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Abstract

We give a simpler proof, via query elimination, of a result due to O’Donnell, Saks, Schramm
and Servedio, which shows a lower bound on the zero-error randomized query complexity of
a function f in terms of the maximum influence of any variable of f . Our lower bound also
applies to the two-sided error distributional query complexity of f , and it allows an immediate
extension which can be used to prove stronger lower bounds for some functions.

1 Introduction

Query complexity measures the hardness of computing a function f by the minimum number of
input variables one needs to read before knowing the function value. A k-query ε-error randomized
query algorithm is one that, on all inputs, has at most ε error probability and makes at most k
queries over all random coins. The ε-error randomized query complexity of f , denoted Rε(f), is
the minimum number k such that there exists a k-query ε-error randomized query algorithm. The
influence of a variable is another important quantity which measures the importance of the variable
to the function value (on average over other variables). More precisely, for a function f : X n → Z
and a distribution µ on X , the influence of the i-th variable is defined as infi(f, µ) = Pr[f(X) 6=
f(Xi)], where X = X1 . . . Xn is drawn from µ⊗n and Xi is obtained from X by re-randomizing
Xi; namely Xi = X1 . . . Xi−1YiXi+1 . . . Xn, where Yi is drawn from µ and Yi is independent of X.
Both query complexity and influence are well-studied subjects; see [BdW02] for a survey of the
former (with many other complexity measures) and [O’D08] for a survey of the latter (and Fourier
analysis on Boolean functions).

Randomized query complexity can be lower bounded in terms of influence. In [OSSS05],
O’Donnell, Saks, Schramm and Servedio proved that for all Boolean functions f : {−1,+1}n →
{−1,+1},

R0(f) = Ω
(

Var[f ]
maxi infi(f, µp)

)
. (1)

Above µp is the distribution on {−1,+1} with −1 picked with probability p; Var[f ] is the variance
of f(X) with X drawn from µ⊗np and R0(f) represents the zero-error randomized query complexity
of f ; namely the minimum over all randomized query algorithms with no error on each input, of
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the maximum expected (over the random coins) number of queries made by the query algorithm
on any input. Recently Lee [Lee10] gave another proof of this fact. Together with another bound
R0(f) ≥ (

∑
i infi(f, µp))2/(4p(1 − p)) for monotone functions [OS07], it gives a lower bound of

Ω(n2/3) for all monotone functions invariant to a transitive group of permutations (on variables).
This in particular reproduces the Ω(n4/3) lower bound for all monotone graph properties in [Haj91],
which is O(log1/3(n)) shy of record [CK01].

In this paper we give a new proof of Eq. (1), arguably shorter and simpler than both previous
ones [OSSS05, Lee10]. In fact we prove a stronger statement that applies to the two-sided error
case. The basic idea is by query elimination: we can save one query without increasing the error
by more than maxi infi(f, p), and eventually eliminate all queries to obtain a zero-query algorithm,
which must have a large error probability on a hard distribution. This lower bounds the number
of queries of the original algorithm. The analysis for the increase in error due to eliminating one
query is quite simple and follows from the union bound (applied just once) and the observation
that Xi is identically distributed to X.

Since we lower bound distributional query complexity (defined in the next section), we get a
smoothed version of the influence bound as an immediate consequence. As in the cases with the
rectangle bound and the discrepancy bound in communication complexity and query complexity,
where the smoothed versions can prove strong lower bounds [Kla07, She08, SZ09, LZ10, Kla10,
JK10, CR11], this smoothed influence lower bound also gives stronger bounds for some functions
than Eq. (1).

2 Main result and proof

Definition 1 (Influence) Let f : X n → Z be a function, and Xi’s and Yi’s (for i = 1, ..., n)
be random variables i.i.d. distributed according to µ on X . For each i ∈ [n], let Xi represent
the random variable X1 . . . Xi−1YiXi+1 . . . Xn. The influence of variable Xi on f is defined as
infi(f, µ) = Pr[f(X) 6= f(Xi)]. The maximum influence of f with respect to µ is defined as
infmax(f, µ) = maxi infi(f, µ).

For ε > 0, a deterministic k-query algorithm has the λ-distributional error ε if it makes at
most k queries over all possible inputs, and for a random input drawn from λ, the average error
probability is ε. The ε-error λ-distributional query complexity of f , denoted Dλ

ε (f), is the minimum
number k such that there exists a k-query algorithm which has the µ-distributional error ε. We
show the following.

Theorem 1 Let f : X n → Z be a function, µ be a distribution on X and ε > 0. Let X be drawn
from µ⊗n. Then,

Dµ⊗n

ε (f) ≥ 1−maxz∈Z Pr[f(X) = z]− ε
infmax(f, µ)

.

