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Abstract

In recent results the complexity of isomorphism testing on graphs of bounded treewidth
is improved to TC1 [GV06] and further to LogCFL [DTW10]. The computation of canon-
ical forms or a canonical labeling provides more information than isomorphism testing.
Whether canonization is in NC or even TC1 was stated as an open question in [Köb06].
Köbler and Verbitsky [KV08] give a TC2 canonical labeling algorithm. We show that a
canonical labeling can be computed in AC1. This is based on several ideas, e.g. that ap-
proximate tree decompositions of logarithmic depth can be obtained in logspace [EJT10a],
and techniques of Lindells tree canonization algorithm [Lin92]. We define recursively what
we call a minimal description which gives with respect to some parameters in a logarith-
mic number of levels a canonical invariant together with an arrangement of all vertices.
From this we compute a canonical labeling.

1 Introduction

The graph isomorphism problem (GI) consists in deciding whether two given graphs are iso-
morphic, i.e. whether there is a permutation of all vertices that keeps the edge relation
unchanged. GI is a well-studied problem in theoretical computer science because of its many
applications and also, because it is one of the few natural problems in this class not known
to be solvable in polynomial time, nor known to be NP-complete.

By studying GI, graph canonization receives a great attention because of its strong con-
nection to GI. Thereby, it provides more information than isomorphism testing. Let G be a
class of graphs. A complete invariant is a function f : G → {0, 1}∗ where f(G) = f(H) if and
only if both graphs G,H ∈ G are isomorphic. With this function f , the isomorphism classes
can be distinguished. A canonical form is a function f : G → G where f(G) is a representative
of the (equivalence) class of isomorphic graphs to G in G. For example, if f(G) is defined to
be the lexicographically least graph in G isomorphic to G, then the computation of f is in
general NP-hard (c.f. [BL83, Luk93]). Clearly, graph isomorphism or the computation of a
complete invariant is polynomial time reducible to graph canonization, the reverse direction
is open. A canonical labeling assigns to each graph G in G a map σ that is an automorphism
from G to the representative Gσ of the class of isomorphic graphs to G in G. Note, that
function f with f(G) = Gσ is a canonical form. Thus, canonical labeling is the strongest
among the above defined notions.
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Robertson and Seymour [RS86] introduced the concept of bounded treewidth graphs,
also known as partial k-trees. Intuitively speaking, the treewidth of a graph measures how
much it differs from a tree. This concept has been used very successfully in algorithmics
and fixed-parameter tractability, see for example [Bod98, BK08]. Thereby, many problems
that are NP-hard in general become efficiently solvable when restricted to graphs of bounded
treewidth. Bodlaender showed in [Bod90] that GI can be solved in polynomial time when
restricted to this class of graphs. Grohe and Verbitsky [GV06] give a TC1 upper bound,
they use the Weisfeiler-Lehman algorithm that can be implemented as a logspace uniform
family of TC1-circuits. This bound was improved recently to LogCFL in [DTW10]. Recall the
relationships among some of the complexity classes which are used in this section:
L ⊆ LogCFL ⊆ AC1 ⊆ TC1 ⊆ TC2 ⊆ NC. We refer to Section 2 for more details.

For the canonization problems the situation is different. Köbler [Köb06] states an open
problem, namely whether graphs of bounded treewidth admit an NC or even TC1 canonization.
Köbler and Verbitsky [KV08] give an NC (in fact TC2) canonical labeling algorithm. They
prove a theorem showing that, for some special classes of graphs from a complete invariant
that is computable in TCk, a canonical labeling is computable in TCk+1. With this theorem
and with the fact that for bounded treewidth graphs a complete invariant can be computed
in TC1 [GV06], the result follows.

For subclasses of bounded treewidth graphs, i.e. for trees [Lin92] and partial 2-trees
[ADK08] logspace algorithms are known for the canonization problems. Completeness for
logspace is shown in [JKMT03]. Also for planar graphs [DLN+09] and the more general
classes of K3,3-minor free and of K5-minor free graphs [DNTW09], the canonization problem
is in logspace. For full k-trees the isomorphism problem is in logspace [KK09].

Das, Torán, and Wagner [DTW10] give an isomorphism algorithm that runs in LogCFL.
The algorithm uses the fact that an arbitrary tree decomposition for one of the input graphs G
can be computed in LogCFL [Wan94] and by a recent result in L [EJT10a]. They set up the
tree decomposition for the other graph H in parallel to the isomorphism test. For a graph
there could be an exponential number of tree decompositions. That is one reason, why their
algorithm cannot be generalized to a canonization algorithm.

The logspace-version of Courcelle’s Theorem in [EJT10a] puts many problems on
bounded treewidth graphs which can be formulated in monadic second-order logic in L,
e.g. 3-colorability , Hamiltonicity, or reachability problems. But it is not known how to for-
mulate isomorphism testing or canonization problems in this logic.

