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Abstract

Locally decodable codes are error correcting codes with the extra property that, in
order to retrieve the correct value of just one position of the input with high probabil-
ity, it is sufficient to read a small number of positions of the corresponding, possibly
corrupted codeword. A breakthrough result by Yekhanin showed that 3-query linear
locally decodable codes may have subexponential length.

The construction of Yekhanin, and the three query constructions that followed,
achieve correctness only up to a certain limit which is 1 − 3δ for nonbinary codes,
where an adversary is allowed to corrupt up to δ fraction of the codeword. The largest
correctness for a subexponential length 3-query binary code is achieved in a construc-
tion by Woodruff, and it is below 1− 3δ.

We show that achieving slightly larger correctness (as a function of δ) requires
exponential codeword length for 3-query codes. Previously, there were no larger than
quadratic lower bounds known for locally decodable codes with more than 2 queries,
even in the case of 3-query linear codes. Our lower bounds hold for linear codes over
arbitrary finite fields and for binary nonlinear codes.

Considering larger number of queries, we obtain lower bounds for q-query codes
for q > 3, under certain assumptions on the decoding algorithm that have been com-
monly used in previous constructions. We also prove bounds on the largest correctness
achievable by these decoding algorithms, regardless of the length of the code. Our
results explain the limitations on correctness in previous constructions using such de-
coding algorithms. In addition, our results imply tradeoffs on the parameters of error
correcting data structures.
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1 Introduction

Locally decodable codes are error correcting codes with the extra property that, in order to
retrieve the correct value of just one position of the input with high probability, it is sufficient
to read a sublinear or even just a constant number of positions of the corresponding, possibly
corrupted, codeword. While the concept appeared in earlier work (see e.g. [3, 2, 19] the
formal definition was given by Katz and Trevisan [12] in 2000.

Definition 1. (Katz and Trevisan [12]) For reals δ and ε, and a natural number q, we say
that C: Σn → Γm is a (q, δ, ε)-Locally Decodable Code (LDC) if there exists a probabilistic
algorithm A such that: in every invocation, A reads at most q positions of y; and for every
x ∈ Σn and y ∈ Γm with d(y,C(x)) ≤ δm, and for every i ∈ [n], we have Pr [Ay(i) = xi] ≥
1
|Σ| + ε, where the probability is taken over the internal coin tosses of A.

We will refer to the value 1
|Σ|+ε in Definition 1 as the correctness associated with the given

decoding algorithm A, while ε can be thought of as the advantage over random guessing.
Locally decodable codes have interesting applications, both in complexity theory and in

practical areas. Locally decodable codes are especially useful in situations where we want
to encode large amounts of data to protect against errors, but need to be able to access
individual units; for example, individual patient records of a large hospital. Encoding each
unit separately would give less protection against errors, and encoding the whole data set
with a traditional error correcting code would require reading the whole encoded database
just to access small parts of it. Locally decodable codes are closely related to private infor-
mation retrieval: constructions of good locally decodable codes yield efficient protocols for
private information retrieval. Private information retrieval schemes allow users to retrieve
information from databases without revealing information about which data items the user
is retrieving. Other applications and related structures include self correcting computations,
random self-reducibility, probabilistically checkable proofs. See [20] for a survey. More re-
cently, [8] related LDCs to polynomial identity testing for arithmetic circuits, and [6] to
matrix rigidity and circuit lower bounds.

It is quite remarkable that such codes exist at all for constant number of queries. A
simple example is the Hadamard code, which has the property that any input bit can be
recovered with probability at least 1 − 2δ from codewords possibly corrupted in up to δm
positions, by a randomized algorithm that in every invocation reads no more than 2 bits of
the code. However, the code is very large: the length of the codewords is 2n for encoding n
bit inputs.

Of course it would be desirable to have much more efficient, in particular polynomial
length codes, but this seems to be currently out of reach for constant number of queries.
Efficient constructions are known for large number of queries. See [20] for a survey. A recent
paper of Kopparty, Saraf and Yekhanin [14] shows that with nε queries, the rate of the code
can be close to 1.

It is known that for large enough n, 1-query locally decodable codes (that read at most
one bit) cannot do better than random guessing [12].
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For 2-query linear codes essentially tight bounds are known: Goldreich, Karloff, Schulman
and Trevisan [11] proved exponential lower bounds for 2-query linear codes over finite fields
up to a certain field size. This was later extended by Dvir and Shpilka [8] to give exponential
lower bounds for 2-query linear codes over arbitrary fields. Further improvements for the
2-query linear case were given by [16, 18]. Shiowattana and Lokam [18] prove a lower bound
of Ω(24δn/(1−2ε)), which is tight within a constant factor, for 2-query binary linear locally
decodable codes.

Kerenidis and de Wolf [13] proved exponential lower bounds for arbitrary binary (not
necessarily linear) 2-query locally decodable codes, based on quantum arguments. They also
extended their lower bounds to codes over larger alphabets, but the bound decreases with
the alphabet size. The strongest lower bounds so far for nonlinear codes from {0, 1}n to
Σm = ({0, 1}`)m were proved by Wehner and de Wolf [21], and are of the form 2Ω(δε2n/(22`)).
A proof of the 2-query lower bound for binary codes is given in [5] without using quantum
arguments. It is still open to obtain nontrivial lower bounds for 2-query nonlinear codes over
alphabets of size Ω(

√
n).

For larger number of queries, there is still a huge gap between the known upper and lower
bounds, even for binary linear codes. For codes over small (constant size) alphabets Katz
and Trevisan in [12] gave a general lower bound that holds for any q showing that q-query
locally decodable codes must have length Ω(nq/(q−1)). This bound was slightly improved

by Kerenidis and de Wolf [13] to Ω((n/ log n)
q+1
q−1 ), and by Woodruff [23] to Ω(n

q+1
q−1 )/ log n.

Woodruff [25] proved Ω(n2) lower bounds on the length of 3-query linear codes over any field.
Prior to our work, no larger than n2 lower bound was known for locally decodable codes that
allow more than 2 queries, even in the case of 3-query linear codes.

A breakthrough result of Yekhanin [26] showed that subexponential length 3-query lin-
ear locally decodable codes exist, under assumptions about the existence of infinitely many
Mersenne primes. Raghavendra [17] gave some simplifications to Yekhanin’s codes. Building
on these works, Efremenko [9] gave a construction of subexponential length 3-query linear
locally decodable codes without any unproven assumptions. All these constructions have a
limit on the correctness achieved by the algorithm as a function of δ where an adversary can
corrupt up to δ fraction of the codeword positions. Efremenko’s construction [9] gives 1− 3δ
correctness for a 3-query nonbinary code. For 3-query binary codes, the best dependence
between the parameters is achieved in a paper by Woodruff [24], which yields 3-query binary
linear locally decodable codes with correctness close to, but still below, 1 − 3δ. Note that
these results do not provide correctness larger than 1/2, that is they do not give better
correctness than random guessing for binary codes, if the fraction of corrupted positions δ
is larger than 1/6. The above subexponential size constructions extend to larger number of
queries. But while the length of the code gets smaller, the correctness becomes weaker as
the number of queries gets larger. Dvir, Gopalan and Yekhanin [7] improve the dependence
between correctness and the fraction of corruption for larger number of queries, and achieve
subexponential length constructions that can tolerate close to 1/8 fraction of error for large
number of queries. The results of Ben-Aroya, Efremenko, and Ta-Shma [4] give subexpo-
nential length locally decodable codes over large enough finite fields that can do better than
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random guessing for δ fraction of corruption up to δ = 1/2−α for any α > 0, but the number
of queries needed and the field size get larger as δ gets closer to 1/2.

Next, we describe our results and techniques.

1.1 Three query codes

Our main results show that achieving slightly larger than 1 − 3δ correctness for 3-query
locally decodable codes requires exponential length. We prove this for arbitrary (possibly
nonlinear) binary codes and for linear codes over arbitrary finite fields. Note that larger, e.g.
1 − 2δ correctness can be achieved even by 2-query linear codes: the Hadamard code is an
example. With significantly larger number of queries, the correctness can be much higher as
a function of δ (of the form 1 − δΩ(q)): again the Hadamard code is an example. But this
comes at the cost of having large length in the known constructions. Our results show that
for 3-query codes, this increase in length cannot be avoided.

Here we give a somewhat simplified statement of the result for binary codes, without
specifying the precise constants.

Theorem 1.1. Let C: {0, 1}n → {0, 1}m be an arbitrary (possibly nonlinear) binary (3, δ, ε)-
LDC with a nonadaptive decoder, and n large enough. If 1

2
+ε > 1−3δ+6δ2−4δ3 +φ(n)+µ,

where φ(n) = O(1/n1/9), then m ≥ 2Ω(µn1/3).

We state the precise values hidden in the notation later in Theorem 3.1. We wanted to
start with a more compact statement of our bound, showing that as soon as the correctness
achieved by the code is above a certain threshold, the length of the codewords must be
exponential. For binary codes this threshold is around 1 − 3δ + 6δ2 − 4δ3, which is just
slightly larger than 1− 3δ for small values of δ. The value 1− 3δ is interesting, since there
are subexponential length constructions of 3-query linear LDCs that achieve correctness
1− 3δ [9] and 3-query binary linear LDCs that achieve correctness slightly below 1− 3δ [24].
The value 1 − 3δ + 6δ2 − 4δ3 corresponds to the probability that the number of corrupted
positions in a given triple is even, where the probability is over the distribution that corrupts
each bit independently with probability δ.

For linear codes over arbitrary finite fields, we obtain stronger lower bounds. In our
results for nonbinary codes, the value of the threshold is close to the threshold for the binary
case, but slightly depends on the field size. We obtain exponential lower bounds for arbitrary
finite fields, even if the field size depends on n.

We note that our bound holds for any δ ≥ 0 and any 0 < ε ≤ 1−1/|F |, where δ and ε may
be o(1). For the bound to be nontrivial, we need δ ≤ 1− 1/|F |, because of Observation 2.1.
For n to be large enough for our purposes, it is sufficient if δ > Ω(1/n1/9) and ε > Ω(1/n1/3)
for binary nonlinear codes, and if δ > Ω((|F |/n)1/3) and ε > Ω(|F |/n) for linear codes over
a field F .
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1.2 Arbitrary number of queries

We obtain similar results for arbitrary number of queries, under some assumptions on the
decoding algorithm. We note that the types of decoding algorithms we consider have been
commonly used in recent constructions. Our results explain the limitations on correctness
of these constructions.

Unless otherwise noted, a q-query decoder is allowed to use less than q queries. So the
correctness thresholds for requiring exponential length for q-query codes are never going to
be smaller than the correctness thresholds for the same class of 3-query codes. In the special
cases below, we show that the same thresholds to require exponential length as for 3-query
codes also apply for arbitrary number of queries.

It remains open what is the correctness threshold (as a function of δ) to require expo-
nential length for general q-query codes. Note that it will have to be a value larger than the
threshold in our 3-query results: a q-query code for q > 3 can always do at least as well, as
a 3-query code. We will see below, that if we require the query sets to be exactly of size q,
then this is not necessarily the case.

1.2.1 Linear Decoders

One of the starting points of our approach was the observation that using larger number of
queries does not help to tolerate errors if the decoder returns a fixed linear combination of
the positions read. Moreover, the probability of error increases with the number of positions
used with nonzero coefficients by a linear decoder. We formalize these ideas in our results
about linear decoders.

We show that linear decoders that use exactly q positions cannot achieve larger cor-
rectness than 1 − qδ + o(δ) + O(1/n), regardless of the length of the code. Moreover, we
show that the correctness of any linear decoder, for any number of positions used, is at most
1−2δ+o(δ)+O(1/n). This holds for arbitrary (possibly nonlinear) codes and over any finite
field F . This implies that our exponential length lower bounds extend to linear decoders
with arbitrary number of queries, with the same correctness threshold as for 3-query codes.

