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Abstract

In the setting of secure multiparty computation, a set of n parties with private inputs wish
to jointly compute some functionality of their inputs. One of the most fundamental results of
information-theoretically secure computation was presented by Ben-Or, Goldwasser and Wigder-
son (BGW) in 1988. They demonstrated that any n-party functionality can be computed with
perfect security, in the private channels model. When the adversary is semi-honest this holds
as long as t < n/2 parties are corrupted, and when the adversary is malicious this holds as
long as t < n/3 parties are corrupted. Unfortunately, a full detailed proof of these results was
never given. In this paper, we remedy this situation and provide a full proof of security of the
BGW protocol. We also derive corollaries for security in the presence of adaptive adversaries
and under concurrent general composition (equivalently, universal composability). In addition,
we give a full specification of the protocol for the malicious setting. This includes one new step
for the perfect multiplication protocol in the case of n/4 ≤ t < n/3.
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1 Introduction

Background. In the setting of secure multiparty computation, a set of n parties with possibly
private inputs wish to securely compute some function of their inputs in the presence of adversarial
behavior. Loosely speaking, the security requirements from such a computation are that nothing is
learned from the protocol other than the output (privacy), that the output is distributed according
to the prescribed functionality (correctness), that parties cannot choose their inputs as a function
of the others’ inputs (independence of inputs), and that all parties receive output (fairness and
guaranteed output delivery). The actual definition [17, 21, 2, 4] formalizes this by comparing the
result of a real protocol execution with the result of an ideal execution in an ideal model where an
incorruptible trusted party carries out the computation for the parties. This definition has come
to be known as the “ideal/real simulation paradigm”.

There are many different settings within which secure computation has been considered. For
example, regarding the adversary, one can consider semi-honest adversaries (who follow the protocol
specification but try to learn more than they should by inspecting the protocol transcript) or
malicious adversaries (who follow any arbitrary strategy). In addition, an adversary may be limited
to polynomial-time (yielding the computational setting) or unbounded (yielding the information-
theoretic setting). Finally, the adversary may be static (meaning that the set of corrupted parties is
fixed before the protocol execution begins) or adaptive (meaning that the adversary can adaptively
choose to corrupt throughout the protocol execution).

The BGW protocol and our results. One of the most fundamental and celebrated results of
this field is the BGW protocol [3]. Let n denote the overall number of parties, and let t be a bound
on the number of corrupted parties. BGW showed that every functionality can be computed with
perfect security in the presence of semi-honest adversaries for any t < n/2, and in the presence
of malicious adversaries for any t < n/3. These protocols are cast in a synchronous network with
ideal private channels between every pair of parties. The BGW protocol builds on the GMW
protocol [16] that considers secure multiparty computation in the computational setting.

Despite the importance of this result and the fact that hundreds papers have built upon it,
a full proof of its correctness has never appeared. In addition, a full detailed specification of
the protocol in the malicious setting was also never published; this is especially apparent in the
multiplication protocol for the case of any t < n/3 where a new step is needed. In this paper we
remedy this situation and provide a full specification and proof of the BGW protocols, for both
the semi-honest and malicious settings. We prove security relative to the ideal/real definition of
security for multiparty computation. Among other things, this also involves carefully defining the
functionalities and sub-functionalities that are used in order to achieve the result.

Our basic result is a proof of the following informally stated theorem:

Theorem 1 (basic security of the BGW protocol – informally stated): Consider a synchronous
network with pairwise private channels. Then, for every n-ary functionality f , there exists a protocol
that t-privately computes f with perfect security in the presence of a static semi-honest adversary
for any t < n/2, and there exists a protocol that t-securely computes f with perfect security in
the presence of a static malicious adversary for any t < n/3. The complexity of the protocol is
O(poly(n) · |C|) where C is the size of an arithmetic circuit computing f .

The above theorem is proven in the classic setting of static corruptions and stand-alone com-
putation, where the latter means that security is proven for the case that only a single protocol
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execution takes place. Fortunately, using theorems proven in [6] and [18] regarding properties of
protocols that achieve perfect security, we are able to formally derive security in the presence of
adaptive adversaries and under universal composability [5] (where security is guaranteed to hold
when many arbitrary protocols are run concurrently with the secure protocol). We therefore have
the following corollary, that relates to a far more powerful adversarial setting:

Corollary 2 (strong security of the BGW protocol – informally stated): Consider a synchronous
network with private channels. Then, for every n-ary functionality f , there exists a protocol that
t-privately computes f with perfect universally composable security in the presence of an adaptive
semi-honest adversary for any t < n/2, and there exists a protocol that t-securely computes f with
perfect universally composable security in the presence of an adaptive malicious adversary for any
t < n/3.

