
Limits on Alternation-Trading Proofs for

Time-Space Lower Bounds

Samuel R. Buss∗

Department of Mathematics
University of California, San Diego

La Jolla, CA 92093-0112, USA
sbuss@math.ucsd.edu

Ryan Williams†

IBM Almaden Research Center
650 Harry Road

San Jose, CA 95120
rrwilliams@gmail.com

March 8, 2011

Abstract

This paper characterizes alternation trading based proofs that
satisfiability is not in the time and space bounded class DTISP(nc, nε),
for various values c < 2 and ε < 1. We characterize exactly what can
be proved in the ε = 0 case with currently known methods, and prove
the conjecture of Williams that c = 2 cos(π/7) is optimal for this.
For time-space tradeoffs and lower bounds on satisfiability, we give
a theoretical and computational analysis of the alternation trading
proofs for 0 < ε < 1.

1 Introduction

This paper addresses lower bounds for simulating non-determinism with
time- and space-bounded deterministic algorithms. We concentrate on lower
bounds for deterministic algorithms that solve the satisfiability problem
SAT; however, the results also imply analogous time-space lower bounds for
many other NP-complete problems (see [11]).

Let DTISP(nc, nε) denote the class of languages recognizable by deter-
ministic algorithms that run in time nc+o(1) with space bounded by nε+o(1),
where 1 ≤ c and 0 ≤ ε ≤ c. A series of results, see [5, 2, 6, 4, 3, 8, 1, 12, 13, 14],
have established better and better non-trivial constant lower bounds on the

∗Supported in part by NSF grant DMS-0700533.
†Supported by the Josef Raviv Memorial Fellowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 31 (2011)

values c and ε for which SAT ∈ DTISP(nc, nε). Surveys of these and other
results are given by van Melkebeek [9, 10] but, loosely speaking, these
lower bounds have all been obtained by combining a “speedup” technique
of Nepomnjascii [7] with an assumption such as SAT ∈ DTISP(nc, nε) in
order to obtain a contradiction. Williams [13, 14] gave a formal definition of
these proof methods, which he calls “alternation trading proofs”, and gave
improved time-space lower bounds for deterministic algorithms for SAT.
He also designed computer programs that search for optimal alternation
trading proofs, and based on these results obtained further alternation
trading proofs. He conjectured in [14] that the proofs found by the computer
searches are optimal for alternation trading proofs.

The present paper examines more carefully the possible alternation
trading proofs for establishing time and space lower bounds on algorithms
for SAT. Our first main result is that, for the case of ε = 0, the lower
bounds obtained by Williams [13, 14] are in fact optimal, at least within
the present framework of alternation trading proofs. This proves Williams’
conjecture. As part of this, we give some surprising simplifications of
alternation trading proofs by characterizing the possible alternation trading
proofs with “achievable pairs”.

Our second main result is to establish detailed simultaneous time and
space lower bounds on deterministic algorithms using alternation trading
proofs. Prior work on time-space tradeoffs includes [8, 1, 3, 13, 14]. In
particular, [3] showed that if SAT ∈ DTISP(nc, nε) then n + ε ≥ 1.573, and
[13, 14] improved this to n+ ε ≥ 2 cos(π/7) as well as gave better bounds for
specific numeric values of c and ε. The present paper substantially generalizes
results obtained by Williams [13, 14], by establishing that arbitrary alter-
nation trading proofs can be characterized in terms of “achievable triples”.
We give extensive computer-based searches for achievable triples, aided by
theorems on how the search space can be pruned. As a consequence, we are
able to find better numerical values for the time-space tradeoffs than those
found by [14]. Our computer-based proofs always succeed in establishing
either the existence or non-existence of alternation trading proofs. Therefore,
our numerical values for simultaneous time and space bounds are the best
that can be obtained with presently-known methods for alternation trading
proofs.

The time and time-space lower bounds in the present paper are all stated
for the problem SAT. As remarked above, they also apply to many other
NP-complete problems. In addition, by [13], our lower bounds also apply to
the classes MODm-SAT, of counting the number of satisfying assignments
modulo m, where either m is not a prime power or m is prime, with the

2

possible exception of a single prime.

Let DTS(nc) denote the class DTISP(nc, n0), that is the set of languages
accepted by a deterministic Turing machine with runtime nc+o(1) using space
no(1). Williams [13, 14] proved that SAT 6∈ DTS(nc) for c < 2 cos(π/2). For
this, he used bounded quantifier notations of the forms “(∀na)b” and “(∃na)b”
for constants a, b ≥ 0, to denote a computation that makes na+o(1) universal
(resp., existential) choices, and then (deterministically) keeps nb+o(1) bits of
information. Thus, for instance, the notation (∃n2)1DTS(n3) denotes the
class of languages that are accepted by an algorithm that guesses n2+o(1)

bits existentially, deterministically selects n1+o(1) bits to keep in memory (in
time n1+o(1)), and then runs deterministically in time n3+o(1), using no(1)

workspace in addition to the n1+o(1) bits that were kept as input to the final
stage.

For his alternation trading proofs, Williams introduced a general frame-
work for establishing lower bounds based on a formal proof system of
inference rules that act on bounded quantifier notations for classes. The first
kind of inference rules are “speedup” rules that use Nepomnjascii’s method
of decreasing runtime at the cost of adding alternation(s). The second kind
of inference rules, called “slowdown” inferences, use the assumption that
NTIME(n) ⊆ DTS(nc) (which follows from SAT ∈ DTS(nc)) to remove
alternations at the cost of slower runtime. Using the nondeterministic time
hierarchy theorem, an alternation trading proof yields a contradiction by
providing a proof that DTS(na) ⊆ DTS(na′

) for constants a > a′ > 0.
Williams showed SAT 6∈ DTS(nc) for any c < 2 cos(π/7) ≈ 1.8019 by using
alternation trading proofs. Based partly on his computer-based searches,
he further conjectured that the constant 2 cos(π/7) is the best that can be
obtained with the formalized speedup and slowdown rules.

We prove this conjecture as Theorem 1. The inference rules R0-R2 are
defined below in Section 2.

Theorem 1 The inference rules R0–R2 can be used to derive a contradiction
only for c < 2 cos(π/7).

The proof of Theorem 1 is based on a new detailed analysis of what is possible
with alternation trading proofs. The central innovation is the concept of
“c-achievable pairs” which describe inferences that can be approximated by
alternation trading proofs. We give methods for generating c-achievable
pairs, and prove that these pairs exactly characterize the refutations can be
approximated by alternation trading proofs.

Williams used binary strings, called “proof annotations”, to represent
patterns of speedup and slowdown inferences in an alternation trading proof,

3

with “1” representing a speedup and “0” a slowdown. For instance, the
annotation “1010” represents the sequence of inferences speedup-slowdown-
speedup-slowdown. Let X0 := (10)∗ represent an arbitrary number of
speedup-slowdown inferences. Then let Xi+1 be the annotation 1Xi0X0.
Williams proved these patterns of inferences, as i increases, give contradic-
tions for c arbitrarily close to 2 cos(π/7), and he conjectured they are the
best possible inference patterns. We prove this below as part of proving
Theorem 1.

The second half of the paper considers lower bounds on DTISP(nc, nε)
algorithms for satisfiability, where ε > 0 can vary. For these algorithms,
we use “(c, ε)-achievable triples” that exactly characterize the alternation
trading derivations in the DTISP setting. Unlike the ε = 0 case, we are
unable to give a closed form formula for when there are alternation trading
proofs that satisfiability is not in DTISP(nc, nε). Instead, we have to use
computer-based searches for (c, ε)-achievable triples that prove the existence
of alternation trading refutations. This potentially requires considering
infinitely many triples, so to prune the search space, we develop a notion of
when two triple together “dual-subsume” a third triple, as well as a related
notion of “multisubsumption”. In the end, this allows the computer-based
searches to search for quite long proofs. In addition, the computer-based
search has always been successful either in finding that an alternation trading
refutation exists, or in completely exhausting the search space and thus
showing that there is no such refutation.

The outline of the paper is as follows. Section 2 introduces the
speedup and slowdown rules, and the notion of alternation trading proofs of
SAT 6∈ DTS(nc). We then introduce some considerably simplified notions of
alternation trading proofs, called “h-derivations” and “reduced” derivations,
along with some simplified versions of the speedup and slowdown rules,
R0′–R2′. Section 3 introduces the notion of approximate inferences, and
the notion of a “c-achievable pair”, by which is meant that that certain
kinds of results can be approximately proved (achieved) with alternation
proofs. Section 4 puts limits on what kinds of pairs are c-achievable.
Section 5 proves a certain kind of normal form on c-achievable pairs, and
completes the proof of Theorem 1. Section 6 turns to time-space tradeoffs
and introduces the different systems of alteration trading inferences for
DTISP(nc, nε), including the “reduced” inference system. It also introduces
the notion of approximate inferences for DTISP derivations. Section 7 defines
achievable triples, and gives methods for generating achievable triples.
Section 8 gives the theoretical results needed for our computer-based search
for achievable triples, and reports the numerical results of the searches.

4

Section 9 establishes that our rules for generating (c, ε)-achievable triples
exactly characterize the possible DTISP refutations.

We review notation and results from earlier work as needed; however, we
presume a certain level of familiarity with prior work such as can be found
in Williams [14].

2 Rules of inference for DTS

2.1 Basic rules of inference for DTS bounds

Fix, henceforth, a value c > 1. The goal is to prove a contradiction from
the assumption SAT ∈ DTS(nc), thereby of course proving that SAT 6∈
DTS(nc). The contradiction is proved by an alternation trading proof using
the following rules R0–R2. As shown in [14], it suffices to give an alternation
trading proof of DTS(na) ⊆ DTS(nb) for some b < a. The alternation
trading proof is a sequence of containments, starting with the set 1DTS(na)
for some integer a > 0. (The leading superscript “1” indicates the input
string has length 1 + o(1).)

The following are the original rules of inference used for alternation
trading proofs [14]. The ellipses “· · ·” indicate an arbitrary (possibly empty)
quantifier prefix.

R0: Initial speedup:

1DTS(na) ⊆ 1(∃nx)max{x,1}(∀n0)1DTS(na−x),

where 0 < x ≤ a.

R1: Speedup:

· · · bk(∀nak)bk+1DTS(nak+1)
⊆ · · · bk(∀nmax{x,ak})max{x,bk+1}(∃n0)bk+1DTS(nak+1−x),

where 0 < x ≤ ak+1.

R2: Slowdown:

· · · bk(∀nak)bk+1DTS(nak+1) ⊆ · · · bkDTS(nmax{cbk,cak,cbk+1,cak+1}).

Each rule R1 and R2 is permitted also in dual form, with existential and
universal quantifiers interchanged.

5

Definition A refutation D consists of a sequence of lines of the form

1(∃na1)b2(∀na2)b3 · · · bk(Qnak)bk+1DTS(nak+1)

where ai, bi ≥ 0 and “Q” is either “∀” or “∃” depending on whether k is
even or odd. The line is said to have k alternations. The refutation D must
satisfy:

(a) The first line is 1DTS(na).

(b) Each line follows from the proceeding line by one of the above rules.

(c) Only the first and last lines may (possibly) have zero quantifiers.

(d) The last line has the form 1DTS(nb), with b < a.

A D which satisfies conditions (b) and (c) is called a derivation.

2.2 Simplified rules of inference

As a first step towards simplifying the syntax of refutations and derivations,
we define the notion of “h-refutation”.

An h-derivation or h-refutation is defined similarly to a derivation or
refutation, but with the following changes. First, change the leading
superscript “1” in all lines to be a “0”. Second, replace rule R0 with
rule h-R0 by replacing all three superscripts “1” with “0”. In particular, the
superscript“max{x, 1}” is replaced by just “x”.

h-R0 : 0DTS(na) ⊆ 0(∃nx)x(∀n0)0DTS(na−x).

The “h” stands for “homogeneous”, and the key property of an h-
derivation is that if all superscripts are multiplied by a fixed positive
constant, it remains a valid h-derivation.

Lemma 2 Fix c > 1. There is an h-refutation if and only if there is a
refutation.

The difficult direction of Lemma 2 is the transformation of h-refutations
into refutations. The intuition is that by scaling the exponents in an
h-refutation by a large multiplicative factor, one can make all exponents
greater than 1, and then the h-refutation is easily converted to a refutation
by suitably replacing exponents “0” with “1”.

6

Proof (⇐=) Suppose D is a refutation. We need to form an h-refutation D′.
To form D′, first replace the initial line, 1DTS(na), of D with 0DTS(na), and
change the initial inference of D to be an h-R0 inference instead of an R0
inference. To form the rest of D′, follow exactly the same inferences as in D.
It is easy to check that this can be done in such a way that each line in D′

has exactly the same form as the corresponding line in D except that some
of the exponents in D′ may be less than the corresponding exponents in D.

(=⇒) Let D′ be an h-refutation; we must construct a refutation D. Let
D′(m) denote the result of multiplying all superscripts in D′ by the value
m > 0. Let the first R2 (slowdown) inference in D′ be the i-th inference
in D′. Thus, the first i − 1 inferences in D′ are speedup inferences, h-R0
or R1. Choose m large enough so that m > 1/x for all values of x used in
these first i − 1 speedup inferences.

In D′(m), the second through i-th lines have the form

0(∃na1)b2(∀na2)b3 · · · bk(Qn0)0DTS(nak+1). (1)

This is because rule h-R0 gives a formula of this form, and the speedup
rule R1 preserves this form. By choice of m, for all i ≤ k, the values ai and
bi are > 1 in the lines (1). The next line in D′(m), inferred by slowdown,
has the form

0(∃na1)b2(∀na2)b3 · · · bk−1(Qnak−1)bkDTS(nmax{cbk,cak+1}). (2)

Form the refutation D by modifying D′(m) as follows. First, in the i− 1
lines of the form (1), replace “(Qn0)0” with “(Qn0)1”. Second, on every line,
replace the leading superscript “0” with “1”.

It is straightforward to verify that this makes D a valid refutation. The
first i−1 inferences are correct since bk > 1 by choice of m. The ith-inference,
a slowdown, of the line (2) is also correct, since bk > 1. Finally, the first
superscripts b2 are all ≥ 1: this is true for the first line by choice of m, and
the values of b2 can only increase when they are affected by a speedup R2.
Thus the final inference in D has the form

1(∃na1)b2DTS(na2) ⊆ 1DTS(nmax{ca1,cb2,ca2})

with b2 ≥ 1 and is a valid instance of R2. 2

For our second simplification of the syntax of derivations, we shall remove
all the ai’s, i = 1, . . . , k, from lines in derivations. This is based on two
observations: First, ai ≤ bi+1, for all i ≤ k. This property holds for rule

7

h-R0 and is preserved by R1 and R2. Second, the value of ak is used only
for the slowdown rule R2 in the expression max{cbk, cak, cbk+1, cak+1}. But,
being ≤ bk+1, the presence of ak is superfluous.