Linear decoders are commonly used in the known constructions of locally decodable codes.
In fact it is noted for example in [13, 23] that any (possibly nonlinear) binary (q, δ, ε)-LDC
has a linear decoder that achieves correctness 1/2 + ε/2q.

In the case of linear smooth codes (see [12]), requiring the decoders to be linear is inconse-
quential: for linear codes, if any algorithm gives nontrivial advantage over random guessing
when querying a given set of codeword positions Q, then by Lemma 2.2, ei ∈ span(Q) must
hold. Thus, there is a fixed linear combination of the positions in Q that gives the cor-
rect value of xi for any input x. Using the same procedure as the original decoder to choose
which positions to query and then returning this fixed linear combination (if it exists) cannot
violate the smoothness of the code.

However, for locally decodable codes (both linear and nonlinear), requiring to use only
linear decoders may significantly reduce the correctness associated with the code. For ex-
ample, taking majorities, one can obtain correctness of the from 1− δΩ(q). Our results show
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that in the recent results of [7, 4] obtaining subexponential length constructions with larger
than 1− qδ correctness for larger values of q, the use of nonlinear operations in the decoding
algorithm is important.

Our results on linear decoders imply that there is no significantly better general reduction
from smooth codes to locally decodable codes than the current bounds giving at most 1− qδ
correctness for q query locally decodable codes. The possibility of better reductions was
raised in [12].

We formally define linear decoders and prove our results about them in Section 4.

1.2.2 Matching sum decoders

Matching sum decoders were formally defined by Woodruff [24]. A q-query matching sum
decoder picks a set of size q uniformly at random from a collection of sets that form a
matching in the complete q-uniform hypergraph, whose vertices correspond to the positions
of the codeword. Then, the decoder reads the positions corresponding to the chosen set, and
returns the sum of the positions read. Most known constructions of locally decodable codes
have such decoders.

Matching sum decoders are a subclass of linear decoders, thus our results on linear
decoders immediately apply. However, for matching sum decoders we can prove stronger
results. We show that q-query matching sum decoders cannot achieve larger correctness
than 1− qδ, regardless of the length of the code. This holds for arbitrary codes and over any
field F .

Woodruff [24] proved that LDCs with 2-query matching sum decoders must have expo-
nential length. Considering matching sum decoders where the query size is not fixed, we
show that for any binary code (possibly nonlinear), and for linear codes over arbitrary finite
fields, if a matching sum decoder with query sets of size at most q achieves correctness more
than 1− 3δ +O(1/n), then the length of the code must be exponential.

We prove our results for matching sum decoders in Section 4.1.

1.2.3 Query sets with large rank

For linear codes our proofs also apply to arbitrary number of queries, and possibly nonlinear
decoders as long as the vectors corresponding to the positions queried are linearly indepen-
dent. This is a property that holds in some of the known constructions of linear locally
decodable codes. For such query sets, we show that if the correct value of xi is spanned by
q of the linearly independent vectors with nonzero coefficients, then the correctness of the
decoder cannot be larger than 1− qδ + o(δ) +O(1/n), regardless of the length of the code.

This implies, that for linear codes over arbitrary finite fields, if a q-query decoder (with
query sets of size at most q) queries only linearly independent positions of the code and
achieves correctness more than 1− 3δ + o(δ) +O(1/n1/3), then the length of the code must
be exponential. The exponential length lower bound extends to query sets that are not fully
independent, but have large rank, with a correctness threshold that depends on the rank of
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the query sets. The results described for query sets with large rank are direct consequences
of our proofs for linear codes, specifically Lemmas 3.10 and 3.11. See also Corollary 3.12.

1.3 Error Correcting Data Structures

Error correcting data structures were defined by de Wolf [22]. Such data structures are a
variation of the traditional bit-probe model (see e.g. [15]), where the algorithms answering
questions about the data are correct with probability at least 1/2 + ε, as long as at most δ
fraction of the database representing the data is corrupted, possibly by adversarial error. It
is noted in [22] that error correcting data structures for the membership problem yield locally
decodable codes, with the same parameters. [22] showed the existence of error correcting
data structures for the membership problem and some of its variants, assuming the existence
of locally decodable codes with given parameters. Because of the direct correspondence
between the two models, our results rule out the existence of error correcting data structures
for membership of subexponential size with larger correctness than our thresholds above, for
3-probe algorithms, as well as for algorithms with arbitrary number of probes, assuming the
algorithm only uses linear operations.

1.4 Techniques

We start by noting why some intuition based on smooth codes would fail to explain our
most general results. Smooth codes were defined by Katz and Trevisan [12], who also gave
reductions between smooth codes and locally decodable codes. So up to changes in param-
eters, smooth codes and locally decodable codes are equivalent. Most of the current lower
bounds for locally decodable codes have been proved via proving lower bounds for smooth
codes, and the correctness of the known subexponential length constructions of 3-query lin-
ear LDCs is analyzed based on their property of having smooth decoders, that are correct
with large probability if there is no error, and query each position of the code with not too
large probability. However, the current techniques to analyze smooth decoders cannot imply
larger than 1− qδ correctness for q-query locally decodable codes. In fact we show that no
significantly better general reduction is possible.

We elaborate on a few specific points below. One could try to argue that the probability
that the decoder does not query any corrupted positions is upper bounded by a function not
much larger than 1 − qδ, thus the decoder will have to read corrupted positions. However,
errors may cancel out, so the fact that some of the positions read by the decoder may contain
an error, in itself does not explain our lower bounds.

If the decoder was only working with query sets that form a matching, and the decoder
was linear (which is the case in several of the known constructions), then, as we show in
Section 4.1, 1− qδ would in fact be a limit on correctness for decoders that query exactly q
positions. But these assumptions do not have to hold for every decoding algorithm, and our
results cannot be explained by this simplified view.

Our proofs of the 3-query lower bounds are based on a lemma that was central in obtaining
the exponential lower bounds for 2-query codes. However, we would like to emphasize that we
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do not use 2-query lower bounds as a black box. We show that query sets that provide large
correctness must contain subsets of size at most 2 that give nontrivial correlation with the
input position we try to recover. But this does not imply that the code somehow “reduces” to
a 2-query code. Consider the following simple example (many other examples are possible):
query 3 positions such that each in itself has large correlation with the position xi, and
take the majority of the answers. Replacing this with reading only a subset of the bits,
would preserve the properties of a smooth decoder, but it would reduce the correctness of
the decoding algorithm. Thus, the decoder cannot be simply replaced by a 2-query decoder,
if we want to preserve the correctness probabilities of the decoding algorithm.

Our approach can be summarized as follows: we show that in the case of 3-query codes, if
the code is small, we can “force” the decoder to only examine query sets that are vulnerable
to error. We achieve this by considering the algorithm’s performance over random input x
and a specially constructed distribution for the corruption caused by the adversary. We show
that over our distribution, the decoder cannot perform much better than a linear decoder.

In all of our results, the probability of error is estimated in terms of the probability - over
appropriate random corruption - of the event that the sum of the corruption in the positions
of a given query set is nonzero. Intuitively, this probability would indeed give a lower bound
on the error if the decoder always returned the sum (or a fixed linear combination) of the
positions read, and if this was equal to the correct answer for uncorrupted codewords. For
example, this would be the case for linear decoders of a linear code. However, we also
consider nonlinear codes, and arbitrary decoders that may involve nonlinear operations. In
fact, we do not claim that the probability of having nonzero sum of corruption in the query
set is a lower bound on the error in general. Instead, we lower bound the probability of error
by a different expression, and show that this expression is lower bounded by the probability
mentioned above in the case of random corruption according to our distribution.

A crucial point in our proofs for nonlinear decoders (for both linear and nonlinear codes)
is comparing the conditional probabilities of error of the decoder, conditioned on the sum of
the values in the corrupted positions. We show that - under appropriate assumptions on the
query sets for linear codes - the sum of these conditional probabilities of the decoder being
incorrect, is always |F | − 1. A subtle point of this argument is that the various events we
work with are not always independent. Our proof for nonlinear codes is based on a similar
property of conditioning on the number of corrupted positions being odd vs. even. However,
for nonlinear codes instead of directly considering the conditional probabilities of incorrect
decoding, we reduce estimating the probability of error to estimating the probability that
the sum of the positions read gives an incorrect answer. This analysis lets us estimate the
probability of incorrect decoding even if the decoding algorithm uses nonlinear operations.

2 Preliminaries

The definition of locally decodable codes allows the decoding algorithm to be adaptive. Lower
bounds for nonadaptive decoders can be translated to lower bounds for arbitrary decoders
with the same number of queries but larger correctness: it is noted in the paper by Katz and
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Trevisan [12] that any adaptive (q, δ, ε) decoding algorithm for a code C: Σn → Γm, can be
transformed to a nonadaptive (q, δ, ε/|Γ|q−1) decoding algorithm for the same code C.

We only consider nonadaptive decoding algorithms in the rest of the paper. We will refer
to the (at most q) positions the algorithm chooses to read in a given invocation as a query
set. In a nonadaptive algorithm, the choice of the query set only depends on the coin flips
of the algorithm.

The following simple observation means that for proving lower bounds we may assume
that δ < 1− 1

|Σ| , since otherwise, no algorithm can do better than random guessing for any
of the input positions.

Observation 2.1. Let A be a decoding algorithm for any nontrivial code C: Σn → Σm. If
δ ≥ 1− 1

|Σ| , then for any i ∈ [n], minx∈Σn

(
miny∈Γm : d(y,C(x))≤δm Pr [Ay(i) = xi]

)
≤ 1
|Σ| .

Proof. Arbitrarily choose i ∈ [n]. For each s ∈ Σ, let vs ∈ Σn be a vector such that (vs)i
= s. Split [m] into a partition of |Σ| equal size subsets named Us for s ∈ Σ. Construct
Y ∈ Σm such that for each s ∈ Σ, Y agrees with C(vs) on the positions in Us. Whenever the
input to C is one of the vectors vs, the adversary will corrupt the codeword to become equal
to Y by modifying at most m(1 − 1

|Σ|) positions. We have
∑

s∈Σ Pr
[
AY (i) outputs s

]
= 1,

where the probability is over the internal coin tosses of A. Thus there exists at least one
s ∈ Σ such that, if the adversary corrupts C(vs) into Y , the probability of the algorithm
correctly answering s is at most 1

|Σ| . Therefore, we have shown there exists an input x and
an adversary error pattern of size at most δm such that the probability of error is at least
1− 1

|Σ| . So minx∈Σn

(
miny∈Γm : d(y,C(x))≤δm Pr [Ay(i) = xi]

)
≤ 1
|Σ| .

For a linear code C: F n → Fm, it is convenient to represent the function that determines
a given codeword position by a vector: for j ∈ [m], define aj ∈ F n as the vector satisfying
∀x ∈ F n, Cj(x) = aj · x. For vectors a, x ∈ F n, we use a · x to denote their inner product
over F . (We omit F from the notation.)

For a query set Q = {j1, . . . , jq} ⊂ [m], we use the notation span(Q) to represent the
linear span of the vectors aj1 , . . . , ajq corresponding to the positions in Q. We denote the
i’th unit vector with length n by ei. That is, ei has 1 in its i-th coordinate and 0 everywhere
else.

The following lemma was stated in [11] for two query binary linear codes. Its extension
to arbitrary fields and any number of queries is straightforward, but important for our
arguments. For completeness, we include a proof.

Lemma 2.2. (implicit in [11]) Let C: F n → Fm be a linear code. Let i ∈ [n] and let Q =
{j1, j2, ...jq} ⊂ [m] be a query set that the algorithm A queries with nonzero probability when
trying to recover the value of input position i. Suppose PrxεUFn

[
AC(x)(i) = xi | A queries Q

]
>

1
|F | where the probability is taken over letting x be uniformly random from F n and over the

internal coin tosses of A. Then ei ∈ span(Q) must hold.