Finally, we observe that information-theoretic security implies security in the presence of poly-
nomial-time adversaries (this holds as long as the simulator is required to run in time that is
polynomial in the running time of the adversary, as advocated in [15, Sec. 7.6.1]). Furthermore,
the ideal private channels of the information-theoretic setting can be replaced with computation-
ally secure channels that can be constructed over authenticated channels using semantically secure
public-key encryption (for the case of static corruptions) and non-committing public-key encryp-
tion [7] (for the case of adaptive corruptions). Relating to the case of malicious adversaries (the
semi-honest case has already been proven for the computational setting [9]), we therefore prove:

Corollary 3 (UC computational security of the BGW protocol – informally stated): Consider a
synchronous network with authenticated channels. Assuming the existence of semantically secure
public-key encryption (resp., non-committing encryption), for every n-ary functionality f there
exists a protocol that t-securely computes f with universally composable security in the presence of
a static (resp., adaptive) malicious adversary for any t < n/3.

Although well accepted folklore, none of the above has actually ever been proven in full. Thus,
our work also constitutes the first full proof that universally composable protocols exist in the plain
model (with authenticated channels) for any functionality, in the presence of (adaptive or static)
malicious adversaries corrupting up to any t < n/3 parties.

Organization. In Section 2, we present a brief overview of the definitions of perfectly secure
multiparty computation and of the modular sequential composition theorem that is used throughout
in our proofs. Then, in Section 3, we describe Shamir’s secret sharing scheme and rigorously prove
a number of useful properties of this scheme. In Section 4 we present the BGW protocol for the
case of semi-honest adversaries. An overview of the overall construction appears in Section 4.1,
and an overview of the multiplication protocol appears at the beginning of Section 4.3.

The BGW protocol for the case of malicious adversaries is presented in Sections 5 to 7. In
Section 5 we present the BGW verifiable secret sharing (VSS) protocol that uses bivariate poly-
nomials. This section includes background on Reed-Solomon encoding and properties of bivariate
polynomials that are needed for proving the security of the VSS protocol. Next, in Section 6 we
present the most involved part of the protocol – the multiplication protocol for computing shares
of the product of shares. This involves a number of steps and subprotocols, some of which are new;
most notably, a protocol for securely evaluating a shared polynomial on a predetermined point
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which is used for processing complaints in the multiplication step. The main tool of the BGW
multiplication protocol is a subprotocol for verifiably sharing the product of a party’s shares. This
subprotocol, along with a detailed discussion and overview, is presented in Section 6.3. Our aim has
been to prove the security of the original BGW protocol. However, where necessary, some changes
were made to the multiplication protocol as described originally in [3]. Finally, in Section 7, the
final protocol for secure multiparty computation is presented. The protocol is proven secure for any
VSS and multiplication protocols that securely realize the VSS and multiplication functionalities
that we define in Sections 5 and 6, respectively.

We conclude by showing how to derive security in other settings (adaptive adversaries, compo-
sition, and the computational setting) in Section 8, and with an exact count of the communication
complexity of the BGW protocol for malicious adversaries in Appendix A.

2 Preliminaries and Definitions

In this section, we briefly review the definition of perfect security in the presence of semi-honest
and malicious adversaries. We refer the reader to [15, Sec. 7.6.1] and [4] for detailed definitions and
explanations.

In the definitions below, we consider the stand-alone setting with a synchronous network, and
perfectly private channels between all parties. For simplicity, we will also assume that the parties
have a broadcast channel; as is standard, this can be implemented using an appropriate Byzantine
Generals protocol [22, 19]. Since we consider synchronous channels and the computation takes place
in clearly defined rounds, if a message is not received in a given round then this fact is immediately
known to the party who is supposed to receive the message. Thus, we can write “if a message is not
received” or “if the adversary does not send a message” and this is well defined. We consider static
corruptions meaning that the set of corrupted parties is fixed ahead of time, and the stand-alone
setting meaning that only a single protocol execution takes place; extensions to the case of adaptive
corruptions and composition are considered in Section 8.

