnp to Fp. Informally, D
is correlation testable using q queries if there exists a distribution over x1, . . . , xq ∈ Fnp , and for
every ε > 0 there exists δ(ε) ∈ (0, ε), such that the following holds. The joint distribution of
(f(x1), . . . , f(xq)) allows to distinguish between the case that f has noticeable correlation (≥ ε) with
D and the case that f has negligible correlation (≤ δ(ε)) with D.

Definition 1.2 (Correlation testable properties). A family D = (Dn) is correlation testable with q
queries, if there exists a distribution µ taking values in (Fnp )q and a mapping Γ : Fqp → {0, 1}, such
that the following holds. For every ε > 0, there exist δ ∈ (0, ε), 0 ≤ θ− < θ+ ≤ 1 and n0 ∈ N, such
that for every n > n0 and f : Fnp → Fp we have:

• If ‖ep(f)‖u(Dn) ≥ ε then Pr(X1,...,Xq)∼µ[Γ(f(X1), . . . , f(Xq)) = 1] ≥ θ+.

• If ‖ep(f)‖u(Dn) ≤ δ then Pr(X1,...,Xq)∼µ[Γ(f(X1), . . . , f(Xq)) = 1] ≤ θ−.

Following the discussion on Gowers uniformity norms, Polyd = {Polyd(Fnp )}n∈N is correlation

testable using q = 2d+1 queries, as long as d < p.
Our goal is to study families D = {Dn}n∈N which are correlation testable using a constant

number of queries. We shall require the sets Dn to be consistent with each other:

• A1: (Consistency) For positive integers m > n and g ∈ Dn, the function h : Fmp → Fp
defined as h(x1, . . . , xm) = g(x1, . . . , xn) belongs to Dm.

We need to make also a more crucial assumption. In this general setting, the algebraic structure
of Fnp is ignored, and we are treating Fnp as a generic set of size pn. In order to take the algebraic
structure of Fnp into account, we shall require Dn to be affine invariant :

• A2: (Affine invariance) For every positive integer n, if g ∈ Dn, then for every A ∈
Aff(n,Fp), we have Ag ∈ Dn.
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Invariance plays a crucial role in the area of property testing. We refer to the work of Kaufman
and Sudan [13] for the role of invariance in algebraic property testing. We stress that we do not
require D to be linear; i.e. we do not require that if f, g ∈ Dn then also f + g ∈ Dn.

The last condition relates to the size of Dn. We study families where one can distinguish
functions with noticeable correlation from function with negligible correlation. In order not to
make this meaningless, we would like to have functions with negligible correlation. For example,
we would like a random function not to have correlation with D with high probability. Fix a
function g ∈ Dn. The number of functions f : Fnp → Fp which have correlation at least δ with g is

pc(δ)·p
n

where limδ→0 c(δ) = 1. Thus, a sufficient condition for random functions not be correlated
with Dn is that the size of Dn is po(p

n). We thus add the following requirement.

• A3: (Sparsity) For every ε > 0 and large enough n, we have |Dn| ≤ pε·p
n
.

We call every D = {Dn}n∈N satisfying assumptions A1,A2,A3 a proper dual.
Our main result is the following theorem which roughly speaking says that the only correla-

tion testable families of functions are the ones that can be tested by Gowers uniformity norms
provided that the field size p is not too small. Say a sequence of functions (fn)n∈N is unbiased if
limn→∞ bias(fn) = 0.

Theorem 1.3 (Main theorem). Consider a proper dual D = {Dn}n∈N. If D is correlation testable
with q queries, and if p ≥ q − 1, then there exists 1 ≤ k ≤ q − 1 such that the following holds. For
every unbiased sequence of functions (fn : Fnp → Fp)n∈N, we have

lim
n→∞

‖ep(fn)‖u(Dn) = 0⇐⇒ lim
n→∞

‖ep(fn)‖Uk+1 = 0.

Equivalently, Theorem 1.3 can be phrased as follows: the sequence (fn)n∈N has correlation with D
iff it has correlation with polynomials of degree at most k.

We remark on the seemingly odd requirement that fn is unbiased. Let µ be some distribution
over Fp, and let fn : Fnp → Fp be a random function, where each fn(x) is sampled independently

according to µ. By condition A3, since |Dn| = po(p
n), we have that with probability 1− on(1),

lim
n→∞

‖ep(fn)‖u(Dn) = 0.

However, if µ has a nonzero bias, then almost surely fn will have correlation with constant functions.
It turns out that ruling out sequences of functions which have correlation with constant functions
is sufficient for establishing Theorem 1.3.

Paper organization We give a short overview of the proof of our results in Section 2. We discuss
systems of linear forms in Section A. We survey higher-order Fourier analysis in Section B. We prove
new strong orthogonality results for systems of linear forms in Section C which in particular answers
a conjecture of Gowers and Wolf. We prove a slightly weaker version of the main theorem (for
strongly correlation testable families) in Section D. We prove the main result for correlation testable
families in Section E. We prove the extension of Erdös-Lovász-Spencer theorem in Section F. We
give some concluding remarks and pose some open problems in Section G.
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2 Proof overview

In this section we give an overview of the proofs of our main results. We skip most of the technical-
ities, and try to emphasis the essence of the proofs. The proof of Theorem 1.3 is based on studying
averages of functions evaluated on linear forms.

2.1 Linear forms

A linear form in k variables is a vector L = (λ1, . . . , λk) ∈ Fkp regarded as a linear function from V k

to V , for every vector space V over Fp: If x = (x1, . . . , xk) ∈ V k, then L(x) := λ1x1 + . . .+ λkxk.
A system of linear forms in k variables is a finite set L = {L1, . . . , Lm} of distinct linear forms Li
in k variables. For a function f : Fnp → C, and a system of linear forms L = {L1, . . . , Lm} in k
variables, define the average

tL(f) := E

[
m∏
i=1

f(Li(X))

]
, (6)

where X is a random variable taking values uniformly in (Fnp )k. We define two generalizations of
such averages. First, when f : Fnp → C, one may take conjugations. For α ∈ {0, 1}m, define

tL,α(f) := E

[
m∏
i=1

Cα(i)f(Li(X))

]
, (7)

where C is the conjugation operator. Second, if f : Fnp → Fp, one may take coefficients in Fp. For
β ∈ Fnp , define

t∗L,β(f) := E

[
ep

(
m∑
i=1

β(i)f(Li(X))

)]
. (8)

We note that for functions f : Fnp → Fp, (8) is more general than (7). Indeed, if α ∈ {0, 1}m, then

setting β(i) = (−1)α(i) gives tL,α(ep(f)) = t∗L,β(f).
Let D be a proper dual family which is correlation testable. Then since D is affine invariant,

it is easy to show that correlation with D can be expressed in terms of averages t∗L,β. We show
in Lemma E.2 that for every ε > 0 there exist δ ∈ (0, ε), systems of linear forms L1, . . . ,L` and
corresponding coefficients β1, . . . , β`, and n0 ∈ N, such that the closures of the following two sets
are disjoint:

Tε := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≥ ε},

and
Sε := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≤ δ}.

Moreover, each of the systems L1, . . . ,L` has at most q linear forms.
Recall that D is the unit disk in C. It turns out to be easier to first analyze sets with a stronger

requirement which holds for all functions f : Fnp → D, and not just for functions of the form
f = ep(f) for f : Fnp → Fp. Say a family D is strongly correlation testable if the closures of the
following two sets are disjoint:

Tε := {(tL1,α1(f), . . . , tL`,α`(f))|n > n0, f : Fnp → D, ‖f‖u(Dn) ≥ ε},

and
Sε := {(tL1,α1(f), . . . , tL`,α`(f))|n > n0, f : Fnp → D, ‖f‖u(Dn) ≤ δ}.
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2.2 Complexity of systems of linear forms

We turn to analyze averages of the form tL,α(f), and more generally averages of the form
E
[∏m

i=1 Cα(i)fi(Li(X))
]

where X ∈ (Fnp )k is uniform. A crucial ingredient is that we can “approxi-
mate” fi by nice functions, and that these approximation are essentially undetected by averages of
the above form.

Green and Tao [11] defined the notion of the Cauchy-Schwarz complexity of a system of linear
forms (for precise definition, see Definition A.1). This gives a parameter s ∈ N for which the
following lemma follows by a sequence of clever applications of the Cauchy-Schwarz inequality.

Lemma 2.1 ([11]). Let L = {L1, . . . , Lm} be a system of linear forms of Cauchy-Schwarz com-
plexity s. Let fi, gi : Fnp → D be functions for 1 ≤ i ≤ m. Assume that ‖fi − gi‖Us+1 ≤ ε/m for all
1 ≤ i ≤ m. Then ∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
− EX

[
m∏
i=1

gi(Li(X))

]∣∣∣∣∣ ≤ ε,
where X ∈ (Fnp )k is uniform.

Gowers and Wolf [8, 7] asked for the minimal d ∈ N such that a bound on maxi∈[m] ‖fi −
E[fi]‖Ud+1 will allow to approximate E [

∏m
i=1 fi(Li(X))] by

∏m
i=1 E[fi]. They denoted this d as the

true complexity of a system of linear forms. For a linear form L = (λ1, . . . , λk) ∈ Fkp and for t ∈ N,

define Lt ∈ Fktp to be the t-tensor power of L, defined as

Lt =

 t∏
j=1

λij : i1, . . . , it ∈ [k]

 .

Gowers and Wolf [8, 7] showed that if the field size is not too small, then the true complexity is
the minimal d for which Ld+1

1 , . . . , Ld+1
m are linearly independent.

Theorem 2.2 ([8, 7]). Let L = {L1, . . . , Lm} be a system of linear forms of Cauchy-Schwarz
complexity s, and assume p ≥ s. Let d ≥ 0 be such that Ld+1

1 , . . . , Ld+1
m are linearly independent.

Then for every ε > 0, there exists δ > 0 such that the following holds. Let f1, . . . , fm : Fnp → D be
functions where ‖fi − E[fi]‖Ud+1 ≤ δ. Then∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
−

m∏
i=1

E[fi]

∣∣∣∣∣ ≤ ε,
where X ∈ (Fnp )k is uniform.

We prove in this paper that Gowers and Wolf definition of true complexity extends also to the
more general cases where gi may be any functions, and not just constant functions.

Corollary A.8 (restated). Let L = {L1, . . . , Lm} be a system of linear forms of true complexity
d and Cauchy-Schwarz complexity at most p. Then for every ε > 0, there exists δ > 0 such that
the following holds. Let fi, gi : Fnp → D for 1 ≤ i ≤ m be functions such that ‖fi − gi‖Ud+1 ≤ δ.
Then ∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
− EX

[
m∏
i=1

gi(Li(X))

]∣∣∣∣∣ ≤ ε,
7



where X ∈ (Fnp )k is uniform.
In fact, Corollary A.8 follows immediately from the following stronger theorem which we prove,

which in particular resolves an open problem posed by Gowers and Wolf (Problem 7.6 in [7].

Theorem C.6 (restated). Let L = {L1, . . . , Lm} be a system of linear forms of Cauchy-Schwarz
complexity at most p. Let d ≥ 0, and assume that Ld+1

1 is not in the linear span of Ld+1
2 , . . . , Ld+1

m .
Then for every ε > 0, there exists δ > 0 such that for any functions f1, . . . , fm : Fp → D where
‖f1‖Ud+1 ≤ δ we have ∣∣∣∣∣EX∈(Fnp )k

[
m∏
i=1

fi(Li(X))

]∣∣∣∣∣ ≤ ε.
2.3 Approximation by averages over polynomial factors

We now define the notion of a “nice approximating function”, which will play the role of g1, . . . , gm
in the previous subsection. These functions will be averages of f1, . . . , fm on polynomial factors.

A polynomial factor B is a partition (sigma-algebra) of Fnp defined by a collection of polynomials
P1, . . . , PC . The atoms of the partitions are

{x ∈ Fnp : P1(x) = a(1), . . . , PC(x) = a(C)},

where a(1), . . . , a(C) ∈ Fp. The degree of B is the maximal degree of P1, . . . , PC , and the complexity
of B is C.

The rank of a polynomial P of degree k is the minimal number of lower degree polynomials
required to compute it. That is, rank(P ) ≤ r if there exists r polynomials Q1, . . . , Qr of degree at
most k− 1 such that P (x) = Γ(Q1(x), . . . , Qr(x)) where Γ : Frp → Fp is some function. The rank of
a set of polynomials P1, . . . , PC is the minimal rank of a nonzero linear combination of them. The
rank of a polynomial factor B is the rank of the set of polynomials defining it.

The average of a function f : Fnp → D over a polynomial factor B, denoted E(f |B) : Fnp → D, is

E(f |B)(x) = E{y∈Fnp :P1(y)=P1(x),...,PC(y)=PC(x)}[f(y)].

That is, E(f |B)(x) is the average of f in the atom to which x belongs. The usefulness of these
averages is that they may be used to approximate the function f . It is known (see Theorem B.7)
that given any d < p and δ > 0, for every function f : Fnp → D, there exists a polynomial factor B
of degree d and bounded complexity such that

‖f − E(f |B)‖Ud+1 ≤ δ.

Combining this with the discussion in the previous subsection, we may replace any arbitrary func-
tion f with a structured function E(f |B) without changing averages tL,α by much. Note that E(f |B)
is B-measurable, that is, it is constant on the atoms of B. Thus, it will suffice to study averages
tL,α(g) where g is a B-measurable function.
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2.4 Strong orthogonality and an invariance theorem

Let g : Fnp → D be a B-measurable function. Equivalently, it can be expressed as g(x) =

Γ(P1(x), . . . , PC(x)), where Γ : FCp → D is some function. By the Fourier decomposition of Γ,

g(x) =
∑
γ∈FCp

Γ̂(γ)ep

 C∑
j=1

γ(j) · Pj(x)

 .

Thus, to analyze the average tL,α(g), we need to understand averages of the form

EX

ep

 m∑
i=1

C∑
j=1

λi,j · Pj(Li(X))

 , (9)

where λi,j ∈ Fp are coefficients.
It is known that polynomials which have large rank must be almost unbiased (Theorem B.11).

That is, if P1, . . . , PC have large enough rank, then∣∣∣∣∣∣EX

ep

 C∑
j=1

γ(j) · Pj(X)

∣∣∣∣∣∣ ≤ ε
for all nonzero γ ∈ FCp . However, when studying averages of the form

∑
λi,jPj(Li(x)) there could be

cancelations; for example, if P is a linear function then P (x+y+z)−P (x+y)−P (x+z)+P (x) ≡ 0.
We prove in Lemma C.1 that this is the only bad case that can occur. If P1, . . . , PC are

polynomials of degree less than p, then for every ε > 0, if their rank is large enough, then for every
setting of λi,j ∈ Fp one of the following two cases must hold:∣∣∣∣∣∣EX

ep

 m∑
i=1

C∑
j=1

λi,j · Pj(Li(X))

∣∣∣∣∣∣ ≤ ε,
or

m∑
i=1

C∑
j=1

λi,j · Pj(Li(x)) ≡ 0.

We study when the latter case may hold, and prove relevant conditions on the polynomials in
Lemmas C.2 and C.3. Essentially, we show that the only important parameter is the degree of the
polynomials. We use these to prove the following invariance theorem.

Proposition C.5 (restated). Let P = {P1, . . . , PC},Q = {Q1, . . . , QC} be two collections of
polynomials over Fnp of degree at most d < p such that deg(Pi) = deg(Qi) for every 1 ≤ i ≤ C. Let

L1, . . . , Lm be linear forms, and Γ : FCp → D be an arbitrary function. Define f, g : Fnp → D by

f(x) = Γ(P1(x), . . . , PC(x))

and
g(x) = Γ(Q1(x), . . . , QC(x)).

9



Then for every ε > 0, if rank(P), rank(Q) are large enough then for all α ∈ {0, 1}m,

|tL,α(f)− tL,α(g)| ≤ ε,

if at least one of the following two conditions hold:

(i) The polynomials P1, . . . , PC and Q1, . . . , QC are homogenous.

(ii) The system of linear forms {L1, . . . , Lm} is homogenous.

As we shall see, we may assume that all the systems of linear forms arising in our proofs are
homogenous. Informally, a system of linear forms is homogeneous if (maybe after some change of
basis) we have Li(x1, . . . , xk) = L′i(x1, . . . , xk−1) + xk.

2.5 Interior of a set of averages of linear forms

Another ingredient in the proof of Theorem 1.3 is an extension of a graph theoretical result of
Erdös, Lovász, and Spencer [3] to the setting of additive combinatorics. We show (Theorem F.1)
that if L1, . . . ,L` are systems of linear forms, then (excluding some trivial obstructions) then the
set {

(tL1(f), . . . , tL`(f)) : f : FNp → [0, 1]
}
⊂ R`

has a nonempty interior for some finite N ∈ N. Formally, for the theorem to hold, we require the
systems of linear forms to be non-isomorphic and connected:

Two systems of linear forms L′ = {L′1, . . . , L′m} and L′′ = {L′′1, . . . , L′′m} are isomorphic, if the
distributions (L′1(X), . . . , L′m(X)) and (L′′1(X), . . . , L′′m(X)) are identical. Note that if L′,L′′ are
isomorphic then tL′(f) = tL′′(f) for all functions f : Fnp → D.

A system of linear forms L = {L1, . . . , Lm} is connected if it cannot be partitioned as L = L1 ·∪L2

where span(L1) ∩ span(L2) = {~0}. Note that if L is not connected, then tL(f) = tL1(f)tL2(f) for
all functions f : Fnp → D.

2.6 Proof for strongly correlation testable families

Let D = {Dn}n∈N be a family which is strongly correlation testable. Assume for simplicity of
exposition in the proof overview that the following holds (in the actual proof we have generalized
averages tLi,αi(f)): there exists a system of linear forms L1, . . . ,L` such that for every ε > 0 there
exists δ ∈ (0, ε) and n0 ∈ N, such that the following two sets are disjoint:

Tε := {(tL1(f), . . . , tL`(f))|n > n0, f : Fnp → D, ‖f‖u(Dn) ≥ ε},

and
Sε := {(tL1(f), . . . , tL`(f))|n > n0, f : Fnp → D, ‖f‖u(Dn) ≤ δ}.

We can furthermore assume that these systems are homogeneous, and that their Cauchy-Schwarz
complexity is s < p (this follows from the assumption the the number of queries is q ≤ p).

Let t ∈ N be maximal such the following holds. There exists polynomials Pn of degree exactly
t such that

• Pn has noticeable correlation with Dn: lim infn→∞ ‖ep(Pn)‖u(Dn) > 0.
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• Pn has “large enough rank” (exact definition is deferred to the actual proof).

We can show that t ≤ s: if Pn are polynomials of degree > s and large enough rank, then
‖ep(Pn)‖Us+1 ≈ 0 and hence tLi(ep(Pn)) ≈ 0, for all 1 ≤ i ≤ `. Thus we must have ‖ep(Pn)‖u(Dn) ≈
0.

Let fn : Fnp → D be a sequence of functions. We establish the main result (for strongly
correlation testable families) by showing that:

lim
n→∞

‖fn‖u(Dn) = 0⇐⇒ lim
n→∞

‖fn‖Ut+1 = 0.