Proof. We prove the contrapositive. Take any i and Q = {j1, j2, ...jq} ⊂ [m] such that there
do not exist cj1 , cj2 , ...cjq ∈ F for which

∑q
k=1 cjkajk = ei. Say yj1 , yj2 , ...yjq are the respective
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values A receives from querying Q. The algorithm’s job when it queries Q is to solve the
following system of q linear equations for xi:

yj1 = aj1 · x
yj2 = aj2 · x

...

yjq = ajq · x

Assume without loss of generality that aj1 , aj2 , ... ajq′ is a maximal collection of linearly
independent vectors from aj1 , aj2 , ... ajq , for some q′ ≤ q. (Simply renumber the a’s so
this is true.) Therefore, the system of q linear equations above turns into a system of q′

independent linear equations.
Because the vector ei is not in the span of {aj1 , aj2 , ...ajq′}, there exists an x̂ satisfying:

ei · x̂ = 1

aj1 · x̂ = 0

aj2 · x̂ = 0

...

ajq′ · x̂ = 0

Because this is a system of q′ + 1 independent linear equations, a solution x̂ must exist.
Note that x̂ 6= 0 because x̂i 6= 0. Using x̂, we define the following set:

Vx , {x, x+ x̂, x+ 2x̂, ..., x+ (|F | − 1)x̂}

For any x that is a solution of the original q equations, every member of Vx is a solution
as well, but each has a different i’th coordinate. Notice for any x′ /∈ Vx, Vx ∩ Vx′ = ∅. This
implies that the number of solutions to the original q equations having i’th coordinate equal
d, for any d ∈ F , is the same. Recall that we are considering uniform x ∈ F n. So,

∀d ∈ F : Pr
xεUFn

[
xi = d | yj1 = aj1 · x, yj2 = aj2 · x, ..., and yjq = ajq · x

]
=

1

|F |

This implies

Pr
xεUFn

[
AC(x)(i) = xi | A queries Q

]
=

1

|F |

This contradicts the assumption from the theorem’s statement that the probability of
correctness is strictly greater than 1

|F | .

We will use the following simple fact throughout our proof.
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Fact 2.3. (implicit in [1]) Let a1, . . . , at be vectors from F n. For x uniformly random from
F n, the corresponding random values a1 ·x, . . . , at ·x are t independent uniformly distributed
values from F , if and only if the vectors a1, . . . , at are linearly independent over F .

Proof. Let us consider what happens when a1, . . . , at are linearly independent over F . Then,
for any set of values d1, . . . , dt ∈ F , the number of x such that ∀1 ≤ i ≤ t, ai · di is the same:
|F |n−t. Since the distribution of x is uniformly random, a1 · x, . . . at · x are t independent,
uniformly random values from F .

If a1, . . . , at are not linearly independent, then there exist c1, . . . , ct ∈ F such that at
least one of them is nonzero, and

∑t
k=1 ckak = 0 (where the sum is over F ). This means

that certain sets d1, . . . , dt ∈ F , will never appear as values for a1 · x, . . . at · x, since values
such that

∑t
k=1 ckdk = 1 will never appear. In particular, if t′ is such that ct′ 6= 0, then the

set of values ∀i 6= t′, di = 0 and dt′ = 1 will never appear. Thus a1 · x, . . . at · x cannot be
uniformly distributed.

The following theorem of Goldreich, Karloff, Schulman and Trevisan [11] is a crucial
ingredient of our proofs.

Theorem 2.4. [11] Let a1, ... am be a sequence of (not necessarily distinct) elements of
{0, 1}n such that for every i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such

that ei = aj1 ⊕ aj2. Then m ≥ 22αn, where α ,
Pn

i=1 |Mi|
nm

.

This theorem was extended to arbitrary finite fields in [11]. The dependence on the field
size in the bound was removed by Dvir and Shpilka in [8]. We will use the following version
(see Corollary 2.9 in [8]).

Theorem 2.5. [8] Let F be a field. Let a1, ... am be a sequence of (not necessarily distinct)
elements of F n such that for every i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2}
such that ei ∈ span(aj1 , aj2). Then m ≥ 2αn−1, where α ,

Pn
i=1 |Mi|
nm

.

A version of the theorem applicable to binary nonlinear codes is given in the “non-
quantum” proof of the exponential lower bounds for 2-query binary nonlinear codes by
Ben-Aroya, Regev and de Wolf [5].

Theorem 2.6. (implicit in Theorem 11 of [5]) Let 0 < ε, α < 1/2. Let a1, ... am be a
sequence of (not necessarily distinct) functions from {0, 1}n to {0, 1} such that for at least
τn indices i ∈ [n] there is a set Mi of disjoint pairs of indices {j1, j2} such that |Mi| ≥ αm
and

|Pr
x

[xi = aj1(x)⊕ aj2(x)]− Pr
x

[xi 6= aj1(x)⊕ aj2(x)] | ≥ ε

where the probability is over uniform x ∈ {0, 1}n. Then m ≥ 2τα
2ε2n.

We also use the following theorem of Katz and Trevisan [12].

Theorem 2.7. (Theorem 2 in [12]) Let C : {0, 1}n → R be a function. Assume there is
an algorithm A such that for every i ∈ [n], we have Prx [A(C(x), i) = xi] ≥ 1

2
+ ε, where

the probability is taken over the internal coin tosses of A and uniform x ∈ {0, 1}n. Then
log |R| ≥ (1−H(1/2 + ε))n.
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2.1 Notation

Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F .
Arithmetic operations involving field elements are over F . This should be clear from the
context, and will be omitted from the notation.

For a code C: F n → Fm, we can represent any vector y ∈ Fm with d(y,C(x)) ≤ δm as
a sum of the form y = C(x) + B, where B ∈ Fm, such that the number of nonzero entries
in B is at most δm.

We will use the notation Prx,B,A to indicate probabilities over uniformly random input
x from F n, B chosen at random from a given distribution for corruption, and the random
coin tosses of the given algorithm A.

Note that while in general the corruption may be produced by an arbitrary adversary, we
will only consider distributions for B that do not depend on the input x or on the distribution
for the coin tosses of the algorithm. This is sufficient for our purposes, since we are proving
lower bounds on the length of the code.

3 Lower Bounds for Three Query Codes

3.1 Lower Bounds for Three Query Binary Codes

We state the precise version of our lower bound for arbitrary (possibly nonlinear) binary
codes.

Theorem 3.1. Let C: {0, 1}n → {0, 1}m be a (3, δ, ε)-LDC with a nonadaptive decoder, and
n large enough. Let α , δ − (1

2
− ( ε

4
)1/3)− (3/n1/3 + 36

n
)1/3 − ν, and ν , 10

n(1−H(1/2+1/n1/3))
=

O(1/n1/3). If α > 0, then m ≥ 20.225α2n1/3
.

Remark 1. We will show in Claim 5.1 that α > 0 when 1
2
+ε > 1−3δ+6δ2−4δ3+φ(n), where

φ(n) = 4((3/n1/3 + 36
n

)1/3 +ν). Moreover, α > µ
4

when 1
2

+ε > µ+1−3δ+6δ2−4δ3 +φ(n) for
some µ ≥ 0. This implies the version of the bound stated in Theorem 1.1 for binary codes.
Note that we could also obtain a lower bound of the form 2Ω(n) by setting ε2 in the proof to a
constant, but then the correctness required for the bound would be larger, roughly by 4(ε2)1/3.

We start with an overview of the proof. For the case of binary (possibly nonlinear) codes,
using the Fourier representation of Boolean functions, and properties of correlation, we show
that for any decoding algorithm, and for any query set Q, the advantage of the algorithm
over random guessing when reading the values of the query set Q is at most the sum of the
advantages obtained by all possible fixed linear functions over the given query set. See Claim
3.7 for a precise statement. This observation has been implicitly used also in the arguments
of [13] and [25] showing the existence of linear decoders with correctness 1/2 + ε/2q for any
binary (q, δ, ε)-LDC.

In all our proofs, we use a distribution for the adversary that corrupts each codeword
position in a particular set S independently, and chooses the corruption over the remaining
set of positions so that the total fraction of corrupted positions is still below δ. We construct

12



the set S so that for query sets that do not intersect the set S, the contribution of sums over
subsets of size at most 2 towards the advantage over random guessing is small. However,
the size of S has to be small to keep the total fraction of corrupted positions below δ.

To achieve this, we first argue that in any LDC, the number of codeword positions that
have large correlation with a given input bit xi over random input x must be small for most
input positions i ∈ [n]. This is straightforward for linear codes. Note however that for
nonlinear codes, it is possible that a given codeword position has significant correlation with
more than one input bit. We show the desired statement using Theorem 2.7.

Next we consider pairs of codeword positions, such that the sum of their values gives
large correlation with a given input bit xi over random input x. Using Theorem 2.6, we
show that if the length of the code is small, then for most i ∈ [n], all such pairs of positions
can be covered by a small number of codeword positions.

This allows us to conclude that if the length of the code is small, then for at least one
index i ∈ [n], there exist a set S of small size, such that for query sets that do not intersect
the set S, the contribution of sums over subsets of size at most 2 towards the advantage over
random guessing the bit xi is small.

In Lemma 3.5 we show that for any LDC with correctness 1/2 + ε, there is a decoding
algorithm that never reads any of the positions in S, but is correct with probability at least
1/2+ε on average over random input x, and the random corruption of the above distribution.
Note that the algorithm may not achieve the required correctness on every input and for
every string within distance δm of C(x). We only claim a bound on its probability of being
correct over uniformly random x and over random corruption according to our distribution.

This way we can argue that if the length of the code is small then there is a decoding
algorithm that only uses query sets that either provide only small advantage over random
guessing, or they involve 3 codeword positions, such that the sum of the 3 positions gives the
correct value of the input bit xi with large probability over random input and the random
corruption according to our distribution.

On the other hand, for this decoding algorithm we can lower bound the probability of
error by the probability that the sum of a given triple of codeword positions gives an incorrect
value over random input and the random corruption according to our distribution.

See Section 3.5 for a detailed proof of the theorem and Section 3.4 for the formal descrip-
tion of the distribution for the random corruption.

3.2 Lower Bounds for Three Query Linear Codes over Arbitrary
Finite Fields

For linear codes over arbitrary finite fields, we obtain stronger lower bounds than our bounds
for nonlinear codes.

Let F be an arbitrary finite field. We denote by F ∗ the set of nonzero elements of F . It
is convenient to state the threshold on correctness in our bounds in terms of the probability
of the event that a fixed linear combination of a given triple of coordinates of an appropriate
random corruption equals to 0. More precisely, let Q ⊆ [m] with |Q| = q be an arbitrary

13



fixed subset of the coordinates. Let cj ∈ F ∗, for j ∈ Q and let δ ≤ 1 − 1/|F |. For the
distributions we work with, the values of cj will not make a difference, as long as they are

all nonzero. Let P (δ, q, F ) , PrB

[
(
∑

j∈Q cjBj = 0)
]
, where the probability is over B ∈ Fm

randomly chosen according to a distribution that first chooses to corrupt each coordinate in
[m] independently with probability δ, and then uniformly and independently assigns a value
from F ∗ to each chosen coordinate of B. The remaining coordinates of B are set to 0. Note
that an adversary using this distribution would possibly corrupt more than δm positions
with nonzero probability, so this is not the distribution we use in our proofs. But it is
convenient to use the probability P (δ, q, F ) in the statement of our bounds, since P (δ, q, F )
only depends on δ, q and |F |, it does not depend on m. The theorem also holds using the
distribution that chooses δm positions uniformly (instead of independently corrupting the
positions). While it is well known that these probabilities are not too far from each other
in the two distributions, for our purposes we need more precise estimates than the standard
ones. We carefully estimate the difference between the two probabilities using Claim 5.7 in
the Appendix.

