
Flip-Pushdown Automata with k Pushdown Reversals
and E0L Systems are Incomparable

Pavol Ďurǐs Marek Košta
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Abstract We prove that any propagating E0L system cannot generate the
language {w#w|w ∈ {0, 1}∗}. This result, together with some known ones,
enable us to conclude that the flip-pushdown automata with k pushdown
reversals (i.e. the pushdown automata with the ability to flip its pushdown)
and E0L systems are incomparable. This result solves an open problem
stated in [3].
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1 Introduction

A flip-pushdown automaton, introduced by Sarkar [7], is an ordinary one-
way pushdown automaton with the ability to flip its pushdown during the
computation. It is known [7] that the flip-pushdown automata without any
limit on the number of flips are equally powerful to Turing machines.

Holzer and Kutrib [3, 4] have shown that k + 1 pushdown reversals are
more powerful than k for deterministic and nondeterministic flip-pushdown
automata, and, nondeterminism is more powerful than determinism for flip-
pushdown automata with constant number of flips. Moreover, they consid-
ered in [3] some closure properties and as well as some computational prob-
lems of these language families. However, they left some problems considered
in [3] open. Among others, what is the relationship between E0L (or ET0L)
languages and the languages accepted by flip-pushdown automata with con-
stant number of flips? (We define E0L systems below; for more information,
see [6].) Although they have proved that the E0L language {anbncn|n ≥ 0}
cannot be recognized by such automata [3], they left open the second part
of the problem.

In this paper we complete solution of the problem above by showing that
the language {w#w|w ∈ {0, 1}∗} cannot be derived by any (propagating)
E0L system, but on the other hand, it can be accepted by a pushdown au-
tomaton with one flip. To show that {w#w|w ∈ {0, 1}∗} is not E0L language,
we use a proof technique (see the proof of Theorem 3 below) that is quite
different from techniques based on combinatorial properties of languages (see
[2, 6]).

Note that, in [1, 2, 5, 6], one can find several quite simple languages that
are known to be not E0L languages, but it is not clear whether any of them
is suitable for our purposes, (i.e. acceptable by a flip-pushdown automaton
with constant number of flips).

2 Definitions

By |M | we denote cardinality of a set M , by |x| we denote the length of a
word x and by λ we denote the empty word.

Definition 1. An E0L system ia a quadruple G = (Σ, P, ω, ∆), where Σ is
a nonempty finite alphabet, ω ∈ Σ∗, P is a finite set of productions of the
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form α → β, α ∈ Σ, β ∈ Σ∗, and ∆ ⊆ Σ. If β 6= λ for each production, then
G is called propagating.

Definition 2. Let G be an E0L system G = (Σ, P, ω, ∆). A derivation D in
G is a triple (Θ, ν, p), where Θ is a finite set of ordered pairs of non-negative
integers (the occurrence in D), ν is a function from Θ into Σ (ν(i, j) is the
value of D at occurrence (i, j)), and p is a function form Θ into P (p(i, j)
is production of D at occurrence ν(i, j)) satisfying the following conditions.
There exist a sequence of words α0, α1, . . . , αt in Σ∗ (called the trace of D)
such that t ≥ 1 and

(i) Θ = {(i, j)|0 ≤ i < t and 1 ≤ j ≤ |αi|},
(ii) ν(i, j) is the jth symbol in αi,

(iii) for 0 ≤ i < t, αi+1 = δ1δ2 . . . δ|αi|, where p(i, j) is the production
ν(i, j) → δj for 1 ≤ j ≤ |αi|.

In such a case D is said to be a derivation of αt from α0, and t is called the
length of the derivation D, and we will write α0 ⇒t

G αt. Formally, α ⇒0
G α

for each α ∈ Σ∗. (We will omit the subscript G [the superscript t] if G is
clear from the context [if t = 1].)

We will say that a language L is generated by G if

L = {x|x ∈ ∆∗, ω ⇒t
G x for some t ≥ 0}.

For some i, (0 ≤ i < t), let αi = γ1γ2 . . . γ|αi|, (γj ∈ Σ for 1 ≤ j ≤ |αi|),
and let αi+1 = δ1δ2 . . . δ|αi| be from (iii) above. If 1 ≤ d ≤ h ≤ |αi|, hen we
will say that the word δdδd+1 . . . δh with the position (i+1, |δ1δ2 . . . δd−1|+1)
is derived under D in one steps from the word γdγd+1 . . . γh with the position
(i, d).