This allows us to simplify the format of lines and rules of inference
considerably with a “reduced” inference system. The reduced system
replaces each quantifier (Qnai)bi+1 by just Qbi+1 . The valid lines in a
reduced derivation have the form:

0∃b1∀b2∃b3 · · · bk−1Qbk+1DTS(na). (3)

for 0 ≤ bi and 0 ≤ a. The expression (3) no longer actually represents a
complexity class per se, rather it is merely a syntactic object. Nonetheless,
the reduced system allows us to reason about syntactic “classes” of the
form (3). We use “`” instead of “⊆” to indicate derivability in the reduced
system. The rules of inference for the reduced system are:

R0′: Initialization:
0DTS(na) ` 0∃0DTS(na).

R1′: Speedup:

· · · bk∀bk+1DTS(na)
` · · · bk∀max{x,bk+1}∃bk+1DTS(na−x),

where 0 < x ≤ a.

R2′: Slowdown:

· · · bk∀bk+1DTS(na) ` · · · bkDTS(nmax{cbk,cbk+1,ca}).

As before each rule R1′ and R2′ is permitted in dual form, with existential
and universal quantifiers interchanged. The rule R0′ has been formulated
to have only one quantifier and not incorporate a speedup: this will be
convenient later when we discuss c-achievable pairs.

A reduced refutation is defined similarly to a refutation, but using
` instead of ⊆, with rules R0′–R2′ in place of R0–R2, and must prove
0DTS(na)`0DTS(nb) for b < a.

Lemma 3 Fix c > 1. There is a reduced refutation (with R0′-R2′) iff there
is a refutation (with R0-R2).

8

Proof Note that an application of R0′ followed by a use of R1′ can simulate
a reduced initial speedup (h-R0) inference:

0DTS(na) ` 0∃x∀0DTS(na−x)

The lemma thus follows from Lemma 2 and the above discussion. 2

The rest of the paper will work primarily with reduced derivations and
refutations. In order to simplify terminology, we henceforth use the terms
“derivation” and “refutation” to refer to reduced derivations and refutations.
The context should always make it clear whether we are referring to the
reduced or the original system.

2.3 Approximate inferences

Definition Let Ξ and Ξ′ be classes represented in the reduced inference
system just defined:

Ξ = 0∃b2∀b3 · · · bkQbk+1DTS(na) (4)

and
Ξ′ = 0∃b′2∀b′3 · · · b′kQb′k+1DTS(na′

).

Suppose, as indicated, that Ξ and Ξ′ have the same number of alternations.
Then Ξ′ ≤ Ξ iff a′ ≤ a and b′i ≤ bi for all i.

The class Ξ + ε is defined by the condition Ξ′ = Ξ + ε holds iff a′ = a + ε
and b′i = bi + ε for all i ≥ 2.

Definition The weakening rule of inference allows Ξ to be inferred from Ξ′

if Ξ′ ≤ Ξ. We use the notation Ξ wΛ to indicate that there is a derivation
of Λ from Ξ in the reduced inference system augmented with the weakening
rule.

A derivation that is allowed to containing weakening inferences will be
called a w -derivation. We reserve the terminology “derivation” and the
symbol “`” for (reduced) derivations that do not use weakenings.

Lemma 4 Let Ξ, Ξ′, Λ, Λ′ be classes in the reduced refutation system.

(a) Ξ wΛ iff there is a Λ′ ≤ Λ such that Ξ ` Λ′.

(b) If Ξ wΛ and Ξ′ ≤ Ξ, then there is a derivation of Ξ′`Λ′ for some
Λ′ ≤ Λ.

9

The lemma is readily proved by induction on the number of lines in a
derivation with weakening rules. We leave the details to the reader.

By part (b) of the lemma we may assume without loss of generality that
derivations (without weakening inferences) never contain lines Ξ ≤ Ξ′ with
Ξ preceding Ξ′ in the derivation.

We next define a notion of “approximate inference”, denoted °. Intu-
itively, Ξ ° Λ means that from Ξ one can derive something as close to Λ as
desired.

Definition We write Ξ ° Λ to mean that for all ε > 0, there exists a δ > 0
so that (Ξ + δ) w(Λ + ε).

Lemma 5 The ° relation is transitive: if Ξ ° Λ and Λ ° Γ, then Ξ ° Γ.

Now let ∆ be a “prefix” for a reduced line:

∆ = 0∃e2∀e3 · · · e`∀e`+1 .

(Note there is no “DTS” part to ∆.) For Ξ of the form shown above in (4),
we define the concatenation ∆Ξ to be the reduced line

0∃e2∀e3 · · · e`∀e`+1∃b2∀b3 · · · bk∀bk+1DTS(na).

A similar definition of concatenation is used for prefixes ∆ with an odd
number of quantifiers; in this case, since quantifiers must alternate type, if
Ξ begins with an ∃ then ∆ must begin with a ∀, and vice-versa.

Lemma 6 If Ξ ° Γ, then ∆Ξ ° ∆Γ.

Proof For ε > 0, choose δ > 0 so that there is a w -derivation D of Γ+ε from
Ξ+δ. Without loss of generality, δ ≤ ε. We claim that that, by prefixing each
line in D with ∆ + δ, we obtain a w -derivation D′ of (∆ + δ)(Γ + ε) from
(∆ + δ)(Ξ + δ). This is because D contains no lines with zero quantifiers,
and thus the superscript “0” at the beginning of each line has no effect on
the validity of D.

Since δ ≤ ε, adding a weakening at the end of D′ makes it a w -derivation
of the line (∆ + ε)(Γ + ε). 2

10

3 Achievable derivations

3.1 Achievability and subsumption

Williams [14] uses proof annotations of 1’s and 0’s to indicate sequences
of speedups and slowdowns (respectively) in a derivation. We think of 1’s
and 0’s as being paired up like open and closed parentheses, and define a
balanced derivation to be a derivation containing only inferences of types
R1′ and R2′ for which the corresponding pattern of 1’s and 0’s, viewed as
parentheses, is properly balanced. In other words, a derivation is balanced
provided the first and last lines have the same number of alternations, and
each intermediate line has at least that many alternations. In a balanced
derivation, each speedup inference (a “1”) is uniquely matched by a later
slowdown derivation (a “0”).

We use the star notation ∗ of regular expressions to construct annotations
for derivations. For instance, a derivation of type (10)∗ consists of
alternating speedup and slowdown inferences. Theorems 10 and 15 will
establish what can be achieved with derivations of this type.

Definition Fix c > 1. Let 〈µ, ν〉 be a pair such that µ ≥ 1 and 0 < ν. The
pair 〈µ, ν〉 is c-achievable provided that, for all values a, b and d satisfying
cµb = νd,

a∃bDTS(nd) ° a∃µbDTS(nνd). (5)

The inference displayed is called a 〈µ, ν〉 step. The c-achievable pair 〈µ, ν〉 is
called useful provided ν < 1.

One subtle, but important, aspect of the definition of c-achievable is that
the value of a makes no difference at all. This is because the approximate
implication (5) must be based on derivations that satisfy condition (c) of
the definition of “derivation” as given at the end of Section 2.1. That is
to say, the derivations cannot contain any lines with zero quantifiers, and
inspection of the rules R1′ and R2′ shows that the value a cannot influence
these derivations.

It is also important to note that c-achievability is defined in terms of °,
namely, approximate inference. That is to say, if 〈µ, ν〉 is c-achievable, it is
only required that the 〈µ, ν〉 step be approximately derivable.

The motivation is that we wish to make ν as small as possible in c-
achievable derivations so as to make νd as small as possible. This will
needed to find as good a refutation as possible (that is to say, a refutation
for as large a value of c as possible). In particular, the next lemma shows
that if ν < 1/c is c-achievable, then there is a refutation.

11

Lemma 7 Fix c > 1. Suppose there is a c-achievable pair 〈µ, ν〉 with ν < 1/c.
Then there exists a refutation.

Proof We have the following (approximate) refutation:

0DTS(n1) ` 0∃0DTS(n1) Initialization
w 0∃ν/(cµ)DTS(n1) Weakening

° 0∃ν/cDTS(nν) By a 〈µ, ν〉 step
` 0DTS(ncν) Slowdown

With ν < 1/c, we have cν < 1. By the definition of approximate derivations
(°), we can therefore derive 0DTS(ncν+ε) from 0DTS(n1) for arbitrarily
small ε > 0. Choosing ε so that cν + ε < 1 gives a refutation. 2

The converse to Lemma 7 will be proved below as Lemma 20; thus there
is a refutation if and only if there is an achievable pair 〈µ, ν〉 with ν < 1/c.

Unfortunately, making ν small involves a tradeoff: the 〈µ, ν〉 step (5)
increases the value of b to b′ = µb while decreasing the value of d to d′ = νd.
Furthermore, as we shall see, obtaining achievable pairs with smaller values
of ν will be done at the cost of requiring larger values of µ.

Definition An implication

· · · bkQbk+1DTS(na) w · · · bkQb′k+1DTS(na′
) (6)

is subsumed by 〈µ, ν〉 provided the implication can be inferred by a weakening,
followed by a 〈µ, ν〉 step and then a weakening.

The next two lemmas are immediate from the definitions. To prove Lemma 8,
note that a 〈µ, ν〉 step was defined with the requirement that cµb = νd: if
this equality does not hold, a weakening can be used to increase one of b or d
so that 〈µ, ν〉 step can be applied.

Lemma 8 The implication (6) is subsumed by 〈µ, ν〉 iff

b′k+1 ≥ max{µbk+1,
1
c
νa} and a′ ≥ max{cµbk+1, νa}.

Lemma 9 Suppose µ ≤ µ′ and ν ≤ ν ′ < 1. If 〈µ, ν〉 is c-achievable, then so
is 〈µ′, ν ′〉. If an implication is subsumed by 〈µ′, ν ′〉, then it is also subsumed
by 〈µ, ν〉.

12

We also need a weaker notion of subsumption, which is defined as follows
(compare to Lemma 8).

Definition The implication (6) is weakly subsumed by 〈µ, ν〉 iff

a′ ≥ max{cµbk+1, νa}.
The intuition is that optimal derivations are subsumed by c-achievable

pairs. However, there are also non-optimal derivations that are only weakly
subsumed by a c-achievable pair. As an example, the trivial inference
0DTS(nd)`0DTS(nd) is only weakly subsumed by 〈1, 1〉, or indeed by any
c-achievable 〈µ, ν〉.

3.2 Derivations of type (10)∗

We continue to fix a value of c with 1 < c < 2. The next lemma, although
stated quite differently, is essentially the same as the Conditional Speedup
Lemma 6.7 of Williams [13].

Lemma 10 The pair 〈1, c−1〉 is c-achievable, with derivations of type (10)∗.

Since c < 2, the pair 〈1, c − 1〉 is useful.

Proof Let Ξ = a∃bDTS(nd). If cb ≤ d, then from Ξ we can derive, by a
speedup followed by a slowdown:

Ξ ` a∃b∀bDTS(nd−b) (7)
` a∃bDTS(nmax{cb,c(d−b)}),

where the first step is a speedup with x = b. That is, from Ξ we can derive
a∃bDTS(nd′)

with d′ = max{cb, c(d − b)}. The possible values for d′ are shown on the
following graph.

0 d

d′

cb

cb

b

b

2b

d′ = cb

c
c−1b

d′ = c(d − b)

d′=d

13

As shown in the graph, for d′ = max{cb, c(d − b)}, we have d′ < d precisely
when cb < d < c

c−1b. For cb ≤ d ≤ 2b, we have d′ = cb. And, for
2b < d < c

c−1b, we have d′ = c(d− b). Thus, depending on the value of d, we

have either d′ = cb or
(

c
c−1b − d′

)
= c

(
c

c−1b − d
)
. Therefore, by repeating

the inference pattern 10 a finite number of times, we can infer

a∃bDTS(nd)`a∃bDTS(ncb), (8)

provided cb < d < c
c−1b.

To complete the proof of Lemma 10, we must show that

a∃bDTS(n
c

c−1
b) ° a∃bDTS(ncb).

Let ε > 0. Choose δ > 0 so that δ ≤ ε/c and δ < c(2 − c)b/(c − 1)2. By the
latter inequality and since c

c−1 > 1,

c(b + δ) <
c

c − 1
b + δ <

c

c − 1
(b + δ). (9)

Therefore, we have

a+δ∃b+δDTS(n
c

c−1
b+δ) ` a+δ∃b+δDTS(nc(b+δ))

w a+ε∃b+εDTS(ncb+ε)

where the first step follows by a (10)∗ derivation as in (8) using (9), and the
second step is a weakening since cδ ≤ ε. 2

3.3 Composition of achievable pairs

We next describe how two c-achievable pairs can be combined (or, “com-
posed”) to form another c-achievable pair. The next lemma is in some sense
equivalent to the construction behind Lemma 6.8 of [13], but is stated in a
quite different and more general form.

Lemma 11 Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable. Also suppose cν1µ2 ≥
µ1. Set

µ = cν1µ2 (10)

ν =
cµ1ν1ν2

µ1 + ν1ν2
(11)

Then 〈µ, ν〉 is c-achievable.

14

The idea for the proof is that a 〈µ, ν〉 step can be achieved by a speedup
(R1′) inference, a 〈µ2, ν2〉 step, a slowdown (R2′) inference, and a 〈µ1, ν1〉
step. That is, if B and A are annotations for proofs that approximate a
〈µ1, ν1〉 step and a 〈µ2, ν2〉 step sufficiently well (respectively), then 1A0B
is an annotation for an approximate 〈µ, ν〉 step. However, the final 〈µ1, ν1〉
step should be skipped if 〈µ1, ν1〉 is not useful.

Proof Let d = cµ 1
ν b and Ξ = a∃bDTS(nd). Note that cµb = νd; we have to

show that Ξ ° a∃µbDTS(ncµb). Let x = 1
µ1

µb = 1
µ1

cν1µ2b. Since cν1µ2 ≥ µ1,
we have x ≥ b. Therefore, by a speedup inference,

Ξ ` a∃x∀bDTS(nd−x).

We have

d =
cµ

ν
b = c(cν1µ2)

(
µ1 + ν1ν2

cµ1ν1ν2

)
b = c

(
µ2

ν2
+

µ2ν1

µ1

)
b,

whence
d − x = c

µ2

ν2
b > 0.

Thus, by the c-achievability of 〈µ2, ν2〉,

Ξ ° a∃x∀µ2bDTS(nν2(d−x)) = a∃x∀µ2bDTS(ncµ2b). (12)

The construction now splits into two cases depending on whether x ≤ cµ2b.
First, consider the case x ≤ cµ2b. Note that this case always applies if
〈µ1, ν1〉 is useful since then µ1 ≥ 1 and ν1 < 1. Since x ≤ cµ2b, a slowdown
inference applied to (12) gives

Ξ ° a∃xDTS(ncν2(d−x)).

A simple calculation shows cµ1x = ν1(cν2(d − x)). Hence, by the c-
achievability of 〈µ1, ν1〉 and the transitivity of °,

Ξ ° a∃µ1xDTS(ncµ1x) = a∃µbDTS(ncµb) = a∃µbDTS(nνd).