We start with a simplified statement of the result without specifying the precise constants.

Theorem 3.2. Let C: F n → Fm be a linear (3, δ, ε)-LDC with a nonadaptive decoder, and n
large enough. If 1

|F | + ε > P (δ, 3, F ) +φ(n) +µ, where φ(n) = O(|F |/n1/3), then m ≥ 2Ω(µn).

We state the precise values hidden in the notation in Theorem 3.3.
For binary linear codes we present a slightly stronger bound in the next section.

Theorem 3.3. Let C: F n → Fm be a linear (q = 3, δ, ε)-LDC with a nonadaptive decoder,
δ ≤ 1 − 1

|F | , and n large enough. Then, m ≥ 2.45αn−1 where α , δ − (1 − 1
|F | − ε1/3(1 −

1
|F |)

2/3)− (108|F |
n

)1/3 − 10
n

.

Remark 2. We will show in Claim 5.13 that α > 0 when 1
|F | + ε > 1 − 3δ(1 − δ)2 − (1 −

1
|F |−1

)3δ2(1 − δ) − (1 − 1
|F |−1

+ 1
(|F |−1)2

)δ3 + φ(n), where φ(n) = 4((108|F |/n)1/3 + 10/n).

Moreover, α > µ
4

when 1
|F | + ε > µ + 1 − 3δ(1 − δ)2 − (1 − 1

|F |−1
)3δ2(1 − δ) − (1 − 1

|F |−1
+

1
(|F |−1)2

)δ3 + φ(n) for some µ ≥ 0. This implies the version of the bound stated in Theorem
3.2.

Similarly to the proof for binary codes, we construct the set S of positions that we corrupt
independently, so that for query sets that do not intersect the set S, the contribution of sums
(or linear combinations) over subsets of size at most 2 towards the advantage over random
guessing is small. Linear codes have the very strong property that linear combinations of
codeword positions are either exactly equal to a given input bit, or give no advantage over
random guessing towards recovering the given input bit (see Lemma 2.2). Thus, in the case
of linear codes, we can construct the distribution of the adversary so that the decoding
algorithm is left with query sets of size 3, such that no subsets of size at most 2 can give
any advantage over random guessing. All other query sets that the algorithm can read will
give no advantage over random guessing for a given input bit. Thus we don’t need the
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part of the argument using Fourier representation of Boolean functions used in the binary
proof to reduce estimating the probability of error to estimating the error over query sets
of a special form. However, we still need to deal with the fact that the decoders can use
nonlinear operations. We achieve this by considering the conditional probabilities of error
of the decoder, conditioned on the sum (more precisely a fixed linear combination) of the
values in the corrupted positions. In addition, we show that in the query sets we are left
with the positions must correspond to linearly independent vectors in the generator matrix
of the code. Based on this, we show that the probability of error (on average using our
distribution) is lower bounded by |F | − 1 times the minimum over k ∈ F of the probability
that a fixed linear combination (with nonzero coefficients) of the corruption in the positions
of the query set equals k.

See Section 3.6 for a detailed proof of the Theorem.

3.3 Lower Bounds for Three Query Binary Linear Codes

For binary linear codes, we obtain a slightly stronger bound than what follows from the
lower bound for linear codes over arbitrary finite fields.

Theorem 3.4. Let C: {0, 1}n → {0, 1}m be a linear (3, δ, ε)-LDC with a nonadaptive decoder,
and n large enough. Then, m ≥ 21.8αn where α , δ − (1

2
− ( ε

4
)1/3)− (36

n
)1/3 − 10

n
.

Remark 3. We will show in Claim 5.1 that α > 0 when 1
2

+ ε > 1− 3δ + 6δ2 − 4δ3 + φ(n),
where φ(n) = 4((36/n)1/3 +10/n). Moreover, α > µ

4
when 1

2
+ε > µ+1−3δ+6δ2−4δ3 +φ(n)

for some µ ≥ 0. This implies the version of the bound stated in Theorem 3.2 for binary codes.

The proof is almost identical to the proof in the previous section for arbitrary finite fields.
The improvement comes from using Theorem 2.4, and because in the case of binary linear
codes we can use a node cover of size |M1| instead of 2|M1| when defining the distribution.

3.4 The Probability Distribution of the Adversary

We will work with probability distributions of the following general structure for the corrup-
tion. We will specify the sets R, S and the distribution DR later in this section.

Let C: F n → Fm be a code. Consider two disjoint subsets R, S ⊆ [m]. Let B1 ∈
Fm be chosen according to some probability distribution DR over vectors in Fm that are
identically zero in coordinates outside ofR. LetB2 ∈ Fm be chosen according to the following
probability distribution DS over vectors in Fm that are identically zero in coordinates outside
of S: independently for each coordinate j ∈ S, with probability 1

|F | let (B2)j = c for each

c ∈ F . Note that when |F | = 2, DS is simply the binomial distribution with probability 1/2
over the coordinates in S.

Let B = B1 +B2, generated by the product distribution of the distributions DR and DS.
We will use the following lemma about probability distributions of the above structure

for the corruption.
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Lemma 3.5. Assume there exists a q query algorithm A such that

Pr
x,B,A

[
AC(x)+B(i) = xi

]
≥ 1

|F |
+ ε

where the probability is over the internal coin tosses of A, uniform x ∈ F n, and B =
B1 + B2 chosen by the product distribution of the distributions DR and DS, where R and S
are disjoint subsets of [m], DR is arbitrary over vectors in Fm that are identically zero in
coordinates outside of R, and DS is defined as above. Then there exists a q query algorithm
Ã such that

Pr
x,B,Ã

[
ÃC(x)+B(i) = xi

]
≥ 1

|F |
+ ε

as well, and Ã never queries any positions from S.

Proof. Without loss of generality, let S = [t] for some 1 ≤ t ≤ m. For any s′1, s′2, ... s′t ∈ F ,
there exists exactly one sequence of s1, s2, ... st ∈ F such that C(x)j + sj = s′j for j ∈ [t].

Each sequence s1, s2, ... st has the same probability ( 1
|F |t ) of occurring as the part

of B2 over the coordinates in S. So any values the algorithm receives from the positions
labeled by members of S are independent, uniformly random values from F . Therefore, we
can construct a new algorithm Ã that behaves exactly as A except, whenever A queries a
member of S, Ã samples uniformly at random from F instead. Note that since we only
consider nonadaptive decoding algorithms, without loss of generality, we can assume that
the algorithm makes all the coin tosses before reading any values. Then over random x
and B as above, when the coin tosses of A and Ã are fixed and equal, the distribution of
values A and Ã receive as answers to their queries are the same. Thus, Ã achieves the same
correctness as A under random x and B.

The distribution DR that we use will be of the following form. Let 0 ≤ β ≤ 1− 1
|F | be a

value specified later. Choose a subset Z ⊆ R of size |Z| = β|R| uniformly at random from
all possible subsets of R of size β|R|. Next, independently for each position in Z pick a value
from F ∗ uniformly with probability 1

|F |−1
. Let B1 have the values picked this way in each

position in Z and the value zero in each position outside of Z.
Next we define the sets R and S. Let 0 < ε1, ε2 < 1/2 be values specified later. For

i ∈ [n], we define sets Ri and Ei. We state two versions of the definition of the sets Ri and
Ei, one for arbitrary (possibly nonlinear) binary codes, the other for arbitrary linear codes.
We could have given a common definition that includes both versions, but it is simpler to
state a separate version for binary nonlinear codes. Notice that by a reasoning similar to
Lemma 2.2 for binary linear codes the two definitions are equivalent.

For binary codes, for i ∈ [n], define

Ri , {j ∈ [m] |
∣∣∣Pr
x

[xi = C(x)j]− Pr
x

[xi 6= C(x)j]
∣∣∣ ≥ ε1} .
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For linear codes, define

Ri , {j ∈ [m] | ∃c ∈ F ∗ : ei = caj}

Note that for binary linear codes this means that for j ∈ Ri, C(x)j = xi.
For binary codes, for each i ∈ [n], let Ei be the set of pairs of indices {j1, j2} such that

|Pr
x

[xi = C(x)j1 + C(x)j2 ]− Pr
x

[xi 6= C(x)j1 + C(x)j2 ] | ≥ ε2 .

For linear codes over F , for each i ∈ [n], let Ei be the set of pairs of indices {j1, j2} such
that ei = c1aj1 + c2aj2 , where c1, c2 ∈ F ∗.

For each i ∈ [n], let Mi be a maximum set of disjoint pairs of indices {j1, j2} ∈ Ei.
Let α, ν > 0 be values specified later. Let

S1 , {i ∈ [n] | |Ri| ≥ νm} and

S2 , {i ∈ [n] | |Mi| ≥
α

2
m}.

We will set the parameters so that we can upper bound |S1| and |S2| to ensure that
S̄1 ∩ S̄2 is nonempty. Without loss of generality, assume 1 ∈ S̄1 ∩ S̄2. That is, |R1| < νm
and |M1| < α

2
m.

Next we construct a set that covers each pair {j1, j2} ∈ E1.
At this point, it is helpful to consider a graph over the set [m] as vertices, having the

pairs {j1, j2} ∈ E1 as edges. We refer to this graph as G. Then, M1 is a maximum matching
in the graph G, and we are looking for a node cover of G. Let M̃ ⊆ [m] be the union of all
positions that appear in a pair in M1. Thus, |M̃ | = 2|M1|. Since M1 is a maximum matching
in G this gives a node cover of G.

We can do better in the case of binary linear codes: then we can use a node cover of
size |M1| instead of 2|M1|. This would be immediate if each vector a ∈ {0, 1}n was used for
at most one position of the code. In that case all pairs such that e1 = aj1 + aj2 would be
disjoint and participate in M1. In other words, if there are no vectors used for more than one
position in a binary linear code, then the whole graph G is a matching. However, there may
be several positions in the code that correspond to the same vector a ∈ {0, 1}n. We get that
in the case of binary linear codes, the graph G described above is the union of a matching
and possibly several complete bipartite graphs. Note that for nonbinary or nonlinear codes,
the graph G may not be a matching even if there are no vectors used for more than one
position in the code. To obtain a node cover of size |M1| of G for binary linear codes, we
simply include into the cover one endpoint of each edge of the matching, and the positions
corresponding to the smaller side of each complete bipartite graph.

To finish the definition of the distribution of the adversary, let S = R1 ∪ M̃ . The set R
will be the complement [m] \ S of the set S.
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3.5 Proof of Theorem 3.1

Note that we only claim the bound when ε is large enough to give α > 0. We will consider the
probability distribution for corruption described in Section 3.4, using α , δ− (1

2
− ( ε

4
)1/3)−

(3/n1/3 + 36
n

)1/3 − ν. Recall that in Section 3.4 we considered

S1 , {i ∈ [n] | |Ri| ≥ νm} and

S2 , {i ∈ [n] | |Mi| ≥
α

2
m}.

The sets Ri and Mi have been defined in Section 3.4, when describing the distribution
of the adversary. For nonlinear codes, it is possible that a given index j ∈ [m] belongs to
several sets Ri: a nonlinear function can have nonzero correlation with more than one input
bit. In the next claim we show that nevertheless, for appropriate choices of the parameters,
the sets Ri cannot overlap too much.

Claim 3.6. Let ν = 10
n(1−H(1/2+ε1/2))

. Then |S1| ≤ 0.1n must hold.

Proof. The claim immediately follows from Theorem 2.7, by noticing that the definition of
the set S1 implies that there is an index j ∈ [m] that belongs to at least ν|S1| of the sets Ri.
Then applying Theorem 2.7 for the function C(x)j gives 1 ≥ (1−H(1/2 + ε1/2))ν|S1|.