Let 0 ≤ j < m ≤ t and let αi = αI
i α

II
i αIII

i for some αI
i , α

III
i ∈ Σ∗, αII

i ∈
Σ+ for each i, (j ≤ i ≤ m). If the word αII

i+1 with the position (i+1, |αI
i+1|+1)

is derived under D in one step from the word αII
i with the position (i, |αI

i |+1)
for each i, (j ≤ i < m), then we will say that the word αII

m with the position
(m, |αI

m|+ 1) is derived under D in m− j steps from the word αII
j with the

position (j, |αI
j | + 1). (If the positions are clear from the context, then we

will omit that information.)
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3 Results

Now we will prove our main result: E0L systems and languages accepted by
flip-pushdown automata with constant number of flips are incomparable. To
do so, we will use the following two known Theorems.

Theorem 1 [3]. Any flip-pushdown automaton with constant number of
flips cannot accept the language L1 = {anbncn|n ≥ 0}.

Theorem 2 (A reformulated Theorem 2.1 from [6]).
There is an algorithm that given any E0L system generating a language
without the empty word produces a propagating E0L systems generating the
same language.

Since one can easily construct an E0L system generating L1 and also con-
struct a flip-pushdown automaton with one flip accepting L2 = {w#w|w ∈
{0, 1}∗}, to derive our main result, now it is enough to prove the following

Theorem 3. Any propagating E0L system cannot generate L2.

Before proving Theorem 3, we need the following Lemma 1 and its Corol-
lary.

Lemma 1. Let G = (Σ, P, ω, ∆) be any propagating E0L system. Let α ⇒s

β for some α, β ∈ Σ and some s > (|Σ|!) · |Σ|2. Then α ⇒s′ β for s′ = s−|Σ|!
Proof: Since G is propagating one, there is a derivation D with a trace
α = α0, α1, . . . , αs = β, where αi ∈ Σ for 0 ≤ i ≤ s. For every j =
0, 1, 2, . . . , (|Σ|!)·|Σ|−1, the sequence αtj , αtj+1, αtj+2, . . . , αtj+|Σ|, where tj =
j|Σ|, must contain two elements αlj , αmj

with tj ≤ lj < mj ≤ tj+|Σ| and αlj =
αmj

. For i = 1, 2, . . . , |Σ|, let Bi = {j|0 ≤ j ≤ (|Σ|!) · |Σ| − 1,mj − lj = i}.
Since 1 ≤ mj−lj ≤ |Σ| for each j, there is Br with |Br| ≥ (|Σ|!)·|Σ|/|Σ| = |Σ|!
If we modify D so that one segment αlj+1, αlj+2, . . . , αmj

with j ∈ Br may
be deleted from the trace, (recall αlj = αmj

), then we obtain a derivation of
β from α of the length s − r. Thus, by deleting |Σ|!/r such segments, we
obtain a derivation of β from α of the length s− |Σ|! 2

Corollary. For G there is a constant c > 0 such that if ω ⇒h x for some
x ∈ Σ+ and for some h ≥ 0, then ω ⇒h′ x for some h′ ≤ c|x|.
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Proof: Let D be the shortest derivation of x from ω and let d denote its
length. Since G is propagating one, there are words ψ1, ψ

′
1, ψ2, ψ

′
2, . . . , ψt, ψ

′
t

such that

ω = ψ1 ⇒l1 ψ′1 ⇒ ψ2 ⇒l2 ψ′2 ⇒ ψ3 ⇒l3 ψ′3 ⇒ · · · ⇒ ψt ⇒lt ψ′t = x,

where t ≥ 1, |ψi| = |ψ′i| and li ≥ 0 for i = 1, 2, . . . , t, and |ψ′i| < |ψi+1| for
i = 1, 2, . . . , t − 1, and d = t − 1 +

∑t
i=1 li. Suppose to the contrary that

d > c|x| for c = (|Σ|!) · |Σ|2 + 2. Thus, lj ≥ c − 1 for some j, since clearly
t ≤ |x|. Let ψj = δ1δ2 . . . δm and ψ′j = δ′1δ

′
2 . . . δ′m, where m = |ψj| = |ψ′j| and

δi, δ
′
i ∈ Σ for i = 1, 2, . . . , m. Since G is propagating one, δi ⇒lj δ′i for every

i. By Lemma 1, δi ⇒l′j δ′i for every i, where l′j = lj − |Σ|! Hence ψj ⇒l′j ψ′j.
Thus, by modifying D so that ψj may derive ψ′j in l′j steps (instead of lj steps)
we obtain a derivation of x with the length shorter than d - a contradiction!
2

Proof of Theorem 3. The structure of the proof is as follows. The
main idea of the proof is formulated in Claim 3 and explained in its proof.
To apply Claim 3 in the proof of Theorem 3, we firstly have to prove Claim 1
and Claim 2.