Proof of ⇐: Assume by contradiction that limn→∞ ‖fn‖Ut+1 = 0 but that ε :=
lim infn→∞ ‖fn‖u(Dn) > 0. Let ε′ > 0 be the L∞ distance between Tε and Sε (here we use the
fact that their closures are disjoint, hence there is positive distance between the sets). Let Bn be
a polynomial factor of degree s such that ‖fn − E(fn|Bn)‖Us+1 ≤ η. Choosing η > 0 small enough
we can guarantee that |tLi(fn)− tLi(E(fn|Bn))| ≤ ε′/2, hence we must have ‖E(fn|Bn)‖u(Dn) ≥ δ.

Assume Bn is defined by polynomials Pn,1, . . . , Pn,C , which we can assume to be of high enough
rank. For γ ∈ FCp , define Pn,γ(x) :=

∑
γ(i)Pn,i(x). We have E(fn|Bn)(x) =

∑
γ∈FCp cγep(Pn,γ(x))

where |cγ | ≤ 1. Using the assumption that limn→∞ ‖fn‖Ut+1 = 0, we show that if deg(Pγ) ≤ t,
then its contribution to the sum is negligible, i.e. cγ can be assumed to be arbitrarily small. Thus,
there must exist a polynomial Pn,γ of degree at least t + 1 such that ‖ep(Pn,γ)‖u(Dn) ≥ δp−C . As
this polynomial has “large enough rank”, this contradicts the maximality of t.

Proof of ⇒: Assume that ε := limn→∞ ‖fn‖Ut+1 > 0 (actually we have lim inf, which we can
replace by an actual limit by Condition A1). Thus, there exist polynomials Pn of degree at most t
such that |〈fn, Pn〉| ≥ ε. We can assume these polynomials to have “large enough rank”. Assume
first that these polynomials are of degree exactly t. By the definition of t, there exist polynomials
Qn of degree t and “large enough rank” such that ‖Qn‖u(Dn) ≥ ε′. We use the invariance theorem
to construct a new sequence of functions f ′n : Fnp → D (essentially replacing Pn with Qn) such that

• f ′n has correlation with Qn. In fact, this correlation is strong enough to guarantee that
‖f ′n‖u(Dn) ≥ ε′′ for some ε′′ > 0 independent of n.

• Averages tLi cannot distinguish fn from f ′n. So, we must also have ‖fn‖u(Dn) ≥ δ′′ > 0.

The case where Pn have degrees less than t is reduced to the case of degree t. We use the theorem on
the interior of a set of averages of linear forms to argue that we can (essentially) tweak fn slightly,
without changing averages tLi by much, but such that fn will have correlation with polynomials of
degree exactly t and large enough rank.

2.7 Proof for correlation testable families

The proof for the correlation testable families (i.e. with guarantees only for functions f : Fnp →
Fp) follows similar steps, albeit slightly more involved. Let P (Fp) ⊂ Rp denote the convex set
of probability distributions defined over Fp. Then correlation testable families can in fact test
randomized functions as well, i.e. functions f : Fnp → P (Fp). Once this is established the remainder
of the proof follows identical lines to the case of strongly correlation testable families, where we
employ the fact that P (Fp) is a convex set to appropriately define averages such as E(f|B).
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A Systems of linear forms

Suppose that p > 3 is a prime, and let A be a subset of Fnp . The density of the 3-terms arithmetic
progressions in A is given by

E [1A(X)1A(X + Y )1A(X + 2Y ) | Y 6= 0] , (10)

where X and Y are independent uniform random variables. If we also allow the degenerate 3-term
arithmetic progressions (x, x, x), then the formula will simply be

E [1A(X)1A(X + Y )1A(X + 2Y )] .

Here we used the linear forms x, x + y, and x + 2y to express the number of 3-terms arithmetic
progressions in A.

Generalizing these notions, a linear form in k variables is a vector L = (λ1, . . . , λk) ∈ Fkp
regarded as a linear function from V k to V , for every vector space V over Fp: If x = (x1, . . . , xk) ∈
V k, then L(x) := λ1x1 + . . . + λkxk. A system of m linear forms in k variables is a finite set
L = {L1, . . . , Lm} of distinct linear forms, each in k variables. For a function f : Fnp → C, and a
system of linear forms L = {L1, . . . , Lm} in k variables, define

tL(f) := E

[
m∏
i=1

f(Li(X))

]
, (11)

where X is a random variable taking values uniformly in (Fnp )k. More generally, we consider
two types of generalized averages. First, when f : Fnp → C takes complex values, we allow also
conjugation. Let C denote the conjugation operator C(z) = z. Then for α ∈ {0, 1}m define

tL,α(f) := E

[
m∏
i=1

Cα(i)f(Li(X))

]
. (12)

Note that tL,0m(·) = tL(·). Second, when f := ep(f) where f : Fnp → Fp, we also allow coefficients.
For β ∈ Fmp , define

t∗L,β(f) := E

[
ep

(
m∑
i=1

β(i)f(Li(X))

)]
. (13)

We note that for functions f : Fnp → Fp, the latter average is more general than the first one: for

every α ∈ {0, 1}m, let β ∈ {−1, 1}m be set as β(i) = (−1)α(i); then t∗L,β(f) = tL,α(ep(f)).
Note that if A ⊆ Fnp and 1A : Fnp → {0, 1} is the indicator function for A, then tL(1A) is the

probability that L1(X), . . . , Lm(X) all fall in A. Roughly speaking, we say A ⊆ Fnp is pseudorandom
with regards to L, if

tL(1A) ≈
(
|A|
pn

)m
,

that is if the probability that all L1(X), . . . , Lm(X) fall in A is close to what we would expect if
A was a random subset of Fnp of size |A|. Let α = |A|/pn be the relative measure of A, and define
f(x) := 1A(x)− α. We have

tL(1A) = tL(α+ f) = αm +
∑

S⊆[m],S 6=∅

αm−|S| · t{Li:i∈S}(f).
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So, a sufficient condition for A to be pseudorandom with regards to L is that t{Li:i∈S}(f) � αm

for all nonempty subsets S ⊆ [m]. Green and Tao [11] showed that a sufficient condition for this
to occur is that ‖f‖Us+1 is small enough, where s is the Cauchy-Schwarz complexity of the system
of linear forms.

Definition A.1 (Cauchy-Schwarz complexity). Let L = {L1, . . . , Lm} be a system of linear forms.
The Cauchy-Schwarz complexity of L is the minimal s such that the following holds. For every
1 ≤ i ≤ m, we can partition {Lj}j∈[m]\{i} into s + 1 subsets, such that Li does not belong to the
linear span of each such subset.

The reason for the term Cauchy-Schwarz complexity is the following lemma due to Green and
Tao [11], whose proof is based on a clever iterative application of the Cauchy-Schwarz inequality.

Lemma A.2 ([11]). Let f1, . . . , fm : Fp → D. Let L = {L1, . . . , Lm} be a system of m linear forms
in k variables of Cauchy-Schwarz complexity s. Then∣∣∣∣∣EX∈(Fnp )k

[
m∏
i=1

fi(Li(X))

]∣∣∣∣∣ ≤ min
1≤i≤m

‖fi‖Us+1 .

Note that the Cauchy-Schwarz complexity of any system of m linear forms in which any two
linear forms are linearly independent (i.e. one is not a multiple of the other) is at most m−2, since
we can always partition {Lj}j∈[m]\{i} into the m− 1 singleton subsets.

The following is an immediate corollary of Lemma A.2.

Corollary A.3. Let L = {L1, . . . , Lm} be a system of linear forms in k variables of Cauchy-Schwarz
complexity s. Let fi, gi : Fnp → D be functions for 1 ≤ i ≤ m. Assume that ‖fi− gi‖Us+1 ≤ ε

2mm for
all 1 ≤ i ≤ m. Then ∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
− EX

[
m∏
i=1

gi(Li(X))

]∣∣∣∣∣ ≤ ε,
where X ∈ (Fnp )k is uniform.

In particular, if A ⊆ Fnp of size |A| = αpn satisfies ‖1A − α‖Us+1 � αm, then tL(1A) ≈ αm.

A.1 The true complexity of linear forms

The Cauchy-Schwarz complexity of L gives an upper bound on s, such that if ‖1A−α‖Us+1 is small
enough then A is pseudorandom with regards to L. Gowers and Wolf [8] defined the true complexity
of a system of linear forms as the minimal s such that the above condition holds for all sets A.

Definition A.4 (True complexity [8]). Let L = {L1, . . . , Lm} be a system of linear forms over Fp.
The true complexity of L is the smallest d ∈ N with the following property. For every ε > 0, there
exists δ > 0 such that if f : Fnp → D is any function with ‖f‖Ud+1 ≤ δ, then

|tL(f)| ≤ ε.

An obvious bound on the true complexity is the Cauchy-Schwarz complexity of the system.
However, there are cases where this is not tight. Gowers and Wolf [7] characterized the true
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complexity of systems of linear forms, assuming the field is not too small. For a linear form
L ∈ Fmp , let Lk ∈ Fmkp be the k-tensor power of L. That is, if L = (λ1, . . . , λm), then

Lk =

 k∏
j=1

λij : i1, . . . , ik ∈ [m]

 .

Theorem A.5 (Characterization of the true complexity of linear systems, Theorem 6.1 in [7]).
Let L = {L1, . . . , Lm} be a system of linear forms over Fnp of Cauchy-Schwarz complexity s, and

assume that s ≤ p. The true complexity of L is the minimal d such that Ld+1
1 , . . . , Ld+1

m are linearly
independent over Fp.

A natural generalization is to allow for multiple sets. Let A1, . . . , Am ⊆ Fnp be sets of relative
measures α1, . . . , αm. Let L = {L1, . . . , Lm} be a system of linear forms over Fp. We say A1, . . . , Am
are pseudorandom with respect to L1, . . . , Lm if

PrX∈(Fnp )k [L1(X) ∈ A1, . . . , Lm(X) ∈ Am] ≈ α1 · . . . · αm.

Analogously to the case of a single set, let fi(x) = 1Ai(x)− αi. Then a sufficient condition is that
for all nonempty subsets S ⊆ [m], we have

E

[∏
i∈S

fi(Li(X))

]
≈ 0.

In [7], Gowers and Wolf showed that if L has true complexity d and ‖f1‖Ud+1 , . . . , ‖fm‖Ud+1 are
small enough then this stronger condition also holds.

Theorem A.6 (Theorem 7.2 in [7]). Let L = {L1, . . . , Lm} be a system of linear forms over Fnp
of Cauchy-Schwarz complexity s, and assume that s ≤ p. Assume that L has true complexity d.
Then for every ε > 0, there exists δ > 0 such that the following holds. Let f1, . . . , fm : Fnp → D be
functions such that ‖fi‖Ud+1 ≤ δ, for all 1 ≤ i ≤ m. Then for all nonempty subsets S ⊆ [m] we
have ∣∣∣∣∣EX∈(Fnp )k

[∏
i∈S

fi(Li(X))

]∣∣∣∣∣ ≤ ε.
In particular, Gowers and Wolf used this to derive the following corollary.

Corollary A.7 ([7]). Let L = {L1, . . . , Lm} be a system of linear forms of true complexity d and
Cauchy-Schwarz complexity at most p. Then for every ε > 0, there exists δ > 0 such that the
following holds. Let fi : Fnp → D for 1 ≤ i ≤ m be functions such that ‖fi − E[fi]‖Ud+1 ≤ δ. Then∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
−

m∏
i=1

E[fi]

∣∣∣∣∣ ≤ ε.
In this paper we are able to extend the results of Gowers and Wolf to arbitrary approximating

functions, and not just constant functions. We prove the following result, which qualitatively
improves both Lemma A.2 and Corollary A.7.
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Corollary A.8. Let L = {L1, . . . , Lm} be a system of linear forms of true complexity d and
Cauchy-Schwarz complexity at most p. Then for every ε > 0, there exists δ > 0 such that the
following holds. Let fi, gi : Fnp → D for 1 ≤ i ≤ m be functions such that ‖fi − gi‖Ud+1 ≤ δ. Then∣∣∣∣∣EX

[
m∏
i=1

fi(Li(X))

]
− EX

[
m∏
i=1

gi(Li(X))

]∣∣∣∣∣ ≤ ε,
where X ∈ (Fnp )k is uniform.

In fact, we prove a stronger results, from which Corollary A.8 follows immediately. It suffices
to have Ld+1

1 linearly independent of Ld+1
2 , . . . , Ld+1

m and ‖f1‖Ud+1 small enough in order to bound
averages of the form E [

∏m
i=1 fi(Li(X))]. A weaker version of this was posed as an open problem

by Gowers and Wolf [7]1.

Theorem C.6 (restated). Let L = {L1, . . . , Lm} be a system of linear forms of Cauchy-Schwarz
complexity at most p. Let d ≥ 0, and assume that Ld+1

1 is not in the linear span of Ld+1
2 , . . . , Ld+1

m .
Then for every ε > 0, there exists δ > 0 such that for any functions f1, . . . , fm : Fp → D with
‖f1‖Ud+1 ≤ δ, we have ∣∣∣∣∣EX∈(Fnp )k

[
m∏
i=1

fi(Li(X))

]∣∣∣∣∣ ≤ ε,
where X ∈ (Fnp )k is uniform.

A.2 Equivalence of systems of linear forms

Let S be a subset of Fkp. Here we think of S as a linear structure, and we are interested in the

number of affine copies of S in a set A ⊆ Fnp . Pick a linear transformation T ∈ Lin(Fkp,Fnp )
uniformly at random, and also independently and uniformly a random element X ∈ Fnp . Then
the density of the structure S in A is the probability that X + T (x) ∈ A for every x ∈ S. Note
that a uniform random T ∈ Lin(Fkp,Fnp ) can be defined by mapping each standard vector ei ∈ Fkp
uniformly and independently to a point in Fnp . Hence if the elements of a linear structure S are

(λi,1, . . . , λi,k) ∈ Fkp where 1 ≤ i ≤ m, then the density of the structure S in A is the probability

that for every 1 ≤ i ≤ m, X +
∑k

j=1 λi,jYj ∈ A, where X,Y1, . . . , Ym are i.i.d. random variables
taking values uniformly in Fnp . So if we define the system of linear forms L = {L1, . . . , Lm} by
letting

Li = (1, λi,1, . . . , λi,k), (14)

for 1 ≤ i ≤ m, then tL(1A) gives the density of the structure S in a set A ⊆ Fnp . Note that since
for a fixed c ∈ Fnp , a uniform random variable X has the same distribution as X + c, for this
system of linear forms L the distribution of (L1(X), . . . , Lm(X)) is the same as the distribution of
(L1(X) + c, . . . , Lm(X) + c).

Definition A.9 (Homogeneous linear forms). A system of linear forms L = {L1, . . . , Lm} in k
variables is called homogeneous, if for a uniform random variable X ∈ (Fnp )k, and every fixed
c ∈ Fnp , (L1(X), . . . , Lm(X)) has the same distribution as (L1(X) + c, . . . , Lm(X) + c).

1Gowers and Wolf required that Ld+1
1 is linearly independent of Ld+1

2 , . . . , Ld+1
m , and that all

‖f1‖Ud+1 , . . . , ‖fm‖Ud+1 will be bounded by δ.
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We wish to identify two systems of linear forms L0 = {L1, . . . , Lm} in k0 variables,
and L1 = {L′1, . . . , L′m} in k1 variables, if (L1(X), . . . , Lm(X)) has the same distribution as
(L′1(Y), . . . , L′m(Y)) where X and Y are uniform random variables taking values in (Fnp )k0 and

(Fnp )k1 , respectively. The distribution of (L1(X), . . . , Lm(X)) depends exactly on the linear depen-
dencies between L1, . . . , Lm, and two systems of linear forms lead to the same distributions if and
only if they have the same linear dependencies.

Definition A.10 (Isomorphic linear forms). Two systems of linear forms L0 and L1 are isomorphic
if and only if there exists a bijection from L0 to L1 that can be extended to an invertible linear
transformation T : span(L0)→ span(L1).

Note that if L = {L1, . . . , Lm} is a homogenous system of linear forms, then (L1(X), . . . , Lm(X))
has the same distribution as (L1(X) + Y, . . . , Lm(X) + Y ), where Y is a uniform random variable
taking values in Fnp and is independent of X. We conclude with the following trivial observation.

Observation A.11. Every homogenous system of linear forms is isomorphic to a system of linear
forms in which there is a variable that appears with coefficient exactly one in every linear form.

Consider a system of linear forms L in Fkp, and note that for every f : Fnp → C,

tL(f) = E

[∏
L∈L

f(T (L))

]
, (15)

where T is a random variable taking values uniformly in Lin(span(L),Fnp ). Suppose that there
exists a non-trivial subset S ⊆ L such that

span(S) ∩ span(L \ S) = {~0}.

Then for every f : Fnp → C we have

tL(f) = tS(f)tL\S(f).

This leads to the following definition.

Definition A.12 (Connected linear forms). A system of linear forms L is called connected, if for
every non-trivial subset S ( L, we have

span(S) ∩ span(L \ S) 6= {~0}.

B Higher-sorder Fourier analysis

Although Fourier analysis is a powerful tool in arithmetic combinatorics, there are key questions
that cannot be addressed by this method in its classical form. For example in 1953 Roth [14] used
Fourier analysis to show that every dense subset of integers contains 3-term arithmetic progressions.
For more than four decades generalizing Roth’s Fourier-analytic proof remained an important
unsolved problem until finally Gowers in [6] introduced an extension of the classical Fourier analysis
which enabled him to obtain such a generalization. The work of Gowers initiated a theory which
has now come to be known as higher-order Fourier analysis. Ever since several mathematicians
contributed to major developments in this rapidly growing theory.
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This section has two purposes. One is to review the main results that form the foundations
of the higher-order Fourier analysis. A second is to establish some new facts that enable us to
deal with the averages tL conveniently by appealing to higher-order Fourier analysis. The work of
Gowers and Wolf [8] plays a central role for us, and many ideas in the proofs and the new facts
established in this section are hinted by their work.

The characters of Fnp are exponentials of linear polynomials; that is for α ∈ Fnp , the correspond-
ing character is defined as χα(x) = ep(

∑n
i=1 αixi). In higher-order Fourier analysis, the linear

polynomials
∑
αixi are replaced by higher degree polynomials, and one would like to express a

function f : Fnp → C as a linear combination of the functions ep(P ), where P is a polynomial of a
certain degree.

Consider a function f : Fnp → C, and a system of linear forms L = {L1, . . . , Lm}. The basic
properties of characters enable us to express tL(f) as a simple formula in terms of the Fourier
coefficients of f . Indeed if f :=

∑
α∈Fnp f̂(α)χα is the Fourier expansion of f , then it is easy to see

that
tL(f) =

∑
f̂(α1) . . . f̂(αm), (16)

where the sum is over all α1, . . . , αm ∈ Fnp satisfying
∑m

i=1 αi⊗Li ≡ 0. The tools that we develop in
this section enables us to obtain simple formulas similar to (16) when Fourier expansion is replaced
by a proper higher-order Fourier expansion.