The research on the difficulty of computing tree decompositions of width at most k has a
long history, there is a linear time bound of Bodlaender’s Theorem [Bod96] improving previous
results [ACP87, Ree92]. Also the parallel time complexity has been reduced to O(log n) in a
line of papers [CH88, Bod89, Lag90, BH98]. The space complexity has been reduced to LogCFL
in [Wan94] and recently to L by Elberfeld, Jakoby, and Tantau [EJT10a], where a logspace-
version of Bodlaender’s Theorem is shown: a tree decomposition for graphs of treewidth at
most k can be computed in logspace. The following lemmas are important, to guarantee the
treewidth bound of the input graph and a logarithmic depth bound.

Lemma 1.1 ([EJT10a]) For every k ≥ 1 the language Tree-Width-k, which contains exactly
the graphs of treewidth at most k, is L-complete under first-order reductions.

Lemma 1.2 ([EJT10a]) Let G be a graph with n vertices and treewidth at most k. There
is a tree decomposition that has width 4k+3 and depth at most c log2 n, where c is a constant
depending only on k.
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The idea is, that for a split component of size m a child bag is defined in such a way that
the split components of this child bag have size at most m/2+ c with c a constant. This tree
decomposition is called approximate.

Our contribution. The existence of a tree decomposition of logarithmic depth is the basis
for our algorithm, to compute a canonical labeling in AC1. The following observations are the
key ingredients to guarantee this tight depth bound.

• Each bag is a separator, i.e. for each split component we have to find a child bag. Two
child bags are connected via their parent bag only. Hence, the canonization process can
be done for each child individually and in parallel.

• Many tasks are computed in preprocessing steps, e.g. whether the graph has treewidth k,
all possible bags of size 4k + 3, for each bag its possible children and the parent (with
respect to a fixed root), or the split components for each possible bag and their size.

• The total number of possible bags of size 4k + 3 in arbitrary tree decompositions is
bounded by n4k+3, where n is the size of the input graph. For each bag we define locally
a circuit with unbounded fan-in gates. The total size of the circuit is also polynomial.

• We compute for each possible bag what we call a minimal description. It depends on
some parameters, it consists of a unique description of the bag itself and a minimal
description for the children, it is defined recursively.

• We limit the number of recursion levels of the minimal description to O(logn). Here
we use Lemma 1.2, namely the existence of tree decompositions of logarithmic depth.

• A circuit of constant depth selects locally valid child bags to get the smallest minimal
description. The difficult task is here sorting minimal descriptions. For this we use
ideas from Lindells tree canonization algorithm [Lin92]. Instead of a logarithmic space
bound we have here logarithmic depth circuits.

• The length of the minimal description for a balanced subtree depends on its depth only.
In the minimal description, a bag is described by its adjacency matrix in at most (4k+3)2

bits, if necessary we fill up to this total length repeating an extra symbol. We use the
fact that a tree can be made balanced and also binary where its depth increases just by
a constant factor (c.f. [EJT10a]).

The minimal description depends on the selection of the root bag, too. We run through
all bags as roots and some further parameters in parallel. The minimal description so far is
a canonical invariant for the input graph G.

A canonizing function is obtained then as follows. While computing the minimal descrip-
tion we bring the vertices in a unique order. Then we use a simple logspace-computable
procedure (see e.g. [DLN08]) where vertices are renamed according to this order. This re-
naming is a canonical labeling. We get the main Theorem.

Theorem 1.3 For every k, there is an AC1-computable function that computes a canonical
labeling for graphs of treewidth at most k.
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2 Preliminaries

We use the notion interval [p, q] for the set {p, p + 1, . . . , q}. The symmetric group Sym(V )
is the set of all permutations of the elements in V .

A word or string is a tuple of symbols of an alphabet Σ. For example, we use in some
places Σ = {0, 1, 2}. The concatenation of two words W = w1w2 . . . wk,W

′ = w′
1w

′
2 . . . w

′
k is

denoted WW ′ = w1w2 . . . wkw
′
1w

′
2 . . . w

′
k.

Graphs. A graph G is a pair (V,E) with a set of vertices V (or V (G)) and edges E ⊆ V ×V
(or E(G)). If not stated otherwise, we consider simple graphs, i.e. without loops, directed
edges or multi-edges. G[X] is a subgraph of G induced on vertex set X, i.e. G[X] has
vertices X and edges E(G[X]) = (X × X) ∩ E(G). Let X ⊆ V then we write in short
G \X = G[V (G) \X]. Let H be a subgraph of G, then G \H = G[V (G) \ V (H)].

A graph G is connected if there is a path between every pair of vertices in G. Let U ⊆ V
be a set of vertices. Let C be a connected component in G \ U and let U ′ be those vertices
from U connected to V (C) in G. The induced subgraph of G on the set of vertices V (C)∪U ′

is a split component of U in G. We call U ′ the minimal separating set of C in U .
A tree is a connected graph that is free of cycles. Vertices in trees are also called nodes.

A root of a tree is one designated node. A neighbor of a node is called parent if it is closer
to the root and it is called child otherwise. A leaf of a tree has no children. In a binary
tree, every node has at most two children. A binary tree with root is balanced, if for every
node the number of nodes in its left and right subtrees differs by at most one. A binary tree
is perfect, if it is balanced and every leaf is at the same depth. The depth of a tree is the
longest distance from the root to a leaf. Let T and T ′ be trees rooted at r and r′ and consider
edges to be directed from roots to leafs. An embedding of T into T ′ is an injective mapping
ι : V (T ) → V (T ′) where ι(r) = r′ and for every pair (a, b) ∈ V (T ) there is a directed path
from a to b iff there is a directed path from ι(a) to ι(b).