Proof: Let Pk be a deterministic k-query algorithm for f with µ⊗n-distributional error at most
δ. We present a deterministic (k − 1)-query algorithm Pk−1 for f with µ⊗n-distributional error at
most δ + infmax(f, µ). This way, starting from an algorithm which makes Dµ⊗n

ε (f) queries and has
average error at most ε, repeating the above procedure gives another algorithm P0 which makes
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no queries and has average error at most ε+ Dµ⊗n

ε (f) · infmax(f, µ). It is easily seen that P0 must
have error at least 1−maxz∈Z Pr[f(X) = z] and hence we get the desired result.

Now we show how to obtain Pk−1 from Pk. We will show a randomized algorithm P ′k−1 with
at most k− 1 queries on any input and any random coins and average error under µ⊗n at most δ+
infmax(f, µ). From P ′k−1, using an easy averaging argument (and fixing coins of P ′k−1 appropriately),
we can get a deterministic algorithm Pk−1 with at most k − 1 queries on any input and the same
average error bound as in P ′k−1.

Let Xi be the first query of Pk and without loss of generality we can assume that Pk does
not query Xi any more afterward. In P ′k−1 we do not make this query, but assume the answer to
this query to be Yi, where Yi is distributed according to µ and is independent of X. From here
on P ′k−1 proceeds identically to Pk. By construction the maximum number of queries made by
P ′k−1 is at most k − 1. Let ans(P, X) represent the answer of algorithm P on input X. Since
ans(Pk, Xi) 6= f(X) implies either ans(Pk, Xi) 6= f(Xi) or f(Xi) 6= f(X), we have

Pr[P ′k−1 makes error on input X] = Pr[ans(Pk, Xi) 6= f(X)]

≤ Pr[ans(Pk, Xi) 6= f(Xi)] + Pr[f(Xi) 6= f(X)] (from union bound)

= Pr[ans(Pk, X) 6= f(X)] + Pr[f(Xi) 6= f(X)] (since X is identically distributed to Xi)
≤ δ + inf max(f, µ) .

It is easily argued that R0(f) = Ω(Rε(f)) = Ω(Dµ⊗n

ε (f)) for ε, µ as above. Also 1−maxz Pr[f(X) =
z] = Ω(Var[f ]) for Boolean functions f , therefore the above theorem implies Eq. (1).

Next we improve the lower bound by going to a function g, which is close to f but could
potentially have smaller infmax. Let g : X n → Z be a function such that Pr[f(X) 6= g(X)] ≤ δ,
where X is drawn from µ⊗n as above and δ ≥ 0. It is easily noted that an algorithm for f with
average error under µ⊗n being at most ε also works as an algorithm for g with average error under
µ⊗n being at most ε+ δ. Therefore Dµ⊗n

ε (f) ≥ Dµ⊗n

ε+δ (g). Hence as a corollary of Theorem 1 we get
that a smoothed version of the influence bound also applies as a lower bound on the distributional
query complexity of f .

Corollary 2 Let f : X n → Z be a function, µ be a distribution on X and ε > 0, δ ≥ 0. Let X be
drawn from µ⊗n. Let g : X n → Z be a function such that Pr[f(X) 6= g(X)] ≤ δ. Then

Dµ⊗n

ε (f) ≥ Dµ⊗n

ε+δ (g) ≥ 1−maxz∈Z Pr[g(X) = z]− ε− δ
infmax(g, µ)

.

Note that there are functions f with large infmax but close to some other function g with small
infmax. For example, Tribes is OR of s ≈ n/ log2 n AND gates, each of degree t ≈ log2 n−log2 log2 n.
The parameters s, t are so set to make exactly half the inputs being 1. It is well known that for
this function, all influences infi = Θ(log n/n), where the distribution is uniform on all inputs. Let
g be Tribes, and obtain f from g by picking a δ-fraction of inputs x and changing their function
values to f(x) = x1 (x1 is the first bit of x) and for the rest f(x) = g(x). Then the first variable
has influence at least Ω(δ), so applying the old bound only gives a constant lower bound. But g is
δ-close to f with infmax(g) = Θ(log n/n). So the above corollary gives a much better lower bound
of Θ(n/ log n) for the distributional query complexity of f , which the original bound Eq. (1) only
gives a constant.
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A final comment is that our proof does not assume that the distributions of the different
variables are the same. The proof goes through and the bound applies analogously as long as these
distributions are independent.

Acknowledgment: We thank Ronald de Wolf for detailed and helpful comments on an earlier
draft of the paper.
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