B.1 Inverse theorems for Gowers uniformity norms

We start with some basic definitions.
Polynomials: Consider a function f : Fnp → Fp. For an element y ∈ Fnp , define the derivative of

f in the direction y as ∆yf(x) = f(x+ y)− f(x). Inductively we define ∆y1,...,yk f = ∆yk(∆y1,...,yk−1
f),

for directions y1, . . . , yk ∈ Fnp . We say that f is a polynomial of degree at most d, if for every
y1, . . . , yd+1 ∈ Fp, we have ∆y1,...,yd+1

f ≡ 0. The set of polynomials of degree at most d is a vector

space over Fp which we denote by Polyd(Fnp ). It is easy to see that the set of monomials xi11 . . . x
in
n

where 0 ≤ i1, . . . , in < p and
∑n

j=1 ij ≤ d form a basis for Polyd(Fnp ). So every polynomial P ∈
Polyd(Fnp ) is of the from P (x) :=

∑
ci1,...,inx

i1
1 . . . x

in
n , where the sum is over all 1 ≤ i1, . . . , in < p

with
∑n

j=1 ij ≤ d, and ci1,...,in are elements of Fp. The degree of a polynomial P : Fnp → Fp, denoted
by deg(P ), is the smallest d such that P ∈ Polyd(Fnp ). A polynomial P is called homogenous, if all
monomials with non-zero coefficients in the expansion of P are of degree exactly deg(P ).

Phase Polynomials: For a function f : Fnp → C, and a direction y ∈ Fnp define the multiplicative

derivative of f in the direction of y as ∆̃yf(x) = f(x+ y)f(x). Inductively we define ∆̃y1,...,ykf =
∆̃yk(∆̃y1,...,yk−1

f), for directions y1, . . . , yk ∈ Fnp . A function f : Fnp → C is called a phase polynomial

of degree at most d, if for every y1, . . . , yd+1 ∈ Fp, we have ∆̃y1,...,yd+1
f ≡ 1. We denote the space

of all phase polynomials of degree at most d over Fnp by Pd(Fnp ). Note that for every f : Fnp → Fp,
and every y ∈ Fnp , we have that

∆̃yep(f) = ep(∆yf).

This shows that if f ∈ Polyd(Fnp ), then ep(f) is a phase polynomial of degree at most d. The
following simple lemma shows that the inverse is essentially true in high characteristic case:

Lemma B.1 (Lemma 1.2 in [18]). Suppose that 0 ≤ d < p. Every f ∈ Pd(Fnp ) is of the form
f(x) = ep(θ + f(x)), for some θ ∈ R/Z, and f ∈ Polyd(Fnp ).
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When d ≥ p, more complicated phase polynomials arise. Nevertheless obtaining a complete
characterization is possible [17].

Now let us describe the relation between the phase polynomials and the Gowers norms. First
note that one can express Gowers uniformity norms using multiplicative derivatives:

‖f‖2kUk = E
[
∆̃Y1,...,Ykf(X)

]
,

where X,Y1, . . . , Yk are independent random variables taking values in Fnp uniformly. This for
example shows that every phase polynomial g of degree at most d satisfies ‖g‖Ud+1 = 1.

Many basic properties of Gowers uniformity norms are implied by the Gowers-Cauchy-Schwarz
inequality which is first proved in [6] by iterated applications of the classical Cauchy-Schwarz
inequality.

Lemma B.2 (Gowers-Cauchy-Schwarz). Let G be a finite Abelian group, and consider a family of
functions fS : G→ C, where S ⊆ [k]. Then∣∣∣∣∣∣E

 ∏
S⊆[k]

Ck−|S|fS(X +
∑
i∈S

Yi)

∣∣∣∣∣∣ ≤
∏
S⊆[k]

‖fS‖Uk , (17)

where X,Y1, . . . , Yk are independent random variables taking values in G uniformly at random.

A simple application of Lemma B.2 is the following. Consider an arbitrary function f : G→ C.
Setting f∅ := f and fS := 1 for every S 6= ∅ in Lemma B.2, we obtain

|E[f(X)]| ≤ ‖f‖Uk . (18)

Equation (18) in particular shows that if f, g : Fnp → C, then one can bound their inner product
with Gowers uniformity norms of fg:

|〈f, g〉| ≤ ‖fg‖Uk . (19)

Consider an arbitrary f : Fnp → C and a phase polynomial g of degree at most d. Then for every
y1, . . . , yd+1 ∈ Fnp , we have

∆̃y1,...,yd+1
(fg) = (∆̃y1,...,yd+1

f)(∆̃y1,...,yd+1
g) = ∆̃y1,...,yd+1

f,

which in turn implies that ‖fg‖Ud+1 = ‖f‖Ud+1 . Combining this with (19), we conclude that the
correlation of f with any phase polynomial of degree at most d is a lower-bound for ‖f‖Ud+1 :

‖f‖u(Pd) ≤ ‖f‖Ud+1 . (20)

This provides us with a “direct theorem” for the Ud+1 norm: If ‖f‖u(Pd) ≥ δ, then ‖f‖Ud+1 ≥ δ.
Recently Bergelson, Tao, and Ziegler [1, 18] established the corresponding inverse theorem in the
high characteristic case.

Theorem B.3 ([1, 18]). If 1 ≤ d < p, then there exists a function δ : (0, 1] → (0, 1] such that for
every f : Fnp → D, and ε > 0,

• Direct theorem: If ‖f‖u(Pd) ≥ ε, then ‖f‖Ud+1 ≥ ε.
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• Inverse theorem: If ‖f‖Ud+1 ≥ ε, then ‖f‖u(Pd) ≥ δ(ε).

Theorem B.3 requires that 1 ≤ d < p. In this range, Lemma B.1 shows that the phase
polynomials of degree at most d can be described using polynomials of degree at most d. So
Theorem B.3 shows that in this case if ‖f‖Ud+1 ≥ ε, then there exists a polynomial g : Fnp → Fp
of degree at most d such that |〈f, ep(g)〉| ≥ δ(ε) > 0. Tao and Ziegler [18] conjectured that
Theorem B.3 remains valid if one removes the condition 1 ≤ d < p. They proved the following
partial result in this direction.

Theorem B.4 ([1, 18]). For every integer d ≥ 1, there exists a function δ : (0, 1] → (0, 1] and a
positive integer c(d) such that for every f : Fnp → D, and ε > 0,

• Direct theorem: If ‖f‖u(Pd) ≥ ε, then ‖f‖Ud+1 ≥ ε.

• Inverse theorem: If ‖f‖Ud+1 ≥ ε, then ‖f‖u(Pc(d)) ≥ δ(ε).

B.2 Decomposition theorems

An important application of the inverse theorems is that they imply “decomposition theorems”.
Roughly speaking these results say that under appropriate conditions, a function f can be decom-
posed as f1 + f2, where f1 is “structured” in some sense that enables one to handle it easily, while
f2 is “quasi-random” meaning that it shares certain properties with a random function, and can
be discarded as random noise. In the following we will discuss decomposition theorems that follow
from Theorem B.3, but first we need to define the polynomial factors on Fnp .

Definition B.5 (Polynomial factors). Let p be a fixed prime. Let P1, . . . , PC ∈ Polyd(Fnp ). The

sigma-algebra on Fnp whose atoms are {x ∈ Fnp : P1(x) = a(1), . . . , PC(x) = a(C)} for all a ∈ FCp is
called a polynomial factor of degree at most d and complexity at most C.

Let B be a polynomial factor defined by P1, . . . , PC . For f : Fnp → C, the conditional expectation
of f with respect to B, denoted E(f |B) : Fnp → C, is

E(f |B)(x) = E{y∈Fnp :P1(y)=P1(x),...,PC(y)=PC(x)}[f(y)].

That is, E(f |B) is constant on every atom of B, and this constant is the average value that f
attains on this atom. A function g : Fnp → C is B-measurable, if it is constant on every atom of

B. Equivalently, we can write g as g(x) = Γ(P1(x), . . . , PC(x)) for some function Γ : FCp → C. The
following claim is quite useful, although its proof is immediate and holds for every sigma-algebra.

Observation B.6. Let f : Fnp → C. Let B be a polynomial factor defined by polynomials P1, . . . , PC .
Let g : Fnp → C be any B-measurable function. Then

〈f, g〉 = 〈E(f |B), g〉.

The following theorem that follows in a standard manner from Theorem B.3 gives a simple
decomposition theorem.

Theorem B.7 (Decomposition Theorem [9]). Let p be a fixed prime, 0 ≤ d < p be an integer,
let δ > 0, and suppose that n > n0(δ) is sufficiently large. Given any function f : Fnp → D, there
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exists a polynomial factor B of degree at most d and complexity at most Cmax(p, d, δ) together with
a decomposition

f = f1 + f2,

where
f1 := E(f |B) and ‖f2‖Ud+1 ≤ δ.

We sketch the standard proof of Theorem B.7 below, as we will need some extensions of it in
this paper. For a full proof we refer the reader to [9].

Proof sketch. We create a sequence of polynomial factors B1,B2, . . . as follows. Let B1 be the trivial
factor (i.e. E(f |B1) is the constant function E[f ]). Let gi = f − E(f |Bi). If ‖gi‖Ud+1 ≤ δ we are
done. Otherwise by Theorem B.3, since ‖gi‖∞ ≤ 2, there exists a polynomial Pi ∈ Polyd(Fnp ) such
that 〈gi, ep(Pi)〉 ≥ c(δ). Let Bi+1 = Bi ∪ {Pi}. The key point is that one can show

‖gi+1‖22 ≤ ‖gi − 〈gi, ep(Pi)〉‖22 ≤ ‖gi‖22 − c(δ).

Thus, the process must stop after at most 1/c(δ) steps.

Suppose that the factor B is defined by P1, . . . , PC ∈ Polyd(Fnp ). Assume that f1(x) =
Γ(P1(x), . . . , PC(x)). Using the Fourier decomposition of Γ, we can express f1 as

f1(x) =
∑
γ∈FCp

Γ̂(γ)ep

(
C∑
i=1

γ(i)Pi(x)

)
. (21)

Note that for every γ ∈ FCp ,
∑C

i=1 γ(i)Pi(x) ∈ Polyd(Fnp ). So (21) gives an expansion for f1 which
is similar to the Fourier expansion, but instead of characters ep(

∑
α(i)xi), we have exponential

functions ep

(∑C
i=1 γ(i)Pi(x)

)
which have polynomials of degree d in the powers instead of linear

functions. For this decomposition to be useful similar to the Fourier expansion, one needs some
kind of orthogonality for the functions appearing in the expansion.

Definition B.8 (Bias). The bias of a polynomial P ∈ Polyd(Fnp ) is defined as

bias(P ) := bias(ep(P )) = |EX∈Fnp [ep(P (X))]|.

We shall refine the set of polynomials {P1, . . . , Pt} to obtain a new set of polynomials with the
desired “approximate orthogonality” properties. This will be achieved through the notion of the
rank of a set of polynomials.

Definition B.9 (Rank). We say a set of polynomials P = {P1, . . . , Pt} is of rank greater than r,
and denote this by rank(P) > r, if the following holds. For any non-zero α = (α1, . . . , αt) ∈ Ftp,
define Pα(x) :=

∑t
j=1 αjPj(x). For d := max{deg(Pj) : αj 6= 0}, the polynomial Pα cannot be

expressed as a function of r polynomials of degree at most d− 1. More precisely, it is not possible
to find r polynomials Q1, . . . , Qr of degree at most d− 1, and a function Γ : Frp → Fp such that

P (x) = Γ(Q1(x), . . . , Qr(x)).

The rank of a single polynomial P is defined to be rank({P}).
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The rank of a polynomial factor is the rank of the set of polynomials defining it. The following
lemma follows from the definition of the rank. For a proof see [10].

Lemma B.10 (Making factors high-rank). Let r : N → N be an arbitrary growth function. Then
there is another function τ : N→ N with the following property. Let B be a polynomial factor with
complexity at most C. Then there is a refinement B′ of B with complexity at most C ′ ≤ τ(C) and
rank at least r(C ′).

The following theorem due to Kaufman and Lovett [12] connects the notion of the rank to the
bias of a polynomial. It was proved first by Green and Tao [10] for the case d < p, and then
extended by Kaufman and Lovett [12] for the general case.

Theorem B.11 (Regularity [12]). Fix p prime and d ≥ 1. There exists a function rp,d : (0, 1]→ N
such that the following holds. If P : Fnp → Fp is a polynomial of degree at most d with bias(P ) ≥ ε,
then rank(P ) ≤ rp,d(ε).

Combining Lemma B.10 with Theorem B.7, it is possible to obtain a strong decomposition
theorem.

Theorem B.12 (Strong Decomposition Theorem [9]). Let p be a fixed prime, 0 ≤ d < p be an
integer, δ > 0, and let r : N→ N be an arbitrary growth functions, and suppose that n > n0(d, δ, r(·))
is sufficiently large. Given any function f : Fnp → D, there exists a decomposition

f = f1 + f2,

such that
f1 := E(f |B), ‖f2‖Ud+1 ≤ δ,

where B is a polynomial factor of degree at most d, complexity C ≤ Cmax (where Cmax depends on
p, d, δ, r(·)), and rank at least r(C).

We sketch the proof below. For a full proof we refer the reader to [9].

Proof sketch. The proof follows the same steps as the proof of Theorem B.7, except that at each
step, we regularize each polynomial factor Bi to obtain B′i, and set Bi+1 = B′i ∪ {Pi}. The only
new insight is that as B′i is a refinement of Bi we have

‖f − E(f |B′i)‖2 ≤ ‖f − E(f |Bi)‖2.

Note that Theorem B.12 guarantees a strong approximate orthogonality. For every fixed func-
tion ω : N → N, by taking r(·) to be a sufficiently fast growing function, one can guarantee that
the polynomials P1, . . . , PC that define the factor B have the property∣∣∣∣∣E

[
ep

(
C∑
i=1

γ(i)Pi(X)

)]∣∣∣∣∣ ≤ 1/ω(C), (22)

for all nonzero γ ∈ FCp . That is, the polynomials can be made “nearly orthogonal” to any required
precision. The following lemma demonstrates the power of this technique. It shows that by choosing
r(·) large enough, we can make sure that the distribution of the polynomials is almost independent.

21



Lemma B.13. There exists a function r : N→ N such that the following holds. Let P1, . . . , PC ∈
Polyd(Fnp ) be polynomials of rank at least r(C). Then for every a ∈ FCp , we have

PrX∈Fnp [P1(X) = a(1), . . . , PC(X) = a(C)] ≤ 2p−C .

Proof. Using the notations of (22), set ω(C) = p2C . We can write the probability that P1(X) =
a(1), . . . , PC(X) = a(C) as

PrX∈Fnp [P1(X) = a(1), . . . , PC(X) = a(C)] =
1

pC

∑
γ∈FCp

EX∈Fnp

[
ep

(
C∑
i=1

γ(i)(Pi(X)− a(i))

)]
.

The contribution of γ = 0 to the sum is exactly p−C , and by the choice of ω(·), the contribution of
any other terms γ 6= 0 is at most p−2C , and the lemma follows.

The decomposition theorems stated to far referred to a single function. In this paper we require
decomposition theorems which relate to several functions with a single polynomial factor. The
proofs can be adapted in a straight-forward manner to prove the next result.

Lemma B.14 (Strong Decomposition Theorem - multiple functions). Let p be a fixed prime, 0 ≤
d < p and m be integers, let δ > 0, and let r : N→ N be an arbitrary growth functions, and suppose
that n > n0(p, d, δ,m, r(·)) is sufficiently large. Given every set of functions f1, . . . , fm : Fnp → D,
there exists a decomposition of each fi as

fi = fi,1 + fi,2,

such that
fi,1 := E(fi|B), ‖fi,2‖Ud+1 ≤ δ,

where B is a polynomial factor of degree at most d, complexity C ≤ Cmax (where Cmax depends on
p, d, δ,m, r(·)) and rank at least r(C). Furthermore we can assume that B is defined by homogeneous
polynomials.

C Strong orthogonality

Let B be a polynomial factor defined by polynomials P1, . . . , PC , and let f : Fnp → D be a
B-measurable function. We saw in (21) that f can be expressed as a linear combination of
ep(
∑C

i=1 γ(i)Pi(x)), for γ ∈ FCp . Furthermore if we require the polynomials to be of high rank,
then we obtain approximate orthogonality as in (22). This approximate orthogonality is suffi-
cient for analyzing averages such as E[f1(X)f2(X) . . . fm(X)], where f1, . . . , fm (not necessarily
distinct) are all measurable with respect to B. However it is not a priori clear how this or-
thogonality can be used to deal with averages of the form E[f1(L1(X)) . . . fm(Lm(X))], for linear
forms L1, . . . , Lm. The difficulty arises when one has to understand exponential averages such as
E[ep(P (X+Y )−P (X)−P (Y ))]. This average is 1 when P is a homogeneous polynomial of degree
one, but it does not immediately follow from what we have said so far that it is small when P is of
higher degree. In this section we develop the results needed to deal with such exponential averages.
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Consider a set of homogeneous polynomials {P1, . . . , Pk}, and a set of linear forms {L1, . . . , Lm}.
We need to be able to analyze exponential averages of the form:

EX

ep

 k∑
i=1

m∑
j=1

λi,jPi(Lj(X))

 ,
where λi,j ∈ Fp. Lemma C.1 below shows that if {P1, . . . , Pk} are of sufficiently high rank, then it is

either the case that
∑k

i=1

∑m
j=1 λi,jPi(Lj(x)) ≡ 0 which implies that the corresponding exponential

average is exactly 1, or otherwise the exponential average is very small. Note that this is an
“approximate” version of the case of characters. Namely if {χy1 , . . . , χyk} are characters of Fnp ,

then E
[∏k

i=1

∏m
j=1 χyi(Lj(X))

]
is either 1 or 0. In the case of polynomials of high rank, the “zero”

case is approximated by a small number.

Lemma C.1. Let p be a fixed prime. There exists a function r : N × (0, 1] → N such that the
following holds. Let {L1, . . . , Lm} be a system of linear forms. Let P = {P1, . . . , Pk} be a collection
of polynomials of degree at most d < p, such that rank(P) > r(d, ε). For every set of coefficients
{λi,j ∈ Fp : i ∈ [k], j ∈ [m]}, and

PΛ(x) :=
k∑
i=1

m∑
j=1

λi,jPi(Lj(x)),

one of the following two cases holds:

PΛ ≡ 0 or bias(PΛ) < ε.

Lemma C.1 shows that in order to estimate bias(PΛ) for polynomials of high rank P =
{P1, . . . , Pk}, it suffices to determine whether PΛ is identically 0 or not. Our next observation
which is one of the key tools in this article says that when the polynomials are homogeneous and
linearly independent, then PΛ ≡ 0 depends only on the set of the coefficients λi,j , the linear forms
Lj , and the degrees of the polynomials involved in P1, . . . , Pk, and not the particular choice of the
polynomials.