An isomorphism is a mapping φ of the vertices of one graph G onto the vertices
of another graph H (we also write G ∼= H) that preserves the edge relations, i.e.
{u, v} ∈ E(G) ⇔ {φ(u), φ(v)} ∈ E(H). Let G be a class of graphs. A complete invariant
is a function f : G → {0, 1}∗ where f(G) = f(H) iff G ∼= H. A canonical form is a complete
invariant with f : G → G where f(G) ∼= G, we call f(G) canon of G. A canonical labeling
is a function f : G → Sym(V (G)) which assigns to a graph G an automorphism σ onto the
canon, i.e. the function g with g(G) = Gσ is a canonical form.

A tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )), where
{Xi | i ∈ I} is a collection of subsets of V called bags, and T is a tree with node set I and
edge set F , satisfying the following properties:
i)

⋃

i∈I Xi = V

ii) for each {u, v} ∈ E, there is an i ∈ I with u, v ∈ Xi and

iii) for each v ∈ V , the set of nodes {i | v ∈ Xi} forms a subtree of T .
The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) of G is max{|Xi| | i ∈ I} − 1.

The treewidth of a graph G is the minimum width over all possible tree decompositions of G.
An example is shown in Figure 1.
Complexity. A circuit Cn is a finite directed acyclic graph with vertices associated to n
input variables or gates (e.g. Boolean functions from a given base). For an assignment of the
variables we associate a Boolean value to every gate in the circuit. The value of an input is
the one given by the assignment to the corresponding variable. For an internal gate, the value
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Figure 1: (a) A graph G where dashed lines indicate bags Xr, X1, . . . , X4.
(b) The set of bags form a tree decomposition T of G. Let r be the root.
(c) The split components G1 and G2 of Xr are shown. The sets {u, v}, {v, w} ⊆ Xr are the
minimal separating sets for G1 and G2, respectively.

is the one computed by the corresponding function, from the values of the gate inputs. The
circuit computes a function f(x1, . . . , xn). This is the value of the designated output gate.
The indegree of the vertices is called fanin. A circuit family {C1, C2, . . . } is a collection of
circuits where Cn has n inputs. We consider here DLOGTIME-uniform circuit families, i.e.
a deterministic Turing machine on input of 1n, integer i, and bit b, with O(logn) time bound
accepts iff the i-th bit of the description of Cn is b.

We give an overview of the complexity classes mentioned in this work.
L (also denoted logspace) is the class of decision problems computable by deterministic

logarithmic space Turing machines. LogCFL consists of all decision problems that can be
Turing reduced in logspace to a context free language. Problems in LogCFL can be computed
also by uniform families of polynomial size and logarithmic depth circuits over bounded fan-in
and -gates and unbounded fan-in or -gates.

The class NCi contains the problems computable by uniform families of polynomial size
and O(logi n) depth circuits over bounded fan-in and -gates and bounded fan-in or -gates.
Note, that NC =

⋃

iNC
i. ACi is defined as NCi but with unbounded fan-in gates. The class

TCi contains the problems computable by uniform families of polynomial size and O(logi n)
depth circuits with threshold gates, i.e. gates that evaluate to 1 if at least half of their inputs
are 1. The known relationships among these classes are:

AC0 ⊂ TC0 ⊆ NC1 ⊆ L ⊆ LogCFL ⊆ AC1 ⊆ TC1 ⊆ NC2 ⊆ AC2 ⊆ TC2 ⊆ · · · ⊆ NC ⊆ P ⊆ NP.

3 Canonization of Graphs of Bounded Treewidth.

To prove Theorem 1.3, we construct a circuit where we have some preprocessing steps, e.g.
for the split components of bags and their size. Then in O(logn) steps, we compute for each
bag X what we call a good minimal description, i.e. a unique tree decomposition that depends
on some parameters. After the first level, we have good minimal descriptions for single bags,
after the second level for bags which have leaf bags as children, and so on. After O(logn)
levels, we have good minimal descriptions for tree decompositions of logarithmic depth, and
by Lemma 1.2 a tree decomposition for the whole graph, if it exists. At each level, we select
the smallest good minimal description. Once we find a good minimal description at some
level i, then this remains unchanged in all levels ≥ i. First, we describe some tools and then
the construction of the minimal description.
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3.1 Pre-ordering for Canonization and Valid Child Bags.

Canonical Representation of Bags. Comparing adjacency matrices lexicographically is
a natural way to test isomorphism. In general, this is an NP-complete problem, but when
comparing bags this can be done with constant effort. We define adj(G[X], σ) to be the
adjacency matrix of the induced subgraph where the vertices ofX are arranged in a fixed order
given by σ ∈ Sym(X). We compare adjacency matrices bitwise line by line. For example, in

Figure 1 we have adj (G[Xr], (
u v w
u v w)) =





0 0 1
0 0 0
1 0 0



 and adj (G[Xr], (
u v w
u w v)) =





0 1 0
1 0 0
0 0 0



.