We let ν = 10
n(1−H(1/2+ε1/2))

and we use ε1 = 1/n1/3 in the definition of the sets Ri. Note

that for this setting of the parameters, 1−H(1/2+ε1/2) ≥ 1
n2/3 for large enough n. This can

be verified using Taylor expansion when evaluating H(1/2 + 1/n1/3). Thus, ν = O(1/n1/3)
holds.

If |S2| ≥ 0.9n, then we can use Theorem 2.6 to conclude m ≥ 2
0.9
4
α2ε22n. Choosing

ε2 = 1/n1/3 gives m ≥ 2
0.9
4
α2n1/3

.
If |S2| < 0.9n, then S̄1 ∩ S̄2 is nonempty. Without loss of generality, assume 1 ∈ S̄1 ∩ S̄2.

Define the set S as described in Section 3.4. Note that |S| ≤ (α + ν)m and that α + ν < δ

since ε ≤ 1
2
. Define γ , |[m]\S|

m
and let β = min( δ−α−ν

γ
, 1

2
). We will use the distribution

DS and the distribution DR with parameter β as described in Section 3.4 to generate the
corruption B = B1 + B2. Note that by our choice of parameters, B contains at most δm
nonzero entries. Then, by Lemma 3.5, there is a 3-query decoding algorithm A that never
reads any positions from S and satisfies the following:

Pr
x,B,A

[
AC(x)+B(1) = x1

]
≥ 1

2
+ ε (1)

where the probability is over the internal coin tosses of A, uniform x ∈ {0, 1}n, and
B = B1 +B2 chosen by the product distribution of the distributions DR and DS.

We emphasize that the algorithm A may not achieve the required correctness on every
input and for every string within distance δm of C(x). We only claim a bound on its
correctness over uniformly random x and over B according to our distribution.

The correlation Corr(f, h) between two Boolean functions f and h is defined as

Corr(f, h) = Pr
x

[f(x) = h(x)]− Pr
x

[f(x) 6= h(x)] .
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Claim 3.7. Let g : {0, 1}q → {0, 1} be a Boolean function with q variables. Let h =
g(h1, . . . , hq), where h, h1, . . . hq : {0, 1}n → {0, 1} are Boolean functions with n variables.
Then

|Corr(f, h)| ≤
∑
S⊆[q]

|Corr(f,
∑
i∈S

hi)|

Proof. For a Boolean function f : {0, 1}n → {0, 1}, we denote by f ∗ the function obtained
from f by replacing 0s by 1s and 1s by −1s, that is the function f ∗ : {1,−1}n → {1,−1}
such that for y ∈ {1,−1}n, f ∗(y) = (−1)f((1−y)/2). Then, Corr(f, h) = Corr(f ∗, h∗).

Let χS(y) =
∏

i∈S yi. Then the Fourier representation of g∗ gives g∗(y) =
∑

S⊆[q] cSχS(y),

where the constants cS = ĝ∗(S) are the Fourier coefficients. Using the Fourier repre-
sentation of g∗ and noting that |cS| ≤ 1 for every S ⊆ [q], we get |Corr(f ∗, h∗)| ≤∑

S⊆[q] |Corr(f ∗,
∏

i∈S h
∗
i )|. Translating back to 0/1 values, we get the desired inequality.

We denote by Q the event that the algorithm A queries the positions in the query set Q,
and by g the event that the remaining coins of A are fixed so that A returns the value of the
function g evaluated on the positions read. We use the following notation:

PQ,g = Pr
x,B,A

[
AC(x)+B(1) 6= x1| Q ∩ g

]
.

With this notation, we have

Pr
x,B,A

[
AC(x)+B(1) 6= x1

]
=
∑
Q,g

PQ,g Pr
x,B,A

[Q ∩ g] ,

where in the summation, Q ⊆ [m], |Q| ≤ 3, and g : {0, 1}|Q| → {0, 1}.
Notice that for Q = {j1, . . . , j|Q|},

PQ,g = Pr
x,B

[
g
(

(C(x) +B)j1 , . . . , (C(x) +B)j|Q|

)
6= x1

]
,

and we have 1− 2PQ,g = Corr(x1, h), where h(x,B) = g((C(x) + B)j1 , . . . , (C(x) + B)j|Q|).
Thus, we have 2PQ,g = 1− Corr(x1, h) ≥ 1− |Corr(x1, h)|. Note that here we view x1 as a
function from {0, 1}n × {0, 1}m to {0, 1}, taking the value x1 on input (x,B).

Recall the property of the algorithm A that we work with, that A never queries any
positions from the set S we defined when constructing the distribution of the adversary. By
Claim 3.7, for query sets Q of size at most 2 such that Q ∩ S = ∅ we have |Corr(x1, h)| ≤
3(ε1 + ε2), and thus PQ,g ≥ 1

2
− 3

2
(ε1 + ε2). The values ε1 and ε2 are as defined above.

Using Claim 3.7, for query sets Q of size 3 such that Q ∩ S = ∅ we get

|Corr(x1, h)| ≤ 3(ε1 + ε2) + |Corr(x1, h
′)| ,

where h′(x,B) =
∑

j∈Q(C(x) +B)j.
As noted above, 2PQ,g = 1− Corr(x1, h) ≥ 1− |Corr(x1, h)|. Thus, 2PQ,g ≥ 1− 3(ε1 +

ε2)− |Corr(x1, h
′)|.
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Note that |Corr(x1, h
′)| = 1− 2 min{Prx,B [x1 6= h′(x,B)] ,Prx,B [x1 = h′(x,B)]}.

This gives

PQ,g ≥ min{Pr
x,B

[x1 6= h′(x,B)] , Pr
x,B

[x1 = h′(x,B)]} − 3

2
(ε1 + ε2) . (2)

We use the following claim to get a lower bound for this probability.

Claim 3.8. Prx,B

[
x1 6=

∑
j∈Q(C(x) +B)j

]
≥ mink∈{0,1} PrB

[∑
j∈QBj = k

]
, and

Prx,B

[
x1 =

∑
j∈Q(C(x) +B)j

]
≥ mink∈{0,1} PrB

[∑
j∈QBj = k

]
.

Proof. To prove the first inequality, it is enough to show that

Pr
x,B

[
x1 6=

∑
j∈Q

(C(x) +B)j |
∑
j∈Q

Bj = 0

]
+ Pr

x,B

[
x1 6=

∑
j∈Q

(C(x) +B)j |
∑
j∈Q

Bj = 1

]
= 1 .

We have Prx,B

[
x1 6=

∑
j∈Q C(x)j + k |

∑
j∈QBj = k

]
= Prx

[
x1 6=

∑
j∈Q C(x)j + k

]
. It

remains to note that for each x there is exactly one value k ∈ {0, 1} that gives∑
j∈Q

C(x)j + k = xi .

The second inequality follows by an analogous argument.

Using Claim 5.7, we get that

Pr
B

[
∑
j∈Q

Bj = 0] ≥ (1− β)3 + 3β2(1− β)− 2
9

γm

and

Pr
B

[
∑
j∈Q

Bj = 1] ≥ 3β(1− β)2 + β3 − 2
9

γm
.

Note that γm > (1 − δ)m by our choices of the parameters. By Observation 2.1, we can
assume without loss of generality that δ < 1/2. Since β ≤ 1/2, and by (2) this implies for Q
such that Q ∩ S = ∅ and any g that

PQ,g ≥ 3β(1− β)2 + β3 − 36

m
− 3

2
(ε1 + ε2) .

For large enough n, m > n must hold, for example by using the lower bounds in [12]. This
implies the following inequality:

PQ,g > 3β(1− β)2 + β3 − 36

n
− 3

2
(ε1 + ε2) . (3)
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By the choice of our parameters, this expression evaluated at β = min( δ−α−ν
γ

, 1
2
) is ≥ 1

2
−ε.

See Claim 5.2 for details, substituting ψ(n)3 = 36/n + 3/2(ε1 + ε2) = 36/n + 3/n1/3. This
implies that if |S2| < 0.9n, which allowed us to construct the above distribution for the
corruption B, then Prx,B,A

[
AC(x)+B(1) = x1

]
< 1

2
+ε. This however contradicts the estimate

(1) about the average correctness of the algorithm A, which we derived based on C being
a (3, δ, ε)-LDC. Thus, it must be the case that |S2| ≥ 0.9n, and we can use Theorem 2.6 to
conclude the proof of the theorem.

3.6 Proof of Theorem 3.3

The statement trivially holds when α ≤ 0, thus we assume α > 0. We will consider the
probability distribution for corruption described in Section 3.4, using α , δ − (1 − 1

|F | −
ε1/3(1− 1

|F |)
2/3)− (108|F |

n
)1/3 − 10

n
. Let ν = 10

n
. Recall that in Section 3.4 we considered

S1 , {i ∈ [n] | |Ri| ≥ νm} and

S2 , {i ∈ [n] | |Mi| ≥
α

2
m}.

The sets Ri and Mi have been defined in Section 3.4, when describing the distribution of
the adversary. Note that |S1| ≤ m

10m
n

= 0.1n must hold, since for linear codes each position

j ∈ m participates in at most one of the sets Ri.
If |S2| ≥ 0.9n, then we can use Theorem 2.5 to conclude m ≥ 2

0.9
2
αn−1.

If |S2| < 0.9n, then S̄1 ∩ S̄2 is nonempty. Without loss of generality, assume 1 ∈ S̄1 ∩ S̄2.
Define the set S as described in Section 3.4. Note that |S| ≤ (α + ν)m and that α + ν < δ

since ε ≤ 1 − 1
|F | . Define γ , |[m]\S|

m
and let β = min( δ−α−ν

γ
, 1 − 1

|F |). We will use the
distribution DS and the distribution DR with parameter β as described in the previous
section to generate the corruption B = B1 + B2. Note that by our choice of parameters,
B contains at most δm nonzero entries. Then, by Lemma 3.5, there is a 3-query decoding
algorithm A that never reads any positions from S and satisfies the following:

Pr
x,B,A

[
AC(x)+B(1) = x1

]
≥ 1

|F |
+ ε (4)

where the probability is over the internal coin tosses of A, uniform x ∈ F n, and B =
B1 +B2 chosen by the product distribution of the distributions DR and DS.

Recall that we denote by Q the event that the algorithm A queries the positions in the
query set Q. For a given set Q of size q, we will denote by z the event that the values of
C(x) +B on the positions in Q are equal to z ∈ F q that is, the event that (C(x) +B)ji = zi,
for i ∈ [q] and ji ∈ Q.

We will estimate the probability that the algorithm returns an incorrect value, under the
conditions that the algorithm queries a specific query set Q, that a fixed linear combination
of the value of the corruption on this specific query set is equal to a fixed value, and that
the values z on the positions of the given query set are fixed. We use the following notation
for conditional probabilities of this type. First, define
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PQ = Pr
x,B,A

[
AC(x)+B(1) 6= x1| Q

]
.

Next, let cj ∈ F for j ∈ Q, such that at least one coefficient cj is nonzero. Note that
at this point we only need that at least one coefficient is nonzero, so that the events in the
conditions below have nonzero probability. Define

PQ,k = Pr
x,B,A

[
AC(x)+B(1) 6= x1| Q ∩ (

∑
j∈Q

cjBj = k)

]
,

PQ,k,z = Pr
x,B,A

[
AC(x)+B(1) 6= x1| Q ∩ (

∑
j∈Q

cjBj = k) ∩ z

]
.

With this notation, we have

PQ =
∑
k∈F

PQ,k Pr
x,B,A

[(
∑
j∈Q

cjBj = k) | Q] ,

Furthermore,

PQ,k =
∑
z∈F q

PQ,k,z Pr
x,B,A

[z | Q ∩ (
∑
j∈Q

cjBj = k)] .