Lemma C.2. Let {L1, . . . , Lm} be a system of linear forms over Fnp , λi,j ∈ Fp for i ∈ [k], j ∈ [m],
and d1, . . . , dk ∈ [d]. One of the following two cases hold

• For every collection P = {P1, . . . , Pk} of linearly independent homogeneous polynomials of
degrees d1, . . . , dk:

k∑
i=1

m∑
j=1

λi,jPi(Lj(x)) ≡ 0

• For every collection P = {P1, . . . , Pk} of linearly independent homogeneous polynomials of
degrees d1, . . . , dk:

k∑
i=1

m∑
j=1

λi,jPi(Lj(x)) 6≡ 0
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In this article we shall need to deal with non-homogenous polynomials. The following lemma
shows that if the set of the linear forms is homogeneous, then the case of the non-homogenous
polynomials reduces to the homogenous polynomials. Let P : Fnp → Fp be a polynomial of degree

at most d. For 1 ≤ l ≤ d, let P (l) denote the homogenous polynomial that is obtained from P by
removing all the monomials whose degrees are not equal to l.

Lemma C.3. Let L = {L1, . . . , Lm} be a set of homogeneous linear forms. Furthermore let

P = {P1, . . . , Pk} be a collection of polynomials of degrees d1, . . . , dk such that {P (di)
i : i ∈ [k]} are

linearly independent over Fp. Then for λi,j ∈ Fp,∑k
i=1

∑m
j=1 λi,jPi(Lj(x)) ≡ 0⇐⇒

∑k
i=1

∑m
j=1 λi,jP

(di)
i (Lj(x)) ≡ 0

C.1 Proofs of Lemmas C.1, C.2 and C.3

Let P (x) be a homogeneous polynomial of degree d < p. Let B(x1, . . . , xd) be the symmetric multi-
linear form associated with P , that is P (x) = B(x, . . . , x) and B(x1, . . . , xd) ≡ B(xσ1 , . . . , xσd), for

every permutation σ of [d]. If L(x) =
∑k

i=1 cixi is a linear form in k variables, then we have

P (L(x)) =
∑

i1,...,id∈[k]

ci1 . . . cidB(xi1 , . . . , xid).

For u = (u1, . . . , ud) ∈ [k]d, denote xu = (xu1 , . . . , xud). Let Ud ⊆ [k]d be defined as Ud =
{(u1, . . . , ud) ∈ [k]d : u1 ≤ u2 ≤ . . . ≤ ud}. For u ∈ Ud, denote by rd(u) the number of distinct
permutations2 of (u1, . . . , ud), and let cd(u, L) := cu1 . . . cud . Since B is symmetric, we have

P (L(x)) =
∑
u∈Ud

rd(u)cd(u, L)B(xu). (23)

Note that rd(u) depends only on u and cd(u, L) depends only on the linear form L and u ∈ [k]d.
We need the following claim.

Claim C.4. Let B be homogeneous multi-linear form over Fp of degree d < p. Consider a linear
combination

Q(x) =
∑
u∈Ud

cuB(xu)

where not all the coefficients cu are zero. Then there exist a1, . . . , ak ∈ Fp and α 6= 0 such that for
every w ∈ Fnp

Q(a1w, . . . , akw) = αB(w, . . . , w).

Proof. Consider x = (a1w, . . . , akw). As B is multi-linear, we have

B(xu) =

(
d∏
i=1

aui

)
·B(w, . . . , w),

2If the multiplicities of the elements of a multi-set are i1, . . . , i`, then the number of distinct permutations of those
elements is (i1+...+i`)!

i1!...i`!
.
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for every u ∈ Ud. Let a = (a1, . . . , ak) and let au denote the monomial au =
∏d
i=1 aui . We thus

have

Q(a1w, . . . , akw) =

∑
u∈Ud

cua
u

 ·B(w, . . . , w).

Consider g(a1, . . . , ak) =
∑

u∈Ud cua
u. This is a polynomial in a1, . . . , ak which is not identically

zero, as distinct u ∈ Ud correspond to distinct monomials au. Hence there exist some assignment
for a for which α := g(a) 6= 0.

Consider a set of linearly independent homogeneous polynomials {P1, . . . , Pk}, a system of linear
forms {L1, . . . , Lm} and some coefficients λi,j ∈ Fp where i ∈ [m], j ∈ [k]. Let Bi be the symmetric
multi-linear form associated with Pi. Denoting di := deg(Pi) and using the notation of (23), we
thus have

PΛ(x) =
k∑
i=1

m∑
j=1

λi,jPi(Lj(x)) =
k∑
i=1

m∑
j=1

λi,j
∑

u∈Udi

rdi(u)cdi(u, Lj)Bi(xu)

=
k∑
i=1

∑
u∈Udi

bdii (u)Bi(xu), (24)

where

bdii (u) := rdi(u)
m∑
j=1

λi,jcdi(u, Lj).

Note that the coefficients bdii (u) do not depend on the specific set of polynomials P1, . . . , Pk. Among
Lemmas C.1, C.2 and C.3 first we prove Lemma C.2 which has the simplest proof.

Proof of Lemma C.2. We will show that PΛ(x) ≡ 0 if and only if bdii (u) = 0, for all i ∈ [k] and

u ∈ Udi . Let Bi0 be a polynomial appearing in PΛ with a nonzero coefficient, that is b
di0
i0

(u) 6= 0

for some u ∈ Udi0 in (24). Consider any assignment of the form x = (a1w, . . . , akw). We have that

Bi(xu) = auBi(w, . . . , w) = auPi(w).

Hence we get that

PΛ(a1w, . . . , akw) =
k∑
i=1

αiPi(w), (25)

where αi =
∑

u∈Udi aubdii (u). Applying Claim C.4, there exists a choice of a1, . . . , ak, such that
αi0 6= 0, and then the linear independence of {P1, . . . , Pk} shows that PΛ 6≡ 0.

The proof of Lemma C.2 shows that PΛ(x) 6≡ 0 if and only if bdii (u) 6= 0 for some i and u. Next
we prove Lemma C.1 where we show that in this case under the stronger condition of high rank
bias(PΛ) is small.

Proof of Lemma C.1. Suppose that PΛ(x) 6≡ 0 so that bdii (u) 6= 0, for some i ∈ [k] and u ∈ Udi .
Let di0 ≤ d be the largest degree such that b

di0
i0

(u) 6= 0, for some u ∈ Udi0 .
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Assume for contradiction that bias(PΛ) ≥ ε. By the regularity theorem for polynomials (Theo-
rem B.11) we get that PΛ(x) can be expressed as a function of r ≤ r(di0 , ε) ≤ r(d, ε) polynomials
of degree at most di0 − 1. We will show that this implies rank(P) ≤ r. We know that PΛ(x) can
be expressed as a function of at most r polynomials of degree at most di0 − 1. This continues to
hold under any assignment x = (a1w, . . . , akw). That is

PΛ(a1w, . . . , akw) =
k∑
i=1

αiPi(w),

with αi =
∑

u∈Udi aubdii (u) is a function of at most r polynomials of degree at most di0 − 1. By
Claim C.4 there exists a choice of a1, . . . , ak such that αi0 6= 0, and this shows that rank(P) ≤ r.

Next we prove Lemma C.3 where we deal with the case that the polynomials are not necessarily
homogeneous, but instead the system of linear forms {L1, . . . , Lm} is homogeneous.

Proof of Lemma C.3. It follows from Observation A.11 that by a change of variables we can assume
that L1, . . . , Lm are linear forms over Fnp in s variables x1, . . . , xs, and x1 appears with coefficient

1 in all linear forms. For 1 ≤ i ≤ k, let B1
i , . . . , B

di
i be the symmetric multilinear forms associated

with P
(1)
i , . . . , P

(di)
i , respectively. Then (24) must be replaced by

PΛ(x) =
k∑
i=1

m∑
j=1

λi,jPi(Lj(x)) =
k∑
i=1

m∑
j=1

di∑
l=1

λi,j
∑
u∈U l

rl(u)cl(u, Lj)B
l
i(xu)

=

k∑
i=1

di∑
l=1

∑
u∈U l

bli(u)Bl
i(xu), (26)

where

bli(u) := rl(u)
m∑
j=1

λi,jcl(u, Lj).

Suppose that PΛ(x) 6≡ 0. We claim that in this case there exists an i ∈ [k] and u ∈ Udi such that
bdii (u) 6= 0, and this establishes the lemma. In order to prove this claim it suffices to show that if

bdii (u) = 0, for every u ∈ Udi , then bti(u) = 0 for every 0 ≤ t ≤ di and u ∈ U t. Let otherwise t be
the largest integer such that bti(u) = rt(u)

∑m
j=1 λi,jct(u, Lj) 6= 0, for some u = (u1, . . . , ut) ∈ U t.

Consider u′ = (1, u1, . . . , ut) ∈ U t+1. Since x1 appears with coefficient 1 in every Lj , we have that
ct+1(u′, Lj) = ct(u, Lj). Also note that since di < p, and p is a prime, rl(u) 6= 0 for every 1 ≤ l ≤ di
and u ∈ U l. Hence we conclude that

bt+1
i (u′) = rt+1(u′)

m∑
j=1

λi,jct(u, Lj) =
rt+1(u′)

rt(u)
bti(u) 6= 0

which contradicts the maximality of t.
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C.2 An invariance result

The following proposition which is a consequence of the lemmas that we established in Section C
is one of the key ingredients in the proof of our main result, Theorem 1.3.

Proposition C.5. Let r : N × (0, 1] be the function in Lemma C.1. Let P = {P1, . . . , Pk},Q =
{Q1, . . . , Qk} be two collections of polynomials over Fnp of degree at most d < p such that deg(Pi) =

deg(Qi) for every 1 ≤ i ≤ k. Let L1, . . . , Lm be linear forms, and Γ : Fkp → D be an arbitrary
function. Define f, g : Fnp → D by

f(x) = Γ(P1(x), . . . , Pk(x))

and
g(x) = Γ(Q1(x), . . . , Qk(x)).

Then for every ε > 0, if rank(P), rank(Q) > r(d, ε), we have

|tL(f)− tL(g)| ≤ 2pmk · ε,

provided that at least one of the following two conditions hold:

(i) The polynomials P1, . . . , Pk and Q1, . . . , Qk are homogenous.

(ii) The system of linear forms {L1, . . . , Lm} is homogenous.

Proof. The Fourier expansion of Γ shows

Γ(z(1), . . . , z(k)) =
∑
γ∈Fkp

Γ̂(γ)ep

(
k∑
i=1

γ(i) · z(i)

)
.

We thus have

m∏
i=1

f(Li(x)) =
∑

γ1,...,γm∈Fkp

Γ̂(γ1) · . . . · Γ̂(γm)ep

 ∑
i∈[k],j∈[m]

γj(i) · Pi(Lj(x))

 ,

and
m∏
i=1

g(Li(x)) =
∑

γ1,...,γm∈Fkp

Γ̂(γ1) · . . . · Γ̂(γm)ep

 ∑
i∈[k],j∈[m]

γj(i) ·Qi(Lj(x))

 .

By Lemma C.1 we know that for every γ1, . . . , γm ∈ Fkp each one of the polynomials∑
i∈[k],j∈[m] γj(i) · Pi(Lj(x)) and

∑
i∈[k],j∈[m] γj(i) · Qi(Lj(x)) are either zero, or have bias of at

most ε. But Lemmas C.2 and C.3 show that under each one of the Conditions (i) or (ii), since
deg(Pi) = deg(Qi), we have that∑

i∈[k],j∈[m]

γj(i) · Pi(Lj(x)) ≡ 0⇐⇒
∑

i∈[k],j∈[m]

γj(i) ·Qi(Lj(x)) ≡ 0.

27



Hence we have that∣∣∣∣∣∣EX

ep

 ∑
i∈[k],j∈[m]

γj(i) · Pi(Lj(X))

− EX

ep

 ∑
i∈[k],j∈[m]

γj(i) ·Qi(Lj(X))

∣∣∣∣∣∣ ≤ 2ε,

and ∣∣∣∣∣EX

[
m∏
i=1

f(Li(X))

]
− EX

[
m∏
i=1

g(Li(X))

]∣∣∣∣∣ ≤ 2ε ·
∑

γ1,...,γm∈Fkp

|Γ̂(γ1)| . . . |Γ̂(γm)|.

Since ‖Γ̂‖∞ ≤ 1, we conclude∣∣∣∣∣EX

[
m∏
i=1

f(Li(X))

]
− EX

[
m∏
i=1

g(Li(X))

]∣∣∣∣∣ ≤ 2εpmk.

C.3 A solution to the Gowers-Wolf conjecture

In this subsection we prove the following theorem, which qualitatively strengthens both Lemma A.2
and Theorem A.6.

Theorem C.6. Let L = {L1, . . . , Lm} be a system of m linear forms in k variables of Cauchy-
Schwarz complexity at most p. Let d ≥ 0, and assume that Ld+1

1 is not in the linear span of
Ld+1

2 , . . . , Ld+1
m . Then for every ε > 0, there exists δ > 0 such that for every functions f1, . . . , fm :

Fp → D where ‖f1‖Ud+1 ≤ δ we have∣∣∣∣∣EX∈(Fnp )k

[
m∏
i=1

fi(Li(X))

]∣∣∣∣∣ ≤ ε.
Let s ≤ p denote the Cauchy-Schwarz complexity of L. Note that Lemma A.2 requires

the stronger condition ‖f1‖Us+1 ≤ δ, while Theorem A.6 requires two stronger conditions: that
Ld+1

1 , . . . , Ld+1
m are linearly independent, and that all ‖f1‖Ud+1 , . . . , ‖fm‖Ud+1 are bounded by δ.

Before proving Theorem C.6 we give an immediate corollary of it which we find quite useful.

Corollary C.7. Let L = {L1, . . . , Lm} be a system of m linear forms in k variables of true
complexity d and Cauchy-Schwarz complexity at most p. Then for every ε > 0, there exists δ > 0
such that the following holds. Let f1, . . . , fm : Fp → D be functions. Let B be a polynomial factor
such that

‖fi − E(fi|B)‖Ud+1 ≤ δ,

for all 1 ≤ i ≤ m. Then ∣∣∣∣∣E
[
m∏
i=1

fi(Li(X))

]
− E

[
m∏
i=1

E(fi|B)(Li(X))

]∣∣∣∣∣ ≤ ε,
where the average is over X ∈ (Fnp )k.
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We now turn to prove Theorem C.6. If d = s, then Theorem C.6 follows from Lemma A.2.
Thus we assume d < s, hence also d < p. We will assume throughout the proof that p,m, s, d, ε are
constants, and we will not explicitly state dependencies on them.

Let r : N → N be a growth function to be specified later. Let η > 0 be a sufficiently small
constant which will be specified later. By Lemma B.14 there exists a polynomial factor B of degree
s, complexity C ≤ Cmax(η, r(·)) and rank at least r(C) such that we can decompose each function
fi as

fi = hi + h′i

where hi = E(fi|B) and ‖h′i‖Us+1 ≤ η. We also have ‖hi‖∞ ≤ 1 and ‖h′i‖∞ ≤ 2. We first show that
in order to bound E [

∏m
i=1 fi(Li(X))] it suffices to bound E [

∏m
i=1 hi(Li(X))], if η is chosen to be

small enough.

Claim C.8. If η ≤ ε · 4−m/10 then∣∣∣∣∣E
[
m∏
i=1

fi(Li(X))

]
− E

[
m∏
i=1

hi(Li(X))

]∣∣∣∣∣ ≤ ε/10,

where the average is over uniform X ∈ (Fnp )k.

Proof. We have

E

[
m∏
i=1

fi(Li(X))

]
− E

[
m∏
i=1

hi(Li(X))

]
=
∑
I([m]

E

∏
i∈I

hi(Li(X))
∏

i∈[m]\I

h′i(Li(X))

 .
Fix I ( [m]. Let j ∈ [m] \ I. Since the Cauchy-Schwarz complexity of {L1, . . . , Lm} is s, we have
by Lemma A.2 that∣∣∣∣∣∣E

∏
i∈I

hi(Li(X))
∏

i∈[m]\I

h′i(Li(X))

∣∣∣∣∣∣ ≤ ‖h′j‖Us+1

∏
i∈I
‖hi‖∞

∏
i∈[m]\(I∪{j})

‖hi‖∞ ≤ η · 2m.

As there are 2m − 1 different choices for I the claim follows.

We thus set η = ε · 4−m/10, and regard η from now on as a constant, and we do not specify
explicitly dependencies on η as well.

Let {Pi}1≤i≤C be the polynomials which define the polynomial factor B, where we assume each
Pi is homogeneous of degree deg(Pi) ≤ s. Since each hi is measurable with regards to B, we have
hi(x) = Γi(P1(x), . . . , PC(x)) where Γi : FCp → D is some function. Decompose Γi to its Fourier
decomposition as

Γi(z(1), . . . , z(C)) =
∑
γ∈FCp

ci,γ · ep

 C∑
j=1

γ(j)z(j)

 ,

where |ci,γ | ≤ 1. Define for γ ∈ FCp , the linear combination Pγ(x) =
∑C

j=1 γ(j)Pj(x). We can
express each hi as

hi(x) =
∑
γ∈FCp

ci,γ · ep (Pγ(x)) ,
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and we can express

E

[
m∏
i=1

hi(Li(X))

]
=

∑
γ1,...,γm∈FCp

∆(γ1, . . . , γm), (27)

where

∆(γ1, . . . , γm) =

(
m∏
i=1

ci,γi

)
E [ep (Pγ1(L1(X)) + . . .+ Pγm(Lm(X)))] . (28)

We will bound each term ∆(γ1, . . . , γm) by τ := τ(C) = p−mCε/10, which will establish the result.
Let S = {γ ∈ FCp : deg(Pγ) ≤ d}. We first bound the terms ∆(γ1, . . . , γm) with γ1 ∈ S.

Claim C.9. If the growth function r(·) is chosen large enough, and if δ > 0 is chosen small enough,
then for all γ1 ∈ S we have

|c1,γ1 | ≤ τ.

Consequently, for all γ1 ∈ S and γ2, . . . , γm ∈ FCp we have

∆(γ1, . . . , γm) ≤ τ.

Proof. The bound on ∆(γ1, . . . , γm) follows trivially from the bound on c1,γ1 , since
|c2,γ2 |, . . . , |cm,γm | ≤ 1. To bound c1,γ , note that

c1,γ = E [h1(X)ep(−Pγ(X))]−
∑

γ′∈FCp ,γ′ 6=γ

c1,γ′E
[
ep(Pγ′(X)− Pγ(X))

]
,

where the averages are over uniform X ∈ Fnp . We first bound E [h1(X)ep(−Pγ(X))]. Using the fact
that h1 = E(f1|B) and that the function ep(−Pγ(x)) is B-measurable, we have by Observation B.6
that

|E [h1(X)ep(−Pγ(X))] | = |E [f1(X)ep(−Pγ(X))] | ≤ ‖f1‖Ud+1 ≤ δ.

Hence, by choosing δ < p−m·Cmax(r(·))ε/20 we guarantee that |E [h1(X)ep(−Pγ(X))] | ≤ δ < τ/2.
Next for γ 6= γ′, we bound each term E

[
ep(Pγ′(X)− Pγ(X))

]
by τp−C/2. Assume that for some

γ′ 6= γ we have ∣∣E [ep(Pγ′(X)− Pγ(X))
]∣∣ > τp−C/2.