Child bags and their order. In the following two definitions we bring together the log-
arithmic depth bound of Lemma 1.2 and what we need for canonization. First, we define
an order on split components that is just partially canonical, but which is the basis for our
canonization algorithm. Second, we define what we call valid child bags, we use them to
construct approximate tree decompositions. Note, although we consider graphs of treewidth
at most k, we get approximate tree decompositions that allow bags of size at most 4k + 3.

Definition 3.1 Let G be a graph of treewidth at most k and X a bag of size ≤ 4k + 3. Let
G1, . . . , Gm be its split components. Let σ ∈ Sym(X) be an ordering on the vertices in X.
Let S1, . . . , Sl ⊆ X be a complete list of minimal separating sets of G1, . . . , Gm in X.
We define an order on G1, . . . , Gm with respect to σ using two criteria lexicographically:

1. primarily according to σ, which induces a lexicographical order on S1, . . . , Sl, and

2. among them which are equal, we reorder them according to the sizes of their associated
split components.

Note, l is a constant, because l ≤ m and in an approximate tree decomposition l ≤ |P(X)|
(i.e. l ≤ (4k + 3)! ≤ 2(4k+3) log(4k+3)), that is the number of all possible subsets of X.

The primary order of split components is deduced from σ. We give an example: let σ =
(

1 2 3 4
2 3 1 4

)

and S1 = {1, 2, 4} and S2 = {3, 4}. When sorted according to σ (i.e. 2 < 3 < 1 < 4),
then we have (2, 1, 4) < (3, 4) lexicographically and therefore S1 comes before S2. The second
criterion brings together split components of equal size, this is useful for canonization and
also for the complexity analysis, also see the tree canonization algorithm of Lindell [Lin92].

There are split components which are equal according to Definition 3.1. To get a default
order, they can be sorted according to the label of the minimal vertex in the split components
except X. To rearrange them is part of the canonization algorithm.

Definition 3.2 Consider G, X, G1, . . . , Gm being sorted and σ as in Definition 3.1. Let
1 ≤ p ≤ q ≤ m, we consider now Gp, . . . , Gq. Let S1, . . . , Sl′ be all the minimal separating
sets of Gp, . . . , Gq. We define three types of valid child bags of X with respect to split
components Gp, . . . , Gq as follows:

(a) Take minimal separating sets of bags: If l′ > 1 and Sj is the minimal separating set for
Gp then the set Sj is a valid child bag.

(b) Take a subset of X and add vertices from Gi: If l′ = 1 then for Vi ⊆ X ∪ V (Gi) with
i ∈ {p, . . . , q} with |X ∪ Vi| ≤ 4k + 3 and ∅ ⊂ (X ∩ Vi) ⊂ X, then the set Vi is a valid
child bag.

(c) The set X is a valid child bag.
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3.2 Minimal Description for Graphs of Bounded Treewidth.

We define a minimal description for graphs. This is based on approximate tree decompositions
which are balanced and depth bounded. The minimal description is computed with respect
to some parameters.

By Lemma 1.2 we know that there exist tree decompositions of logarithmic depth, we
show that we can guarantee this depth restriction, we use a so called depth parameter. We
consider perfect trees only.

There is a task where split components are partitioned into classes, e.g. if they have the
same size. By Definition 3.1 split components are ordered and hence, split components in
a class can be addressed by an interval, e.g. [p, q] for Gp, . . . , Gq. Another parameter is a
permutation σ, it describes a unique order of the vertices in the current root bag X.

We consider first some cases concerning the depth parameter. That is, when the total
depth is exceeded and we return no-canon, or when a minimal description is already computed
in the previous step and we just take this.
In the good case the minimal description is a word C0C

′
0C1C2 ∈ {0, 1, 2}∗.

Here, C0 and C ′
0 contain information of the root, C1 and C2 contain the minimal descrip-

tion of the children. To specify which of two minimal descriptions is the smaller one, we
define an order ≺ on them.

Definition 3.3 We define an order ≺ on minimal descriptions C = C0C
′
0C1C2 and

D = D0D
′
0D1D2. We define C ≺ D if

• C0 < D0 where we compare adjacency matrices line by line and bit by bit, or

• C0 = D0 but C ′
0 < D′

0 where we compare not vertex labels according to σ but their
positions in the parent of X (example: for C ′

0 = (b, c, d, e) and the ordered vertices of
Parent(X) = (a, b, c, d) we have C ′

0 = (2, 3, 4)), or

• C0 = D0 and C ′
0 = D′

0 but C1 ≺ D1, recursively, or

• C0 = D0 and C ′
0 = D′

0 and C1 = D1 but C2 ≺ D2, recursively.

The construction. Let G be a graph of size n, treewidth at most k, a root bag X of
size ≤ 4k + 3, a permutation σ ∈ Sym(X), an interval [p, q] (with 1 ≤ p ≤ q ≤ m and
G1, . . . , Gm the split components in G \ X arranged according to Definition 3.1) and depth
parameter d ∈ Z. Aminimal description C(G,X, σ, (p, q), d) is no-canon or a word in {0, 1, 2}∗

defined as follows.
If d < 0 then C(G,X, σ, (p, q), d) = no-canon, this tree decomposition exceeds the maxi-

mum depth. We call a minimal description good if it is different to no-canon.
If d > 0 and C(G,X, σ, (p, q), d − 1) 6= no-canon then we just copy it from the previous

level, that is C(G,X, σ, (p, q), d) = C(G,X, σ, (p, q), d− 1).
If d = 0 or d > 0 and C(G,X, σ, (p, q), d − 1) = no-canon then C(G,X, σ, (p, q), d) =

C0C
′
0C1C2 or no-canon defined as follows:

(1) C0 encodes the adjacency matrix of the root bag X.