Note that our distribution generating the random corruption B, the random choices
of the algorithm, and the input x are independent of each other; because of the way we
constructed the distribution B and since A is nonadaptive. Also, note that (

∑
j∈Q cjBj = k)

and Q are independent events: the number of positions the adversary corrupts in a given set
of positions is independent of whether or not the algorithm actually looks at those positions.
Thus,

Pr
x,B,A

[(
∑
j∈Q

cjBj = k) | Q] = Pr
B

[
∑
j∈Q

cjBj = k] .

We get that

PQ =
∑
k∈F

PQ,k Pr
B

[(
∑
j∈Q

cjBj = k)] . (5)

Similarly, the values of C(x)+B in the positions of Q as well as the number of corrupted
positions are independent of whether or not the algorithm looks at those positions. Thus,

Pr
x,B,A

[z | Q ∩ (
∑
j∈Q

cjBj = k)] = Pr
x,B

[z | (
∑
j∈Q

cjBj = k)] .

For query sets Q that correspond to linearly independent vectors, we can say even more.
Fact 2.3 immediately gives the following.

Claim 3.9. Let Q be a query set such that the vectors aj for j ∈ Q are linearly independent.
Let q = |Q|. Then for any z ∈ F q we have

Pr
x,B

[z | (
∑
j∈Q

cjBj = k)] = 1/|F |q .
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The next two lemmas allow us to obtain a simple estimate on the error probability of
the algorithm on certain query sets over random input x and over our distribution B on the
corruption of the adversary. We emphasize that the lemmas hold without any assumptions on
the algorithm (except its nonadaptiveness), in particular even if the algorithm uses nonlinear
operations to derive its output from the values it reads.

Lemma 3.10. Let Q be a query set such that the vectors aj for j ∈ Q are linearly indepen-
dent, and such that e1 ∈ span(Q). Let q = |Q|. Then, for any z ∈ F q,

∑
k∈F PQ,k,z = |F |−1,

and
∑

k∈F PQ,k = |F | − 1.

Proof. Let e1 =
∑

j∈Q cjaj. Note that at least one of the coefficients cj used is nonzero,
since e1 is a nonzero vector. Regardless of what is the decoding algorithm, this means that
the algorithm is incorrect whenever it outputs a different value than

∑
j∈Q cj(C(x) +B)j −∑

j∈Q cjBj. Thus, for z such that
∑

i∈[q] cjizi = `, where ji ∈ Q for i ∈ [q], we have

PQ,k,z = Pr
x,B,A

[
AC(x)+B(1) 6= `− k | Q ∩ (

∑
j∈Q

cjBj = k) ∩ z

]
.

Notice that the value of the output of the algorithm A is completely determined by the
choice of Q, the remaining random choices of A, and the values (C(x) + B)j for j ∈ Q. In
addition, the event (

∑
j∈Q cjBj = k) is independent of the distribution for the coin tosses of

the algorithm. Thus, for z such that
∑

i∈[q] cjizi = `, where ji ∈ Q for i ∈ [q],

PQ,k,z = Pr
x,B,A

[
AC(x)+B(1) 6= `− k | Q ∩ z

]
.

The statement of the Lemma now follows by noting that for any ` ∈ F ,∑
k∈F

Pr
x,B,A

[
AC(x)+B(1) 6= `− k | Q ∩ z

]
= |F | − 1 ,

and using Claim 3.9.

Lemma 3.11. Let Q be a query set such that the vectors aj for j ∈ Q are linearly indepen-
dent, and such that e1 =

∑
j∈Q cjaj. Then

PQ ≥ (|F | − 1) min
k∈F

Pr
B

[(
∑
j∈Q

cjBj = k)] .

Proof. Immediately follows by Lemma 3.10 and equation (5).

Corollary 3.12. Let Q be a query set such that the vectors aj for j ∈ Q are linearly
independent, and such that e1 =

∑
j∈Q cjaj. Suppose q′ of the coefficients cj are nonzero,

where q′ ≤ |Q|. Then
PQ ≥ q′δ − o(δ)−O(1/n) .
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Proof. Immediately follows by Lemma 3.11 and the estimates in the Appendix.

Notice that up to this point, our argument is valid for arbitrary number of queries for
linear codes. Moreover, the decoder is allowed to use nonlinear operations in the above
statements. The rest of our proof for 3-query linear codes is based on Lemma 3.11, and
showing that its conditions must be satisfied by the decoder A that we consider. We observe
that for the particular 3-query algorithm A that we consider, the following claim holds.

Claim 3.13. Let Q be a query set that the algorithm A queries with nonzero probability,
such that e1 ∈ span(Q). Then, |Q| = 3, and for the positions j1, j2, j3 ∈ Q, we have
e1 = cj1aj1 + cj2aj2 + cj3aj3 where cj ∈ F ∗ for j ∈ Q. Moreover, the vectors aj1, aj2 and aj3
are linearly independent.

Proof. As noted above (see the sentence of inequality (4)), the algorithm A never reads any
positions from S. Notice that S was constructed so that it contains at least one index from
each set Q ⊆ [m] such that |Q| ≤ 2 and e1 ∈ span(Q). This means that a set Q such that
e1 ∈ span(Q) can be queried by A with nonzero probability, only when |Q| = 3, and e1 is
not spanned by any strict subsets of Q. This implies the statement of the claim.

Next we note that by Lemma 2.2, PQ ≥ 1−1/|F | for query sets Q such that e1 /∈ span(Q).
Thus, by Claim 3.13 it remains to estimate PQ for Q such that |Q| = 3, e1 = cj1aj1 + cj2aj2 +
cj3aj3 , where each cji is nonzero and the vectors aj1 , aj2 and aj3 are linearly independent.
Let Q be such a set. We use Lemma 3.11 to estimate PQ. Note that the probability in the
bound of Lemma 3.11 is largest if all the coefficients cj used in the linear combination are
nonzero. We give a precise estimate on this probability in Claim 5.8.

Since β ≤ 1− 1/|F |, the estimate in Claim 5.8 implies

PQ > 3β(1− β)2 + (1− 1

|F | − 1
)3β2(1− β) + (1− 1

|F | − 1
+

1

(|F | − 1)2
)β3 − 3

9

γm
.

Note that γm > (1− δ)m by our choices of the parameters. By Observation 2.1, we can
assume without loss of generality that δ < 1 − 1/|F |, and therefore γ > 1/|F |. Recall that
for large enough n, by the lower bounds of [12] we can assume that m > n. Thus, we have

PQ > 3β(1− β)2 + (1− 1

|F | − 1
)3β2(1− β) + (1− 1

|F | − 1
+

1

(|F | − 1)2
)β3 − 27|F |

n
.

We then use Claim 5.12, substituting ψ(n) = (108|F |/n)1/3, that is ψ(n)3/4 = 27|F |/n).
This shows that by our choice of the parameters the above expression evaluated at β =
min( δ−α−ν

γ
, 1− 1/|F |) is ≥ 1− 1

|F | − ε. This implies that if |S2| < 0.9n, which allowed us to
construct the above distribution for the corruption B, then

Pr
x,B,A

[
AC(x)+B(1) = x1

]
<

1

|F |
+ ε .

This however contradicts the estimate (4) about the average correctness of the algorithm A,
which we derived based on C being a (3, δ, ε)-LDC. Thus, it must be the case that |S2| ≥ 0.9n,
and we can use Theorem 2.5 to conclude the proof of the theorem.
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4 Linear Decoders

Definition 2. Let C: F n → Fm be an arbitrary (possibly nonlinear) code. We say that an
algorithm A is a linear decoder for C if for any fixing of the outcomes of the coin flips of A,
the value it returns is a fixed linear combination of the codeword positions it reads.

Note that this definition allows the decoder A to ignore the code positions read and just
return the result of a coin flip, thus the correctness of linear decoders can still be always
at least 1/|F |. Also, note that the definition allows the possibility of considering adaptive
linear decoders, the decoder in principle could be adaptive when choosing the set Q, but the
coefficients in the linear combination used cannot depend on the values read (that would allow
to simulate nonlinear operations). However, for our proofs we only consider nonadaptive
linear decoders. Note also that nonlinear codes may also have linear decoders.

The next lemma yields lower bounds on the error probability of nonadaptive linear de-
coders for arbitrary codes, and arbitrary probability distributions of the corruption B. We
denote by Q the event that the decoder reads the positions in the query set Q, and by g the
event that the remaining coins of A are fixed so that A returns the value of the function g
evaluated on the positions read.

Lemma 4.1. Let C: F n → Fm be an arbitrary (possibly nonlinear) code, and let A be a
nonadaptive linear decoder operating on C. Consider an arbitrary adversary generating the
vectors B ∈ Fm. Let Q be a query set, such that when A is trying to recover xi there is a
fixing g of the remaining coin tosses of A (other than the coins to choose the set Q) such
that A returns a fixed linear combination with nonzero coefficients of the positions in Q. Let
cj ∈ F ∗ be the coefficient used on position j ∈ Q. Then

Pr
x,B,A

[AC(x)+B(i) 6= xi | Q ∩ g] ≥ (|F | − 1) min
k∈F

Pr
x,B,A

[
∑
j∈Q

cjBj = k | Q ∩ g] .

Proof. It is enough to show that∑
k∈F

Pr
x,B,A

[AC(x)+B(i) 6= xi | Q ∩ g ∩ (
∑
j∈Q

cjBj = k])] = |F | − 1 .

For the decoder described in the statement of the lemma, for fixed Q and g, the output
of the algorithm AC(x)+B(i) =

∑
j∈Q cj(C(x) +B)j =

∑
j∈Q cjC(x)j +

∑
j∈Q cjBj. Thus,

Pr
x,B,A

[AC(x)+B(i) 6= xi | Q ∩ g ∩ (
∑
j∈Q

cjBj = k])]

= Pr
x.B,A

[
∑
j∈Q

cjC(x)j + k 6= xi | Q ∩ g ∩ (
∑
j∈Q

cjBj = k])]

= Pr
x

[
∑
j∈Q

cjC(x)j + k 6= xi] .
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The last equation holds since the event
∑

j∈Q cjC(x)j + k 6= xi does not involve B or the
coins of A. It remains to note that for each x there is exactly one value k ∈ F that gives∑

j∈Q cjC(x)j + k = xi. Thus, we have∑
k∈F

Pr
x

[
∑
j∈Q

cjC(x)j + k 6= xi] = |F | − 1 .

We think that it is interesting that Lemma 4.1 holds for possibly nonlinear codes, and for
arbitrary adversary. Moreover, under a particular distribution of the adversary, this implies
that the probability of error of a linear decoder is lower bounded by the probability that the
corruption sums to a nonzero value over the given linear combination used by the decoder.
This is of course straightforward for linear codes for arbitrary adversary, but we show that
for certain distributions of the adversary it holds even for arbitrary nonlinear codes.

Lemma 4.2. Let C: F n → Fm be an arbitrary (possibly nonlinear) code, and let A be a
nonadaptive linear decoder operating on C. Let B be chosen from a distribution that first
uniformly chooses a set of βm coordinates from [m], and then assigns a uniformly random
value from F ∗ independently to each chosen coordinate. The remaining m− βm coordinates
are set to 0. Let Q be a query set, such that when A is trying to recover xi there is a fixing
g of the remaining coin tosses of A (other than the coins to choose the set Q) such that A
returns a fixed linear combination with nonzero coefficients of the positions in Q. Let cj ∈ F ∗
be the coefficient used on position j ∈ Q. Then

Pr
x,B,A

[AC(x)+B(i) 6= xi | Q ∩ g] ≥ Pr
B

[
∑
j∈Q

cjBj 6= 0] .

Proof. First note that

Pr
x,B,A

[
∑
j∈Q

cjBj = k | Q ∩ g] = Pr
B

[
∑
j∈Q

cjBj = k] ,

since the event Q ∩ g only depends on the coin flips of the algorithm, and the distribution
of the adversary does not depend on the input or the coin flips of the algorithm. Then, the
statement follows from Lemma 4.1 and Claim 5.10.