Then by Theorem B.11 we have that

rank(Pγ′ − Pγ) ≤ r′(τp−C/2) = r1(C).

Thus, as long as we choose r(C) > r1(C), we have that∑
γ′ 6=γ

∣∣c1,γ′E
[
ep(Pγ′(X)− Pγ(X))

]∣∣ ≤ τ/2
and we achieve the bound |c1,γ | ≤ τ .

Consider now any γ1 /∈ S. We will show that if we choose r(·) large enough we can guarantee
that

|E [ep (Pγ1(L1(X)) + . . .+ Pγm(Lm(X)))] | ≤ τ, (29)
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which will establish the result. Assume that this is not the case for some γ1 /∈ S and γ2, . . . , γm ∈ FCp .
By Lemma C.1 there is a rank r′′(τ) = r2(C) such that if we guarantee that r(C) > r2(C) and
if (29) does not hold, then we must have

Pγ1(L1(x)) + . . .+ Pγm(Lm(x)) ≡ 0. (30)

Let t = deg(Pγ1) > d. Let P
(t)
γ be the degree t homogeneous part of Pγ . Since the degrees of the

polynomials are at most p− 1, we must have that

P (t)
γ1 (L1(x)) + . . .+ P (t)

γm(Lm(x)) ≡ 0. (31)

The following claim concludes the proof. It shows that if (31) holds, then Lt1 is linearly dependent
on Lt2, . . . , L

t
m. This immediately implies that also Ld+1

1 is linearly dependent on Ld+1
2 , . . . , Ld+1

m

(since t ≥ d+ 1) which contradicts our initial assumption.

Claim C.10. Let P1, . . . , Pm be homogenous polynomials of degree t < p, where P1 is not identically
zero, such that

P1(L1(x)) + . . .+ Pm(Lm(x)) ≡ 0.

Then Lt1 is linearly dependent on Lt2, . . . , L
t
m.

Proof. Let M(x) = xi1 · . . . · xit be a monomial appearing in P1 with a nonzero coefficient α1 6= 0.
Let αi be the coefficient of M(x) in Pi for 2 ≤ i ≤ m. We have that

α1M(L1(x)) + . . .+ αmM(Lm(x)) ≡ 0.

Let x = (x1, . . . , xk) and Li(x) = λi,1x1 + . . .+ λi,kxk. We have

M(Li(x)) =
t∏

j=1

(λi,1x1(ij) + . . .+ λi,kxk(ij)).

Consider the assignment xi = (z(i), . . . , z(i)) where z(1), . . . , z(k) ∈ Fp are new variables. We thus
have the polynomial identity

m∑
i=1

αi(λi,1z(1) + . . .+ λi,kz(k))t ≡ 0,

which as t < p is equivalent to
m∑
i=1

αiL
t
i ≡ 0.

D Characterization of strongly correlation testable properties

Consider a family D := {Dn}n∈N where Dn is a set of functions from Fnp to D. We recall some basic
definitions from the introduction. The correlation of a function f : Fnp → D with Dn is

‖f‖u(Dn) = sup
g∈Dn

|〈f, g〉|.
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Given a function f : Fnp → D and a system of linear forms L = {L1, . . . , Lm} in k variables, recall
that the average of f over L, with conjugations α ∈ {0, 1}m, is

tL,α(f) = EX∈(Fnp )k

[
m∏
i=1

Cαif(Li(X))

]

where C is the conjugation operator. A family D is said to be correlation testable with linear
forms if there exists a set of linear forms L1, . . . ,L` along with conjugations α1, . . . , α`, such that
the collection of averages (tL1,α1(f), . . . , tL`,α`(f)) allows to distinguish whether f has noticeable
correlation with Dn or negligible correlation with Dn. The true complexity (Cauchy-Schwarz
complexity) of D is the maximal true complexity (Cauchy-Schwarz complexity) of {Li}i=1,...,`.

Definition D.1 (Strongly correlation testable properties). A family D = {Dn}n∈N is strongly
correlation testable by linear systems with true complexity d and Cauchy-Schwarz complexity s,
if the following holds. For every ε > 0, there exist δ ∈ (0, ε), n0 ∈ N, and systems of ho-
mogeneous linear forms L1, . . . ,L` in m1, . . . ,m` variables, respectively, where each system has
true complexity at most d and Cauchy-Schwarz complexity at most s, along with conjugations
α1 ∈ {0, 1}m1 , . . . , α` ∈ {0, 1}m` such that the closures of the following two sets are disjoint:

Tε =
{

((tL1,α1(f), . . . , tLk,αk(f)) : f : Fnp → D, n ≥ n0, ‖f‖u(Dn) ≥ ε
}

and
Sε =

{
((tL1,α1(f), . . . , tLk,αk(f)) : f : Fnp → D, n ≥ n0, ‖f‖u(Dn) ≤ δ

}
.

A system D = {Dn}n∈N where Dn is a set of functions from Fnp to D is consistent if Dn ⊆ Dn+1,
where we identify Fnp with the subspace Fnp × {0} of Fn+1

p . In this section, we prove the following
theorem.

Theorem D.2 (Main theorem: strongly correlation testable functions). Consider a consistent
family D = {Dn}n∈N . If D is strongly correlation testable with true complexity d and Cauchy-
Schwarz complexity s < p, then there exists 0 ≤ t ≤ d such that the following holds. Let (fn : Fnp →
D)n∈N be a sequence of functions. Then

lim
n→∞

‖fn − E[fn]‖u(Dn) = 0⇐⇒ lim
n→∞

‖fn − E[fn]‖Ut+1 = 0.

Define a set S ⊆ N to be the set of all degrees k ≥ 1 for which the following holds. For every
growth function r : N → N, there exists n0, a ∈ N, such that for every n ≥ n0 there exist a
polynomial Pn over Fnp of degree exactly k such that

(i) ‖ep(Pn)‖u(Dn) ≥ 1/a;

(ii) rank(Pn) > r(a).

Claim D.3. Unless all functions in D are constant functions, we have 1 ∈ S.

Proof. Let gn0 ∈ Dn0 be a nonconstant function. There must exist a nonzero Fourier coefficient
α ∈ Fn0

p such that
ĝn0(α) = η 6= 0.
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Since we assume that the family D is consistent, for every n ≥ n0, the function

gn(x(1), . . . , x(n)) = gn0(x(1), . . . , x(n0))

belongs to Dn. Let Pn(x) =
∑n0

i=1 α(i)x(i) be a linear function. For every nonzero linear function
we have rank(Pn) =∞. By construction, each linear function Pn has correlation with Dn,

‖ep(Pn)‖u(Dn) ≥ |〈ep(Pn), gn〉| = |η| > 0.

The case where all functions in D are constants is easy to analyze, as in this case we have that

‖f‖u(Dn) = ‖f‖U1 ,

for all function f : Fnp → D. Thus, from now on we assume that there are some nonconstant
functions in D, and hence 1 ∈ S.

Claim D.4. S ⊆ {1, . . . , s}.

Proof. Let k > s, and assume by contradiction that for every growth function r : N → N, there
exists a, n0 ∈ N, such that for every n ≥ n0, there exists a polynomial Pn of degree k with
‖ep(Pn)‖u(Dn) ≥ 1/a and rank(Pn) ≥ r(a). We will show that in this case, the closures of T1/a and
S1/a are not disjoint for all a ∈ N, which will yield a contradiction. Assume to the contrary that
they are disjoint for every a ∈ N. Then for every a ∈ N, there exists a minimal distance µ(a) > 0,
such that for every z′ ∈ T1/a and z′′ ∈ S1/a we have

‖z′ − z′′‖∞ ≥ µ(a). (32)

Applying Theorem B.3 for s < p and Theorem B.11 for k, if we choose the rank bound r(a)
large enough, we can guarantee that

‖ep(Pn)‖Us+1 ≤ µ(a)/2. (33)

We first note that 0` = (0, . . . , 0) is in S1/a for every a ∈ N, since for f ≡ 0 we have tL,α(f) =
0. Combining this with (32) we get that for every sequence of functions fn : Fnp → D with
lim infn→∞ ‖fn‖u(Dn) ≥ 1/a, we have

lim inf
n→∞

‖(tL1,α1(fn), . . . , tL`,α`(fn))‖∞ ≥ µ(a). (34)

Consider now the polynomials Pn. By Lemma A.2, since each system Li has Cauchy-Schwarz
complexity at most s < p, we have

|tLi,αi(ep(Pn))| ≤ ‖ep(Pn)‖Us+1 ≤ µ(a)/2,

for all 1 ≤ i ≤ `. Thus we reached a contradiction.

We now define t := max(S). Theorem D.2 follows from the following two lemmas.

Lemma D.5. Let (fn : Fnp → D)n∈N be a sequence of functions such that E[fn] = 0. If
limn→∞ ‖fn‖Ut+1 = 0, then limn→∞ ‖fn‖u(Dn) = 0.

Lemma D.6. Let (fn : Fnp → D)n∈N be a sequence of functions such that E[fn] = 0. If
limn→∞ ‖fn‖u(Dn) = 0, then limn→∞ ‖fn‖Ut+1 = 0.

We prove Lemma D.5 in Subsection D.1 and Lemma D.6 in Subsection D.2.
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D.1 Proof of Lemma D.5

Suppose that limn→∞ ‖fn‖Ut+1 = 0, but

c := lim sup
n→∞

‖fn‖u(Dn) > 0.

Since D is consistent, we can replace the lim sup by an actual limit. Assume that c =
limn→∞ ‖fn‖u(Dn) and set ε := c/2. Since D is strongly correlation testable with true complexity
d and Cauchy-Schwarz complexity s < p, there exist δ ∈ (0, ε), ε′ > 0, and a family of homogenous
systems of linear forms L1, . . . ,L` of Cauchy-Schwarz complexity at most s and true complexity at
most d along with conjugations α1, . . . , α` such that

‖(tL1,α1(f), . . . , tL`,α`(f))− (tL1,α1(g), . . . , tL`,α`(g))‖∞ ≥ ε′, (35)

for every f, g : Fnp → D (with n > n0) satisfying ‖f‖u(Dn) ≥ ε and ‖g‖u(Dn) ≤ δ.
Let r : N→ N be a growth function to be defined later. We apply Theorem B.7 and Corollary C.7

to deduce that there exists a polynomial factor Bn of degree s, complexity Cn ≤ Cmax(s, ε, r(·))
and rank at least r(Cn), such that for hn := E(fn|Bn) we have

|tLi,αi(fn)− tLi,αi(hn)| ≤ ε′/2, (36)

for all 1 ≤ i ≤ `. Equations (35) and (36) imply that for large enough n we have ‖hn‖u(Dn) ≥ δ.
So, for large enough n, there exists gn ∈ Dn such that

|〈hn, gn〉| ≥ δ. (37)

Let Bn be defined by polynomials Qn,1, . . . , Qn,Cn and define Qn,γ :=
∑Cn

i=1 γ(i)Qn,i(x) for every
γ ∈ FCnp . By choosing the growth function r(·) large enough, we have by Theorem B.11 that for all
γ 6= γ′,

|bias(Qn,γ −Qn,γ′)| ≤ p−2Cnδ/100. (38)

As hn is Bn-measurable, we can express it as hn(x) = Fn(Qn,1(x), . . . , Qn,Cn(x)) for some Fn :
FCnp → D. Consider the Fourier decomposition of Fn,

Fn(z1, . . . , zCn) =
∑
γ∈FCnp

F̂n(γ)ep

(
Cn∑
i=1

γ(i)zi

)
.

We thus have
hn(x) =

∑
γ∈FCnp

F̂n(γ)ep(Qn,γ(x)),

where |F̂n(γ)| ≤ 1. Define Wn := {γ ∈ FCnp : deg(Qn,γ) ≤ t}. We now show that the assumption

limn→∞ ‖fn‖Ut+1 = 0 implies that by taking n large enough, we can make |F̂n(γ)| arbitrarily small
for all γ ∈Wn.

Claim D.7. For large enough n, we have |F̂n(γ)| ≤ p−Cnδ/10 for all γ ∈Wn.
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Proof. By expanding 〈hn, ep(Qn,γ)〉 we have

F̂n(γ) = 〈hn, ep(Qn,γ)〉 −
∑
γ′ 6=γ

F̂n(γ′) · bias(Qn,γ′ −Qn,γ).

We bound each term individually. As ep(Qn,γ) is Bn-measurable and hn = E(fn|Bn), we have that

〈hn, ep(Qn,γ)〉 = 〈fn, ep(Qn,γ)〉,

and since deg(Qn,γ) ≤ t we have

|〈hn, ep(Qn,γ)〉| ≤ ‖fn‖Ut+1 ≤ p−Cmaxδ/100,

for large enough n. By (38) and the bound ‖F̂n‖∞ ≤ 1, we conclude that

|F̂n(γ)| ≤ p−Cnδ/10,

for all γ ∈Wn.

Now, Claim D.7 implies that∣∣∣∣∣∣
∑
γ∈Wn

F̂n(γ)〈ep(Qn,γ), gn〉

∣∣∣∣∣∣ ≤ δ/2.
However, since |〈hn, gn〉| ≥ δ we must have that there exists γ∗ 6∈Wn such that

|〈ep(Qn,γ∗), gn〉| ≥ p−Cnδ/2. (39)

We now show a contradiction to the assumption that t = max(S). Set Pn := Qn,γ∗ . As Qn,γ /∈Wn,
by 39 we have that

• t+ 1 ≤ deg(Pn) ≤ s;

• ‖ep(Pn)‖u(Dn) ≥ p−Cnδ/2;

• rank(Pn) ≥ rank(Bn) ≥ r(Cn).

Let n1 < n2 < . . . be an infinite sequence such that t′ := deg(Pni) ≥ t + 1 and Cn = C. Since
the family D is consistent, we may assume (by refining the sequence) that deg(Pn) = t′ and
rank(Pn) ≥ r(C) for all n ∈ N. As r(·) is an arbitrary growth function, we must have t′ ∈ S and
the lemma follows.

D.2 Proof of Lemma D.6

Let (fn : Fnp → D)n∈N be a sequence of functions such that limn→∞ ‖fn‖u(Dn) = 0, and assume by
contradiction that

c := lim sup
n→∞

‖fn‖Ut+1 > 0.

Since D is consistent we may replace the lim sup by an actual limit by refining the sequence. So
we assume that ‖fn‖Ut+1 ≥ c for all large enough n > n0. By Theorem B.3 this implies (since
t ≤ s < p) that there exist polynomials Qn ∈ Polyt(Fnp ) such that

|〈fn, ep(Qn)〉| ≥ δ,

for some δ = δ(c) > 0. We first regularize the polynomials to have arbitrarily large rank.

35



Claim D.8. There exists 1 ≤ t0 ≤ t such that the following holds. For every growth function
r : N → N there exists b ∈ N and an infinite subsequence n1 < n2 < . . ., along with polynomials
Qni of degree exactly t0, such that

• |〈fni , ep(Qni)〉| ≥ 1/b;

• rank(Qni) ≥ r(b).

Proof. We first claim that it is enough to prove the claim where t0 may depend on r(·). Otherwise,
assume that for every r(·) there exists a t0(r) for which the claim holds, but there is no single t0
which holds for all r(·). Then, for each possible 1 ≤ i ≤ t, let ri(·) be a growth function for which
the claim does not hold for t0 = i and ri(·). Set r = max(r1, . . . , rt), and we reach a contradiction.

Thus, it is sufficient to show that for every growth function r(·), there exists 1 ≤ t0 ≤ t for
which the claim holds. Applying Theorem B.11, for every growth function r : N → N, we can
express each polynomial Qn as a function of Cn ≤ Cmax(t, r(·)) polynomials Q′n,1, . . . , Q

′
n,Cn

of
degree at most t where rank(Q′n,1, . . . , Q

′
n,Cn

) ≥ r(Cn). Assume that Qn(x) = Fn(Q′n,1, . . . , Q
′
n,Cn

).

Let Q′n,γ =
∑Cn

i=1 γ(i)Q′n,i(x) for γ ∈ FCnp . By the Fourier decomposition of Fn, we have

ep(Qn(x)) =
∑
γ∈FCnp

F̂n(γ)ep
(
Q′n,γ(x)

)
.

Since ‖F̂n‖∞ ≤ 1, we have that for every n there exists γn such that

|〈fn, ep(Q′n,γn)〉| ≥ δp−Cn .

Since we assumed E[fn] = 0, we cannot have that Q′n,γn is a constant, thus we have deg(Q′n,γn) ≥ 1
and hence rank(Q′n,γn) ≥ r(Cn). Let t0 be a number which is the degree of Q′n,γn for infinitely
many n. Since r(·) is arbitrary, the claim follows.

We fix 1 ≤ t0 ≤ t given by Claim D.8. Let r : N→ N be a growth function to be determined later.
Since D is consistent, we can refine the sequence (fn)n∈N to the subsequence given by Claim D.8,
and obtain there exists function fn : Fnp → D with limn→∞ ‖fn‖u(Dn) = 0, and polynomials Qn of
degree exactly t0, such that for every n > n0,

• |〈fn, ep(Qn)〉| ≥ 1/b;

• rank(Qn) ≥ r(b).

We first derive a contradiction when t0 ∈ S.

Lemma D.9. If t0 ∈ S, then lim supn→∞ ‖fn‖u(Dn) > 0.

Proof. In the proof, we think of p, s as constants and do not explicitly mention dependencies on
them. Given the value of b, let r̃b : N→ N be a growth function to be determined later, where we
will in particular have r̃b(a) ≥ r(a), for all a, b ∈ N. Since t0 ∈ S, there exist polynomials Pn of
degree exactly t0, functions gn ∈ Dn, and n0, a ∈ N, such that for every n > n0,

• |〈ep(Pn), gn〉| ≥ 1/a;

• rank(Pn) ≥ r̃b(a).
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Set ε := 1
1000a2b

. Since D is correlation testable with true complexity d and Cauchy-Schwarz
complexity s < p, there exist δ ∈ (0, ε), η > 0, and a family of homogenous systems of linear
forms L1, . . . ,L` of true complexity at most d and Cauchy-Schwarz complexity at most s, and
conjugations α1, . . . , α`, such that

‖(tL1,α1(f), . . . , tL`,α`(f))− (tL1,α1(f ′), . . . , tL`,α`(f
′))‖∞ ≥ 2η,

for every f, f ′ : Fnp → D (with n > n0) satisfying ‖f ′‖u(Dn) ≥ ε and ‖f‖u(Dn) ≤ δ. We will prove the
lemma by constructing a new sequence of functions (f ′n : Fnp → D)n∈N such that for large enough
n, we will have

• |〈f ′n, gn〉| ≥ ε and hence ‖f ′n‖u(Dn) ≥ ε;

• |tLi,αi(fn)− tLi,αi(f ′n)| ≤ η, for all 1 ≤ i ≤ k.