On the other hand, suppose x ≥ cµ2b. Picking up from (12), with a slowdown
and a weakening, we obtain,

Ξ ° a∃xDTS(ncx) w a∃µ1xDTS(ncµ1x) = a∃µbDTS(nνd).

This proves Lemma 11. 2

15

The condition cν1µ2 ≥ µ1 puts a restriction on how c-achievable pairs
can be combined by Lemma 11. The next lemma shows that the case
where this condition fails can be handled by the simple expedient of letting
µ = max{µ1, cν1µ2}.
Lemma 12 Let 〈µ1, ν1〉 and 〈µ2, ν2〉 be c-achievable. Set

µ = max{cν1µ2, µ1} (13)

ν =
cµ1ν1ν2

µ1 + ν1ν2
. (14)

Then 〈µ, ν〉 is c-achievable.

Proof If µ1 ≤ cν1µ2, then Lemma 11 already implies the result. Otherwise,
let µ′

2 = µ1/(cν1), so that µ′
2 > µ2 and µ1 = cν1µ

′
2. By Lemma 9, 〈µ′

2, ν2〉 is
c-achievable. Thus Lemma 11 applied to the pairs 〈µ1, ν1〉 and 〈µ′

2, ν2〉 now
gives the desired result. 2

To better understand what is happening when we compose 〈µ1, ν1〉 and
〈µ2, ν2〉 to form 〈µ, ν〉, reexpress the formulas (10) and (11) as follows:

1
µ

=
1

cν1

(
1
µ2

)
(15)

1
ν

=
ν1

µ1(cν1 − 1)
− 1

cν1

(
ν1

µ1(cν1 − 1)
− 1

ν2

)
(16)

Equations (15) and (16) give an interesting perspective on how µ and ν are
defined. They allow us to view the pair 〈µ1, ν1〉 as being a transformation
that acts on the reciprocal values 1/µ2 and 1/ν2 to give the values 1/µ and
1/ν. Equation (15) shows that the value 1/µ2 is scaled by the factor 1/(cν1)
to obtain 1/µ. In the usual case where ν1 ≥ 1/c, the scale factor is ≤ 1, so
µ ≥ µ2.

Equation (16) shows that the value 1/ν is obtained by contracting 1/ν2

towards a fixed point ν1/(µ1(cν1 − 1)), with the scaling factor for the
contraction again equal to 1/(cν1). In most cases, 1/ν2 is smaller than this
fixed point and we also have the scale factor 1/(cν1) < 1. In these cases,
1/ν > 1/ν2, so ν < ν2. Getting smaller and smaller values for ν is desirable
since, as Lemma 7 showed, our goal is to obtain ν < 1/c so as to obtain a
refutation.

The fixed point for the mapping ν2 7→ ν will be denoted by τ(µ1, ν1);
namely,

τ(µ1, ν1) =
cν1 − 1

ν1
µ1 and (τ(µ1, ν1))−1 =

ν1

(cν1 − 1)µ1

16

With this notation, we can rewrite equation (16) as

1
ν

= (τ(µ1, ν1))−1 − 1
cν1

(
(τ(µ1, ν1))−1 − 1

ν2

)
,

or equivalently as
(

(τ(µ1, ν1))−1 − 1
ν

)
=

1
cν1

(
(τ(µ1, ν1))−1 − 1

ν2

)
. (17)

This makes it clear how ν is contracting towards τ(µ1, ν1).
In keeping with the intuition that 〈µ1, ν1〉 is a transformation acting on

〈µ2, ν2〉, we sometimes express the conditions (10) and (11), or the equivalent
(15) and (16), with a mapping notation:

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

This notation is used only when µ1 ≤ cν1µ2. Otherwise, we will occasionally
express that (13) and (14) hold by writing

〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉.

Note that the “7→max” notation makes no restriction on whether µ1 is larger
than cν1µ2.

3.4 The refutations for c < 2 cos(π/7)

Suppose that 1 < c < 2 cos(π/7). Recasting results from Williams [13],
we prove there exists a refutation. We begin by recalling a simple
characterization of 2 cos(π/7):

Lemma 13 Let c ≥ 1. Then

τ(1, c − 1) =
c(c − 1) − 1

c − 1
≤ 1

c

if and only if c ≤ 2 cos(π/7).

Proof The inequality holds iff c3 − c2 − 2c + 1 ≤ 0. For c ≥ 1, this is
equivalent to c ≤ 2 cos(π/7), see Williams [13]. 2

Theorem 14 (Williams [13]) There is a refutation for 1 < c < 2 cos(π/7).

17

Proof Define µ0 = 1 and ν0 = c − 1. Define 〈µk+1, νk+1〉 inductively by
〈µ0, ν0〉 : 〈µk, νk〉 7→ 〈µk+1, νk+1〉, so that 〈µk+1, νk+1〉 is the composition of
〈1, c−1〉 and 〈µk, νk〉. Namely,

µk+1 = cν0µk and νk+1 =
cµ0ν0νk

µ0 + ν0νk
.

By Lemma 10, 〈µ0, ν0〉 is c-achievable. Thus, if ν0 < 1/c, then by Lemma 7,
there is a refutation. An easy calculation shows that for c > 1, we have
ν0 = c − 1 < 1/c provided c < (1 +

√
5)/2 ≈ 1.618 < 2 cos(π/7).

It remains to consider the case (1+
√

5)/2 ≤ c < 2 cos(π/7). This implies
that cν0 ≥ 1. Arguing inductively on k, since ν0 is ≥ 1/c, the values of µk

are increasing with µk = cν0µk−1 ≥ µk−1 ≥ µ0, which by Lemma 11 implies
that 〈µk, νk〉 is c-achievable.

By (16) and since cν0 > 1, the values of νk are contracting towards the
limit value

τ(µ0, ν0) =
µ0(cν0 − 1)

ν0
=

c(c − 1) − 1
c − 1

By Lemma 13, this value is < 1/c. Thus, for sufficiently large k, we have
νk < 1/c. Q.E.D. Theorem 14

It is easy to check that the annotations for the alternation trading proofs
described above are the patterns Xi described in the introduction, and the
same as proof annotations introduced by Williams [12].

4 The limits of achievable constructions

In this section we argue that, for 1 < c < 2, no refutation can do better
than what is possible using c-achievable pairs, and furthermore that the best
c-achievable pairs are 〈1, c − 1〉 and the ones that can be obtained by the
constructions of Lemmas 11 and 12.

4.1 Limits on derivations of type (10)∗

We start by giving lower bounds on what can be achieved with derivations
that follow the (10)∗ pattern.

Lemma 15 Any non-empty (10)∗ pattern of inferences in a derivation is
subsumed by the c-achievable pair 〈1, c − 1〉.

18

Proof Recall the derivation (7) of type 10 that was used in the proof of
Lemma 10. We claim that this is the optimal kind of 10 inference step. The
derivation (7) used a speedup with x = b; however, to prove Lemma 15, we
must consider a general 10 inference with x not necessarily equal to b:

a∃bDTS(nd) ` a∃max{x,b}∀bDTS(nd−x)
` a∃max{x,b}DTS(nmax{cx,cb,c(d−x)}).

We need to rule out the use of x 6= b. First, suppose x < b. In this case, we
can achieve the same inference by using a weakening to increase the value
of d and change the speedup to use x = b. Namely,

a∃bDTS(nd) w a∃bDTS(nd+b−x)

` a∃b∀bDTS(n(d+b−x)−b)
= a∃b∀bDTS(nd−x)
` a∃bDTS(nmax{cb,c(d−x)}).

Second, suppose x > b. In this case, we first use weakening to increase b by
x − b:

a∃bDTS(nd) w a∃xDTS(nd)
` a∃x∀xDTS(nd−x)
` a∃xDTS(nmax{cx,c(d−x)}).

Thus any (10)∗ pattern of inferences can be replaced by a sequence of
operations of the following types: (a) increase d, (b) increase b, and
(c) replace d with max{cb, c(d− b)}. There is, w.l.o.g., at least one operation
of type (c). Referring to the figure used in the proof of Lemma 10, it is
evident that any such sequence of operations is subsumed by 〈1, c − 1〉. 2

4.2 Limits on derivations of type 1A0B

The next lemma shows that any balanced derivation that starts with a line of
the form · · · a∃bDTS(nd) with d > cb does no real work, and can be replaced
by a weakening. Thus, without loss of generality, any premiss of a speedup
inference has d > cb.

Lemma 16 Suppose a balanced derivation starts with the line · · · a∃bDTS(nd).
Then the last line of the derivation has the form · · · a∃b′DTS(ncb′′) for some
b′′ ≥ b′ ≥ b.

Thus, if d ≤ cb, then any non-empty balanced derivation, with first line
· · · a∃bDTS(nd), is subsumed by 〈1, 1〉.

19

Proof Throughout the derivation, the superscript after the ∃ stays equal
to b or becomes larger. (This is because speedup steps can not decrease the
superscript, and because the derivation is balanced and cannot remove the ∃
with a slowdown.) Therefore, the final step in the derivation is a slowdown
of the form

· · · a∃b′∀eDTS(nf) ` · · · a∃b′DTS(nmax{cb′,ce,cf}).

Letting b′′ = max{b, e, f}, this proves the lemma. 2

The next lemma is our main technical tool putting limitations on how
derivations are formed from c-achievable pairs. Informally, it states that any
balanced derivation with a 1/0 annotation of the form 1A0B with A and B
balanced can be subsumed by the composition of the subderivation A and
the subderivation B, where “composition” is in the sense of composition of
pairs 〈µi, νi〉 as used in Lemmas 11 and 12.

Lemma 17 Let a balanced derivation D have the annotation 1A0B, where
A and B are balanced 1/0-patterns. Suppose that the subderivation cor-
responding to A is weakly subsumed by 〈µ2, ν2〉. Further suppose that the
subderivation corresponding to B is non-empty and subsumed (respectively,
weakly subsumed) by 〈µ1, ν1〉. Then the entire derivation D is subsumed
(respectively, weakly subsumed) by a pair 〈µ, ν〉 such that either

〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉, (18)

or
〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉. (19)

On the other hand, if B is empty, then the derivation D is weakly subsumed
by the 〈µ, ν〉 given by (19).

The lemma is stated for derivations D that contain only speedup and
slowdown inferences, and no weakenings. However, by the proof of Lemma 4
and the definition of subsumption, it also holds for derivations that contain
weakenings. In this case, the weakenings in the derivation do not contribute
to the pattern of 0’s and 1’s for the derivation.

Proof The derivation starts with a line equal to Ξ = · · · a∃bDTS(nd), and
ends with a line ∆ = · · · a∃x′

DTS(nu′
) (or, dually, with ∀ in place of ∃). The

prefix “· · ·” never changes during the balanced derivation, so we henceforth
suppress it in the notation.

20

The first inference of the 1A0B derivation is a speedup,

a∃bDTS(nd) ` a∃max{x,b}∀bDTS(nd−x).

We claim that w.l.o.g. we have x ≥ b. This is proved just as in the proof
of Lemma 15. Namely, if x < b, just add a weakening inference to the
beginning to derive

a∃bDTS(nd) w a∃bDTS(nd+b−x) ` a∃b∀bDTS(nd−x).

In particular, this means there is a 1A0B derivation D′ of ∆ from
a∃bDTS(nd+b−x). Thus, it will suffice to prove the lemma under the
assumption that the first speedup inference uses x ≥ b, as this will prove
that 〈µ, ν〉 subsumes D′ and hence subsumes D.

The 1A0 portion of the derivation D consists of a speedup, then a
subderivation with the annotation A that is weakly subsumed by 〈µ2, ν2〉,
and then a slowdown:

a∃bDTS(nd) ` a∃x∀bDTS(nd−x) - by speedup
...

... (weakly subsumed by 〈µ2, ν2〉)
` a∃x∀yDTS(nz)
` a∃xDTS(nu) - by slowdown (20)

where u = max{cx, cy, cz} and where, by the weak subsumption by 〈µ2, ν2〉,

z ≥ max{cµ2b, ν2(d − x)}.

Suppose the B part of the derivation is empty, so a∃xDTS(nu) is the last
line of the 1A0B derivation. By u ≥ cz and u ≥ cx, we have u ≥ c(cµ2)b
and u ≥ max{cx, cν2(d − x)}. The value max{cx, cν2(d − x)} is minimized
with x = ν2d/(1 + ν2) and therefore u ≥ cν2d/(1 + ν2). Thus, if B is empty,
the derivation D is weakly subsumed by the pair

µ = cµ2 and ν =
cν2

1 + ν2
.

This is the same as defining µ and ν by 〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.
Now assume B is non-empty. We claim that we may assume w.l.o.g.

cµ2b ≤ ν2(d−x). If this does not hold, we argue similarly to how we showed
that x ≥ b w.l.o.g., and prove that we can increase the value of d to x+ cµ2

ν2
b.

21

Namely, let d′ = x + cµ2

ν2
b > d, and replace the 1A0 portion of D with the

following inferences:

a∃bDTS(nd) w a∃bDTS(nd′) - weakening

` a∃x∀bDTS(nd′−x) - by speedup
= a∃x∀bDTS(ncµ2b/ν2)
° a∃x∀µ2bDTS(ncµ2b) - by a 〈µ2, ν2〉 step
= a∃x∀yDTS(nz) - where y = µ2b and z = cµ2b.
` a∃xDTS(nu) - by slowdown

In this case, we still have z ≥ max{cµ2b, ν2(d − x)}. Modifying D in this
way leaves the first and last lines of the derivation intact, so if we prove this
modified derivation is subsumed by a pair 〈µ, ν〉 it certainly follows that D
is also subsumed by the same pair.

It thus follows that we can assume with no loss of generality that

b ≤ x ≤ d − cµ2

ν2
b (21)

with the derivation D having the annotation 1A0B, now possibly with
A representing a 〈µ2, ν2〉 step and a weakening.

In the line (20) at the end of the 1A0 part of the derivation, we must
have u ≥ cz ≥ cν2(d − x). Picking up from line (20), the “B” part of the
derivation derives

a∃xDTS(nu) ` a∃x′
DTS(nu′

)

where, since this part is weakly subsumed by 〈µ1, ν1〉, we have

u′ ≥ max{cµ1x, cν1ν2(d − x)}. (22)

If B is also (non-weakly) subsumed by 〈µ1, ν1〉, then we have

x′ ≥ max{µ1x, ν1ν2(d − x)}. (23)

We claim that we can assume without loss of generality that either
(i) x = b and µ1x > ν1ν2(d − x) or (ii) x ≥ b and µ1x ≤ ν1ν2(d − x). To
prove this, suppose µ1x > ν1ν2(d − x) and x > b. (Recall that we already
have x ≥ b.) Then, we can modify the 1A0B derivation by decreasing the
value of x to get a stronger derivation. The value of x can be decreased until
either x = b or µ1x = ν1ν2(d − x) so that either (i) or (ii) holds.