Suppose to the contrary that there is an E0L propagating system G =
(Σ, P, ω, ∆) generating L2. Let us choose n large enough (it will be specified
later how large it should be). For every nonnegative integer m, let

Ln,m = {uvu#uvu|u, v ∈ {0, 1}n, ω ⇒m uvu#uvu}.
Note that, Ln,m ⊆ L2. Clearly, Ln,m = ∅ for m ≤ 1 and n large enough.
Hence, by Corollary, there is l, 2 ≤ l ≤ c(6n + 1), such that

|Ln,l| ≥ 22n/(c(6n + 1)), (1)

for n large enough, where c is from Corollary for G. Fix such l and let

k = max({|δ| : γ → δ is in P} ∪ {|ω|}). (2)

We will say that a word x ∈ Ln,l is wide, if there is j, (0 ≤ j < l) and there
are words δ1, δ3 ∈ Σ∗, a symbol δ2 ∈ Σ, and words x1, x3 ∈ ∆∗, x2 ∈ ∆+ such
that x = x1x2x3, ω ⇒j δ1δ2δ3, δi ⇒l−j xi for i = 1, 2, 3, |x2| ≥ n/k and x2

does not contain #.

Claim 1. Ln,l contains at most |Ln,l|/2 wide words.
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Proof: Let x be any wide word with the values j, δ1, δ2, δ3, x1, x2, x3 as above.
First, let us prove that there is no any other word x′2 6= x2, x′2 ∈ ∆∗, with
δ2 ⇒l−j x′2, since otherwise ω ⇒j δ1δ2δ3 ⇒l−j x1x

′
2x3. But x1x

′
2x3 cannot

belong into L2 = {w#w|w ∈ {0, 1}∗}, because for any two words y1, y3 ∈ ∆∗,
from which exactly one of them contains #, there is at most one word y2 ∈ ∆∗

such that y1y2y3 ∈ L2. Hence, the word x2 is uniquely determined by the
couple (δ2, l − j).

Since x1x2x3 = x = uvu#uvu for some u, v ∈ {0, 1}n, and since x2

does not contain # (see the definition of wide words above), there are words
z0, z1, z3, z4 ∈ {0, 1}∗ such that z0z1x2z3z4 = uvu, where |z1x2z3| = 2n if
|x2| < 2n, and z1 = z3 = λ if |x2| ≥ 2n. Hence the word uvu is uniquely de-
termined by the quadruple (|z0|, z1, x2, z3), since uvu is a periodic word with
the period of the length 2n, and hence the word uvu is uniquely determined
by its subword z1x2z3 of the length at least 2n and by the position of the
subword z1x2z3 in the word uvu determined by |z0|. Consequently, also the
wide word x = uvu#uvu is uniquely determined by the same quadruple.

Since x2 is uniquely determined by the couple (δ2, l− j), (see above), the
number of all the wide words cannot exceed the number of all 5-tuples of the
form (|z0|, z1, δ2, l− j, z3), where 0 ≤ |z0| ≤ n, δ2 ∈ Σ, 1 ≤ l− j ≤ c(6n + 1),
|z1z3| ≤ 2n − n/k, z1, z3 ∈ {0, 1}∗. But the number of such 5-tuples is at
most

(n + 1) · |Σ| · (c(6n + 1)) · (2n− n/k + 1) · 22n−n/k+1 ≤ 22n−1/(c(6n + 1))

for n large enough. By (1), Claim 1 follows. 2

Let x be any word in Ln,l. Let D be any derivation of x from ω of the
length l with a trace ω = α0, α1, α2, . . . , αl = x. Since x contains exactly
one #, the following values di’s, βi’s and yi#zi’s are uniquely determined by
D. For i = 0, 1, 2, . . . , l − 1, there is an integer di such that a subword of
x containing # (denote this subword by yi#zi) is derived under D in l − i
steps from the dith symbol of αi; let βi denote this symbol. Thus, (a) hold.

(a) The dith symbol of αi, i.e. βi derives yi#zi under D in l − i steps for
0 ≤ i ≤ l − 1.