Basic notation. We denote the number of parties by n, and a bound on the number of corrupted
parties by t. Let f : ({0, 1}∗)n → ({0, 1}∗)n be a possibly probabilistic n-ary functionality, where
fi(x1, . . . , xn) denotes the ith element of f(x1, . . . , xn). We denote by I = {i1, . . . it} ⊂ [n] the
indices of the corrupted parties. By the above, |I| ≤ t.

2.1 Perfect Security in the Presence of Semi-Honest Adversaries

Let x⃗ = (x1, . . . , xn), and let x⃗I and fI(x⃗) denote projections of the corresponding n-ary sequence
on the coordinates in I; that is, x⃗I = (xi1 , . . . , xit) and fI(x⃗) = (f(x⃗)i1 , . . . , f(x⃗)it) where I =
{i1, . . . , it}. The view of the ith party Pi during an execution of a protocol π on inputs x⃗, denoted
viewπ

i (x⃗), is defined to be (xi, ri;m1, . . . ,mℓ) where xi is Pi’s private input, ri is its internal coin
tosses, andmj is the jth message that it received in the protocol execution. For every I = {i1, . . . it},
we denote viewπ

I (x⃗) = (viewπ
i1
(x⃗), . . .viewπ

it
(x⃗)). The output of all parties from an execution of π

on inputs x⃗ is denoted outputπ(x⃗); observe that the output of each party can be computed from
its own (private) view of the execution.

We are now ready to define security in the presence of semi-honest adversaries; this is called
t-privacy in order to differentiate it from t-security that is used for the case of malicious adversaries.
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Since we only deal with perfect security in this paper, we use the terms t-private and t-secure
without any additional adjective, with the understanding that the privacy/security is perfect.

Definition 2.1 (t-privacy of n-party protocols – general case): Let f : ({0, 1}∗)n → ({0, 1}∗)n be
a probabilistic n-ary functionality and let π be a protocol. We say that π t-privately computes f if
there exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n] of cardinality at
most t, and every x⃗ ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, it holds that:{

(S(I, x⃗I , fI(x⃗)), f(x⃗))
}
≡
{
(viewπ

I (x⃗),output
π(x⃗))

}
. (1)

Observe that Definition 2.1 requires that the joint distribution of the output of S and all
outputs of the functionality is identically distributed to the joint distribution of the view of the
corrupted parties and all of the parties’ outputs. This is necessary for probabilistic functionalities,
as explained in [4, 15]. However, for the case of deterministic functionalities it suffices to separately
require correctness (meaning that the parties always output the correct result) and that the output
of S is identically distributed to the view of the corrupted parties in the protocol.

Definition 2.2 (t-privacy of n-party protocols – deterministic case): Let f : ({0, 1}∗)n →
({0, 1}∗)n be a deterministic n-ary functionality and let π be a protocol. We say that π t-privately
computes f if for every x⃗ ∈ ({0, 1}∗)n where |x1| = . . . = |xn|,

outputπ(x1, . . . , xn) = f(x1, . . . , xn)

and there exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n] of cardinality
at most t, and every x⃗ ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, it holds that:{

S (I, x⃗I , fI (x⃗))
}
≡
{
viewπ

I (x⃗)
}

(2)

The BGW protocol can be used to t-privately compute any deterministic or probabilistic func-
tionality that can be computed in probabilistic polynomial-time.1 Nevertheless, we prove security
only for deterministic functionalities. This simplifies our proof because we are then able to use Def-
inition 2.2 in order to prove security. Furthermore, this suffices because it is possible to t-privately
compute any probabilistic functionality using a general protocol for t-privately computing any
deterministic functionality; see [15, Sec. 7.3.1] for a proof.

2.2 Perfect Security in the Presence of Malicious Adversaries

We now consider malicious adversaries that can follow any arbitrary strategy in order to carry out
their attack; we stress that the adversary is not required to be efficient in any way. Security is
formalized by comparing a real protocol execution to an ideal model where the parties just send
their inputs to the trusted party and receive back outputs. See [4, 15] for details on how to define
these real and ideal executions.

Let f be as above and let π be a n-party protocol computing f . Let A be an arbitrary ma-
chine with auxiliary input z, and denote by S an ideal-model adversary/simulator. We denote by

1Indeed, it is even possible to t-privately compute functionalities that are not efficiently computable. However, in
such a case, the simulator S cannot be probabilistic polynomial-time.
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REALπ,A(z),I(x⃗) the random variable consisting of the view of the adversary A controlling the cor-
rupted parties in I and the outputs of the honest parties, following a real execution of π where for
every i ∈ [n], party Pi has input xi. We stress that the execution takes place in a synchronous net-
work with private point-to-point channels. We denote by IDEALf,S(z),I(x⃗) the analogous outputs of
the ideal adversary S and honest parties after an ideal execution with a trusted party computing f .
Finally, we require that S run in time that is polynomial in the running time of A, whatever the
latter may be. As argued in [4, 15] this is important since it guarantees that information-theoretic
security implies computational security. In such a case, we say that S is of comparable complexity
to A.