If case (i) applies, we have x = b and µ1b ≥ ν1ν2(d − b). This gives

(µ1 + ν1ν2)b ≥ ν1ν2d. (24)

22

Multiplying (21) by ν1ν2 gives

ν1ν2d ≥ (ν1ν2 + cµ2ν1)b. (25)

The last two equations imply µ1 ≥ cν1µ2. The bound (22) with x ≥ b
implies that u′ ≥ cµ1b. This, plus (24), implies u′ ≥ cµ1ν1ν2

µ1+ν1ν2
d. Thus the

entire derivation D is weakly subsumed by 〈µ, ν〉 with

µ = µ1 = max{µ1, cν1µ2}
ν =

cµ1ν1ν2

µ1 + ν1ν2

If B is (non-weakly) subsumed by 〈µ2, ν2〉, then similar reasoning using (23)
in place of (22) gives a lower bound on x′ and proves that the derivation D
is also (non-weakly) subsumed by 〈µ, ν〉.

If case (i) does not apply, then (ii) µ1x ≤ ν1ν2(d − x) and x ≥ b. In
particular, (µ1 + ν1ν2)x ≤ ν1ν2d, so

x ≤ ν1ν2

µ1 + ν1ν2
d

and
d − x ≥ µ1

µ1 + ν1ν2
d. (26)

From (21), we get d − x ≥ cµ2

ν2
b, whence

ν1ν2(d − x) ≥ cν1µ2b. (27)

By (ii), we get ν1ν2(d − x) ≥ µ1b. This fact and inequalities (22), (26)
and (27) imply that

u′ ≥ max{cµ1b, (c2ν1µ2)b,
cµ1ν1ν2

µ1 + ν1ν2
d}.

Therefore, the entire derivation D is weakly subsumed by the pair 〈µ, ν〉

µ = max{µ1, cν1µ2}
ν =

cµ1ν1ν2

µ1 + ν1ν2

If B was (non-weakly) subsumed by 〈µ2, ν2〉, then, by similar reasoning
using (23), D is also (non-weakly) subsumed by 〈µ, ν〉. Q.E.D. Lemma 17.
2

23

4.3 Characterization of achievable pairs

In this section we prove that every balanced derivation is subsumed by some
c-achievable pair, and we give a small list of operations that suffice to form
all c-achievable pairs.

The earlier constructions used the following five methods for constructing
c-achievable pairs:

(A) 〈1, c − 1〉 is c-achievable.

(B) Suppose 〈µ1, ν1〉 and 〈µ2, ν2〉 are c-achievable and µ1 ≤ cν1µ2. Then
〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(C) Suppose 〈µ1, ν1〉 and 〈µ2, ν2〉 are c-achievable and µ1 > cν1µ2. Then
〈µ, ν〉 is c-achievable, where

〈µ1, ν1〉 : 〈µ2, ν2〉 7→max 〈µ, ν〉.

(D) If 〈µ2, ν2〉 is c-achievable, then so is 〈µ, ν〉, where

〈1, 1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

(E) If 〈µ, ν〉 is c-achievable and µ′ ≥ µ and 1 ≥ ν ′ ≥ ν, then 〈µ′, ν ′〉 is
c-achievable.

(Constructions (B) and (C) are defined separately since we will later show
that the constructions (C) are not needed.) A pair 〈µ, ν〉 is called an
ABCD-pair if it can be shown to be c-achievable by the operations (A)-(D).

Theorem 18 Any balanced non-empty derivation D starting with a line with
at least one alternation, is weakly subsumed by some ABCD-pair.

As we shall show momentarily, Theorem 18 follows easily from Lemmas 15
and 17. First, however, we prove another simple lemma.

Lemma 19 Let D1 and D2 be balanced derivations with the first line of D2

the same as the last line of D1. If D1 is subsumed by the c-achievable pair
〈µ, ν〉, then the concatenation D1D2 is also subsumed by 〈µ, ν〉.

24

Proof (of Lemma 19) Let D1 begin with the line · · · a∃bDTS(nd), and end
with the line · · · a∃b′DTS(nd′). By the subsumption assumption, letting
f = max{µb, 1

cνd}, we have b′ ≥ f and d′ ≥ cf . Now, by Lemma 16, the last
line of D2 is of the form a∃b′′DTS(nd′′), with b′′ ≥ b′ ≥ f and d′′ ≥ cb′ ≥ cf .
That is to say, D1D2 is also subsumed by 〈µ, ν〉. 2

The proof of Theorem 18 is by induction on the complexity of the
derivation D. Since D is balanced, its first inference is a speedup, and there
is later a matching slowdown. That is, D has the annotation 1A0B where
A and B are balanced patterns of 0’s and 1’s. If A is empty, then the
first two lines of D are inferred by a 10 pattern and hence by Lemma 15 is
subsumed by 〈1, c − 1〉. Therefore, by Lemma 19, all of D is also subsumed
by 〈1, c − 1〉. Now suppose A is non-empty. The induction hypothesis is
that the subderivations of D corresponding to A and B are both weakly
subsumed by ABCD-pairs. It follows immediately from Lemma 17 that D is
also weakly subsumed by some ABCD-pair. Q.E.D. Theorem 18 2

4.4 Characterizing refutations

We can now characterize for which values of c > 1 refutations exist, in terms
of what pairs are c-achievable.

Lemma 20 Fix c ≥ 1. There is a refutation if and only if there is some
ABCD-pair 〈µ, ν〉 with ν < 1/c. Furthermore, there is a refutation if and
only if there is a c-achievable pair with ν < 1/c.

Proof By Theorem 18, any refutation must have the form

0DTS(n1) ` 0∃0DTS(n1) Initialization
...

... (weakly subsumed by 〈µ, ν〉)
` 0∃aDTS(nd)
` 0DTS(nmax{ca,cd}) Slowdown

with max{ca, cd} < 1, for some ABCD-pair 〈µ, ν〉. By the definition of weak
subsumption, this implies d ≥ ν. Thus ν < 1/c.

Conversely, every ABCD-pair is c-achievable. And by Lemma 7, if there
is c-achievable pair with ν < 1/c, then there is a refutation. 2

25

5 Limits on achievable pairs

The previous section reduced the question of whether there exists a refutation
to the question of whether there is a c-achievable pair 〈µ, ν〉 with ν < 1/c.
It was further shown that only ABCD-pairs need be considered. We shall
show, in fact, that only ABE-pairs need to be considered; namely, that any
c-achievable pair is subsumed by some ABE-pair.

Definition The ABE-pairs (respectively, AB-pairs) are the pairs that can
be obtained by operations (A), (B) and (E) (respectively, by (A) and (B)).

A pair 〈µ, ν〉 is subsumed by 〈µ′, ν ′〉 when µ′ ≤ µ and ν′ ≤ ν.

Lemma 21 Every ABCD-pair is an ABE-pair.

Proof The proof of Lemma 12 shows that any use of rule (C) can be
replaced by a use of rule (E) followed by rule (B). And, since 〈1, c − 1〉
subsumes 〈1, 1〉, rule (D) is unnecessary. 2

Corollary 22 Fix c ≥ 1. There is a refutation if and only if there is some
ABE-pair 〈µ, ν〉 with ν < 1/c.

Recall from Section 3.3, the definition of τ .

τ(µ, ν) =
cν − 1

ν
µ =

(
c − 1

ν

)
µ.

As we showed, the action of 〈µ1, ν1〉 on 〈µ2, ν2〉 produces 〈µ, ν〉 with ν
obtained by “reciprocally contracting” ν2 towards τ(µ1, ν1). The next lemma
shows that either τ(µ1, ν1) is sufficient for obtaining a refutation or it only
causes τ values to increase.

Lemma 23 Suppose τ(µ1, ν1) ≥ 1/c and

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉.

Then τ(µ, ν) ≥ τ(µ2, ν2).

Proof Note that 1
ν = 1

cν1ν2
+ 1

cµ1
. We have

τ(µ, ν) =
(

c − 1
ν

)
µ =

(
c − 1

cν1ν2
− 1

cµ1

)
cν1µ2

= c2ν1µ2 − µ2

ν2
− µ2ν1

µ1

26

=
(

cµ2 − µ2

ν2

)
+

(
c2ν1µ2 − cµ2 − µ2ν1

µ1

)

= τ(µ2, ν2) +
(

c
(cν1 − 1)µ1

ν1
− 1

)
ν1µ2

µ1

= τ(µ2, ν2) + (cτ(µ1, ν1) − 1)
ν1µ2

µ1

≥ τ(µ2, ν2),

where the last inequality follows from τ(µ1, ν1) ≥ 1/c. 2

Theorem 24 There is a refutation if and only if c < 2 cos(π/7).

Proof Theorem 14 already showed that if c < 2 cos(π/7), then there is a
refutation. For the converse, suppose c ≥ 2 cos(π/7). We claim that any
ABE-pair 〈µ, ν〉 has

τ(µ, ν) ≥ τ(1, c − 1) ≥ 1/c and ν > τ(1, c − 1) ≥ 1/c. (28)

The claim is proved by induction on the number of steps used to derive
the ABE-pair. The base case for the induction is 〈µ, ν〉 = 〈1, c−1〉. Then,
since c ≥ 2 cos(π/7), we have ν = c − 1 > 1/c. Also, τ(1, c − 1) ≥ 1/c by
Lemma 13. The induction step splits into two cases depending on whether
〈µ, ν〉 is derived by an (E)-operation or a (B)-operation. If it is derived
by an (E)-operation (subsumption), then the inequalities of (28) follow
immediately from the induction hypothesis and monotonicity. On the other
hand, if 〈µ, ν〉 is derived by a (B)-operation, the first inequality of (28)
follows from Lemma 23. The second inequality follows from the fact that
equation (17) showed that if cν1 > 1 and

〈µ1, ν1〉 : 〈µ2, ν2〉 7→ 〈µ, ν〉,

then ν has value between ν2 and τ(µ1, ν1). This proves the claim.
It follows by Corollary 22 that if c ≥ 2 cos(π/2), there is no proof of a

refutation. Q.E.D. Theorem 24

Theorem 1 is an immediate corollary of Lemma 3 and Theorem 24.

6 Rules of inference for DTISP

So far we have concentrated on the case of algorithms in DTS(na), namely
algorithms that use only no(1) space. The rest of the paper considers the

27

classes DTISP(na, ne) which are allowed to use ne+o(1) space. In particular,
we generalize our earlier results to prove time-space tradeoffs that give lower
bounds on the values of c and ε for which satisfiability can be computed in
DTISP(nc, nε). Williams [14] has already proved some tradeoffs for several
values of c and ε. We will extend these bounds, giving a precise tradeoff,
and proving that this tradeoff is optimal for the present-day known rules
R0ε-R2ε given below.

6.1 Basic and reduced rules of inference for DTISP bounds

We henceforth fix values c > 1 and ε ∈ [0, 1) such that c + ε < 2. Our
goal will be to prove a contradiction from the assumption that SAT ∈
DTISP(nc, nε), based on alternation trading inferences. Generalizing the
rules R0-R2 discussed for DTS(nc), we have the following rules of inference
for alternation trading proofs, which were implicitly stated in [14]. (The
rule names include a subscript ε to distinguish them from the earlier-defined
rules, but only R2ε actually depends on c or ε.)

R0ε: Initial speedup:

1DTISP(na, ne) ⊆ 1(∃nx)max{x,1}(∀n0)max{e,1}DTISP(na−x+e, ne),

where e < x ≤ a. (The initial speedup rule will be invoked only with
a = c · e/ε.)

R1ε: Speedup:

· · · bk(∃nak)bk+1DTISP(nak+1 , ne)
⊆ · · · bk(∃nmax{x,ak})max{x,bk+1}(∀n0)max{bk+1,e}DTISP(nak+1−x+e, ne),

where e < x ≤ ak+1.

R2ε: Slowdown:

· · · bk(∀nak)bk+1DTISP(nak+1 , ne) ⊆ · · · bkDTISP(nca, nεa).

where a = max{bk, ak, bk+1, ak+1}. It is required that e ≤ bk+1.

As before, each rule R1ε and R2ε is permitted in dual form, with existential
and universal quantifiers interchanged.

Recall that the class DTISP(na, ne) is defined only for a ≥ e. The upper
bound on x in the speedup rule enforces this condition. The conclusion of

28

the R2ε rule is a class DTISP(nb, ne) where e = ε · b/c. For space reasons, we
shall on rare occasions use the notation DTISP(nb, n···) for this class, where
it is understood that the omitted space bound is ne with e = ε · b/c.

The concept of a refutation is defined similarly as before. It is now
required that the first line have the form 1DTISP(na, ne), and the last line
have the form 1DTISP(nb, nf) where b < a and e < f . Since the last line
has f = (ε/c)b, it can be required without loss of generality that the first
line have e = (ε/c)a. For fixed values of c and ε, if there is a refutation, then
SAT 6∈ DTISP(nc, nε).

We now formulate simplified rules of inference for DTISP. First, the
h-R0ε rule is defined to be:

h-R0ε: 0DTISP(na, ne) ` 0(∃nx)x(∀n0)eDTISP(na−x+e, ne),

namely, by changing the superscripts 1 in R0ε to 0’s. A homogeneous
refutation, or an h-refutation, is one that uses rules h-R0ε, R1ε, and R2ε.
By exactly the same proof as Lemma 2, there is an h-refutation iff there is a
refutation.

For the second simplification, we form a reduced inference system by
getting rid of the superscripts aj bounding the size of the existentially and
universally quantified values. The valid lines in a reduced proof will have
the form

0∃b1∀b2∃b3 · · · bkQbk+1DTISP(na, ne).

These will be required to satisfy the conditions

a ≥ e and bi ≥ e, for all i. (29)

The rules of inference for the reduced system simplify to:

R0′ε: Initialization:

0DTISP(na, ne) ` 0∃eDTISP(na, ne).

R1′ε: Speedup:

· · · bk∃bk+1DTISP(na, ne)
` · · · bk∃max{x,bk+1}∀max{bk+1,e}DTISP(na−x+e, ne),

where e < x ≤ a. By (29), this rule can be further simplified by
replacing “max{bk+1, e}” with just “bk+1”.

29

R2′ε: Slowdown:

· · · bk∀bk+1DTISP(na, ne) ` · · · bkDTISP(nca′
, nεa′

).

where a′ = max{bk, bk+1, a, e} = max{bk, bk+1, a}.

As always, the last two rules are permitted in dual form, with existential
and universal quantifiers interchanged.

The analogue of Lemma 3 holds for DTISP proofs, so we have:

Lemma 25 Fix c > 1 and 0 ≤ ε < 1. There is a reduced refutation, with
R0′ε-R2′ε, iff there is a refutation (that is, with R0ε-R2ε).