C0 = adj(G[X], σ){2}(4k+3)2−|X|2 ,

the adjacency matrix of the root, filled up with symbol 2, an extra symbol to get the
total length (4k + 3)2.
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(2) C ′
0 encodes the vertices of X ordered by σ. This part is important for canonization,

when bringing all vertices in a unique order.

C ′
0 = v1 . . . vi{2}

⌈log(n)⌉·((4k+3)−i)

with i = |X|. The vertices are ordered according to σ, (i.e. σ(vj) = j for all vj ∈ X).
We assume, that the description of every vertex has a fixed length of exactly ⌈log n⌉
bits.

(3) Definition of C1 and C2 in further subcases. We only consider the split components with
their index inside the interval [p, q], these are (q − p+ 1) many. Let S1, . . . , Sl ⊆ X be
all the minimal separating sets (in lexicographical increasing order according to σ)
for split components Gp, . . . , Gq which are ordered according to Definition 3.1. We
partition the split components corresponding to the members in S1: let Θ1, . . . ,Θt be
the classes where the corresponding split components have equal size. These size classes
are arranged in increasing order of the sizes of the corresponding split components. To
define C1 and C2, we consider the following cases.

(i) p < q and l > 1. That is, we have many such minimal split components, we
separate them from the others and recursively canonize them in C1 and the others
in C2. For both, X is the child according to type (c) in Definition 3.2.

Let Gp, . . . , Gq1 be the set of split components separated by S1. Let ψ be obtained
from σ after removing the vertices from X \ S1, we define

C1 = C(G,X, σ, (p, q1), d− 1) = C(G′, S1, ψ, (1, q1 − p+ 1), d− 1).

where G′ = G[V (Gp)∪ · · · ∪V (Gq1)]. Note, since the split components are ordered
according to Definition 3.1, we just take a subinterval [p, q1] of [p, q]. If l > 2 then

C2 = C(G,X, σ, (q1 + 1, q), d− 1).

If l = 2 then we define ψ′ accordingly as ψ before with respect to S2,

C2 = C(G,X, σ, (q1 + 1, q), d− 1) = C(G′, S2, ψ
′, (1, q − q1), d− 1)

where G′ = G[V (Gq1+1) ∪ · · · ∪ V (Gq)].

(ii) p < q and l = 1 and t > 1. That is, we have a single minimum separating set S1
but many size classes. We try to find how to partition the size classes which result
in the smallest minimal description, i.e. such that we have two sets Θ1, . . . ,Θi and
Θi+1, . . . ,Θt.

For each i ∈ {1, . . . , t − 1} let Gp, . . . , Gqi be the set of split components of size
classes Θ1, . . . ,Θi. We define

C1,i = C(G,X, σ, (p, qi), d− 1) and C2,i = C(G,X, σ, (qi + 1, q), d− 1).

Let (Cmin, C
′
min) be the lexicographically smallest pair according to ≺ in the set

{(C1,i, C2,i), (C2,i, C1,i) | 1 ≤ i ≤ t− 1}. We define C1 = Cmin and C2 = C ′
min.

8



(iii) p < q and l = 1 and t = 1. That is, we have many children from one separating
set and one size class. We canonize all the children Gp, . . . , Gq individually and
sort their minimal descriptions in ascending order according to ≺. Then, we do the
same rearrangements with the split components Gp, . . . , Gq. In C1, we canonize the
first half of them and in C2 the second half. Note, the sorting of q− p+1 children
is expensive, hence we reduce the depth parameter logarithmically in the length of
this interval. X is the child in both cases according to type (c) in Definition 3.2.

Let a = ⌈logc(q − p + 1)⌉ where c = 3/2. For each i ∈ {p, . . . , q} we define
C ′
i = C(G,X, σ, (i, i), d−a). If one of the C ′

i = no-canon then C1 = no-canon. Re-
arrange C ′

p, . . . , C
′
q in lexicographical increasing order according to ≺. Rearrange

Gp, . . . , Gq according to the new order of C ′
p, . . . , C

′
q. Let i = ⌈(q − p)/2⌉. We

define

C1 = C(G,X, σ, (p, p+ i), d− 1) and C2 = C(G,X, σ, (p+ i+ 1, q), d− 1).

(iv) p = q. That is, we consider one single child. We consider all valid child bags of
type (b) in Definition 3.2. The one which gives the smallest minimal description
is selected for C1, whereas C2 is filled up with default symbols.