This Lemma allows us to prove limits on the correctness achievable by linear decoders
for arbitrary (possibly nonlinear) codes and regardless the length of the code.

Recall that in Section 3.2 we defined P (δ, q, F ) , PrB

[
(
∑

j∈Q cjBj = 0)
]
, where the

probability is over B ∈ Fm randomly chosen according to a distribution that first chooses
to corrupt each coordinate in [m] independently with probability δ, and then uniformly
and independently assigns a value from F ∗ to each chosen coordinate of B. The remaining
coordinates of B are set to 0. While we use a different distribution in the proofs, it is
convenient to state our bounds in terms of P (δ, q, F ).
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Theorem 4.3. Let C: F n → Fm be an arbitrary (possibly nonlinear) code, and let A be a
nonadaptive linear decoder operating on C, such that it always returns a linear combination
with exactly q nonzero coefficients. For large enough n, the correctness of such decoder cannot
be larger than P (δ, q, F ) + O(1/n) = 1− qδ + o(δ) + O(1/n), regardless of the length of the
code.

Proof. The proof follows by Lemma 4.2 and Claim 5.7.

Moreover, we obtain the following bound on the correctness of arbitrary linear decoders,
for any number of nonzero coefficients used.

Theorem 4.4. Let C: F n → Fm be an arbitrary (possibly nonlinear) code. For large
enough n, the correctness of any nonadaptive linear decoder operating on C is at most
max{1/|F |, P (δ, 2, F ) + O(1/n)} = max{1/|F |, 1 − 2δ + |F |

(|F |−1)
δ2 + O(1/n)}, regardless of

the length of the code.

Proof. As in the proof of Theorem 3.1, we can show using Theorem 2.7 that in any LDC,
the number of codeword positions that have large correlation with a given input bit xi over
random input x must be small for most input positions i ∈ [n]. We use a similar distribution
for the adversary as in the proof of Theorem 3.1, letting the set S be the set of codeword
positions that have large correlation with xi for an index i where this set is small. We let the
adversary corrupt the positions in S independently. Then Lemma 3.4 implies that there is a
linear decoding algorithm that only uses query sets that either provide only small advantage
over random guessing, or returns a linear combination of the positions read with at least 2
nonzero coefficients. Then the statement follows by Lemma 4.2 and Claim 5.7.

Combining Theorem 4.3 with our proof of lower bounds for 3-query codes shows that for
any binary code (possibly nonlinear), and for linear codes over arbitrary finite fields, if a
nonadaptive q-query linear decoder (with query sets of size at most q) achieves correctness
more than P (δ, 3, F ) +O(1/n1/3), then the length of the code must be exponential.

As we noted in the introduction, in the case of linear smooth codes (see [12]), requiring
the decoders to be linear is inconsequential: for linear codes, if any algorithm gives nontrivial
advantage over random guessing when querying a given set of codeword positions Q, then
by Lemma 2.2, ei ∈ span(Q) must hold. Thus, there is a fixed linear combination of the
positions in Q that gives the correct value of xi for any input x. Using the same procedure
as the original decoder to choose which positions to query and then returning this fixed
linear combination (if it exists) cannot violate the smoothness of the code. This means
that any reduction that converts an arbitrary smooth code with given parameters to a
locally decodable code with corresponding parameters, would yield a locally decodable code
with a linear decoder that achieves the parameters guaranteed by the reduction. Thus, the
above lemma about linear decoders also implies that there is no significantly better general
reduction from smooth codes to locally decodable codes than the current bounds giving at
most 1− qδ correctness for q query locally decodable codes.
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4.1 Matching Sum Decoders

Matching sum decoders were formally defined by Woodruff [24]. A q-query matching sum
decoder picks a set of size q uniformly at random from a collection of sets that form a
matching in the complete q-uniform hypergraph, whose vertices correspond to the positions
of the codeword. Then, the decoder reads the positions corresponding to the chosen set and
returns a fixed linear combination with only nonzero coefficients of the positions read. Most
known constructions of locally decodable codes have such decoders.

The following lemma holds for any code, regardless the length of the codewords.

Lemma 4.5. Let C: F n → Fm be an arbitrary (possibly nonlinear) code, and let A be a
q-query matching sum decoder operating on C. The correctness of the matching sum decoder
A is at most 1− qδ.

Proof. Consider an adversary that randomly chooses qδ fraction of the sets that participate
in the matching, and corrupts exactly one position from each chosen set. Since the size of
the matching is at most m/q, where m is the length of the code, this way the number of
corrupted positions is always at most δm. The decoder will return an incorrect value every
time it picks a set that was also chosen by the adversary. This happens with probability at
least qδ.

Combining this lemma with our proof of lower bounds for 3-query codes shows that for
any binary code (possibly nonlinear), and for linear codes over arbitrary finite fields, if a
matching sum decoder with query sets of size at most q achieves correctness more than
1− 3δ +O(1/n), then the length of the code must be exponential.

Acknowledgements We thank David Woodruff for helpful conversations and for point-
ing us to [5]. We also thank the anonymous referees and Mahdi Cheraghchi for helpful
comments.
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5 Appendix

5.1 Calculations

Claim 5.1. Let 0 < ε ≤ 1/2 and α , δ − (1
2
− ( ε

4
)1/3) − φ(n)

4
. Then α > 0 when 1

2
+ ε >

1− 3δ + 6δ2 − 4δ3 + φ(n). Moreover, α > µ
4

when 1
2

+ ε > µ+ 1− 3δ + 6δ2 − 4δ3 + φ(n) for
some µ ≥ 0.

Proof. Let f(β) = 3β(1 − β)2 + β3. Let ξ = 1
2
− ( ε

4
)1/3 = δ − α − φ(n)

4
. First observe that

f(ξ) = 1
2
− ε. By Fact 5.4

f(ξ +
φ(n)

4
) ≤ 1

2
− ε+ φ(n) .

The assumption 1
2

+ ε > 1− 3δ + 6δ2 − 4δ3 + φ(n) means that

f(δ) >
1

2
− ε+ φ(n) .

But δ = ξ+ φ(n)
4

+α, and f is a monotone increasing function, which means that α > 0 must
hold.

To see the second statement of the claim, observe that by Fact 5.4

f(δ) = f(ξ +
φ(n)

4
+ α) ≤ 1

2
− ε+ φ(n) + 4α .
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Claim 5.2. Let 0 < ε ≤ 1/2 and α , δ−(1
2
−( ε

4
)1/3)−ψ(n)−ν. Let f(β) = 3β(1−β)2 +β3.

Let n be large enough, so that ψ(n)3 < ε. Then the expression f(β) − ψ(n)3 evaluated at β
= min( δ−α−ν

γ
, 1

2
) is ≥ 1

2
− ε.

Proof. If min( δ−α−ν
γ

, 1
2
) is equal to 1

2
, then we have f(β) = f(1

2
) = 1

2
. For large enough n,

ψ(n)3 < ε and thus f(β)− ψ(n)3 > 1
2
− ε.

Otherwise, since f is monotone, f(β) ≥ f(δ − α − ν). Let ξ = 1
2
− ( ε

4
)1/3. Recall that

f(ξ) = 1
2
−ε and δ−α−ν = ξ+ψ(n). Thus, by Fact 5.3 f(β) ≥ f(δ−α−ν) ≥ 1

2
−ε+ψ(n)3.

We use the following estimates on the function f(β).

Fact 5.3. Let f(β) , 3β(1− β)2 + β3. For any β and ρ ≥ 0, f(β + ρ) ≥ f(β) + ρ3.

Proof. Let x , β + ρ/2 and p , ρ/2. So now we need to lower bound f(x + p)− f(x− p).
Note that f(x) can be expressed as 3x− 6x2 + 4x3. Therefore,

f(x+ p)− f(x− p) = (3(x+ p)− 6(x+ p)2 + 4(x+ p)3)− (3(x− p)− 6(x− p)2 + 4(x− p)3)

= 3((x+ p)− (x− p))− 6((x+ p)2 − (x− p)2) + 4((x+ p)3 − (x− p)3)

= 3(2p)− 6(4xp) + 4(6x2p+ 2p3)

= 6p− 24xp+ 24x2p+ 8p3

= 3ρ− 12xρ+ 12x2ρ+ ρ3

= 3ρ(1− 2x)2 + ρ3

≥ ρ3

Fact 5.4. Let f(β) , 3β(1− β)2 + β3. For any β and 0 ≤ ρ ≤ 1 such that 0 ≤ β + ρ
2
≤ 1,

f(β + ρ) ≤ f(β) + 4ρ.

Proof. We can use the same notation and the same first several steps of the Fact 5.3 to get

f(x+ p)− f(x− p) = 3ρ(1− 2x)2 + ρ3

≤ 3ρ+ ρ3

≤ 4ρ

The above two claims extend to the nonbinary case for the corresponding function Z(β)
as follows.

Fact 5.5. Let Z(β) , 3β(1− β)2 + (1− 1
|F |−1

)3β2(1− β) + (1− 1
|F |−1

+ 1
(|F |−1)2

)β3. For any

β and ρ ≥ 0, Z(β + ρ) ≥ Z(β) + ρ3

4
.
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Proof. For easier notation, let c , 1
|F |−1

. We can rewrite Z(β):

Z(β) = 3β(1− β)2 + (1− c)3β2(1− β) + (1− c+ c2)β3

= 3β − 6β2 + 3β3 + (1− c)3β2 − (1− c)3β3 + (1− c+ c2)β3

= 3β + (−3− 3c)β2 + (1 + 2c+ c2)β3

= 3β − 3dβ2 + d2β3 where d , 1 + c

Let x , β + ρ/2 and p , ρ/2. So now we need to lower bound Z(x + p) − Z(x − p).
Therefore,

Z(x+ p)− Z(x− p)
= (3(x+ p)− 3d(x+ p)2 + d2(x+ p)3)− (3(x− p)− 3d(x− p)2 + d2(x− p)3)

= 3((x+ p)− (x− p))− 3d((x+ p)2 − (x− p)2) + d2((x+ p)3 − (x− p)3)

= 3(2p)− 3d(4xp) + d2(6x2p+ 2p3)

= 6p− 12dxp+ 6d2x2p+ 2d2p3

= 3ρ− 6dxρ+ 3d2x2ρ+
d2

4
ρ3

= 3ρ(1− dx)2 +
d2

4
ρ3

≥ ρ3

4

Fact 5.6. Let Z(β) , 3β(1− β)2 + (1− 1
|F |−1

)3β2(1− β) + (1− 1
|F |−1

+ 1
(|F |−1)2

)β3. For any

β and 0 ≤ ρ ≤ 1 such that 0 ≤ β + ρ
2
≤ 2

1+ 1
|F |−1

, Z(β + ρ) ≤ Z(β) + 4ρ.

Proof. We can use the same notation and the same first several steps of the Fact 5.5 to get

Z(x+ p)− Z(x− p) = 3ρ(1− dx)2 +
d2

4
ρ3

≤ 3ρ+ ρ3

≤ 4ρ

Claim 5.7. For large enough m,(
q
k

)(
m−q
δm−k

)(
m
δm

) >

(
q

k

)
δk(1− δ)q−k − q2

m

32



Proof. When 1 ≤ k < q:(
q
k

)(
m−q
δm−k

)(
m
δm

) =

(
q

k

)
(δm)!(m− δm)!

m!

(m− q)!
(δm− k)!(m− δm− q + k)!