Proof The proof of Lemma 25 is similar to that of Lemma 3, but we also
need to verify that the conditions of (29) can be required to hold. We in
addition need that e ≥ ε

ca for all lines in the refutation. These conditions are
readily shown by induction on the number of steps in a reduced proof: the
only slightly problematic condition is that bi ≥ e in all lines. It is certainly
true for the conclusion of a R0′ε or R1′ε inference. Consider the conclusion
· · · bkDTISP(nca′

, nεa′
) of a R2′ε slowdown inference. This is matched by

an earlier line · · · b′′k DTISP(na′′
, ne′′) which is the premise of the matching

speedup inference. We have bk ≥ b′′k, and have b′′k ≥ e′′ ≥ ε
ca

′′ by the
induction hypothesis. Also, without loss of generality, either ca′ < a′′ or
εa′ < e′′, since otherwise the second line is a weakening of the first line and
the derivation could be simplified. In either case, it follows that εa′ < e′′.
Thus, since bi ≥ e′′ for all i, we also have bi ≥ εa′ as desired. 2

We henceforth work exclusively with reduced derivations and refutations.
It is required that the conditions (29) hold for all lines in reduced derivations
and refutations.

As a digression, it is interesting to note that the rules R1ε and R1′ε
could be relaxed removing the restriction that e < x ≤ a replaced with the
restriction that e < x ≤ a + e. The relaxed versions of the rules are:

alt-R1ε: Speedup (alternate form):

· · · bk(∃nak)bk+1DTISP(nak+1 , ne)
⊆ · · · bk(∃nmax{x′,ak})max{x′,bk+1}(∀n0)max{bk+1,e′}DTISP(nak+1−x+e, ne′),

where e < x ≤ ak+1 + e, and where x′ = min{x, ak+1} and e′ =
min{e, ak+1 − x + e}.

30

alt-R1′ε: Speedup (alternate reduced form):

· · · bk∃bk+1DTISP(na, ne)
` · · · bk∃max{x′,bk+1}∀max{bk+1,e′}DTISP(na−x+e, ne′),

with the same conditions on x, x′, and e′ (replacing ak+1 with a).

There are two main properties to establish about the alt-R1ε rule. First,
this rule is admissible; that is, it only derives true conclusions. Second, if
there is a (reduced) refutation using alt-R1′ε, then there is already a reduced
refutation.

To verify that alt-R1ε is a valid inclusion, consider a predicate P that is
in DTISP(nak+1 , ne). Suppose ak+1 < x ≤ ak+1 + e, so x′ = ak+1. Let f =
x − ak+1 > 0. The predicate P has runtime nak+1+o(1). To speedup P , split
the computation of P into nf many “blocks” each with computation time
nak+1+o(1)/nf = nak+1−x+e+o(1), and existentially guess the following values
for each block boundary: (1) The contents of all memory locations that are
needed for the computation P in the immediately preceding or immediately
following block, and (2) For each such memory location, the index of the
previous block boundary where the same memory location is existentially
specified. Guessing these values requires space nf ·nak+1−f+o(1) = nak+1+o(1).
Then universally choose (1) each block and verify its computation, and
(2) each pair of block boundaries and verify the consistency of the values of
the memory locations and their indices for the previous boundary where the
value was specified. The requires n2f = no(1) many universal choices, plus
deterministic computation time and space of nak+1−x+e+o(1).

Thus, P is computable with nx′+o(1) existential guesses, followed by no(1)

universal choices, and deterministic computation time nak+1−x+e+o(1). This
establishes the admissibility of the inference rule alt-R1ε. From this, it
follows that if there is a refutation using the rules R0ε, alt-R1ε, and alt-R2ε,
then SAT /∈ DTISP(nc, nε). And, by the same reasoning used earlier, there
is such a refutation if and only if there is a reduced refutation using alt-R1′ε.

Finally, we claim that alt-R1′ε inferences can be removed from a reduced
refutation. For this, suppose that a refutation contains an alt-R1′ε inference,
which must be later followed by a pair of R2′ε inferences starting at the same
quantifier alternation level:

· · · bk∃bk+1DTISP(nak+1 , ne)
` · · · bk∃max{x′,bk+1}∀max{bk+1,e′}DTISP(nak+1−x+e, ne′)
...

...

31

` · · · bk∃yDTISP(nb, nf)
` · · · bkDTISP(ncb′ , nεb′).

In the first inference, we have x′ = ak+1 by assumption. In the next to last
line, we must have y ≥ max{x′, bk+1} since exponents on quantifiers can
only increase during the derivation. In the final inference, b′ = max{y, b, bk}.
It follows that b′ ≥ max{ak+1, bk, bk+1}: therefore, (a strengthened version
of) the last line can already be derived from the first line by a single
R2′ε-inference. Thus, we have shown that alt-R1′ε-inferences are unnecessary
for refutations, and can be eliminated from derivations.

Nonetheless, for technical reasons, we henceforth work only with deriva-
tions that do not use the alternate speedup rules.

6.2 Approximate inferences for DTISP proofs

The notion of approximate inferences for DTISP proofs is defined similarly to
the definitions given in section 2.3. Suppose Ξ and Ξ′ are classes represented
in the reduced inference system for DTISP:

Ξ = 0∃b2∀b3 · · · bkQbk+1DTISP(na, ne) (30)

and
Ξ′ = 0∃b′2∀b′3 · · · b′kQb′k+1DTISP(na′

, ne′).

We define Ξ′ ≤ Ξ iff a′ ≤ a and e′ ≤ e and b′i ≤ bi for all i.
The class Ξ + δ is defined by the condition Ξ′ = Ξ + δ holds iff a′ = a + δ

and e′ = e + δ and b′i = bi + δ for all i ≥ 2.
The weakening rule is defined exactly as before. The notation Ξ wΛ

means there is a derivation of Λ from Ξ in the reduced system augmented
with the weakening rule. We henceforth reserve the term “derivation” and
the symbol “`” for derivations that do not use weakenings.

It is easy to check that, with these definitions, Lemma 4 holds word-
for-word for DTISP derivations. In particular, the weakening rule does not
make possible any new refutations. Furthermore, we may assume w.l.o.g.
that no derivation contains two lines Ξ ≤ Ξ′ with Ξ preceding Ξ′ in the
derivation.

The notion of approximate inference, °, is defined exactly as before.
Lemma 5 still holds; namely, ° is transitive. Similarly, Lemma 6 also holds
for approximate DTISP derivations.

32

7 Achievable derivations for DTISP

7.1 Achievable triples and subsumption

The notion of a “c-achievable pair” was crucial for understanding the power
of refutations for DTS proofs. For inferences involving DTISP, there are
space bounds in addition to time bounds; as a consequence, it is necessary
to consider triples 〈µ, ν, `〉 instead of pairs 〈µ, ν〉.
Definition Fix values c and ε so that c > 1 > ε ≥ 0 and c + ε < 2.
Suppose µ ≥ 1 and 0 < ν < 1 and 1 ≤ ` ∈ N. Then the triple 〈µ, ν, `〉 is
(c, ε)-achievable provided that, for all values b, d and e satisfying (c+ ε)µb =
ν(d + `e) and e ≤ b ≤ d,

a∃bDTISP(nd, ne) ° a∃µbDTISP(ncµb, nεµb). (31)

The displayed inference is called a 〈µ, ν, `〉-step. The triple 〈µ, ν, `〉 is called
useful provided that ν < (c + ε)/(c + `ε).

As the nomenclature suggests, we are mostly interested in (c, ε)-achievable
triples that are useful. In particular, when working with DTISP classes so
that e = (ε/c)d, usefulness is equivalent to having cµb < d and εµb < e
in (31).

As before, the value of a makes no difference at all in the definition
of achievability, since the derivations that approximate the °-implication
of (31) cannot contain any lines with zero alternations. For the same reason,
any such derivation must end with a slowdown inference, R2′ε; therefore the
right hand side of (31) can be assumed to be of the form DTISP(nd′ , n(ε/c)d′)
with no loss of generality.

The extra restriction that b ≤ d for (31) can be made without any loss
of generality. Indeed, the next lemma shows that if b ≥ d then the best
possible next inference is a slowdown. In particular, there is no need to
apply a (c, ε)-achievable triple when b ≥ d.

Lemma 26 Suppose Ξ is a line in a refutation of the form
· · · a∃bDTISP(nd, ne) with b ≥ d. Then, without loss of generality, the
next inference is a slowdown.

Proof Ξ is followed by some balanced inference pattern (possibly empty)
of 1’s and 0’s, and then a slowdown that removes the existential quantifier
from Ξ. Namely,

a∃bDTISP(nd, ne) ` a∃b′DTISP(nd′ , ne′) Balanced inferences
` aDTISP(nmax{ca,cb′,cd′}, n···) Slowdown

33

where b′ ≥ b. This can be replaced by a single slowdown

a∃bDTISP(nd, ne) ` aDTISP(nmax{ca,cb,cd}, n···).

Since b′ ≥ b ≥ d, this improves the subderivation. 2

In seeking alternation trading refutations, our goal is to find a (c, ε)-
achievable triple with ν and ` as small as possible. More precisely, our goal
is to have (c + `ε)ν < (c + ε)/c. In addition, we shall need to have cµε < 1.

Definition We define ρ(µ, ν, `) =
c(c + `ε)ν

c + ε
.

Note that a triple 〈µ, ν, ` > is useful iff it has ρ(µ, ν, `) < 1.

Lemma 27 Suppose there is a (c, ε)-achievable triple 〈µ, ν, `〉 with

cµε < 1 and ρ(µ, ν, `) < 1.

Then there is a refutation.

Proof We have the following (approximate) refutation, where we let b =
max{ε, ν(c+`ε)

(c+ε)µ }. Note that b < 1/c since µ ≥ 1.

0DTISP(nc, nε) ` 0∃εDTISP(nc, nε) Initialization
w 0∃bDTISP(nc, nε)
° 0∃µbDTISP(ncµb, nεµb)

By the (c, ε)-achievable 〈µ, ν, `〉
` 0DTISP(nc2µb, nεcµb) Slowdown

Since c2µb < c, this suffices to prove the lemma. 2

The notions of “subsume” and “weakly subsume” carry over to DTISP
derivations in the expected way.

Definition An implication

· · · bkQbk+1DTISP(na, ne) w · · · bkQb′k+1DTISP(na′
, ne′) (32)

is subsumed by 〈µ, ν, `〉 provided the implication can be inferred by a
weakening, a 〈µ, ν, `〉 step, and then another weakening.

The next two lemmas follow immediately from the definitions.

34

Lemma 28 The implication (32) is subsumed by 〈µ, ν, `〉 iff

b′k+1 ≥ max
{

µbk+1,
ν(a + `e)

c + ε

}

and

a′ ≥ max
{

cµbk+1,
cν(a + `e)

c + ε

}
, (33)

and

e′ ≥ max
{

εµbk+1,
εν(a + `e)

c + ε

}
.

Lemma 29 Suppose µ ≤ µ′, ν ≤ ν ′, and ` ≤ `′. If 〈µ, ν, `〉 is (c, ε)-
achievable, then so is 〈µ′, ν ′, `′〉. Any implication subsumed by 〈µ′, ν ′, `′〉 is
also subsumed by 〈µ, ν, `〉.

Definition The implication (32) is weakly subsumed by 〈µ, ν, `〉 iff the second
inequality of (33) holds, that is, iff a′ satisfies the lower bound of (33).

7.2 Derivations of type (10)∗

The next lemma is a generalization of Lemma 10.

Lemma 30 The triple 〈1, c+ε−1, 1〉 is (c, ε)-achievable with (10)∗ deriva-
tions.

This triple is useful since c + ε < 2.

Proof Let Ξ = a∃bDTISP(nd, ne) with e ≤ b ≤ d. A speedup with
parameter x = b, followed by a slowdown gives

Ξ ` a∃b∀bDTISP(nd−b+e, ne) ` a∃bDTISP(nmax{cb,c(d−b+e)}, n···).

Thus, from Ξ we can derive a∃bDTISP(nd′ , ne′) with d′ = max{cb, c(d−b+e)}
and e′ = max{εb, ε(d − b + e)}. In particular,

d′ + e′ = max{(c + ε)b, (c + ε)((d + e) − b)}.

The graph below shows the value of d′ + e′ as a function of d + e.

35

0 d + e

d′ + e′

(c+ε)b

(c+ε)b

b

b

2b

d′ + e′ = (c + ε)b

c+ε
c+ε−1b

d′ + e′ = (c + ε)((d + e) − b)

d′+e′=d+e

The situation is identical to that of the proof of Lemma 10, except that
we are now analyzing how the value d + e changes (instead of d), and the
value c + ε replaces the value c. Therefore, if d + e = c+ε

c+ε−1b,

a∃bDTISP(nd, ne) ° a∃bDTISP(nd′ , ne′)

where d′ + e′ = (c + ε)b. Since also e′ = (ε/c)d′, we have d′ = cb and e′ = εb.
That is to say, if (c + ε)b = (c + ε − 1)(d + e) then

a∃bDTISP(nd, ne) ° a∃bDTISP(ncb, nεb)

This shows that 〈1, c+ε−1, 1〉 is (c, ε)-achievable. 2

7.3 Composition of achievable triples

The next lemma describes how two (c, ε)-achievable triples can be composed
to form a third (c, ε)-achievable triple.

Lemma 31 Let 〈µ1, ν1, `1〉 and 〈µ2, ν2, `2〉 be (c, ε)-achievable triples. Let

µ =
c(c + `1ε)

c + ε
ν1µ2 (34)

ν =
c(c + ε)(c + `1ε)µ1ν1ν2

(c + ε)2µ1 + c(c + `1ε)ν1ν2
(35)

` = `2 + 1. (36)

Suppose that µ ≥ µ1. Then 〈µ, ν, `〉 is (c, ε)-achievable.

Proof We prove that a 〈µ, ν, `〉-step can be achieved by a slowdown, a
〈µ2, ν2, `2〉-step, a speedup, and a 〈µ1, ν1`1〉-step. Suppose e ≤ b ≤ d and

36

(c + ε)µb = ν(d + `e), and let Ξ = a∃bDTISP(nd, ne). We must show that
Ξ ° a∃µbDTISP(ncµb, nεµb). Let

x = µb/µ1 =
c(c + `1ε)ν1µ2

(c + ε)µ1
b. (37)

We have x ≥ b ≥ e since µ ≥ µ1. If x ≤ d, a speedup inference will give

Ξ ` a∃x∀bDTISP(nd−x+e, ne). (38)

Assume for the moment that b ≤ d − x + e, and thus certainly x ≤ d. We
show that a 〈µ2, ν2, `2〉 step can be applied to (38). We have

d + (`2 + 1)e = d + `e =
(c + ε)µb

ν

= c(c + `1ε)ν1µ2

(
1

(c + ε)µ1
+

c + ε

c(c + `1ε)ν1ν2

)
b

=
(

c(c + `1ε)ν1µ2

(c + ε)µ1
+

(c + ε)µ2

ν2

)
b = x +

(c + ε)µ2

ν2
b,

whence
(c + ε)µ2b = ν2((d − x + e) + `2e).