For each set of vertices Vi ⊆ X ∪ Gp that is a valid child bag as in Definition 3.2
with Vi ∩Gp 6= ∅, and each permutation ψi,j ∈ Sym(Vi) which is obtained from σ
when removing the vertices in X \Vi and adding to the right the vertices in Vi \X
in an arbitrary order, we define

C1,(i,j) = C(Gp \ (X \ Vi), Vi, ψi,j , (1,m
′), d− 1)

and (i, j) ∈ I, where m′ is the number of split components in Gp \ (X ∪ Vi), i.e.
the subgraph Gp \ (X \ Vi) when removing Vi. We define C1 to be the minimum
of

⋃

(i,j)∈I C1,(i,j). C2 = {2}f(d−1) is a default description for a complete binary

subtree. We define f : d 7→ (|C0|+ |C ′
0|) · (2

d − 1), i.e.

f(d− 1) =
[

(4k + 3)2 + ⌈logn⌉ · (4k + 3)
]

· (2(d−1) − 1).

(v) m = 0. That is, X is not a separating set in G, i.e. a leaf node in a tree
decomposition. If no valid child bag exists, then we define C1 = C2 = {2}f(d−1)

with f as in case (iv). That is, both have a default description. Then, a good
minimal description is returned.

In general, there is one exception, namely if one of C1 or C2 returns no-canon, then the
minimal description is no-canon.

If C2 ≺ C1, then swap them.
If C1 or C2 is no-canon then C(G,X, σ, (p, q), d) = no-canon.

The depth of the tree decomposition. We mention some points that have an influence
on the depth of the tree decomposition. Note, the construction for m > 2 uses some ideas
from the proof of a Theorem in a full version of [EJT10a], where a binary tree is computed
by introducing white nodes. The main difference is here, that the whole tree is not given
explicitly. Our construction prefers a balanced and binary tree-structure. The depth analysis
is inspired from the following more restricted version of Theorem 3.14 in [EJT10b].
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Lemma 3.4 (c.f. [EJT10b]) For every tree T with n vertices and height h, there is a binary
tree T ′ of height at most O(h+ log n) such that T can be embedded in T ′.

By Lemma 1.2 the depth of a tree decomposition that has width 4k+3 is at most c log2 n
for a constant c that depends on k only. Hence, when starting with d = c′ log2 n (for a
constant c′) we get a minimal description for C(G,X, σ, (1,m), d).

We observe, that our definition guarantees the O(logn) depth bound. After O(1) steps,
the size of the split components is divided at least by 2. In Case (i) we partition the subtrees
that belong to the smallest minimal separating set S1 of X. We can do this, since the number
of separating sets is a constant.
In Case (ii) we run through all possibilities to split the size classes Θ1, . . . ,Θt into two sets
Θ1, . . . ,Θi and Θi+1, . . . ,Θt. For example, in two steps we can isolate a size class Θi where
all the subtrees have together more than half the total size of the subgraph rooted at X: first,
split off those to the left and second, those to the right of Θi.
In Case (iii) we sort the split components and partition them such that in C1 at most one
more split component is canonized than in C2. This can only happen when there are more
than two split components considered currently. Therefore the size of C1 is at most 2/3 the
size of C0C

′
0C1C2 and this is the reason why c = 3/2 in a = ⌈logc q − p + 1⌉. Later in the

complexity analysis part (see Lemma 3.9) we will show that with an inductive argument, split
components of size n/i can be canonized by a sub-circuit of depth c log(n/i) = c logn− c log i,
with c a constant. Hence, to encounter case (iii) recursively is no problem.
In Case (iv) we have a single split component. Hence, we get the following.

Lemma 3.5 There is a constant c which depends on k only such that for all graphs G
of treewidth at most k, there is a root bag X with m split components in G \ X, permu-
tation σ ∈ Sym(X) and depth parameter d = c log2 n, such that the minimal description
C(G,X, σ, (1,m), d) is good.

The next is to show that the minimal description is unique up to isomorphism.

Lemma 3.6 For a graph G, a constant c, and two bags X,X ′ with permutations σ ∈ Sym(X)
and σ′ ∈ Sym(X ′), with m split components in G \ X (and G \ X ′), and depth parameters
d = d′ = c logn (for a constant c) it holds that C(G,X, σ, (1,m), d) = C(G,X ′, σ′, (1,m), d′)
if and only if there is an automorphism φ of G which maps X onto X ′ via σ(σ′)−1.

Proof: The definition of tree decompositions is based on the edge relation of the graph. An
automorphism moves the vertices while keeping the edge relations unchanged. Hence, if G has
a tree decomposition T with bags X1, . . . , Xn and φ is an automorphism then there is a tree
decomposition with bags φ(X1), . . . , φ(Xn). We partition the children according to a partial
isomorphism σ and the sizes of the subtrees into classes. We sort the minimal descriptions
of all children that fall into the same class, lexicographically. For finding a non-trivial child
bag, we run through all possible vertex sets of size at most 4k + 3 and all arrangements of
the new vertices. Hence, the case analysis does not exclude tree decompositions.

Now to the other direction. A bag is uniquely specified by its adjacency matrix and σ, i.e.
how the vertices are arranged. From a bag to its child bag Y , we update the permutation σ,
old vertices are removed and new vertices are added to the right to obtain ψ. Hence, we
get a unique minimal description also for G[X ∪ Y ]. Because we record the vertex labels,
we can recover the entire edge relation from this description. By an induction argument this
generalizes to the whole tree decomposition. �
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To obtain a canonical invariant for graphs of treewidth at most k, run through all sets of
at most 4k + 3 vertices as initial root bag X and all permutations σ ∈ Sym(X). According
to Lemma 3.5 there exist good minimal descriptions. We ignore the ones with no-canon and
select the smallest of all these good minimal descriptions. Thereby, recursively in the parts
C ′
0, we relabel the vertices according to their first occurrence in the good minimal description.