This will conclude the lemma as it will show that ‖ep(fn)‖u(Dn) ≥ δ for large enough n.
Let r1 : N → N be a growth function to be determined later (whose choice depends on the

values of a, b). By Theorem C.6, there exists a polynomial factor Bn of degree s, complexity
Cn ≤ Cmax(η, a, b, r1(·)) and rank at least r1(Cn), such that for hn := E(fn|Bn) we have

|tLi,αi(fn)− tLi,αi(hn)| ≤ η/10, (40)

for all 1 ≤ i ≤ k, and also
‖fn − hn‖Us+1 ≤ 1/2b. (41)

Recall that Qn is a polynomial of degree t0 ≤ t ≤ s such that |〈fn, Qn〉| ≥ 1/b, for n ≥ n0. By
the choice of (41) we have that hn is also correlated to Qn, as

|〈hn, ep(Qn)〉| ≥ |〈fn, ep(Qn)〉| − |〈fn − hn, ep(Qn)〉| ≥ 1

b
− ‖fn − hn‖Us+1 ≥ 1/2b. (42)

Assume Bn is defined by polynomials Q′n,1, . . . , Q
′
n,Cn

. Define Q′n,γ =
∑Cn

i=1 γ(i)Q′n,i for γ ∈ FCnp .
The function hn = E(fn|Bn) is Bn-measurable, hence hn = Fn(Q′n,1, . . . , Q

′
n,Cn

) for some function

Fn : FCnp → D, and we have

hn(x) =
∑
γ∈FCnp

F̂n(γ)ep(Q
′
n,γ(x))

where ‖F̂n‖∞ ≤ 1. Thus we have

1/2b ≤
∣∣∣∣〈hn, ep(Qn)〉

∣∣∣∣ ≤ ∑
γ∈FCnp

|F̂n(γ)| · |bias(Q′n,γ −Qn)|. (43)

We now show that when r1(·) is chosen large enough (as a function of a, b), then almost all
the contribution to the correlation in (43) comes from a single term γ∗. Let r1(C) be chosen large
enough, such if R is a polynomial on Fnp of degree at most s and rank at least r1(C)/2, then for
large enough n we have

|bias(R)| ≤ ε · p−C . (44)

Such a choice is guaranteed by Theorem B.11. Assuming such a choice for r1(·), we have the
following claim.
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Claim D.10. There exists γ∗ ∈ FCnp such that |F̂n(γ∗)| ≥ 1/4b and |bias(Q′n,γ∗ − Qn)| ≥ 1/4b.

Moreover, for all γ 6= γ∗ we have |bias(Q′n,γ −Qn)| ≤ ε · p−Cn.

Proof. Assume first that rank(Q′n,γ −Qn) ≥ r1(Cn)/2 for all γ ∈ FCnp . This implies by (44) that

|〈hn, ep(Qn)〉| ≤
∑
γ∈FCnp

|F̂n(γ)||bias(Q′n,γ −Qn)| ≤ ε ≤ 1

10b
,

which is a contradiction to (42). So there must exist at least one γ such that rank(Q′n,γ − Qn) <
r1(Cn)/2. Assume there were two distinct γ′ 6= γ′′ such that rank(Q′n,γ′ − Qn) < r1(Cn)/2 and
rank(Q′n,γ′′ −Qn) < r1(Cn)/2. Then by subadditivity of rank, this implies

rank(Q′n,γ′−γ′′) = rank((Q′n,γ′ −Qn)− (Qn,γ′′ −Qn))

≤ rank(Q′n,γ′ −Qn) + rank(Qn,γ′′ −Qn) < r1(Cn),

which is a contradiction to the fact that {Qn,1, . . . , Qn,Cn} has rank at least r1(Cn). So, there exists
a unique γ∗ ∈ FCnp such that rank(Q′n,γ∗ −Qn) < r1(Cn)/2. Thus by (44) we have∑

γ 6=γ∗
|F̂n(γ)||bias(Q′n,γ −Qn)| ≤ ε ≤ 1/10b.

However, by (42) we have |〈hn, ep(Qn)〉| ≥ 1/2b. Hence

|F̂n(γ∗)||bias(Q′n,γ∗ −Qn)| ≥ 1/4b.

The claim follows as |F̂n(γ∗)| ≤ 1 and |bias(Q′n,γ∗ −Qn)| ≤ 1.

The next claim shows that if we require r1(·) and r(·) to be large enough, then we can guarantee
that deg(Q′n,γ∗) = deg(Qn).

Claim D.11. If r1(·), r(·) are chosen large enough, then

deg(Q′n,γ∗) = deg(Qn).

Proof. Recall that we have by assumption rank(Qn) ≥ r(b) and rank(Q′n,γ∗) ≥ r1(Cn). We also have
|bias(Q′n,γ∗ −Qn)| ≥ 1/4b by Claim D.10, which by Theorem B.11 implies that rank(Q′n,γ∗ −Qn) ≤
r′(b), for some function r′(·). We have two cases to consider:

• If deg(Qn) < deg(Q′n,γ∗), then we have rank(Q′n,γ) ≤ r′(b) + 1. To avoid this case we choose
r1(C) > r′(b) + 1 for all C ∈ N.

• If deg(Qn) > deg(Q′n,γ∗), then we have rank(Qn) ≤ r′(b) + 1. To avoid this case we choose
r(b) > r′(b) + 1 for all b ∈ N.

If these two conditions are met, this guarantees that deg(Q′n,γ∗) = deg(Qn) as claimed.

We thus have deg(Q′n,γ∗) = deg(Qn) = t0. We now claim that without loss of generality
we can assume γ∗ = e1 = (1, 0, . . . , 0). This can be achieved by performing an invertible linear
transformation on the basis Q′n,1, . . . , Q

′
n,Cn

which preserves the polynomial factor defined by it
as well as its rank. Summarizing Claim D.10 and Claim D.11 and the discussion above, we have
established the following properties:
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1. |F̂n(e1)| ≥ 1
4b ;

2. |bias(Q′n,1 −Qn)| ≥ 1
4b and |bias(Q′n,γ −Qn)| ≤ ε · p−Cn for all γ 6= e1;

3. deg(Q′n,1) = deg(Qn) = t0;

4. rank(Q′n,1) ≥ r1(Cn) and rank(Qn) ≥ r(b).

We now repeat the same process for gn. Let λ = εp−Cmax . There exists a polynomial factor B′n
of degree s and complexity C ′n ≤ C ′max defined by polynomials {P ′n,i : 1 ≤ i ≤ C ′n}, such that for
g′n := E(gn|B′n) we have

‖gn − g′n‖Us+1 ≤ λ,

and also that g′n = Gn(P ′n,1, . . . , P
′
n,C′n

) where

1. |Ĝn(e1)| ≥ 1
4a ;

2. |bias(P ′n,1 − Pn)| ≥ 1
4a and |bias(P ′n,γ − Pn)| ≤ ε · p−C′n for all γ 6= e1;

3. deg(P ′n,1) = deg(Pn) = t0;

4. rank(P ′n,1) ≥ r1(C ′n) and rank(Pn) ≥ r̃b(a).

We now define a new polynomial factor B̃n as follows. Let Rn,2, . . . , Rn,Cn be random polyno-
mials in Fnp chosen such that deg(Rn,i) = deg(P ′n,i). We note that for every rank bound r∗, for

large enough n the following holds with high probability. Let P 1 be some (possibly zero) linear
combination of Pn, P

′
n,1, . . . , P

′
n,C′n

and let R1 be a nonzero linear combination of Rn,2, . . . , Rn,Cn .

Then as long as deg(R1) ≥ deg(P 1) we have that rank(P 1 +R1) ≥ r∗.
We define B̃n = {Pn, Rn,2, . . . , Rn,Cn}. Define Rn,γ = γ(1)Pn(x)+

∑Cn
i=2 γ(i)Rn,i(x) for γ ∈ FCnp .

We define the new sequence of functions as

f ′n(x) = Fn(Pn, Rn,2, . . . , Rn,Cn). (45)

We conclude the proof by showing that |tLi,αi(f ′n) − tLi,αi(fn)| ≤ η for all 1 ≤ i ≤ `, but that
|〈f ′n, gn〉| ≥ ε.

Claim D.12. |tLi,αi(f ′n)− tLi,αi(fn)| ≤ η for all 1 ≤ i ≤ `.

Proof. Note that deg(Rn,i) = deg(Pn,i) for all 1 ≤ i ≤ `. Since all the linear forms are homoge-
nous, we can apply Proposition C.5. By the proposition, there exists a bound r′(η) such that if
rank(Bn), rank(B̃n) ≥ r′ then the claim follows. To ensure this, we require for Bn that r1(C) ≥ r′

for all C ∈ N; and for B̃n that r∗ ≥ r′ and that r̃b(a) ≥ r′ (note that it is crucial to allow r̃ to
depend on both a, b, since η depends on both a, b).

Claim D.13. |〈f ′n, gn〉| ≥ ε.

Proof. We first claim, it suffices to prove |〈f ′n, g′n〉| ≥ 2ε. Indeed

|〈f ′n, gn − g′n〉| ≤
∑
γ∈FCnp

|F̂n(γ)||〈ep(Rn,γ), gn − g′n〉| ≤ pCn‖gn − g′n‖Us+1 ≤ ε,
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where we used the fact that deg(R′n,γ) ≤ s. Now note that

〈f ′n, g′n〉 =
∑

γ∈FCnp ,γ′∈FC
′
n

p

F̂n(γ)Ĝn(γ′)bias(Rn,γ − P ′n,γ′).

Consider first the term γ = γ′ = e1. We have Rn,e1 = Pn and by our construction,∣∣∣F̂n(e1)Ĝn(e1)bias(Pn − P ′n,1)
∣∣∣ ≥ 1

4b
· 1

4a
· 1

4a
≥ 3ε.

We now bound all other terms (γ, γ′) 6= (e1, e1). By choosing r1(·), r∗ large enough, we can bound

|bias(Rn,γ − P ′n,γ′)| ≤ ε · p−(Cn+C′n).

Putting all these together we conclude that |〈f ′n, gn〉| ≥ ε as claimed.

This concludes the proof of Lemma D.9.

Lemma D.9 shows that if t0 ∈ S, then we are done. We will next show that S = {1, . . . , t} which
will conclude the proof of Lemma D.6. Consider any t′ < t and systems of linear forms L1, . . . ,L`.
For a function f : Fnp → R we shorthand tL(f) = tL,α(f) for all conjugates α since f = f . In
Lemma D.14 below we shall show that it is possible to construct two different families of functions
fn, f

′
n : Fnp → [−1, 1] such that

(i) fn and f ′n cannot be distinguished by averages tLi ;

(ii) fn has correlation with polynomials of degree exactly t and of arbitrarily high rank;

(iii) f ′n is a linear combination of a bounded number of exponentials of polynomials of degree
exactly t′ and arbitrarily high rank.

We note that the combination of (i), (ii), (iii) implies that t′ ∈ S: Condition (ii) im-
plies by Lemma D.9 that lim supn→∞ ‖fn‖u(Dn) > 0. By Condition (i) this implies that also
lim supn→∞ ‖f ′n‖u(Dn) > 0; so there exist gn ∈ Dn such that lim supn→∞ |〈f ′n, gn〉| = δ > 0. By

Condition (iii) we can express f ′n(x) =
∑C

i=1 aiep(Qn,i(x)) where C is a uniform bound, |ai| ≤ 1
and Qn,i are polynomials of degree t′ and arbitrarily high rank. Hence, we must have for infinitely
many n that |〈ep(Qn,i), gn〉| ≥ δp−C for some i. Since D is consistent, we can extend this to all
large enough n and complete the proof.

It only remains to prove the following lemma.

Lemma D.14. Let L1, . . . ,L` be systems of linear forms. Let t′ < t. There exists functions
fn, f

′
n : Fnp → [−1, 1] and a constant C ∈ N such that the following holds:

(i) For every i ∈ [`],
tLi(fn) = tLi(f

′
n).

(ii) There exist polynomials Pn : Fnp → Fp satisfying deg(Pn) = t and limn→∞ rank(Pn) =∞, and

lim inf
n→∞

|〈ep(Pn), fn〉| > 0.
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(iii) f ′n is a linear combination of exponentials of C high rank polynomials of degree exactly t′.
That is, there exist polynomials Qn,1, . . . , Qn,C : Fnp → Fp satisfying deg(Qn,i) = t′ and
limn→∞ rank(Qn,i) =∞ for all 1 ≤ i ≤ C, and

f ′n(x) =
C∑
i=1

aiep(Qn,i(x)),

where |ai| ≤ 1.

Proof. We first note that it is sufficient to prove the lemma for systems of linear forms which are
non-isomorphic and connected, since we can decompose each system to its connected components
and remove isomorphic copies.

First let us introduce some notations. For positive integers m > n, let πm→n denote the natural
projection from Fmp to Fnp defined as

πm→n : (x1, . . . , xm) 7→ (x1, . . . , xn).

For functions f : Fmp → C and g : Fnp → C, let f ⊗ g : Fm+n → C denote the function

(f ⊗ g)(x1, . . . , xm+n) = f(x1, . . . , xm)g(xm+1, . . . , xm+n),

and note that for every system of linear forms L, we have

tL(f ⊗ g) = tL(f)tL(g).

By Theorem F.1, there exist a constant N ∈ N, an ε > 0, and a function F : FNp → [0, 1] such
that{

z ∈ R` | ‖z − (tL1(F ), . . . , tL`(F ))‖∞ ≤ ε
}
⊆
{

(tL1(f), . . . , tL`(f)) | f : FNp → [0, 1]
}
. (46)

Consider two sequences of polynomials Pn, Qn : Fnp → Fp such that deg(Pn) = t and deg(Qn) = t′,
and

lim
n→∞

rank(Pn) = lim
n→∞

rank(Qn) =∞.

Define gn : Fnp → {−1/p, 1− 1/p} as gn(x) = 1− 1/p if and only if Qn(x) = 0. Note that

gn(x) =
∑

α∈Fp\{0}

1

p
ep(αQn(x)).

Define hn : Fnp → {0, 1} as hn(x) = 1 if and only if Pn(x) = 0.
Let δ > 0 be sufficiently small so that for every m > N , and every i ∈ [k],

|tLi(F )− tLi(δhm + (1− δ)F ◦ πm→N )| ≤ ε/2.

Then by (46), for every m > N , there exists a function Gm : FNp → [0, 1] such that for every i ∈ [k],

tLi(Gm) = tLi(δhm + (1− δ)F ◦ πm→N ). (47)
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For n > 2N , let m = bn/2c and define fn, f
′
n : Fnp → [−1, 1] as

fn := gn−m ⊗ (δhm + (1− δ)F ◦ πm→N ),

f ′n := gn−m ⊗ (Gm ◦ πm→N ).

By (47) for every i ∈ [k] and every n > 2N ,

tLi(fn) = tLi(gn−m)tLi(δhm + (1− δ)F ◦ πm→N ) = tLi(gn−m)tLi(Gm ◦ πm→N ) = tLi(f
′
n),

which establishes (i). To establish (ii), let Rn := Qn−m ⊗ Pm. Note that Rn is a polynomial of
degree t and limn→∞ rank(Rn) =∞. We have

〈fn, ep(Rn)〉 = 〈gn−m, ep(Qn−m)〉 · 〈δhm + (1− δ)F ⊗ πm→N , ep(Pm)〉.

We now lower bound the terms. By the definition of gn−m, we have

|〈gn−m, ep(Qn−m)〉| =

∣∣∣∣∣∣1p +
1

p

∑
α∈Fp\{0,1}

bias((α− 1)Qn−m)

∣∣∣∣∣∣ ≥ 1

2p
,

for large enough n−m since rank(Qn−m)→∞. The function F⊗πm→N depends only on the first N
variables; hence we have limm→∞〈F ⊗ πm→N , ep(Pm)〉 = 0 since rank(Pm)→∞ by Theorem B.11.
Finally, by the definition of hm we have

〈hm, ep(Pm)〉 = PrX [Pm(X) = 0] ≥ 1

2p

for large enough m, since rank(Pm)→∞. We thus conclude that

|〈fn, ep(Rn)〉| ≥ 1

4p2

for large enough n, which establishes (ii). To conclude the proof we establish (iii). Let

Gm(x) =
∑
γ∈FNp

Ĝ(γ)ep

(
N∑
i=1

γ(i)x(i)

)

where |Ĝ(γ)| ≤ 1. We thus have

f ′n(x) = gn−m(x(1), . . . , x(n−m))Gm(x(n−m+ 1), . . . , x(n−m+N))

=
∑

γ∈FNp ,α∈Fp\{0}

1

p
Ĝ(γ)ep

(
αQn−m(x(1), . . . , x(n−m)) +

N∑
i=1

γ(i)x(n−m+ i)

)
.

Hence, we can express f ′n as the linear combination of C = (p− 1)pN exponentials of polynomials
of degree exactly t′; and as N is fixed and n−m→∞, their rank is unbounded. This established
(iii) and concludes the proof.
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E Characterization of correlation testable properties

Consider a family D := {Dn}n∈N where Dn is a set of functions from Fnp to Fp. Given a function
fn : Fnp → Fp, we want to probabilistically determine whether fn has correlation with Dn. That is,
we want to determine if ‖ep(fn)‖u(Dn) is non-negligible or not, where we are only allowed to read
the value of fn on a few points. We recall the definition of correlation testable properties.

Definition E.1 (Correlation testable properties). A family D = (Dn) is correlation testable with q
queries, if there exists a distribution µ taking values in (Fnp )q and a mapping Γ : Fqp → {0, 1}, such
that the following holds. For every ε > 0, there exist δ ∈ (0, ε), 0 ≤ θ− < θ+ ≤ 1 and n0 ∈ N, such
that for every n > n0 and f : Fnp → Fp we have:

• If ‖ep(f)‖u(Dn) ≥ ε then Pr(X1,...,Xq)∼µ[Γ(f(X1), . . . , f(Xq)) = 1] ≥ θ+.

• If ‖ep(f)‖u(Dn) ≤ δ then Pr(X1,...,Xq)∼µ[Γ(f(X1), . . . , f(Xq)) = 1] ≤ θ−.

We study proper dual families D. We recall that a family D is proper dual if the following
conditions hold:

• A1: Consistency For positive integers m > n and g ∈ Dn, the function h : Fmp → Fp defined
as h(x1, . . . , xm) = g(x1, . . . , xn) belongs to Dm.

• A2: Affine invariance For every positive integer n, if g ∈ Dn, then for every A ∈ Aff(n,Fp),
we have Ag ∈ Dn.

• A3: Sparsity For every ε > 0 and large enough n, we have |Dn| ≤ pεp
n
.

E.1 Correlation testing by averages over linear forms

We first show that if D is a proper dual family which is correlation testable using q queries, then
it is in fact also testable using averages of linear forms. When arguing about functions to Fp, one
may allow more general types of averages. Let L = {L1, . . . , Lm} be a system of linear forms in k
variables. Let β ∈ Fmp be a vector of coefficients. Recall that for a function f : Fnp → Fp, we define
the average

t∗L,β(f) = EX∈(Fnp )k

[
ep

(
m∑
i=1

β(i)f(Li(X))

)]
.

We note that for functions f : Fnp → Fp, these averages generalize the previous averages tL,α which
were defined for bounded functions. Indeed, for α ∈ {0, 1}m let β ∈ {−1, 1}m be defined as
β(i) = (−1)α(i), then

t∗L,β(f) = tL,α(ep(f)).