Again, the fact that x contains exactly one # yields that for i = 0, 1, 2, . . . , l−
2, the production that has been applied according to D to the dith symbol
of αi has to have a form

βi → ξi+1βi+1ϕi+1
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for some ξi+1, ϕi+1 ∈ Σ∗, where αi+1 = %i+1ξi+1βi+1ϕi+1τi+1 for some %i+1, τi+1

∈ Σ∗, where |%i+1ξi+1βi+1| = di+1. But it means, together with (a), that for
i = 0, 1, 2, . . . , l − 2 there are ri+1, si+1 ∈ ∆∗ such that (b) and (c) hold.

(b) yi#zi = ri+1yi+1#zi+1si+1,

(c) ri+1 [si+1] is derived from ξi+1 [from ϕi+1] under D in l − i− 1 steps.

Claim 2. Let x be any word in Ln,l that is not wide. Let D be any derivation
of x from ω of the length l with the corresponding values αi, di, yi, zi, βi for
0 ≤ i ≤ l − 1, and ϕi, ξi, ri, si for 1 ≤ i ≤ l − 1, as above. Then there are
indices 0 ≤ p, q ≤ l−1 such that n ≤ |yp| ≤ 2n and n ≤ |zq| ≤ 2n. Moreover,
|yi| ≥ |yj| and |zi| ≥ |zj| for i < j.

Proof: One can easily observe that to prove Claim 2, it is enough to show
that (3), (4) and (5) hold.

0 ≤ |yi| − |yi+1| ≤ n and 0 ≤ |zi| − |zi+1| ≤ n for 0 ≤ i ≤ l − 2, (3)

2n ≤ |y0| and 2n ≤ |z0|, (4)

|yl−1| ≤ n and |zl−1| ≤ n. (5)

We will prove (3) - (5) only for yi’s. The proof for zi’s is similar.
Choose any i, 0 ≤ i ≤ l − 2. Since x is not wide and ri+1 does not

contain #, (because the subword yi#zi of x contains the unique symbol #
and yi = ri+1yi+1, by (b)), then any symbol of ξi+1 cannot derive (during
the derivation of ri+1 from ξi+1 under D, recall (c)) any subword of ri+1 of
the length at least n/k. Thus, |ri+1| ≤ (n/k)|ξi+1| ≤ (n/k)|ξi+1βi+1ϕi+1| ≤
(n/k) · k = n, by (2). This yields (3), since yi = ri+1yi+1, by (b).

Clearly, there are ξ0, ϕ0 ∈ Σ∗ such that ω = α0 = ξ0β0ϕ0, where |ξ0β0| =
d0, see the selection of d0, β0 and y0#z0 above. Since y0#z0 is a subword of x,
there are r0, s0 ∈ ∆∗ with x = r0y0#z0s0. Similarly, as in (c) above, r0 [s0] is
derived from ξ0 [from ϕ0] under D in l steps, since D derives x = r0y0#z0s0

from ω = α0 = ξ0β0ϕ0 in l steps (see above), and y0#z0 is derived from β0

under D in l steps, by (a). Since x is not wide and r0 evidently does not
contain #, then any symbol of ξ0 cannot derive (during the derivation of
r0 from ξ0 under D) any subword of r0 of the length at least n/k. Thus,
|r0| ≤ (n/k)|ξ0| ≤ (n/k)|ω| ≤ (n/k) · k = n, by (2). Since x = r0y0#z0s0 is
in Ln,l, then |r0y0| = 3n. Consequently, |y0| ≥ 3n− n = 2n. This yields (4).
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By (a), the dl−1th symbol of αl−1, i.e. βl−1 derives yl−1#zl−1 under D in
one step. It means that βl−1 → yl−1#zl−1 is a production of G. Thus, (5)
holds, since |yl−1| ≤ |yl−1#zl−1| ≤ k ≤ n for n large enough, by (2).

This completes proof of Claim 2 (for y’s). 2

Claim 3. Let x = uvu#uvu be any word in Ln,l with |u| = n that is not
wide. Let D, αi, di, yi, zi, βi for 0 ≤ i ≤ l − 1, and ri, si for 1 ≤ i ≤ l − 1,
and p, q be the values for x from Claim 2. Let x′ = u′v′u′#u′v′u′ be any
other word in Ln,l with |u′| = n that is not wide and let D′, α′i, d

′
i, y

′
i, z

′
i, β

′
i

for 0 ≤ i ≤ l − 1, and r′i, s
′
i for 1 ≤ i ≤ l − 1, and p′, q′ be analogous

values for x′, (i.e. (a) - (c) above and Claim 2 hold for these values). Let
u 6= u′, p = p′, q = q′, βp = β′p′ and βq = β′q′ . Then there is a word x′′ that
does not belong into L2 but that can be derived in G