Theorem 3.7 The smallest minimal description of all bags X and permutations σ is a canon-
ical invariant for graphs of treewidth at most k.

3.3 Complexity Analysis.

We prove now that graphs of bounded treewidth can be canonized in AC1. We construct
a circuit which consists of preprocessing steps and a main part, where in O(logn) levels a
minimal description of the input graph is computed.
Valid child bags. We consider Definition 3.2. We show, that valid child bags can be
computed in logspace. For an AC1-circuit, in a preprocessing step we compute in parallel for
each possible bag which are its split components and its valid child bags.

Lemma 3.8 On input of a graph G a bag X with a child bag Y , and an interval [p, q], there
is a logspace-computable function that computes whether Y is a valid child bag of X.

Proof: The main task is the following. Compute, whether there is a split component Gi

(with p ≤ i ≤ q) such that Y ⊆ X ∪ V (Gi).
Computing split components and containment in split components can be done with

reachability tests. Reingold proved, that reachability testing in undirected graphs is in
logspace [Rei08]. �

Computing the minimum and sorting. Computing the minimum and sorting.
We discuss how to compute the minimal description by an AC1-circuit. By the recursive
construction of minimal descriptions in Section 3.2, the depth of the circuit corresponds to
the depth of the tree decompositions. The next lemma is essential in the proof of Theorem 1.3.

Lemma 3.9 Let G be a graph of treewidth at most k, X a root bag, σ ∈ Sym(X) a permuta-
tion, [p, q] an interval, d a depth parameter, and suppose we have given minimal descriptions
for all valid child bags and all split components Gp, . . . , Gq for all depth parameters ≤ d− 1.

(a) For Case (iii) in the minimal description on Page 9 there is a (depth i)-bounded AC1-
computable function that computes the smallest minimal descriptions with depth pa-
rameter d − i for each of the i equal sized split components, and arranges them in
lexicographical increasing order.

(b) For all the other cases, there is an AC0-computable function that computes the smallest
minimal description with depth parameter d− 1 for each split component.

On input of the minimal descriptions from (a) and (b), there is an AC0-computable function
that computes the minimal description C(G,X, σ, (p, q), d).

11



Proof: We begin with part (b). In the canonical Description on Page 9 in cases (i), (ii)
and (iii) we have to compute the smallest of many minimal descriptions of children. In
case (iv) one is a default description and sorting is trivial there. To handle case (iv) and case
(v), we compute f in a preprocessing step.

We consider at most n4k+3 children (as an upper bound for the number of possible valid
child bags). We compute the smallest of n4k+3 minimal descriptions according to the order ≺
with depth parameter ≤ d− 1. Each bit of these minimal descriptions is given in the input.
Hence, the main task is to compute the minimum of strings of length at most polynomial
in n.

Claim 1 There is an AC0-computable function that computes on input of strings
S1, . . . , SN ∈ {0, 1, 2}∗ of length polynomial in N the lexicographical smallest string.

Proof: For two strings this task is first order definable (c.f. [Imm99]) and hence in AC0.
Given a 2-ary relation < and 3-ary relation R with (a, i, x) ∈ R if the i-th symbol of string
Sa is x ∈ {0, 1, 2}:

LESS(a, b) ≡ ∃i[(∃x∃y x < y∧R(a, i, x)∧R(b, i, y))∧(∀h∃x (h < i→ R(a, h, x)∧R(b, h, x)))]

Accordingly, we can ask whether one string is less or equal:

LESS-OR-EQUAL(a, b) ≡ LESS(a, b) ∨ (∀i∃x (R(a, i, x) ∧R(b, i, x)))

This can be generalized to N strings. We compute first whether a string Sa is never found to
be the larger of two strings:

IS-MIN(a) ≡ ∀b LESS-OR-EQUAL(a, b)

Whether the i-th symbol of the minimal string is x, is computed as follows:

MIN -SYMBOL(i, x) ≡ ∃aR(a, i, x) ∧ IS-MIN(a)

�

The more difficult part is (a). In case (iii) of the minimal description on Page 9 there
is an exception where we have to deviate from the binary tree structure. We compare i =
q− p+ 1 split components at a time that have the same size. Suppose, we run into case (iii)
recursively. Since there are at most i children of size n/i, we need a circuit with depth log i
to sort i strings of size polynomial in n. Therefore, we must reduce the depth parameter to
d− log i to guarantee the depth bound. We show that with an inductive argument, for split
components of size n/i the minimal description can be computed by a sub-circuit of depth
c log(n/i) = c log n− c log i (for a constant c). Hence, we can do case (iii) recursively.

Claim 2 On input of i strings of length N there is a function that arranges them in lexico-
graphical increasing order, and which is computable by an O(log i)-depth bounded AC1-circuit.