Thus, by (38) and the (c, ε)-achievability of 〈µ2, ν2, `2〉,
Ξ ° a∃x∀µ2bDTISP(ncµ2b, nεµ2b). (39)

On the other hand, if b > d − x + e, we apply a speedup inference to Ξ with
parameter d − b + e, followed by a weakening to obtain:

Ξ ` a∃d−b+e∀bDTISP(nb, ne)
w a∃x∀µ2bDTISP(ncµ2b, ne) (40)

since µ2 ≥ 1. This is the same as (39) but with a larger space bound. (The
larger space bound is harmless, as the next inference will be a slowdown.)

The argument splits into two cases again, now depending on whether
x ≤ cµ2b or not. First consider the case x ≤ cµ2b. This certainly holds
if 〈µ1, ν1, `1〉 is useful, since then (c + `1ε)ν1/(c + ε) < 1. In this case, a
slowdown inference, applied to (39) or (40), gives

Ξ ° a∃xDTISP(nc2µ2b, nεcµ2b). (41)

Since (37) gives
(c + ε)µ1x = ν1(c2µ2b + `1εcµ2b),

37

a 〈µ1, ν1, `1〉 step applied to (41) yields

Ξ ° a∃µ1xDTISP(ncµ1x, nεµ1x) = a∃µbDTISP(ncµb, nεµb).

Now consider the case x ≥ cµ2b. Picking up from (39) or (40), a slowdown
and a weakening give

Ξ ° a∃xDTISP(ncx, nεx)
w a∃µ1xDTISP(ncµ1x, nεµ1x) = a∃µbDTISP(ncµb, nεµb)

This proves Lemma 31. 2

Lemma 31 requires that µ ≥ µ1. The case where this does not hold can
be handled a method analogous to the “max” method of Lemma 12.

Lemma 32 Let 〈µ1, ν1, `1〉 and 〈µ2, ν2, `2〉 be (c, ε)-achievable. Set

µ = max
{

c(c + `1ε)
c + ε

ν1µ2, µ1

}
. (42)

ν =
c(c + ε)(c + `1ε)µ1ν1ν2

(c + ε)2µ1 + c(c + `1ε)ν1ν2
(43)

` = `2 + 1. (44)

Then 〈µ, ν, `〉 is (c, ε)-achievable.

Proof If µ1 ≤ c(c + `1ε)ν1µ2/(c + ε), the previous lemma implies the
result. Otherwise, set µ′

2 = (c + ε)µ1/(c(c + `1ε)ν1) > µ2. By Lemma 29,
〈µ′

2, ν2, `2〉 is (c, ε)-achievable. Lemma 31 applied to the triples 〈µ1, ν1, `1〉
and 〈µ′

2, ν2, `2〉 gives the desired result. 2

The constructions of the previous two lemmas show how to compose two
(c, ε)-achievable triples to form a third one. It is again helpful to think of
the triple 〈µ1, ν1, `1〉 as transforming the triple 〈µ2, ν2, `2〉. The mapping
notation

〈µ1, ν1, `1〉 : 〈µ2, ν2, `2〉 7→ 〈µ, ν, `〉
is used to indicate that equations (34)-(36) hold. Similarly,

〈µ1, ν1, `1〉 : 〈µ2, ν2, `2〉 7→max 〈µ, ν, `〉

indicates that equations (42)-(44) hold.

38

To better understand the action of these transformations, we can rewrite
equations (34) and (35) as

1
µ

=
c + ε

c(c + `1ε)ν1
· 1
µ2

(45)

1
ν

=
1

τ(µ1, ν1, `1)
− c + ε

c(c + `1ε)ν1

(
1

τ(µ1, ν1, `1)
− 1

ν2

)
, (46)

where

τ(µ1, ν1, `1) = (c + ε)µ1

(
1 − c + ε

c(c + `1ε)ν1

)
.

To write these equations more compactly, recall that

ρ(µ1, ν1, `1) =
c(c + `1ε)ν1

c + ε
, (47)

and set R1 = ρ(µ1, ν1, `1) and T1 = τ(µ1, ν1, `1). Then

T1 = (c + ε)µ1(1 − 1/R1),

and equations (45) and (46) become

1
µ

=
1

R1
· 1
µ2

and
1
ν

=
1
T1

− 1
R1

(
1
T1

− 1
ν2

)
. (48)

Equations (46) and (48) show the action of 〈µ1, ν1, `1〉 on the triple 〈µ2, ν2, `2〉
is in effect defining the value of 1/ν by contracting 1/ν2 towards 1/T1.

Another suggestive, and highly useful, way to rewrite Equations (35)
and (46) is as

1
ν

=
1

(c + ε)µ1
+

1
R1ν2

. (49)

The above constructions generalize those of Section 3.3. In particular,
the ε = 0 case is the same as the earlier results. In fact, most of our just
obtained results can be obtained from those of Section 3.3 by replacing “ν1”
uniformly with “(c + `1ε)ν1/(c + ε)”. The extra complication, however, is
the presence of the parameter `: this makes the next section’s analysis of
alternation trading refutations substantially more difficult.

8 The refutations for DTISP lower bounds

We describe next the alternation trading refutations that give time/space
(DTISP) lower bounds for algorithms for SAT. Perhaps surprisingly, the

39

refutations for DTISP lower bounds do not follow the pattern of refutations
that were used in Section 5 for the lower bounds for DTS (ε = 0) algorithms.
Namely, the proof of Theorem 24 showed that if there is a refutation (in the
DTS setting) if and only if it can be obtained by letting 〈µ1, ν1〉 = 〈1, c − 1〉
and defining 〈µi+1, νi+1〉 by

〈µ1, ν1〉 : 〈µi, νi〉 7→ 〈µi+1, νi+1〉,

and finally obtaining some νi < 1/c. We initially conjectured that we
could use the same methods for DTISP refutations: Let 〈µ1, ν1, `1〉 be
〈1, c+ε−1, 1〉, and define 〈µi+1, νi+1, `i+1〉 by

〈µ1, ν1, `1〉 : 〈µi, νi, `i〉 7→ 〈µi+1, νi+1, `i+1〉.

Our hope was that this would always suffice to obtain alternation trading
refutations. This turned out, in computer experiments, to be false; namely,
there are values c and ε which have refutations, but for which no i > 0 has
ρ(µi, νi, `i) < 1.

This greatly complicates a computer-based search for alternation trading
refutations. Fix values for c and ε, and consider trying out all possible
constructions of (c, ε)-achievable triples. It turns out that a blind, depth-first
search for refutations based on the constructions (A)-(C) defined below will
yield an immense set of achievable triples, even after discarding subsumed
triples. This kind of blind search can eventually find a refutation if one
exists; however, if no refutation exists, the process never stops and yields no
information about the existence of a refutation.

In order to overcome this, we shall define two expanded notions of
“subsumed” which will allow the computer-based search to more aggressively
prune (c, ε)-achievable triples from the search space. This will be completely
successful in reducing the size of the search space. Even more importantly,
when there is no alternation trading refutation, the broader notions of
subsumption allow the computer-based search to terminate quickly with a
proof that no refutation exists (modulo round-off errors in the calculations).

The operations (A)-(E) for introducing (c, ε)-achievable triples are:

(A) 〈1, c+ε−1, 1〉 is c-achievable.

(B) Suppose 〈µ1, ν1, `1〉 and 〈µ2, ν2, `2〉 are (c, ε)-achievable and that µ1 ≤
c(c + `1ε)ν1µ2/(c + ε). Then 〈µ, ν, `〉 is (c, ε)-achievable, where

〈µ1, ν1, `1〉 : 〈µ2, ν2, `2〉 7→ 〈µ, ν, `〉.

40

(C) Suppose 〈µ1, ν1, `1〉 and 〈µ2, ν2, `2〉 are (c, ε)-achievable and that µ1 >
c(c + `1ε)ν1µ2/(c + ε). Then 〈µ, ν〉 is (c, ε)-achievable, where

〈µ1, ν1, `1〉 : 〈µ2, ν2, `2〉 7→max 〈µ, ν, `〉.

(D) If 〈µ2, ν2, `2〉 is (c, ε)-achievable, then so is 〈µ, ν, `〉, where

〈1, 1, 1〉 : 〈µ2, ν2, `2〉 7→ 〈µ, ν, `〉.

(E) If 〈µ, ν, `〉 is (c, ε)-achievable and µ′ ≥ µ and ν ′ ≥ ν and `′ ≥ `, then
〈µ′, ν ′, `′〉 is (c, ε)-achievable.

As before, the ABE-triples are defined to be those triples that can be
inferred by operations (A), (B), and (E). Analogously to the earlier results
for DTS-refutations, Theorem 49 states that, for any fixed values of c and ε,
there is a DTISP-refutation if and only if some ABE-triple 〈µ, ν, `〉 has
ρ(µ, ν, `) < 1 and cµε < 1.1

Our computer-based search focuses on finding an ABC-triple with ρ-value
< 1. In light of Lemma 27, it is also required that the triple satisfy cµε < 1.
More generally, we shall require that cµε ≤ R holds for all triples generated
during the computer search, where R = ρ(µ, ν, `). The reason for this is that
our theoretical results below depend on having cµε ≤ R. Our experimental
results are that cµε ≤ R does in fact always hold, even though we have been
unable to prove the condition should hold.

The computer search proceeds in rounds, or “stages”. At each stage,
there is a set Γ of derived (c, ε)-achievable triples. Initially, Γ contains just
〈1, c+ε−1, 1〉. At each stage, two triples τ1 and τ2 are chosen from Γ, and a
new triple τ is obtained by operation (B) or (C). It is checked that the new
triple has cµε ≤ R, and then the triple will be either pruned (discarded), or
is added to Γ. The process terminates either when there is no new triple
available to add to Γ or when a triple with ρ value < 1 is generated.

New triples are generated with operations (B) and (C), instead of with
operations (B) and (E), essentially because the only point of using the
subsumption operation (E) is to weaken a triple (as in the proof of Lemma 32
where µ2 was increased to the value µ′

2) in order that it may be used in
operation (B). More precisely, it is easy to prove the following lemma by
induction on the number of applications of operations (B) and (E).

1The proof of Theorem 49 is postponed until Section 9 as it is rather similar to the
earlier proofs for DTS refutations.

41

Lemma 33 If a triple τ can be derived from Γ by (B) and (E) operations,
then there is a triple τ ′ derivable from Γ using only (B) and (C) operations,
such that τ ′ subsumes τ . Furthermore the minimum number of (B) and (C)
operations needed to derive τ ′ is at most the number of (B) operations used
in the derivation of τ .

Notation To streamline the discussion, we denote a triple 〈µ, ν, `〉 by the
Greek letter τ ; and we let R = ρ(µ, ν, `). If there are subscripts, superscripts,
or other marks on τ , they are applied uniformly to its associated values. For
example, τi = 〈µi, νi, `i〉 and has ρ value Ri.

We write τ1[τ2] to denote the triple τ obtained by operation (B).

Although the computer search uses (B) and (C) operations, our theoretical
analysis below is based on (B) and (E) derivations. This is justified by
Lemma 33.

Definition A derivation of a triple from Γ is viewed as a tree. The leaves of
the tree are members of Γ, and internal nodes are labeled with triples that
are inferred by (B) or (E) operations from their children. The height of a
derivation is the maximum number of (B) operations along any branch of
the tree.

A contradiction from Γ is a triple τ derivable from Γ that has R < 1.

Definition Let Γ be a set of triples and τ a (new) triple. We say τ may
be pruned provided that any derivation of a contradiction from Γ ∪ τ has
height greater than or equal to the minimum height of a derivation of a
contradiction from Γ.

For example, it is clear that if τ is subsumed by some member of Γ, then
τ may be pruned. The next definition gives a less trivial, and more useful,
notion of subsumption.

Definition The triple τ1 R-subsumes τ2 provided that µ1 ≤ µ2 and R1 ≤ R2

and `1 ≤ `2.

By the definition of ρ(µ, ν, `), if τ1 subsumes τ2, then certainly τ1 R-
subsumes τ2. Thus R-subsumption is a more general notion than sub-
sumption. In addition, we claim that if τ is R-subsumed by some triple in Γ,
then τ may be pruned from Γ. This is proved by induction on the height
of derivations from Γ ∪ {τ} that contain (B) and (E) operations, using the
following lemma for the key induction argument.

42

Lemma 34 Suppose τ0 and τ1 R-subsume τ3 and τ4, respectively. In
addition, suppose R3 ≥ 1. Let τ2 = τ0[τ1] and τ5 = τ3[τ4]. Then either
τ2 R-subsumes τ5, or τ4 R-subsumes τ5.

Proof We have µ2 = R0µ1 ≤ R3µ4 = µ5, so µ2, µ4 ≤ µ5. Also, `2 =
`1 +1 ≤ `4 +1 = `5. It thus suffices to show that either R2 ≤ R5 or R4 ≤ R5.
Referring back to equations (47) and (49) for R and 1/ν, we have

1
R5

=
c + ε

c(c + `5ε)

(
1

(c + ε)µ3
+

1
R3

c(c + `4ε)
c + ε

1
R4

)

=
1

c(c + ε`4 + ε)
1
µ3

+
(

1 − ε

c + ε`4 + ε

)
1

R3

1
R4

=
1

c(c + ε`4 + ε)

(
1
µ3

− cε
1

R3

1
R4

)
+

1
R3

1
R4

(50)

with analogous equations holding for 1/R2 (replacing subscripts 3,4,5 with
0,1,2, respectively).

Suppose the quantity in parentheses in the last equation is negative, so(
1
µ3

− cε 1
R3

1
R4

)
< 0. Then

1
R5

≤ 1
R3

1
R4

≤ 1
R4

since R3 ≥ 1. It follows that R4 ≤ R5, so τ4 R-subsumes τ5.
Otherwise, that quantity is non-negative. Then,

1
R5

≤ 1
c(c + ε`1 + ε)

(
1
µ3

− cε
1

R3

1
R4

)
+

1
R3

1
R4

=
1

c(c + ε`1 + ε)
1
µ3

+
(

1 − ε

c + ε`1 + ε

)
1

R3

1
R4

≤ 1
c(c + ε`1 + ε)

1
µ0

+
(

1 − ε

c + ε`1 + ε

)
1

R0

1
R1

=
1

R2
.

The first inequality above follows from `1 ≤ `4; the second inequality from
µ0 ≤ µ3, R0 ≤ R3, and R1 ≤ R4. Thus R5 ≥ R2, so τ2 R-subsumes τ5. 2

Corollary 35 If τ is R-subsumed by a triple in Γ, then τ may be pruned.

Corollary 35 is proved using induction on the height of derivations. Namely,
any triple derivable from Γ ∪ τ with a derivation of height h is R-subsumed
by some triple derivable from just Γ with a derivation of height ≤ h. We
leave the details to the reader.

43

Note that the requirement in Lemma 34 that R3 ≥ 1 is harmless, since if
any of R0, R1, R3, R4 are < 1, then a contradiction has already been reached.

The ability to prune R-subsumed triples reduces the search space
considerably, but it still leads to large search spaces and, when no con-
tradiction exists, even to unbounded searches. Accordingly, we next define
a yet-stronger form of subsumption, called “dual subsumption”: it requires
two triples to “dual subsume” a new triple.