Definition 2.3 Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let π be a protocol.
We say that π t-securely computes f if for every probabilistic adversary A in the real model, there
exists a probabilistic adversary S of comparable complexity in the ideal model, such that for every
I ⊂ [n] of cardinality at most t, every x⃗ ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, and every z ∈ {0, 1}∗,
it holds that: {

IDEALf,S(z),I(x⃗)
}
≡
{
REALπ,A(z),I(x⃗)

}
.

Reactive functionalities. The above definition refers to functionalities that map inputs to out-
puts in a single computation. However, some computations take place in stages, and state is
preserved between stages. Two examples of such functionalities are mental poker (where cards are
dealt and thrown and redealt) and commitment schemes (where there is a separate commitment
and decommitment phase). Such functionalities are called reactive, and the definition of security
is extended to this case in the straightforward way by allowing the trusted party to obtain inputs
and send outputs in phases. As we will see, some of the subprotocols that are used in the BGW
protocol for the case of malicious adversaries seem to be only possible to prove when defined in a
reactive way. In such cases, we refer to the reactive analogue of the above definition.

2.3 Modular Composition

The sequential modular composition theorem [4] states that in order to analyze the security of a
protocol πf for computing f that uses a subprotocol πg for computing g, it suffices to consider the
execution of πf in a model where a trusted third party is used to ideally compute g (instead of the
parties running the real subprotocol πg). This theorem facilitates a modular analysis of security:
first prove the security of πg and then prove the security of πf using an ideal party for g. The model
in which πf is analyzed using ideal calls to g, instead of executing πg, is called the g-hybrid model
because it involves both a real protocol execution and an ideal trusted third party computing g.
More formally, in the hybrid model, the parties all have oracle-tapes for some oracle (trusted party)
that computes the functionality g. Then, if the real protocol πf instructs the parties to run the
subprotocol πg using inputs α1, . . . , αn, then each party Pi simply writes αi to its outgoing oracle
tape. Then, in the next round, it receives back the output gi(α1, . . . , αn) on its incoming oracle
tape. We denote by HYBRID

g
πf ,A(z),I(x⃗) an execution of protocol πf where each call to πg is carried

out using an oracle computing g. See [4, 15] for a formal definition of this model for both the
semi-honest and malicious cases, and for proofs that if πf t-privately (resp., t-securely) computes f
in the g-hybrid model, and πg t-privately (resp., t-securely) computes g, then πf when run in the
real model using πg t-privately (resp., t-securely) computes f .
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3 Shamir’s Secret Sharing Scheme [23] and Properties

3.1 The Basic Scheme

A central tool in the BGW protocol is Shamir’s secret-sharing scheme [23]. Roughly speaking, a
t-out-of-n secret sharing scheme takes as input a secret s from some domain, and outputs n shares,
with the property that it is possible to efficiently reconstruct s from every subset of t shares, but
every subset of less than t shares reveals nothing about the secret s. The value t is called the
threshold of the scheme.

A secret sharing scheme consist of two algorithm: the first algorithm, called the sharing algorithm,
takes as input the secret s and the parameters t and n, and outputs n shares. The second algorithm,
called the reconstruction algorithm, takes as input t shares and outputs a value s. It is required that
the reconstruction of shares generated from a value s yields the same value s.

Informally, Shamir’s secret-sharing scheme works as follows. Let F be a finite field of size greater
than n and let s ∈ F. The sharing algorithm defines a polynomial q(x) of degree t − 1 in F[x],
such that its free coefficient is the secret s and all the other coefficients are selected uniformly and
independently at random in F.2 Finally, the shares are defined to be q(αi) for every i ∈ {1, . . . , n},
where α1, . . . , αn are any n distinct predetermined values in F. The reconstruction algorithm of
this scheme is based on the fact that any t points define exactly one polynomial of degree t − 1.
Therefore, using interpolation it is possible to efficiently reconstruct the polynomial q(x) given any
subset of t points (αi, q(αi)) as output by the sharing algorithm. Then, given q(x) it is possible to
simply compute s = q(0).