Proof: Let S1, . . . , Si be strings of length N . We use the function LESS-OR-EQUAL from
the proof of Claim 1 to compare two such strings. By this claim, we can do this comparison
in AC0. We describe each layer from the depth bounded AC1-circuit.

The procedure is also known from merge-sort. In the first layer, we compare whether
Sj < Sj+1 for each odd j ≤ i − 1 in parallel and put them together to tuples of sorted

12



strings. For j > 1, in the j-th layer, we pairwise put together two sorted tuples of strings in
parallel. Let (S1, . . . , S2j ) (S2j+1, . . . , S2j+2j ) be two such tuples. We show now how to put
them together to a tuple of size 2j+1. For each string, there is a AC0-computable function
that computes at which position it comes.
Sa from the first tuple (i.e. 1 ≤ a ≤ 2j), comes in the new tuple at position a + b (where
1 ≤ b ≤ 2j) if and only if Sa ≤ S2j+b and (b = 1 or Sa > S2j+b−1).
Sb from the second tuple (i.e. 1 ≤ b ≤ 2j), comes in the new tuple at position a + b (where
1 ≤ b ≤ 2j) if and only if S2j+b ≥ Sa and (a = 2j or S2j+b < Sa+1).
We do these computations for all a, b ∈ {1, . . . , 2j} in parallel.

By induction, after O(log i) layers, there is a sorted tuple of all strings. �

Length of the canon. Another important point is to know the length of the canon. In
the minimal description in Section 3.2 we consider balanced binary trees and every bag is
described by a word of length (4k + 3)2 followed by its vertices within (4k + 3) · ⌈log n⌉ bits.

Claim 3 The size of the minimal description for a balanced binary tree of depth d is
[

(4k + 3)2 + (4k + 3) · ⌈logn⌉
]

· (2d − 1).

Proof: The minimal description is filled up to have total length
[

(4k + 3)2 + (4k + 3) · ⌈logn⌉
]

· (2d − 1) and this holds recursively. The proof goes by
induction, let i =

[

(4k + 3)2 + (4k + 3) · ⌈log n⌉
]

.

|C(G,X, σ, d)| = i · (2d − 1)

= i · (2 · 2(d−1) − 1)

= i · (1 + 2 · (2(d−1) − 1))

= i+ (i · 2 · (2(d−1) − 1))

= i+ (2 · i · (2(d−1) − 1))
= |C0|+ |C ′

0|+ (|C1|+ |C2|).

�

Finally, we argue that it is an AC0-computable task to concatenate the strings of fixed
length that are already arranged in lexicographical increasing order. This finishes the proof
of Lemma 3.9. �

We summarize, to get an AC1-circuit that computes the minimal description
C(G,X, σ, (1,m), d) for the input graph G, we have preprocessing steps to ensure that G
has treewidth at most k (by Lemma 1.1), and we have circuits to compute in parallel for
pairs of bags X,Y whether Y is a valid child of X. We have O(logn) levels of small circuits
where minimal descriptions for subtrees are computed, selected or sorted. The total size is
polynomial and the total depth of the circuit is O(log n).

Theorem 3.10 There is a constant c and an AC1-computable function that on input of
graph G of treewidth at most k, root bag X of size at most 4k + 3, permutation σ ∈ Sym(X),
m split components in G \X and depth parameter d = c logn computes a good minimal de-
scription C(G,X, σ, (1,m), d) if one exists.
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3.4 The Canonization.

The minimal description depends on some parameters: a bag X, a permutation σ ∈ Sym(X)
and depth parameter d. There are at most n4k+3 many bags and (4k + 3)! permutations
for X. According to Lemma 3.5 we can fix d = c log2 n (for a constant c) and still get a good
minimal description. Hence, we set up n4k+3 · (4k+3)! many circuits in parallel and compute
all possibilities of minimal descriptions. We select in AC0 the smallest of all these minimal
descriptions.

Theorem 3.11 There is an AC1-computable function, that computes a canonical invariant
for graphs of treewidth at most k.

Compute the canonical labeling. To obtain a canonizing function the algorithm is doing
some extra work in parallel. While computing the minimal description we bring the vertices
in a unique order. For this, in a minimal description C = C0C

′
0C1C2 the part C ′

0 plays a
central role.

The minimal description gives an order to the bags. We list now the vertices of the bags
in a fixed order and the inserted vertices of each bag with their original vertex names.

To define the canonizing function, we use a simple logspace-computable procedure which
can be found e.g. in [DLN08]. The order of the occurrences of all vertices defines a fixed order.
After renaming the vertices according to this order we arrange the edges in lexicographical
increasing order. Note, the renaming of the vertices is an automorphism from G onto its
canon, i.e. this is a canonical labeling. Hence, the canonization of graphs of treewidth at
most k is in AC1. This completes the proof of Theorem 1.3.

Conclusion. We improve the upper bound of the canonization problem for bounded
treewidth graphs very close to the LogCFL upper bound of isomorphism testing [DTW10].
However, it is not clear how to improve the new AC1 upper bound with known standard
techniques for canonization. In [EJT10a] interesting concepts for bounded treewidth graphs
are introduced, they state the question whether these can be used for isomorphism testing or
canonization.

Acknowledgment. We thank Jacobo Torán and anonymous referees for comments and
helpful discussions.
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