Lemma E.2. Suppose that a proper dual family D = {Dn} is correlation testable with q queries.
Then for every ε > 0, there exists δ ∈ (0, ε), n0 ∈ N, and homogeneous systems of lin-
ear forms L1, . . . ,L` with m1, . . . ,m` linear forms, accordingly, and corresponding coefficients
β1 ∈ Fm1

p , . . . , β` ∈ Fm`p , such that the closures of the following two sets are disjoint:

Tε := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≥ ε},

and
Sε := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≤ δ}.

Moreover, the systems L1, . . . ,L` have Cauchy-Schwarz complexity at most q − 2.
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Proof. Since Dn is a proper dual, by Condition A2, for every fn : Fnp → Fp and every A ∈ Aff(n,Fp),
we have that ‖ep(Afn)‖u(Dn) = ‖ep(fn)‖u(Dn). Let A ∈ Aff(n,Fp) be a uniform random invertible
affine transformation. Then by the assumption that D is correlation testable, we have that

• If ‖ep(fn)‖u(Dn) ≥ ε, then Pr(X1,...,Xq)∼µ,A∈Aff(n,Fp)[Γ(fn(AX1), . . . , fn(AXq)) = 1] ≥ θ+.

• If ‖ep(fn)‖u(Dn) ≤ δ, then Pr(X1,...,Xq)∼µ,,A∈Aff(n,Fp)[Γ(fn(AX1), . . . , fn(AXq)) = 1] ≤ θ−.

We establish the lemma by showing that if we set n0 large enough, then the probability

Pr(X1,...,Xq)∼µ,A∈Aff(n,Fp)[Γ(f(AX1), . . . , f(AXq)) = 1]

can be approximated with an arbitrarily small error by linear combinations of t∗L1,β1(f), . . . , t∗L`,β`(f),
where {(Li, βi)}1≤i≤` are all possible homogeneous systems of at most q linear forms. Note that `
is a constant depending only on p, q, and that the Cauchy-Schwarz complexity of any homogeneous
system of t ≤ q linear forms is at most t − 2 ≤ q − 2. We start by decomposing Γ to its Fourier
decomposition

Γ(z(1), . . . , z(q)) =
∑
γ∈Fqp

Γ̂(γ)ep

(
q∑
i=1

γ(i) · z(i)

)
.

We thus have that

Pr(X1,...,Xq)∼µ,A∼Aff(n,Fp)[Γ(f(AX1), . . . , f(AXq)) = 1] =
∑
γ∈Fqp

Γ̂(γ)E

[
ep

(
q∑
i=1

γ(i) · f(AXi)

)]
,

where the expectation is taken over (X1, . . . , Xq) ∼ µ and A ∼ Aff(n,Fp). Thus, it is enough
to show that each term E [ep(

∑q
i=1 β(i) · f(AXi))] can be approximated by linear combinations of

{t∗Li,βi(f)}1≤i≤k.
Fix (x1, . . . , xq) ∈ (Fnp )q. Suppose that the rank of span{x1, . . . , xq} over Fp is r. Let y1, . . . , yr ∈

Fnp form a basis for span{x1, . . . , xq}, so that xi =
∑r

j=1 λi,jyj , for every 1 ≤ i ≤ q. Then the distri-
bution of (Ax1, . . . , Axq) is the same as the distribution of (Y0 +

∑r
j=1 λ1,jYj , . . . , Y0 +

∑r
j=1 λq,jYj),

where Y0, Y1, . . . , Yr are i.i.d. random variables taking values in Fnp uniformly at random conditioned
on Y1, . . . , Y` being linearly independent. However since if we pick Y1, . . . , Yr independently and
uniformly at random, with probability 1 − on→∞(1) they will be linearly independent, by tak-
ing n to be sufficiently large this distribution can be made arbitrarily close to the distribution of
(Y0 +

∑r
j=1 λ1,jYj , . . . , Y0 +

∑r
j=1 λq,jYj), where Y0, . . . , Yr are i.i.d. random variables taking values

in Fnp uniformly at random.
Thus, we can approximate each term E [ep(

∑q
i=1 β(i) · f(Axi))] by

E
[
ep(
∑q

i=1 β(i) · f(Y0 +
∑r

j=1 λi,jYj))
]
, which is one of the averages t∗Li,βi(f). We now con-

clude the proof, since E [ep(
∑q

i=1 β(i) · f(AXi))] where (X1, . . . , Xq) ∼ µ can be approximated by
an appropriate weighted average of t∗Li,β1(f), . . . , t∗L`,β`(f).

E.2 From field functions to distributional functions

The next step is to move from functions f : Fnp → Fp to functions whose output lies in some
convex set. Once this is accomplished, we can use the same techniques used for studying functions
f : Fnp → D, there were used in Section D.
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Let P (Fp) denote the family of probability measures over Fp. That is, P (Fp) ⊂ Rp is given by

P (Fp) = {µ : Fp → [0, 1] :
∑
c∈Fp

µ(c) = 1}.

We identify every element c ∈ Fp with its corresponding dirac measure on Fp. That is c ∈ Fp is
corresponded with the probability measure µc where µc(c) = 1 and µc(c

′) = 0 for all c′ 6= c. We
refer to functions Γ : Fnp → P (Fp) as distributional functions. Note that they are a superfamily of
functions from Fnp to Fp, which can be regarded as deterministic functions. Given a distributional
function Γ, we identify it with a distribution over functions from Fnp to Fp: If F ∼ Γ, the value F(x)
is independently chosen for every x ∈ Fnp according to the distribution Γ(x).

We extend the notion of averages t∗L,β to distributional functions Γ. For c ∈ Fp define the
function ac : P (Fp)→ D to be

ac(µ) = Ez∼µ[ep(c · z)].

For a distributional function Γ : Fnp → P (Fp) we consider the functions ac ◦ Γ : Fnp → D, which can
equivalently be defined as

(ac ◦ Γ)(x) = EF∼Γ[ep(c · F(x))].

Let L = {L1, . . . , Lm} be a system of m linear forms in k variables, and let β ∈ Fmp . We define

t∗L,β(Γ) = EX∈(Fnp )k

[
m∏
i=1

(aβ(i) ◦ Γ)(Li(X))

]
.

Note that for functions f : Fnp → Fp this definition identifies with our previous definition.

Claim E.3. Let L = {L1, . . . , Lm} be a system of linear forms in k variables. Let β ∈ Fmp be a
vector of corresponding coefficients. Then for every distributional function Γ : Fnp → P (Fp), and
every ε > 0, we have

PrF∼Γ

[∣∣∣∣t∗L,β(F)− t∗L,β(Γ)

∣∣∣∣ ≤ ε] = 1− on(1).

Proof. The proof follows by a first and second moment estimation, and then applying Chebyshev’s
inequality. Let F ∼ Γ. Fix x ∈ (Fnp )k, and consider the random variable

A(x) = ep

(
m∑
i=1

β(i)F(Li(x))

)
.

We have t∗L,β(F) = 1
pnk

∑
x∈(Fnp )k A(x). Note that when L1(x), . . . , Lm(x) are all distinct, we have

EF∼Γ[A(x)] =
n∏
i=1

(aβ(i) ◦ Γ)(Li(x)).

Thus, we get that∣∣EF∼Γ[t∗L,β(F)]− t∗L,β(Γ)
∣∣ ≤ PrX∈(Fnp )k [L1(X), . . . , Lm(X) not all distinct] ≤ m2p−n,
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where the second inequality follows by the union bound. We now bound the variance of
t∗L,β(F). Note that two random variables A(x′), A(x′′) are independent if {L1(x′), . . . , Lm(x′)}
and {L1(x′′), . . . , Lm(x′′)} are disjoint. We thus can bound

VarF∼Γ[t∗L,β(F)] ≤ Prx′,x′′∈(Fnp )k [{L1(x′), . . . , Lm(x′)} ∩ {L1(x′′), . . . , Lm(x′′)} 6= ∅] ≤ m2p−n,

where the second inequality follows from the union bound. The claim follows for Chebychev’s
bound.

We extend also the notion of correlation to distributional functions. We shorthand ep(Γ) :=
a1 ◦ Γ, and consider

‖ep(Γ)‖u(Dn) = sup
g∈Dn

|〈ep(Γ), ep(g)〉|.

Claim E.4. Let D = {Dn}n∈N be a proper dual family. Then for every distributional function
Γ : Fnp → P (Fp) and any ε > 0 we have

PrF∼Γ

[∣∣∣∣‖ep(F)‖u(Dn) − ‖ep(Γ)‖u(Dn)

∣∣∣∣ ≥ ε] = on(1).

Proof. Fix g ∈ Dn, and consider the random variable 〈ep(F), ep(g)〉 = 1
pn
∑

x∈Fnp ep(F(x) − g(x)).

Its expected value is 〈ep(Γ), ep(g)〉, and since the values {F(x) : x ∈ Fnp} are chosen independently,
we can apply Chernoff’s bound and get that

PrF∼Γ [|〈ep(F), ep(g)〉 − 〈ep(Γ), ep(g)〉| ≥ ε] ≤ 2e−c·p
n

for some constant c = c(ε) > 0. By the sparsity Condition A3 we get that for every c′ > 0 there
exists n0, such that for every n > n0 we have |Dn| ≤ pc

′pn . We conclude the proof by choosing c′

small enough such that pc
′
< ec, and apply the union bound over all g ∈ Dn.

We thus obtain the following lemma, which allows us to consider distributional functions instead
of field functions.

Lemma E.5. Suppose that a proper dual family D = {Dn} is correlation testable with q queries.
Then for every ε > 0, there exists δ ∈ (0, ε), n0 ∈ N, and homogeneous systems of lin-
ear forms L1, . . . ,L` with m1, . . . ,m` linear forms, accordingly, and corresponding coefficients
β1 ∈ Fm1

p , . . . , β` ∈ Fm`p , such that the closures of the following two sets are disjoint:

Tε := {(t∗L1,β1(Γ), . . . , t∗L`,β`(Γ))|n > n0,Γ : Fnp → P (Fp), ‖ep(Γ)‖u(Dn) ≥ ε},

and
Sε := {(t∗L1,β1(Γ), . . . , t∗L`,β`(Γ))|n > n0,Γ : Fnp → P (Fp), ‖ep(Γ)‖u(Dn) ≤ δ}.

Moreover, the systems L1, . . . ,L` have Cauchy-Schwarz complexity at most q − 2.

Proof. Apply Lemma E.2 for D and ε/2. There exist δ ∈ (0, ε/4) and systems of linear forms
L1, . . . ,L` with m1, . . . ,m` linear forms, accordingly, along with coefficients β1 ∈ Fm1

p , . . . , β` ∈ Fm`p ,
such that the closures of the sets

Tε/2 := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≥ ε/2}
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and
Sε/2 := {(t∗L1,β1(f), . . . , t∗L`,β`(f))|n > n0, f : Fnp → Fp, ‖ep(f)‖u(Dn) ≤ 2δ}

are disjoint. For a distributional function Γ : Fnp → P (Fp) define z(Γ) := (t∗L1,β1(Γ), . . . , t∗L`,β`(Γ)).
Let c > 0 be the L∞ distance between the closures of Tε/2 and Sε/2, and set ε′ = c/4. We will
show that for large enough n > n0, if Γ : Fnp → P (Fp) has ‖ep(Γ)‖u(Dn) ≥ ε then z(Γ) is within L∞
distance ε′ from Tε/2; and if ‖ep(Γ)‖u(Dn) ≤ δ then z(Γ) is within L∞ distance ε′ from Sε/2; this
will conclude the lemma.

Consider first the case where ‖ep(Γ)‖u(Dn) ≥ ε. Let F ∼ Γ. By Claims E.3 and E.4 we have
that there exists n0, such that for every n > n0 we have

PrF∼Γ[‖ep(F)‖u(Dn) ≥ ε/2] ≥ 0.99,

and that for every 1 ≤ i ≤ ` we have

PrF∼Γ[|t∗Li,βi(F)− t∗Li,βi(Γ)| ≤ ε′] ≥ 1− 1

100`
.

By the union bound, there exists a specific f : Fnp → Fp such that both conditions hold. That is,
z(f) ∈ Sε/2 and ‖z(Γ)−z(f)‖∞ ≤ ε′. The case where ‖ep(Γ)‖u(Dn) ≤ δ is completely analogous.

We thus study from now on distributional functions Γ : Fnp → P (Fp). The next step is to define
averages of such functions with regards to polynomial factors. Let B be a polynomial factor. We
define the average E(Γ|B) : Fnp → P (Fp) as follows. Assume B defines a partition C1 ·∪ . . . ·∪Cb of
Fnp . For x ∈ Ci define E(Γ|B)(x) to be the average of Γ(y) over y ∈ Ci,

E(Γ|B)(x) =
1

|Ci|
∑
y∈Ci

Γ(y).

Note that ac ◦ E(Γ|B) ≡ E(ac ◦ Γ|B).
We say a polynomial factor B is (d, δ)-good for Γ if, informally, Ud+1 norms cannot distinguish

between Γ and E(Γ|B). Formally, we say a polynomial factor B is (d, δ)-good for Γ if for all c ∈ Fp
we have

‖ac ◦ Γ− ac ◦ E(Γ|B)‖Ud+1 ≤ δ. (48)

We first argue that (d, δ)-good polynomial factors exist for every distributional function.

Claim E.6. Let δ > 0, d < p and r(·) be an arbitrary growth function. Then for every distributional
function Γ : Fnp → P (Fp) there exists a (d, δ)-good polynomial factor B with degree d, complexity
C ≤ Cmax(p, d, δ, r(·)) and rank at least r(C).

Proof. Apply Lemma B.14 on the set of functions {ac ◦ Γ : c ∈ Fp}.

The next claim is an analog of Corollary C.7. It shows that if Γ is a distributional function,
and if B is a (d, δ)-good polynomial factor for Γ where δ > 0 is small enough, then averages t∗L,β
cannot distinguish between Γ and E(Γ|B) if the true complexity of L is at most d.

Claim E.7. Let L = {L1, . . . , Lm} be a linear system of true complexity d and Cauchy-Schwarz
complexity at most p. For every ε > 0, there exists δ > 0 such that the following holds. Let
Γ : Fnp → P (Fp) be a distributional function and let B be a (d, δ)-good polynomial factor for Γ.
Then for every β ∈ Fmp ,

|t∗L,β(Γ)− t∗L,β(E(Γ|B))| ≤ ε.
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Proof. Let fi := aβ(i) ◦ Γ for 1 ≤ i ≤ m. We have

t∗L,β(Γ) = EX∈(Fnp )k

[
m∏
i=1

fi(Li(X))

]
,

and since aβ(i) ◦ E(Γ|B) ≡ E(fi|B), we also have

t∗L,β(E(Γ|B)) = EX∈(Fnp )k

[
m∏
i=1

E(fi|B)(Li(X))

]
.

The claim follows by Corollary C.7 and (48).

We would also require an analog of Proposition C.5. Let Γ : Fnp → P (Fp) be a distributional
function, and let B be a (d, δ)-good polynomial factor for Γ defined by polynomials P1, . . . , PC .
Let B′ be another polynomial factor defined by polynomials Q1, . . . , QC . We define a new hybrid
distribution, denoted E(Γ|B → B′) as follows: assume E(Γ|B)(x) = F (P1(x), . . . , PC(x)) where
F : FCp → P (Fp) is some function; we define

E(Γ|B → B′)(x) := F (Q1(x), . . . , QC(x)).

Lemma E.8. Let L be a homogeneous system of m linear forms. Let d ≥ 1 be a degree bound,
and ε > 0 a required error. There exists rmin = rmin(m, d, ε) such that the following holds. Let
B,B′ be polynomial factors of degree at most d defined by P1, . . . , PC and Q1, . . . , QC , respectively.
Assume that deg(Pi) = deg(Qi) for all 1 ≤ i ≤ C and rank(B), rank(B′) ≥ rmin. Then for every
distributional function Γ : Fnp → P (Fp) and any β ∈ Fmp we have∣∣t∗L,β(E(Γ|B))− t∗L,β(E(Γ|B → B′))

∣∣ ≤ ε.
The proof is identical to the proof of Proposition C.5 and we do not repeat it.

E.3 Proof of Theorem 1.3

The proof follows very similar lines to the proof of Theorem D.2. We will highlight the changes
that need to be made in the proof, and avoid repetition wherever possible.

Let D = {Dn}n∈N be a proper dual family where Dn is a family of functions from Fnp → Fp. By
Lemma E.5 we get that for every ε > 0 there exists δ ∈ (0, ε), n0 ∈ N and systems of homogeneous
linear forms L1, . . . ,L` which have Cauchy-Schwarz complexity ≤ q − 2, along with coefficients
β1, . . . , β`, such such that the closure of the following two sets are disjoint:

Tε := {(t∗L1,β1(Γ), . . . , t∗L`,β`(Γ))|n > n0,Γ : Fnp → P (Fp), ‖ep(Γ)‖u(Dn) ≥ ε},

and
Sε := {(t∗L1,β1(Γ), . . . , t∗L`,β`(Γ))|n > n0,Γ : Fnp → P (Fp), ‖ep(Γ)‖u(Dn) ≤ δ}.

Let s ≤ q − 2 < p be a bound on the Cauchy-Schwarz complexity of L1, . . . ,L` and d ≤ s be a
bound on their true complexity. We define S in the same way as in the proof of Theorem D.2.

Claim E.9. Unless all functions in D are constants, we have 1 ∈ S.
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The proof is identical to the proof of Claim D.3. The case where D consists of only constant
functions is analyzed in the same way, hence we assume that 1 ∈ S from now on.

Claim E.10. S ⊆ {1, . . . , s}.

Proof. The proof is identical to the proof of Claim D.4. The only difference is the argument why
0` is in the closure of Sε. Let Γ map every element of Fnp to the uniform probability distribution
over Fp. Then it is easy to verify that |tLi,βi(Γ)| = O(p−n) for all 1 ≤ i ≤ `.

We denote t := max(S). Let (Γn : Fnp → P (Fp))n∈N be a sequence distributional functions where
limn→∞ E[ep(Γn)] = 0. Similar to the proof of Theorem D.2, the proof of Theorem 1.3 follows from
the following two lemmas.

Lemma E.11. If limn→∞ ‖ep(Γn)‖Ut+1 = 0 then limn→∞ ‖ep(Γn)‖u(Dn) = 0.

Lemma E.12. If limn→∞ ‖fn‖u(Dn) = 0 then limn→∞ ‖fn‖Ut+1 = 0.

The proof of both lemmas is identical to the proof of Lemmas D.5 and D.6, where the only
difference is that one considers averages t∗Li,βi(Γn) instead of tLi,αi(fn) and apply the claims proved
in the previous subsection for function Γ : Fnp → P (Fp) instead of their analogs for functions
f : Fnp → D. The only lemma whose proof needs to be slightly changed is Lemma D.14. We
sketch below an analog version for distributional functions. First, note that for every function
F : FNp → [0, 1] there exists a distributional function ΓF : FNp → P (Fp) such that ac ◦ ΓF ≡ F for

all c ∈ Fp \ {0}: simply set Pr[ΓF (x) = 0] = F (x) + (1− F (x))1
p and Pr[ΓF (x) = z] = (1− F (x))1

p
for z ∈ Fp \ {0}. Moreover, this implies that for every system of m linear forms L and coefficients
β ∈ (Fp \ {0})m,

t∗L,β(ΓF ) = tL(F ).