=

(
q

k

)
δm(δm− 1)...(δm− k + 1)(m− δm)(m− δm− 1)...(m− δm− q + k + 1)

m(m− 1)...(m− q + 1)

Let us start by considering just the numerator:

δm(δm− 1)...(δm− k + 1)(m− δm)(m− δm− 1)...(m− δm− q + k + 1)

Expand it out, and collect like powers of m. This gives:

δk(1− δ)q−kmq − ((
k−1∑
i=0

i)δk−1(1− δ)q−k + (

q−k−1∑
i=0

i)δk(1− δ)q−k−1)mq−1 +O(mq−2)

Note that in the sum above, the mq−j terms have positive coefficients when j is even
and negative coefficients when j is odd. Therefore, for large enough m, we can bound the
numerator by just two terms:

> δk(1− δ)q−kmq − ((
k−1∑
i=0

i)δk−1(1− δ)q−k + (

q−k−1∑
i=0

i)δk(1− δ)q−k−1)mq−1

= δk(1− δ)q−kmq − (
(k − 1)k

2
δk−1(1− δ)q−k +

(q − k − 1)(q − k)

2
δk(1− δ)q−k−1)mq−1

replacing the summations

> δk(1− δ)q−kmq − q2

2
(δ + 1− δ)δk−1(1− δ)q−k−1mq−1

because k(k − 1) and (q − k − 1)(q − k) are both less than q2

> δk(1− δ)q−kmq − q2mq−1

The denominator, m(m−1)...(m−q+1), is upper bounded bymq, so the overall expression
is bounded by

>

(
q

k

)
δk(1− δ)q−kmq − q2mq−1

mq

=

(
q

k

)
δk(1− δ)q−k − q2

m
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When k = q: (
m−q
δm−q

)(
m
δm

) =
δm(δm− 1)...(δm− q + 1)

m(m− 1)...(m− q + 1)

=
δqmq − (q−1)q

2
δq−1mq−1 +O(mq−2)

m(m− 1)...(m− q + 1)

>
δqmq − q2mq−1

m(m− 1)...(m− q + 1)

>
δqmq − q2mq−1

mq

= δq − q2

m

When k = 0, the bound is straightforward by a similar calculation as in the case k = q.

Claim 5.8. Let Q ⊆ [m] with |Q| = 3. Let k ∈ F and β ≤ 1−1/|F |. Let cj ∈ F ∗ for j ∈ Q.
Let B be chosen from a distribution that first uniformly chooses a set of βm coordinates
from [m], and then assigns a uniformly random value from F ∗ independently to each chosen
coordinate. The remaining m− βm coordinates are set to 0. Then

(|F | − 1) min
k∈F

Pr
B

[
(
∑
j∈Q

cjBj = k)

]
≥

3β(1− β)2 + (1− 1

|F | − 1
)3β2(1− β) + (1− 1

|F | − 1
+

1

(|F | − 1)2
)β3 − 3

9

m
.

Proof. We use the following decomposition:

Pr
B

[
(
∑
j∈Q

cjBj = k)

]
=

3∑
i=0

Pr
B

[
(
∑
j∈Q

cjBj = k)
∣∣∣ (|B ∩Q| = i)

]
Pr
B

[|B ∩Q| = i] ,

where (|B∩Q| = i) denotes the event that B has i nonzero coordinates among the 3 positions
in Q.

We use Claim 5.7 to get an estimate on PrB [|B ∩Q| = i], that does not depend on m,
except in the term 9/m. It remains to estimate the probabilities

Pr
B

[
(
∑
j∈Q

cjBj = k)
∣∣∣ (|B ∩Q| = i)

]
. (6)

First note that this probability is 0 when k 6= 0 and i = 0 or when k = 0 and i = 1; it is 1
when k = 0 and i = 0, and it is 1

|F |−1
when k 6= 0 and i = 1 or when k = 0 and i = 2. We

use that a position in B ∩Q always contributes a nonzero value, since the adversary assigns
values from F ∗ to the chosen positions, and each coefficient cj is nonzero. Thus, to estimate
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(6) when k = 0 and i = 3, note that the linear combination involving all 3 positions can
only be 0 if the part over any 2 positions is nonzero. This gives 1

|F |−1
(1 − 1

|F |−1
). For the

remaining cases, note that when k 6= 0,

Pr
B

[
(
∑
j∈Q

cjBj = k)|(|B ∩Q| = i)

]
=

1

|F | − 1

(
1− Pr

B

[
(
∑
j∈Q

cjBj = k)|(|B ∩Q| = i− 1)

])
.

Thus, for every nonzero k we have:

Pr
B

[
(
∑
j∈Q

cjBj = k)

]
≥

1

|F | − 1

(
3β(1− β)2 − 9

m

)
+

1

|F | − 1

(
1− 1

|F | − 1

)(
3β2(1− β)− 9

m

)
+

1

|F | − 1

(
1− 1

|F | − 1
+

1

(|F | − 1)2

)(
β3 − 9

m

)
.

The estimate follows by Claim 5.9, which shows that for β ≤ 1− 1/|F |, and k ∈ F ∗

Pr
B

[
(
∑
j∈Q

cjBj = 0)

]
≥ Pr

B

[
(
∑
j∈Q

cjBj = k)

]
.

Claim 5.9. Let Q ⊆ [m] with |Q| = q. Let β ≤ 1 − 1/|F |. Let cj ∈ F ∗ for j ∈ Q. Let B
be chosen from a distribution that first uniformly chooses a set of βm coordinates from [m],
and then assigns a uniformly random value from F ∗ independently to each chosen coordinate.
The remaining m− βm coordinates are set to 0. Then for any k ∈ F ∗,

Pr
B

[
(
∑
j∈Q

cjBj = 0)

]
≥ Pr

B

[
(
∑
j∈Q

cjBj = k)

]
.

Proof. We prove the statement by induction on |Q|. For |Q| = 1, the statement is equivalent
to the claim that 1− β ≥ β/(|F | − 1). This holds since we assumed β ≤ 1− 1/|F |.

Assume the statement holds for |Q| = q − 1. Let Q be a query set with |Q| = q, and let
j1 denote the first position in Q. For ` ∈ F , denote by E` the event that (

∑
j∈Q cjBj = `).

Let p1 = PrB[j1 ∈ B ∩Q] and p0 = PrB[j1 /∈ B ∩Q]. Then,

Pr
B

[E`] = Pr
B

[E`|j1 ∈ B ∩Q]p1 + Pr
B

[E`|j1 /∈ B ∩Q]p0

.
Notice that

Pr
B

[E0|j1 ∈ B ∩Q] =
∑
k 6=0

1

|F | − 1
Pr
B

[
∑

j∈Q\{j1}

cjBj = k)] ,
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Pr
B

[E0|j1 /∈ B ∩Q] = Pr
B

[
∑

j∈Q\{j1}

cjBj = 0)] ,

and for k ∈ F ∗

Pr
B

[Ek|j1 ∈ B ∩Q] =
∑
`6=k

1

|F | − 1
Pr
B

[
∑

j∈Q\{j1}

cjBj = `)] ,

Pr
B

[Ek|j1 /∈ B ∩Q] = Pr
B

[
∑

j∈Q\{j1}

cjBj = k)] .

Notice that for the distribution over B that we consider, p1 = 1 − β and p0 = β. Using
the induction hypothesis and that β ≤ 1− 1/|F |, this implies the statement.

Claim 5.10. Let Q ⊆ [m] with |Q| = q. Let k ∈ F and β ≤ 1 − 1/|F |. Let cj ∈ F ∗

for j ∈ Q. Let B be chosen from a distribution that first uniformly chooses a set of βm
coordinates from [m], and then assigns a uniformly random value from F ∗ independently to
each chosen coordinate. The remaining m− βm coordinates are set to 0. Then

(|F | − 1) min
k∈F

Pr
B

[
(
∑
j∈Q

cjBj = k)

]
= Pr

B

[
(
∑
j∈Q

cjBj 6= 0)

]

Proof. First notice that since β ≤ 1− 1/|F |, for k ∈ F ∗ by Claim 5.9

Pr
B

[
(
∑
j∈Q

cjBj = 0)

]
≥ Pr

B

[
(
∑
j∈Q

cjBj = k)

]
.

Now the claim follows since for nonzero k, the probabilities PrB

[
(
∑

j∈Q cjBj = k)
]

are the

same. See the proof of Claim 5.8 for their value when q = 3.

Claim 5.11. Let Q ⊆ [m] with |Q| = 3 be an arbitrary fixed subset of the coordinates. Let

cj ∈ F ∗ for j ∈ Q, and let β ≤ 1 − 1/|F |. Let P (β, 3, F ) , PrB

[
(
∑

j∈Q cjBj = 0)
]
, where

the probability is over B ∈ Fm randomly chosen according to a distribution that first chooses
to corrupt each coordinate in [m] independently with probability β, and then uniformly and
independently assigns a value from F ∗ to each chosen coordinate of B. The remaining
coordinates of B are set to 0. Then

P (β, 3, F ) = 1− 3β(1− β)2 − (1− 1

|F | − 1
)3β2(1− β)− (1− 1

|F | − 1
+

1

(|F | − 1)2
)β3 .

Proof. As in Claim 5.8 we use the decomposition:

Pr
B

[
(
∑
j∈Q

cjBj = k)

]
=

3∑
i=0

Pr
B

[
(
∑
j∈Q

cjBj = k)|(|B ∩Q| = i)

]
Pr
B

[|B ∩Q| = i] ,
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where (|B∩Q| = i) denotes the event that B has i nonzero coordinates among the 3 positions
in Q. For the current distribution, we have PrB [|B ∩Q| = i] =

(
3
i

)
βi(1− β)3−i.

We estimate the probabilities PrB

[
(
∑

j∈Q cjBj = k)|(|B ∩Q| = i)
]

as in the proof of

Claim 5.8. The bound follows using Claim 5.10.

Claim 5.12. Let 0 < ε ≤ 1− 1/|F | and α , δ − (1− 1
|F | − ε

1/3(1− 1
|F |)

2/3)− ψ(n)− ν. Let

Z(β) = 3β(1−β)2 +(1− 1
|F |−1

)3β2(1−β)+(1− 1
|F |−1

+ 1
(|F |−1)2

)β3 . Let n be large enough, so

that ψ(n)3/4 < ε. Then the expression Z(β)− ψ(n)3

4
evaluated at β = min( δ−α−ν

γ
, 1− 1/|F |)

is ≥ 1− 1/|F | − ε.

Proof. If min( δ−α−ν
γ

, 1− 1/|F |) is equal to 1− 1/|F |, then we have Z(β) = Z(1− 1/|F |) =

1− 1/|F |. For large enough n, ψ(n)3/4 < ε and thus Z(β)− ψ(n)3/4 > 1− 1/|F | − ε.
Let ξ = 1− 1

|F |− ε
1/3(1− 1

|F |)
2/3 and note that Z(ξ) = 1−1/|F |− ε. Since Z is monotone,

Z(β) ≥ Z(δ− α− ν). We have δ− α− ν = ξ +ψ(n). Thus, the statement follows by Claim
5.5.

Claim 5.13. Let 0 < ε ≤ 1−1/|F | and α , δ−(1− 1
|F |−ε

1/3(1− 1
|F |)

2/3)− φ(n)
4

. Then α > 0

when 1
|F |+ε > 1−3δ(1−δ)2−(1− 1

|F |−1
)3δ2(1−δ)−(1− 1

|F |−1
+ 1

(|F |−1)2
)δ3 +φ(n). Moreover,

α > µ
4

when 1
|F | + ε > µ+1−3δ(1− δ)2− (1− 1

|F |−1
)3δ2(1− δ)− (1− 1

|F |−1
+ 1

(|F |−1)2
)δ3 +φ(n)

for some µ ≥ 0.

Proof. The proof is analogous to the proof of Claim 5.1, using Claim 5.6, and noting that
Z(ξ) = 1− 1/|F | − ε for ξ = 1− 1

|F | − ε
1/3(1− 1

|F |)
2/3.
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