For the intuition of what it means for τ1 and τ3 to “dual-subsume” τ2,
recall from equation (49) that if τ ′ = τi[τ], then ν ′ is calculated as

1
ν ′ =

1
(c + ε)µi

+
1
Ri

1
ν

(51)

The definition of dual-subsumption is based on the effectiveness of each τi

at producing a small value for ν′. Letting Li be the line with y-intercept
1/((c+ε)µi) and slope 1/Ri, then the effectiveness of τi is represented by the
height of the line Li — the higher the line Li is, the better τi is. This is
illustrated in Figure 1, where the two lines L1 and L3 jointly dominate L3

in the sense that L2 lies below the maximum of the lines L1 and L3 for all
values of 1/ν. This will be enforced by having v23 ≤ v13 ≤ v12, where

vij =
1

(c+ε)µi
− 1

(c+ε)µj

1
Rj

− 1
Ri

is the intersection of lines Li and Lj .

Definition The triples τ1 and τ3 dual-subsume τ2 provided the following
four conditions hold.

(ds1) 1
µ1

> 1
µ2

> 1
µ3

,

(ds2) 1
R1

< 1
R2

< 1
R3

,

(ds3) `1 ≤ `2 and `3 ≤ `2,

and
1
µ2

− 1
µ3

1
R3

− 1
R2

≤
1
µ1

− 1
µ3

1
R3

− 1
R1

≤
1
µ1

− 1
µ2

1
R2

− 1
R1

. (52)

We write “(52rv)” to denote the last line with the directions of the
inequalities reversed.

The notions of “R-subsume” and “dual-subsume” can be generalized to
“multisubsume” as follows. Let τ be a triple and Γ be a finite set of triples

44

1
ν

1
ν′

1
(c+ε)µ3

1
(c+ε)µ2

1
(c+ε)µ1

L3, slope 1/R3

L2, slope 1/R2

L1, slope 1/R1

v23 v13 v12

Figure 1: L1 and L3 dominate L2.

such that (1) for each τi ∈ Γ, `i ≤ `, and (2) for positive values of 1/ν, the
line L associated with τ is bounded above by the maximums of the lines Li

associated with τi’s in Γ. Another way to state condition (2) is that the
infinite convex polytope in the first quadrant which is bounded below by the
lines Li is above the line L.

Lemma 36 Γ multisubsumes τ if and only if there are τi and τj in Γ which
dual-subsume τ or there is a τi in Γ that R-subsumes τ .

The proof of the lemma is trivial: Consider a closest vertex of the polytope
to the line L. Then either the two triples corresponding to the edges adjacent
to this vertex dual-subsume L, or one of them R-subsumes L.

This immediately implies a transitivity property for dual- and multi-
subsumption:

Corollary 37 Suppose that τ1 and τ2 dual-subsume τ5, that τ3 and τ4 dual-
subsume τ6, and that τ5 and τ6 dual-subsume τ7. Then, some two of τ1, τ2,
τ3 and τ4 dual-subsume τ7. More generally, if Γ multisubsumes each triple
in ∆, and ∆ multisubsumes τ , then Γ multisubsumes τ .

We would like to extend Corollary 35 (which stated that R-subsumed
triples may be discarded) to conclude that dual-subsumed triples may be
discarded during the computer search for contradictions. We need an
additional assumption however, namely that all generated triples satisfy
the property that cµε ≤ R. Theorem 44 will state this property precisely,
but first we prove a series of preliminary results as Lemmas 38-43.

Lemma 38 The validity of the inequalities in (52) is unchanged by any of
the following changes to the values of µi or Ri:

45

(a) Multiplying each value 1
µi

by a scalar α > 0.

(b) Multiplying each value 1
Ri

by a scalar α > 0.

(c) Adding a constant α to each value 1
µi

.

(d) Adding a constant α to each value 1
Ri

.

(e) Replacing each 1
µi

with 1
µi

+ α 1
Ri

where α is a scalar.

(f) Replacing each 1
Ri

with 1
Ri

+ α 1
µi

where α is a scalar.

Furthermore, (g) if (52) holds then after swapping the values of 1
µi

with 1
Ri

,
property (52rv) holds, and vice-versa.

The proof of Lemma 38 is trivial. The case (f) can be proved using (g),
then (e), and then (g) again.

Lemma 39 Let τ1 and τ3 dual-subsume τ2 with R3 ≥ 1. Let τ be a triple
that satisfies cµε ≤ R. Set τ ′

i = τ [τi] for all i. Then τ ′
1 and τ ′

3 multisubsume
τ ′
2.

Proof The definition of the triples τ ′
i gives

1
µ′

i

=
1
R

1
µi

(53)

1
R′

i

=
1

c(c + ε`i + ε)

(
1
µ
− cε

1
R

1
Ri

)
+

1
R

1
Ri

., (54)

similarly to equation (50). Note that the quantity in the parentheses must
be nonnegative, since each Ri ≥ 1 and since cµε ≤ R. Consequently, R′

i will
increase if the value of `i is increased.

We claim that we may assume w.l.o.g. that `1 = `2 = `3, and thus
`′1 = `′2 = `′3. To see this, consider increasing the values of `1 and `3 to
equal `2 while keeping the values Ri fixed. (This will keep (ds3) satisfied.)
To keep Ri = (c(c + `i)/(c + ε))νi fixed, it is necessary to also decrease the
values of ν1 and ν3. These changes however, do not affect the hypothesis
of dual subsumption. In addition, as just remarked, this only increases the
values R′

1 and R′
3, and it leaves the values of µ′

1 and µ′
3 unchanged. This

only makes it harder to establish the desired multisubsumption; indeed, it
shifts the lines L′

1 and L′
3 downward while L′

2 is remains unchanged. (L′
i is

the line defined by µ′
i and R′

i, similarly as in Figure 1.)
By (53) and (ds1),

46

(ds1)′ 1
µ′

1
> 1

µ′
2

> 1
µ′

3
.

From (54) and the assumption that `1 = `2 = `3, it follows that 1/R′
i is a

linear function of 1/Ri. Therefore,

(ds2)′ 1
R′

1
< 1

R′
2

< 1
R′

3

For the same reasons, and by parts (a), (b) and (d) of Lemma 38,
condition (52) holds for the triples τ ′

1, τ ′
2, and τ ′

3. Note that for part (a),
the scalar α is 1/R and is positive. For part (b), the scalar α is
(c+ε`i)/(R(c+ε(`i+1))); this is the same for all i and positive.

It follows that τ ′
1 and τ ′

3 dual-subsume, and hence multisubsume, τ ′
2. 2

Corollary 40 Suppose τ1 and τ3 multisubsume τ2, and cµε ≤ R and 1 ≤
R1, R3, R. Let τ ′

i = τ [τi]. Then the four triples τ1, τ3, τ
′
1, τ

′
3 multisubsume τ ′

2.

Proof If τ1 and τ3 dual-subsume τ2, the corollary follows from the previous
lemma. Otherwise, one of τ1 or τ3 R-subsumes τ2.

Suppose that τ1 R-subsumes τ2. Since τ R-subsumes itself, Lemma 34
implies that one of τ ′

1 or τ2 R-subsumes τ ′
2. If it is τ2 that R-subsumes τ ′

2,
then the transitivity of R-subsumption implies that τ1 also R-subsumes τ ′

2.
Likewise, if τ3 R-subsumes τ2, then either τ ′

3 or τ3 R-subsumes τ2. This
suffices to prove the corollary. 2

Lemma 41 Let τ1 and τ3 dual-subsume τ2. Let τ also be a triple, and let
τ ′
i = τi[τ]. Then τ ′

3 and τ ′
1 multisubsume τ ′

2.

Proof Each µ′
i is equal to Riµ. Thus, from (ds2),

(ds1rv)′ 1
µ′

3
> 1

µ′
2

> 1
µ′

1
.

Suppose 1
ν ≥ v23. Referring back to Figure 1, it is evident that 1

ν′
3
≥ 1

ν′
2

since
L3 is above L2 in this range. Hence, µ′

3 ≤ µ′
2, and ν ′

3 ≤ ν ′
2, and `′3 = `′2,

and therefore τ ′
3 subsumes (and hence R-subsumes and multisubsumes) the

triple τ ′
2.

On the other hand, suppose 1
ν < v23. From Figure 1 again, we have

1
ν′
1

> 1
ν′
2

> 1
ν′
3
. Since `′1 = `′2 = `′3 = ` + 1, this implies

(ds2rv)′ 1
R′

3
< 1

R′
2

< 1
R′

1
,

47

We claim that τ ′
3 and τ ′

1 dual-subsume τ ′
2. For this, we must show that τ ′

1,
τ ′
2, and τ ′

3 satisfy the conditions of (52rv). Since each `′i = ` + 1, we have

1
R′

i

=
c + ε

c(c+ε`+ε)

(
1

c + ε
· 1
µi

+
1
ν
· 1
Ri

)

1
µ′

i

=
1
µ
· 1
Ri

Hence, using part (g) of Lemma 38, and then parts (a), (b), and (f), it
follows that τ ′

1, τ ′
2, and τ ′

3 satisfy the conditions of (52rv). 2

Corollary 42 Suppose τ1 and τ3 multisubsume τ2 and that 1 ≤ R2. Let
τ ′
i = τi[τ]. Then the five triples τ, τ1, τ3, τ

′
1, τ

′
3 multisubsume τ ′

2.

Proof If τ1 and τ3 dual-subsume τ2, the corollary follows from the previous
lemma. Otherwise, one of τ1 or τ3 R-subsumes τ2.

Suppose that τ1 R-subsumes τ2. Since τ R-subsumes itself, Lemma 34
implies that one of τ ′

1 or τ R-subsumes τ ′
2. Likewise, if τ3 R-subsumes τ2,

then either τ ′
3 or τ R-subsumes τ2.

This suffices to prove the corollary. 2

Definition Γ[Γ] is the set of triples {τ1[τ3] : τ1, τ3 ∈ Γ}.

Lemma 43 Suppose every triple in Γ satisfies 1 < R and cµε ≤ R. Also
suppose Γ multisubsumes τ ′

2 and τ ′′
2 , and that 1 ≤ R′

2. Let τ2 = τ ′
2[τ

′′
2]. Then

Γ ∪ Γ[Γ] multisubsumes τ2.

Proof By assumption, there are τ ′
1, τ

′′
1 , τ ′

3, τ
′′
3 ∈ Γ so that τ ′

1 and τ ′
3

multisubsume τ ′
2, and τ ′′

1 and τ ′′
3 multisubsume τ ′′

2 . From Corollary 40,
we have

τ ′′
1 , τ ′′

3 , τ ′
1[τ

′′
1], τ ′

1[τ
′′
3] multisubsume τ ′

1[τ
′′
2],

and
τ ′′
1 , τ ′′

3 , τ ′
3[τ

′′
1], τ ′

3[τ
′′
3] multisubsume τ ′

3[τ
′′
2].

And, from Corollary 42,

τ ′′
2 , τ ′

1, τ
′
3, τ

′
1[τ

′′
2], τ ′

3[τ
′′
2] multisubume τ ′

2[τ
′′
2].

Now, by transitivity of multisubsumption (Corollary 37),

τ ′
1, τ

′
3, τ

′′
1 , τ ′′

3 , τ ′
1[τ

′′
1], τ ′

1[τ
′′
3], τ ′

3[τ
′′
1], τ ′

3[τ
′′
3] multisubume τ ′

2[τ
′′
2].

2

48

Theorem 44 Suppose Γ is a set of triples which satisfy 1 < R and cµε < R.
Further suppose that Γ multisubsumes every triple from Γ[Γ]. Then there is
no contradiction derivable from Γ.

Proof Let τ be a triple derivable from Γ. We claim that Γ multisubsumes τ .
The claim is proved by induction on the number of steps in the derivation of τ
from Γ. For the induction step, Lemma 43 implies that τ is multisubsumed
by Γ∪Γ[Γ]; thus by the transitivity of multisubsumption, τ is multisubsumed
by Γ.

Finally, note that if τ is R-subsumed by τ1 or is dual subsumed by τ0

and τ1, then R ≥ R1. If follows that R > 1 since R1 > 1 for every τ1 in Γ. 2

We can now describe and justify the algorithm behind our computer-
based search for alternation trading refutations. The program runs in stages,
maintaining a set Γ of triples that satisfy 1 < R and cµε ≤ R. Initially,
Γ contains the single triple 〈1, c+ε−1, 1〉. The algorithm loops, repeatedly
generating new triples using operations of type (B) and (C). For each new τ ,
it does the following:

(i) If cµε > R, the program aborts and fails to give an answer.

(ii) If cµε ≤ R < 1, the program has found a contradiction, and the program
halts and reports there that an alternation trading refutation exists.
This implies that SAT is not in DTISP(nc, nε).

(iii) Otherwise the triple τ is added to Γ for the next iteration of the loop.

If the algorithm ever reaches a stage where no new triple is added to Γ, then
it halts and reports that there is no alternation trading refutation for these
values of c and ε.2

Figure 2 tabulates and graphs, for various values of ε, the maximum
value of c for which there exists an alternation trading proof (with five digits
of accuracy). In each case, the computer-based search was able to prove
there is no alternation trading proof for the next value of c.

2In actuality, our algorithm is implemented somewhat more efficiently than what was
described. The program keeps track of the convex polytope discussed around Lemma 36.
It also aggressively seeks for contradictions by first iteratively transforming the initial
triple 〈1, c+ε−1, 1〉 with the optimal choices of triples corresponding to the edges of the
convex polytope, before forming other triples. We developed these more sophisticated
search strategies in order to explore the behavior of (c, ε)-achievable triples (and before
discovering the concept of “dual-subsumption”). However, in the end, we conjecture that
these sophisticated search techniques are not substantially more effective than other,
more straightforward strategies.

49

ε c

0.001 1.80083
0.01 1.79092
0.1 1.69618
0.25 1.55242
0.5 1.34070
0.75 1.15765
0.9 1.06011
0.99 1.00583
0.999 1.00058

ε

c

1
0

1.8019

1

Figure 2: Showing the maximum value of c, as a function of ε, for which
alternation trading proofs suffice to show that SAT is not in DTISP(nc, nε).

The computer search for the values of c in Figure 2 was remarkably long
in most cases. Indeed, the program often needed to run for tens of levels, and
generate hundreds of triples. This is reported in Figure 3. For each value
of ε and c, the table reports the number of rounds that were needed for the
search, It also reports the total number of triples that were generated by the
search and which could not be pruned immediately (and thus were retained
for the next round of search). For instance, finding a refutation of ε = 0.5
and c = 1.3407 required 44 rounds of the search, generating 406 intermediate
triples. This means that the shortest refutation requires somewhere between
44 and 406 operations of type (B); this is a remarkably large number. Recall
that each operation of type (B) can only be approximated by alternation
trading derivations. Thus, the actual alternation trading refutations written
out as R0′ε-R2′ε steps will need to be much larger, well beyond the search
capabilities of the Maple-based searches of [14].