The lemma now follows, when in the proof of Lemma D.14 one replaces F with ΓF , gn with Qn (a
deterministic distributional function) and hn with Γhn .

F Non-isomorphic connected systems have nonempty interior

We prove in this section the following theorem.

Theorem F.1. Let L1, . . . ,Lk be non-isomorphic connected systems of linear forms. For suffi-
ciently large n ∈ N, the set of points{

(tL1(f), . . . , tLk(f)) | f : Fnp → [0, 1]
}
⊆ Rk (49)

has a non-empty interior.

We divided this section into two parts. In Section F.1 we introduce new notations and develop
some preliminary tools. The proof of Theorem F.1 is given in Section F.2.
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F.1 Flagged systems of linear forms

Consider a system of linear forms L. Recall that L is connected if there does not exists nonempty
S ( L such that span(S)∩ span(L\S) = {~0}. Suppose that there are subsets S1, S2 ( L such that

span(Si) ∩ span(L \ Si) = {~0},

for i = 1, 2. Then for T = S1 ∩ S2, we have

span(T ) ∩ span(L \ T ) = {~0}.

This in particular shows that (up to the isomorphisms) there is a unique way to partition a system
of linear forms L into disjoint connected systems of linear forms L1, . . . ,Lk. We call each one of
L1, . . . ,Lk a connected component of L. Since connectivity is invariant under isomorphisms we
have the following trivial observation.

Observation F.2. Two systems of linear forms L1 and L2 are isomorphic if and only if there is
a one to one isomorphic correspondence between their connected components.

A 1-flagged system of linear forms is a system of linear forms L and a non-zero linear form
M ∈ span(L). We use the notation LM to denote such a 1-flagged system of linear forms. Here L is
called the underlying system of linear forms of LM . We call LM0

0 and LM1
1 isomorphic, if there is an

invertible linear transformation T : span(L0) → span(L1) that maps M0 to M1 and its restriction
to L0 induces an isomorphism between L0 and L1.

Let L be a system of linear forms in k variables. For a 1-flagged system of linear forms LM ,
and a function f : Fnp → C define the function fL

M
: Fnp → C by

fL
M

: x 7→ EX∈(Fnp )k

[∏
L∈L

f(L(X))

∣∣∣∣M(X) = x

]
. (50)

Note that we have
tL(f) = EX∈Fnp

[
fL

M
(X)

]
. (51)

Let LM0
0 and LM1

1 be 1-flagged systems of linear forms in Fk0p and Fk1p , respectively. We want
to define an operation that “glues” these two systems to each other by identifying M0 and M1: To
this end, first we consider the system of linear forms L′ defined as

L′ = {L⊕~0 ∈ Fk0+k1
p : L ∈ L0} ∪ {~0⊕ L ∈ Fk0+k1

p : L ∈ L1}.

Take any element M 6= ~0 in Fk0+k1
p , and any surjective linear transformation T : Fk0+k1

p → Fk0+k1−1
p

that maps both ~0⊕M0 and M1 ⊕~0 to M . Then the product of LM0
0 and LM1

1 which is denoted by
LM0

0 · LM1
1 is defined as the 1-flagged system of linear forms

LM0
0 · LM1

1 :=
(
T (L′)

)M
.

Note that since T is surjective, this definition does not depend (up to isomorphism) on the particular
choices of the linear form M and the map T . The restrictions of T to each one of the sets

span{L⊕~0 ∈ Fk0+k1
p : L ∈ L0},
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and
span{~0⊕ L ∈ Fk0+k1

p : L ∈ L1}

is invertible, and thus T induces isomorphisms between these sets and their corresponding Li (i = 0
or 1). Therefore we shall refer to {T (L ⊕ ~0) ∈ Fk0+k1

p : L ∈ L0}M0 and {T (~0 ⊕ L) ∈ Fk0+k1
p : L ∈

L1}M1 respectively as copies of LM0
0 and LM1

1 in LM0
0 ·L

M1
1 . In the sequel, we will frequently identify

1-flagged system of linear forms with their copies in their product.
The definition of the product of 1-flagged systems of linear forms is motivated by the following

fact: It follows from (50) that if LM0
0 and LM1

1 are 1-flagged systems of linear forms, then for every
function f : Fnp → C, we have

fL
M0
0 ·LM1

1 = fL
M0
0 fL

M1
1 . (52)

Lemma F.3. Let LM0
0 and LM1

1 be 1-flagged systems of linear forms such that both L0 ∪{M0} and
L1 ∪ {M1} are connected. Then L ∪ {M} is also connected, where LM := LM0

0 · LM1
1 .

Proof. Suppose that LM0
0 and LM1

1 are respectively in k0 and k1 variables. Let T : Fk0+k1
p →

Fk0+k1−1
p be as in the definition of the product of two 1-flagged systems of linear forms given above.

Consider a nonempty set S ( L ∪ {M}. Suppose to the contrary of the assertion that

span(S) ∩ span((L ∪ {M}) \ S) = {~0}. (53)

We identify LM0
0 and LM1

1 with their copies in LM . In particular, both M0 and M1 are identified
with M . Since L0 ∪ {M} and L1 ∪ {M} are both connected with have M ∈ span(L0 \ {M}) and
M ∈ span(L1 \ {M}). Then it follows from (53) that we have S 6= Li ∪ {M}, for i = 1, 2. Also by
(53) we have

span(S ∩ (L0 ∪ {M})) ∩ span((L0 ∪ {M}) \ S) = {~0},

and
span(S ∩ (L1 ∪ {M})) ∩ span((L1 ∪ {M}) \ S) = {~0}.

Thus at least one of L0∪{M} or L1∪{M} is not connected which contradicts our assumption.

For a system of linear forms L and an L ∈ span(L) define degL(L) to be the number of pairs
(x, y) ∈ L × L satisfying x+ y = L.

Let LM := LM0 · LM1 where LM0 and LM1 are 1-flagged systems of linear forms. It follows from
the definition of the product that if x + y ∈ span({M}) with x ∈ L0 and y ∈ L1, then both x, y
belong to span({M}). Hence for every L ∈ span({M}), we have

degL0(L)+degL1(L) ≤ degL(L) ≤ degL0(L)+degL1(L)+|span({M})∩L0|+|span({M})∩L1|, (54)

and similarly for L ∈ Li \ span({M}) where i = 0, 1, we have

degLi(L) ≤ degL(L) ≤ degLi(L) + 2|span({M}) ∩ L1−i|. (55)

Lemma F.4. Let LM1
1 , . . . ,LMk

k be non-isomorphic 1-flagged systems of linear forms such that
Li ∪ {Mi} are connected for all i ∈ [k]. For every N > 0, there exist a 1-flagged system of linear
forms LM such that rank(span(L)) > N , and the underlying systems of linear forms of LM · LMi

i

for i ∈ [k] are connected and non-isomorphic.
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Proof. Let d > p+N be larger than the size of Li, for every i ∈ [k]. Denote e1 = (1, 0, . . . , 0) ∈ Fdp,
and consider the system of linear forms

M :=
(
{0} × Fd−1

p

)
∪
(
{1} × {0, 1}d−1

)
\ {~0, e1} ⊆ Fdp.

We claim thatM is connected. Indeed Fd−1
p \{~0} ≡

(
{0} × Fd−1

p

)
\{~0} (M is trivially connected,

and hence if S ⊆M is such that span(S) ∩ span(M\ S) = {~0}, then without loss of generality we
can assume that (

{0} × Fd−1
p

)
\ {~0} ⊆ S.

One can easily verify that S cannot be equal to
(
{0} × Fd−1

p

)
\ {~0}. Hence there exists at least one

element L ∈ S ∩
(
{1} × {0, 1}d−1

)
. ThenM⊆ span({L}∪ ({0}×Fd−1

p )) ⊆ span(S) which together

with the assumption span(S) ∩ span(M\ S) = {~0} shows that S =M. Hence M is connected.
Note that 2d−1 ≤ degM(L) ≤ 4pd−1 for every L ∈M, and degM(e1) = 2(2d−1−1). Furthermore

for every λ ∈ Fp \ {0, 1}, we have degM(λe1) = 0. Also we have span({e1}) ∩M = ∅. Set

L̃M :=Me1 · . . . · Me1︸ ︷︷ ︸
10pd times

.

and
LM := (L̃ ∪ {M})M .

By (54) and (55), and the above properties of M, we have 2d−1 ≤ degL(L) ≤ 4pd−1, for every
L ∈ L \ {M}. Moreover degL(M) ≥ 10pd, and degL(L) = 0 for every L ∈ span({M}) \ {~0,M}. It
also follows from span({e1}) ∩M = ∅ that span({M}) ∩ L = {M}.

For every i ≤ [k], set NWi
i := LM · LMi

i . Then by (54) and (55), we have

(i) degNi(Wi) ≥ 10pd;

(ii) 2d−1 ≤ degNi(L) ≤ 4pd−1 + 2p ≤ 5pd−1 for every L ∈ Ni \ (Li ∪ {Wi});

(iii) degNi(L) ≤ |Li| < 2d−1 for every L ∈ Li \ {Wi}.

Since M is connected and e1 ∈ span(M), we have that M ∪ {e1} is also connected. Then
Lemma F.3 shows that L is connected. Now since Li are connected, Lemma F.3 implies that
Ni = Ni ∪ {Wi} are connected. It remains to show that they are non-isomorphic. But if Ni is
isomorphic to Nj for some i, j ∈ [k], then there is a bijection between Ni and Nj that can be
extended to an invertible T : span(Ni) → span(Nj). Since such a function, maps ~0 to ~0, and
preserves the degrees, by (i), (ii), and (iii) above, we have T (Wi) = Wj and {T (L) : L ∈ Li} = Lj .
Thus the restriction of T to LMi

i is an isomorphism between LMi
i and LMj

j contradicting our

assumption that LMi
i and LMj

j are non-isomorphic.

F.2 Finishing the proof.

We view averages tL(f) as polynomials in the variables {f(x) : x ∈ Fnp},

tL(f) =
1

pnk

∑
x∈(Fnp )k

m∏
i=1

f(Li(x)).

We start by proving a technical lemma.
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Lemma F.5. Let L1, . . . ,Lk be non-isomorphic connected systems of linear forms. Let P1, . . . , Pk
be functions mapping every f : Fnp → C to C in the following way. Every Pi is a polynomial of
degree at most d in variables {f(x) : x ∈ Fnp}. If n > d + maxi∈[k] rank(span(Li)), and for every
i ∈ [k], rank(span(Li)) > d, then

P1(f)tL1(f) + . . .+ Pk(f)tLk(f) 6≡ 0,

unless Pi ≡ 0 for all i ∈ [k].

Proof. We claim a stronger statement that if at least one of Pi is not divisible by f(~0), then

P1(f)tL1(f) + . . .+ Pk(f)tLk(f)|f(~0)=0 6≡ 0.

Trivially it suffices to prove this statement for the case where for every i ∈ [k], no monomial of Pi
is divisible by f(~0). Assume to the contrary that there exist polynomials Pi of degree at most d in
variables {f(x) : x ∈ Fnp} with monomials which are not divisible by f(~0) such that

P1(f)tL1(f) + . . .+ Pk(f)tLk(f)|f(~0)=0 ≡ 0.

Without loss of generality assume that every Li is a system of linear forms in Flp for some positive
integer l. Define the rank of a monomial

∏
x∈Fnp f(x)αx to be the rank of span({x : αx 6= 0}). Let

ri denote the largest rank of a monomial with a non-zero coefficient in Pi.
Set i0 := argmaxi∈[k] (ri + rank(span(Li))). Let non-zero x1, . . . , xa ∈ Fnp be so that

rank(span({x1, . . . , xa})) = ri0 ,

and
∏a
i=1 f(xi)

αi where αi > 0 appears with a non-zero coefficient in Pi0 . Since n ≥ d +
rank(span(Li0)), there exists x ∈ (Fnp )k such that {L(x) : L ∈ Li0} are all distinct and

span({L(x) : L ∈ Li0}) ∩ span({x1, . . . , xa}) = {~0}. Note that the connectivity of Li0 , and the
assumption that deg(Pi0) < rank(span(Li0)) implies that the monomial(

a∏
i=1

xαii

) ∏
L∈Li0

f(L(x)),

appears with a non-zero coefficient in Pi0(f)tLi0 (f) (i.e. there is no cancelation). This is because
the maximal connected component

Suppose that this monomial appears with a non-zero coefficient also for some other 1 ≤ j ≤ k in
Pj(f)

∏
L∈Lj f(L(x′)), where x′ ∈ (Fnp )k. Then the maximality of ri0+rank(span(Li0)), connectivity

of Lj , and the assumption that deg(Pj) < rank(span(Lj)) shows that {L(x′) : L ∈ Lj} = {L(x) :
L ∈ Li0} as multisets. By the assumption that {L(x) : L ∈ Li0} are all distinct we get that {L(x′) :
L ∈ Lj} are also all distinct. It follows that Lj is isomorphic to Li0 , which is a contradiction.

Consider a system of linear forms L and a function f : Fnp → C. Define the function f∂L : Fnp →
C, as

f∂L(x) :=
∑
L∈L

f (L\{L})L(x).

The following easy lemma which follows from linearity of expectation explains the motivation for
this notation.
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Lemma F.6. For f, g : Fnp → C, and every system of linear forms L, we have

d

dt
tL(f + tg)|t=0 = E

[
g(X)f∂L(X)

]
,

where X is a random variable taking values in Fnp uniformly at random.

Consider connected non-isomorphic systems of linear forms L1, . . . ,Lk. We claim that in order
to prove Theorem F.1 it suffices to shows that there exists f : Fnp → (0, 1) such that f∂L1 , . . . , f∂Lk

are linearly independent over R.

Claim F.7. Let f : Fnp → (0, 1) be such that f∂L1 , . . . , f∂Lk are linearly independent over R. Then
there exists ε > 0 such that{

(tL1(f), . . . , tLk(f)) + z : z ∈ Rk, ‖z‖∞ ≤ ε
}
⊆
{

(tL1(g), . . . , tLk(g)) : g : Fnp → (0, 1)
}
.

Proof. Let e1, . . . , ek ∈ Rk denote the unit vectors. Since f∂L1 , . . . , f∂Lk are linearly independent
over R, for every ei there exists gi : Fnp → R such that

EX∈Fnp
[
gi(X)f∂Lj (X)

]
= δi,j ,

where δi,j = 1i=j is the Kronecker delta function. For z ∈ Rk define gz(x) =
∑k

i=1 zigi(x), and
consider the map T : Rk → Rk

T (z1, . . . , zk) = (tL1(f + gz), . . . , tLk(f + gz)).

The Jacobian of T is the identity matrix, and hence invertible. By the inverse function theorem,
for every η > 0, {T (z) : ‖z‖∞ < η} contains a neighborhood of T (0) = (tL1(f), . . . , tLk(f)). We
will choose η > 0 small enough such that ‖f + gz‖∞ < 1 for all ‖z‖∞ < η.

Suppose to the contrary that for every f : Fnp → (0, 1), f∂L1 , . . . , f∂Lk are linearly dependent

over R. Note that for every 1 ≤ i ≤ k, and for every x0 ∈ Fnp , f∂Li(x0) is a polynomial of degree

|Li| − 1 in the variables {f(x) : x ∈ Fnp}. The linear dependency of f∂L1 , . . . , f∂Lk shows that for

every f : Fnp → (0, 1), the k × k matrix whose ij-th entry is E
[
f∂Li(X)f∂Lj (X)

]
is singular which

in turn implies that the determinant of this matrix as a polynomial in {f(x) : x ∈ Fnp} is the zero

polynomial. So the functions f∂Li considered as vectors with polynomial entries are dependent over
the field of fractions of polynomials in variables {f(x) : x ∈ Fnp}. Furthermore since the degree of
the ij-th entry of this matrix is at most |Li| + |Lj | − 2 which does not depend on n, we conclude
that there exists polynomials P1, . . . , Pk in the variables {f(x) : x ∈ Fnp}, and of degree at most
some integer C := C(|L1|, . . . , |Lk|) (which does not depend on n) such that

P1(f)f∂L1 + . . .+ Pk(f)f∂Lk ≡ 0. (56)

Let ML1
1 , . . . ,MLl

l be some representatives for all the isomorphism classes of 1-flagged systems of
linear forms {(Li \ {L})L : i ∈ [k], L ∈ Li}. Let {αi,j ∈ Z+ : i ∈ [k], j ∈ [l]} be such that for every
i ∈ [k], we have

f∂Li =

l∑
j=1

αi,jf
M

Lj
j .
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By Lemma F.4 it is possible to find a 1-flagged system of linear form LM of arbitrarily large rank

such that for NWj

j :=MLj
j · LM (where j ∈ [l]), the systems of linear forms Nj are non-isomorphic

and connected. Note that by (52) we have fN
Wj
j = fM

Lj
j fL

M
, and so we have

k∑
i=1

∑
j∈[l]

αi,jPi(f)fN
Wj
j ≡ 0,

which by (51)) implies that ∑
j∈[l]

(
k∑
i=1

αi,jPi(f)

)
tNj (f) ≡ 0. (57)

By Lemma F.5 this shows that
∑k

i=1 αi,jPi(f) ≡ 0 for every j ∈ [l]. Now since the Li are non-
isomorphic, (Li \ {L})L 6≡ (Lj \ {M})M for every two distinct i, j ∈ [l] and every L ∈ Li and
M ∈ Lj . Hence for every j ∈ [l], there is exactly one i ∈ [k] such that αi,j 6= 0. It follows that
Pi ≡ 0 for every i ∈ [k] which is a contradiction.

G Concluding remarks

In this paper we study affine invariant properties which are testable. We show that essentially every
such property can be tested by an appropriate Gowers uniformity norm. One technical limitation
of our techniques is that they hold only if the field size is not too small (i.e. if the Cauchy-Schwarz
complexity is smaller than the field size). The main reason for this obstacle is that the inverse
theorem for Gowers norm, which fully established for large fields, is only partially understood for
small fields. Thus, we do not have corresponding decomposition theorems for small fields which
are suitable for our needs.

Even if the conjectured form of the inverse theorem for the Gowers norm for small fields was
proved, it would still not answer the following problem: is it possible to test, using a constant
number of queries, whether a function f : Fnp → Fp is correlated to a polynomial of degree d, where
d > p? We know that the Gowers norm test fails, as it actually tests distance to a larger set of
functions (non-classical polynomials). The simplest case which is unknown is the following:

Problem G.1. Let f : Fn2 → F2. Does there exist a test which queries f on a constant number
of positions, and which can distinguish whether f has noticeable or negligible correlation with cubic
polynomials?

In fact, even the following simpler problem is unknown:

Problem G.2. Let ε > 0 and f : Fn2 → F2. Does there exist a test which queries f on q(ε)
positions, and which can distinguish whether f has correlation at least ε, or at most δ(ε), with
cubic polynomials?
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