Proof: Assume p ≥ q. (The proof is similar for q > p.) Since y0#z0 is
a subword of x, there are words r0, s0 ∈ Σ∗ with x = r0y0#z0s0. Thus, by
(b), r0r1 . . . rp−1rpyp#zpspsp−1 . . . s1s0 = x = uvu#uvu. Hence the suffix of
the length n of yp is u, since |u| = n and n ≤ |yp|, by Claim 2. Similarly,
r′0r

′
1 . . . r′p−1r

′
py
′
p#z′ps

′
ps
′
p−1 . . . s′1s

′
0 = x′ = u′v′u′#u′v′u′ for some r′0, s

′
0 ∈ Σ∗.

Claim 2 and the assumptions p ≥ q = q′ yield |z′p| ≤ |z′q′| ≤ 2n. Hence, the
suffix of the length n of the word s′ps

′
p−1 . . . s′1s

′
0 is u′, since |s′ps′p−1 . . . s′1s

′
0| =

|u′v′u′| − |z′p| ≥ 3n − 2n = n = |u′|. By the assumption of Claim 3, u 6=
u′. Hence, the word x′′ = r′0r

′
1 . . . r′p−1r

′
pyp#zps

′
ps
′
p−1 . . . s′1s

′
0 cannot belong

into L2, since the words r′0r
′
1 . . . r′p−1r

′
pyp and zps

′
ps
′
p−1 . . . s′1s

′
0 have different

suffixes u and u′ of the length n, (see above). But, on the other hand, the
word x′′ can be derived from ω simply by modifying the derivation D′ of x′ so
that the d′pth symbol of α′p, i.e. β′p, may derive yp#zp (like under D, see (a))
instead of y′p#z′p, (recall the assumptions p = p′ and β′p′ = βp of Claim 3). 2

In order to complete the proof of Theorem 3, now it is enough to show
existence of words x and x′ satisfying Claim 3. To do so, we proceed as
follows. For each u ∈ {0, 1}n, let

Mu = {x|x = uvu#uvu, v ∈ {0, 1}n, x ∈ Ln,l, x is not wide}.
Note that |Mu| ≤ 2n for each u and Mu ∩ Mu′ = ∅ for u 6= u′. Hence, by
Claim 1 and by (1), the number of nonempty sets Mu is at least (|Ln,l| −
|Ln,l|/2)/2n ≥ 2n/(2c(6n + 1)). For each nonempty set Mu, mark arbitrary
one word x in Mu and assign to x the values p, q, βp, βq from Claim 2. There
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are two marked words x ∈ Mu and x′ ∈ Mu′ for some u 6= u′ with the same
values p, q, βp, βq, since the number of marked words (i.e. the number of
nonempty sets Mu) is greater than the number of all possible different quadru-
ples (p, q, βp, βq), which is at most l2|Σ|2 ≤ c2(6n+1)2|Σ|2 < 2n/(2c(6n+1))
for n large enough.

This completes the proof of Theorem 3. 2

References

[1] Ehrenfeucht, A. and Rozenberg, G.: Three useful results concern-
ing L languages without interaction. L Systems, LNCS 15, pp. 72-
77, 1974.

[2] Ehrenfeucht, A. and Rozenberg, G.: On the combinatorial struc-
ture of L languages without interactions. In: Proc. 7th ACM
STOC, pp. 137-144, 1975.

[3] Holzer, M. and Kutrib, M.: Flip-pusdown automata: k+1 push-
down reversals are better than k. In: ICALP 2003, LNCS 2719,
pp. 490-501, 2003.

[4] Holzer, M. and Kutrib, M.: Flip-pusdown automata: Nondeter-
minism is better than determinism. In: Developments in Language
Theory, LNCS 2710, pp.361-372, 2003.

[5] Paun, G.: Parallel communicating systems of L systems. In: Rozen-
berg, G. and Salomaa, A.(Eds.): Lyndenmayer systems: Inpact on
theoretical computer science, computer graphics, and developmen-
tal biology, Spriger-Verlag, 1992, pp. 405-418.

[6] Rozenberg, G. and Salomaa, A.: The Mathematical Theory of L
Systems. Academic Press, 1980.

[7] Sarkar, P.: Pushdown automata with the ability to flip its stack.
Electronic Colloquium on Computational Complexity (ECCC),
November 2001.

8

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