It is remarkable that the computer-based search always succeeded to
either find a refutation or prove that a refutation does not exist. We
conjecture that this is guaranteed to happen: namely, either a refutation
can be found by exhaustive search, or subsumption and dual-subsumption
pruning will eventually establish that no refutation exists. However, our only
evidence for the conjecture is the success of the computer-based searches in
every case that we have tried.

It would be desirable to find a normal form for alternation trading proofs
in the DTISP setting. However, even after looking carefully at the kinds of
refutations generation by the computer searches, we have been unable to find
a reasonable conjecture of a pattern that would allow direct (non-exhaustive)

50

Number of Number of Has
ε c Rounds Triples Refutation

0.001
1.80084 7 167 No
1.80083 11 455 Yes

0.01
1.79093 20 764 No
1.79092 11 278 Yes

0.1
1.69619 248 3633 No
1.69618 26 435 Yes

0.25
1.55243 249 2932 No
1.55242 33 297 Yes

0.5
1.34071 203 1533 No
1.34070 44 406 Yes

0.75
1.15766 155 1379 No
1.15765 27 167 Yes

0.9
1.06012 146 454 No
1.06011 19 88 Yes

0.99
1.00584 99 260 No
1.00583 7 20 Yes

0.999
1.00059 3 3 No
1.00058 24 10 Yes

Figure 3: Numbers of rounds and triples needed to find an alteration trading
refutation or establish that none exists. A full table of results can be found
online at
http://math.ucsd.edu/ sbuss/ResearchWeb/npProofLimits/timespacebdsDS3.xls.

51

search for refutations.

9 The limits of achievable DTISP constructions

This section establishes that refutations can do no better that what is pos-
sible using (c, ε)-achievable triples.3 Furthermore, the only (c, ε)-achievable
triples needed are those that are constructed using Lemmas 30-32.

Lemma 45 Let Ξ be a∃bDTISP(nd, ne), with b ≤ d. Let D be a derivation
that starts with the line Ξ and contains a non-empty (10)∗ pattern of
inferences. Then D is subsumed by the (c, ε)-achievable triple 〈1, c+ε−1, 1〉.

Proof We must show that the kind of refutation used in the proof of
Lemma 30 is optimal. That proof considered speedup inferences with x = b;
however, we now need to consider pairs of speedup-slowdown inferences with
arbitrary values of x:

Ξ ` a∃max{x,b}∀bDTISP(nd−x+e, ne)
` a∃max{x,b}DTISP(nmax{cx,cb,ce,c(d−x+e)}, n···). (55)

We wish to show that we can require x = b, at the expense of adding
weakening inferences. This is argued similarly as in the proof of Lemma 15.
First, if x < b, use a weakening inference to increase the value of d up to
d + b − x, and then change the speedup to use x = b. Second, if x > b,
use a weakening to increase the value of b to x before applying the speedup
inference. In both cases, we get a new derivation with the same final line.

We can now assume x = b. Since d ≥ x = b ≥ e, the derivation (55)
becomes

Ξ ` a∃b∀bDTISP(nd−b+e, ne)
` a∃bDTISP(nmax{cb,c(d−b+e)}, nmax{εb,ε(d−b+e)})
= a∃bDTISP(nd′ , ne′).

The derivation D can thus be assumed to consist of the following opera-
tions: (a) weakenings that increase d, (b) weakenings that increase b, and
(c) speedup/slowdown pairs of the type just displayed. There will be at least
one operation of type (c), and it has the effect of setting d′ and e′ so that

d′ + e′ = max{(c + ε)b, (c + ε)((d + e) − b)}.
3Section 9 can be read independently of Section 8, with the sole exception of needing

the definitions of operations (A)-(E) as given in Section 8.

52

(Refer to the proof of Lemma 30.) The same reasoning as used in Lemma 15
now shows that the derivation D is subsumed by 〈1, c+ε−1, 1〉.

Next we prove the central tool needed for showing derivations are
subsumed by (c, ε)-achievable triples. This is a direct generalization of
Lemma 17.

Lemma 46 Suppose that A and B are balanced 0/1-annotations, and that
a derivation D has the inference pattern 1A0B, and the first line Ξ of D
has the form · · · a∃bDTISP(nd, ne) with e ≤ b ≤ d. Further suppose the
subderivation corresponding to A is weakly subsumed by 〈µ2, ν2, `2〉, and the
subderivation corresponding to B is non-empty and subsumed (respectively,
weakly subsumed) by 〈µ1, ν1, `1〉. Then the entire derivation D is subsumed
(respectively, weakly subsumed) by a triple 〈µ, ν, `〉 such that either

〈µ1, ν1, `1〉 : 〈µ2, ν2, `2〉 7→max 〈µ, ν, `〉, (56)

or
〈1, 1, 1〉 : 〈µ2, ν2, `2〉 7→ 〈µ, ν, `〉. (57)

If B is empty, then the derivation D is weakly subsumed by the 〈µ, ν, `〉 given
by (57).

The triple defined by (57) is equal to

〈µ, ν, `〉 := 〈cµ2,
c(c + ε)ν2

(c + ε) + cν2
, `2 + 1〉.

Proof The derivation D has first line Ξ as above and its last line has the
form · · · a∃x′

DTISP(nu′
, nv′

). We henceforth suppress mention of the “· · ·”
prefix as it remains the same throughout the balanced derivation.

The first inference of D is a speedup,

a∃bDTISP(nd, ne) ` a∃max{x,b}∀bDTISP(nd−x+e, ne).

We claim that w.l.o.g. x ≥ b. Otherwise, arguing as before, we can insert
a weakening inference to increase the value of d to d + b − x and then do a
speedup with x = b to derive the same result. We thus henceforth assume
x ≥ b.

53

The 1A0 part of D consists of a speedup, then a subderivation weakly
subsumed by 〈µ2, ν2, `2〉, then a slowdown:

a∃bDTISP(nd, ne) ` a∃x∀bDTISP(nd−x+e, ne) - by speedup
...

... (weakly subsumed by 〈µ2, ν2, `2〉)
` a∃x∀yDTISP(nz, nw)
` a∃xDTISP(nu, nv) - by slowdown (58)

where u = max{cx, cy, cz} and v = max{εx, εy, εz}, and, by the weak
subsumption

z ≥ max{cµ2b,
c

c + ε
ν2(d − x + (`2 + 1)e)}. (59)

Suppose the B part of D is empty, so (58) is the last line of D. We have

u ≥ cz ≥ c(cµ2)b

and
u ≥ max{cx, c

c

c + ε
ν2(d − x + (`2 + 1)e)}.

The right hand side of the latter inequality is minimized when

x =
cν2(d + (`2 + 1)e)

(c + ε) + cν2
;

hence,

u ≥ c

c + ε
· c(c + ε)ν2

(c + ε) + cν2
(d + (`2 + 1)e).

It follows that the derivation D is weakly subsumed by 〈µ, ν, `〉 as defined
by (57).

Now assume B is non-empty. Referring back to (59), we claim that,
w.l.o.g., cµ2b ≤ c

c+εν2(d − x + (`2 + 1)e). If this does not hold, then we can
increase the value of d to

d′ = (x − (`2 + 1)e) + (c + ε)
µ2

ν2
b;

that is to say, we replace the 1A0 part of D with

Ξ w a∃bDTISP(nd′ , ne) - weakening

` a∃x∀bDTISP(nd′−x+e, ne) - by speedup
= a∃x∀bDTISP(n(c+ε)(µ2/ν2)b−(`2+1)e+e, ne)
° a∃x∀µ2bDTISP(ncµ2b, nεµ2b) - by a 〈µ2, ν2, `2〉 step
= a∃x∀yDTISP(nz, nw) - where y = µ2b and z = cµ2b.
` a∃xDTISP(nu, nv) - by slowdown

54

In particular, z still satisfies the inequality (59), which is the crucial property
needed for the 1A0 portion of D. We therefore may assume that

b ≤ x ≤ (d + (`2 + 1)e) − (c + ε)
µ2

ν2
b, (60)

and so
(c + ε)

µ2

ν2
b ≤ d − x + (`2 + 1)e. (61)

The B part of the derivation D derives

a∃xDTISP(nu, nv) ` a∃x′
DTISP(nu′

, nv′
).

Since this is weakly subsumed by 〈µ1, ν1, `1〉,

u′ ≥ max{cµ1x,
c

c + ε
ν1(u + `1v)}

= max{cµ1x,
c

c + ε
ν1

c + `1ε

c
u}

≥ max{cµ1x,
c2(c + `1ε)
(c + ε)2

ν1ν2(d − x + (`2 + 1)e)}. (62)

The last inequality follows from u ≥ cz and (59). If B is also (non-weakly)
subsumed by the triple, then the same reasoning shows

x′ ≥ max{µ1x,
c(c + `1ε)
(c + ε)2

ν1ν2(d − x + (`2 + 1)e)}.

Referring to (62), we claim that, w.l.o.g., either

(i) x = b and cµ1x ≥ c2(c+`1ε)
(c+ε)2

ν1ν2(d − x + (`2 + 1)e), or

(ii) x ≥ b and cµ1x ≤ c2(c+`1ε)
(c+ε)2

ν1ν2(d − x + (`2 + 1)e).

Arguing as before, if neither (i) nor (ii) holds, we decrease the value of x in
the derivation D until one of them holds.

Suppose case (i) holds. This, followed by a use of (60), gives
(
µ1 +

c(c + `1ε)
(c + ε)2

ν1ν2

)
b ≥ c(c + `1ε)

(c + ε)2
ν1ν2(d + (`2 + 1)e) (63)

≥ c(c + `1ε)
(c + ε)2

(
(c + ε)ν1µ2 + ν1ν2

)
b.

Hence
µ1 ≥ c(c + `1ε)

c + ε
ν1µ2.

55

We have u′ ≥ cµ1b by x ≥ b and (62). Combining this with (63) gives

u′ ≥ c

c + ε
· c(c + ε)(c + `1ε)µ1ν1ν2

(c + ε)2µ1 + c(c + `1ε)ν1ν2
(d + (`2 + 1)e).

The last two displayed inequalities suffice to prove that D is weakly subsumed
by the triple 〈µ, ν, `〉 defined by (56). If B is (non-weakly) subsumed by
〈µ2, ν2, `2〉, then similar calculations lower bounding x′ show that D is
likewise (non-weakly) subsumed by the triple 〈µ, ν, `〉. We leave those
details to the reader.

Finally, suppose case (ii) holds. Then we have
(
µ1 +

c(c + `1ε)
(c + ε)2

ν1ν2

)
x ≤ c(c + `1ε)

(c + ε)2
ν1ν2(d + (`2 + 1)e),

whence

d − x + (`2 + 1)e ≥ (c + ε)2µ1

(c + ε)2µ1 + c(c + `1ε)ν1ν2
(d + (`2 + 1)e). (64)

As before, u′ ≥ cµ1b. In addition, using the inequality (62) with (61), we
have

u′ ≥ c
(c(c + `1ε)

c + ε
ν1µ2

)
b.

Further, again using (62), now with (64), yields

u′ ≥ c

c + ε
· c(c + ε)(c + `1ε)µ1ν1ν2

(c + ε)2µ1 + c(c + `1ε)ν1ν2
· (d + (`2 + 1)e.

These three lower bounds on u′ suffice to prove that D is weakly subsumed
by the triple 〈µ, ν, `〉 as defined by (56). Similar calculations of lower bounds
on x′ show that if B is (non-weakly) subsumed by 〈µ1, ν1, `1〉, then D is
(non-weakly) subsumed by the triple 〈µ, ν, `〉.

That completes the proof of Lemma 46. 2

Lemma 46 lets us give a full characterization of when DTISP refutations
exist, in terms of ABCD triples.

Theorem 47 Any balanced, non-empty derivation D starting with a line
with at least one quantifier is weakly subsumed by some ABCD triple.

The proof of Theorem 47 is entirely analogous to the proof of Theorem 18;
we leave the details to the reader. Likewise, the next theorems are proved
entirely analogously to Lemmas 20 and 21 and Corollary 22. (Note, however,
that we are not able to prove any useful analogue of Lemma 23 for DTISP
refutations.)

56

Theorem 48 Fix c and ε. There is a refutation if and only if there is a
ABCD-triple 〈µ, ν, `〉 with cµε < 1 and ρ(µ, ν, `) < 1.

Theorem 49 Fix c and ε. There is a refutation if and only if there is a
ABE-triple 〈µ, ν, `〉 with cµε < 1 and ρ(µ, ν, `) < 1.

It is left to the reader to verify the details of the proofs.

References

[1] S. Diehl and D. van Melkebeek, Time-space lower bounds for the
polynomial-time hierarchy on randomized machines, SIAM Journal on
Computing, 36 (2006), pp. 563–594.

[2] L. Fortnow, Nondeterministic polynomial time versus nondetermin-
istic logarithmic space: Time-space tradeoffs for satisfiability, in Proc.
IEEE Conference on Computational Complexity (CCC), 1997, pp. 52–
60.

[3] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas,
Time-space lower bounds for satisfiability, J. Association for Computing
Machinery, 52 (2005), pp. 835–865.

[4] L. Fortnow and D. van Melkebeek, Time-space tradeoffs for non-
deterministic computation, in Proc. IEEE Conference on Computational
Complexity (CCC), 2000, pp. 2–13.

[5] R. Kannan, Towards separating nondeterminism from determinism,
Mathematical Systems Theory, 17 (1984), pp. 29–45.

[6] R. Lipton and A. Viglas, On the complexity of SAT, in Proc. 40th
Annual IEEE Symposium on Foundations of Computer Science (FOCS),
1999, pp. 459–464.

[7] V. A. Nepomnjaščĭı, Rudimentary predicates and Turing computa-
tions, Dokl. Akad. Nauk SSSR, 195 (1970), pp. 282–284. English
translation in Soviet Math. Dokl. 11 (1970) 1462–1465.

[8] I. Tourlakis, Time-space tradeoffs for SAT and related problems,
Journal of Computer and System Sciences, 63 (2001), pp. 268–287.

[9] D. van Melkebeek, Time-Space Lower Bounds for NP-Complete
Problems, World Scientific, 2004, pp. 265–291.

57

[10] , A survey of lower bounds for satisfiability and related problems,
Foundations and Trends in Theoretical Computer Science, 2 (2007),
pp. 197–303.

[11] D. van Melkebeek and R. Raz, A time lower bound for satisfiability,
Theoretical Computer Science, 348 (2005), pp. 311–320.

[12] R. Williams, Inductive time-space lower bounds for SAT and related
problems, Computational Complexity, 15 (2006), pp. 433–470.

[13] , Time-space tradeoffs for counting NP solutions modulo integers,
Computational Complexity, 17 (2008), pp. 179–219.

[14] , Alternation-trading proofs, linear programming, and lower
bounds. Typeset manuscript. An extended abstract appeared in Proc.
27th Intl. Symp. on Theory of Computings (STACS 2010), DOI:
10.4230/LIPIcs.STACS.2010.2494, available from http://stacs-conf.org,
2009.

58

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