In order to see that any subset of less than t shares reveals nothing about s, observe that
for every set of t − 1 points (αi, q(αi)) and every possible secret s′ ∈ F, there exists a unique
polynomial q′(x) such that q′(0) = s′ and q′(αi) = q(αi). Since the polynomial is chosen randomly
by the sharing algorithm, there is the same likelihood that the underlying polynomial is q(x) (and
so the secret is s) and that the polynomial is q′(x) (and so the secret is s′). We now formally
describe the scheme.

Shamir’s t-out-of-n secret sharing scheme. Let F be a finite field of order p where p > n,
and let α1, . . . , αn be any distinct non-zero elements of F.

• The sharing algorithm: Let share(s, t, n, α⃗) be the algorithm that receives for input s, t, n
and α⃗ = (α1, . . . , αn) where s, α1, . . . , αn ∈ F and t ≤ n. Then, share chooses t − 1 random
values q[1], . . . q[t − 1] ← F, independently and uniformly distributed in F, and defines the
polynomial:

q(x) = s+ q[1]x+ . . . q[t− 1]xt−1

where all calculations are in the field F (e.g., if F is the field Zp for some prime p, then all the
operations are modulo p). Finally, share computes the output shares q(α1), . . . , q(αn), where
q(αi) is the share of party Pi.

• The reconstruction algorithm: Algorithm reconstruct((αi1 , βi1), . . . , (αit , βit)) receives t
points and finds the unique polynomial q(x) of degree t− 1 such that for every j = 1, . . . , t it
holds that q(αij ) = βij . The algorithm then outputs the coefficients of the polynomial q(x)
(note that the original secret can be obtained by simply computing s = q(0)).

2Throughout, when we refer to a polynomial of degree t, we mean of degree at most t.
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Notation. Let Ps,t be the set of all polynomials with degree less than or equal to t with free
coefficient s. We stress that polynomials from Ps,t are associated with a secret sharing scheme with
threshold t+1 because their degree is t and not t−1. We will use the threshold t+1 here, because
this is the threshold that we need later for the secure computation protocol with t corrupt parties.
Observe that for every two values s, s′ ∈ F, it holds that |Ps,t| = |Ps′,t| = |F|t.

3.2 Basic Properties

In this section, we formally prove some basic properties of Shamir’s secret sharing scheme. We first
show that a single point of a polynomial chosen at random from Ps,t is distributed uniformly at
random in F; this can be generalized to hold for any t points.

Claim 3.1 For every t ≥ 1, and for every s, α, y ∈ F with α ̸= 0, it holds that:

Pr
q∈RPs,t

[q (α) = y] =
1

|F|
.

Proof: Fix s, y and α with α ̸= 0. Denote the ith coefficient of the polynomial q(x) by q[i], for
i = 1, . . . , t. Then:

Pr [q (α) = y] = Pr

[
y = s+

t∑
i=1

q[i]αi

]
= Pr

[
y = s+ q[1]α+

t∑
i=2

q[i]αi

]

where the probability is taken over the random choice of q ∈R Ps,t, or equivalently of the coefficients
q[1], . . . , q[t] ∈R F. Fix q[2], . . . , q[t] and denote v =

∑t
i=2 q[i]α

i. Then, for a randomly chosen
q[1] ∈R F we have that

Pr
[
q (α) = y

]
= Pr

[
y = s+ q[1]α+ v

]
= Pr

[
q[1]α = y − s− v

]
= Pr

[
q[1] = α−1 · (y − s− v)

]
=

1

|F|

where the third equality holds since α ∈ F and α ̸= 0 implying that α has an inverse, and the last
equality is due to the fact that q[1] ∈R F is randomly chosen.

In the protocol for secure computation, a dealer hides a secret s by choosing a polynomial f(x)
at random from Ps,t, and each party Pi receives a share, which is a point f(αi). In this context, the
adversary controls a subset of at most t parties, and thus receives at most t shares. We now show
that any subset of at most t shares do not reveal any information about the secret. In Section 3.1,
we explained intuitively why the above holds. We now formally prove this claim, by stating that
the distribution {f(αi)}i∈I is identical to the distribution {g(αi)}i∈I , for any subset I ⊂ [n], where
|I| ≤ t and f(x) ∈R Ps,t, g(x) ∈R Ps′,t for any fixed s, s′ ∈ F.
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Claim 3.2 For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values s, s′ ∈ F,
any subset I ⊂ [n] where |I| = ℓ ≤ t, and every y⃗ ∈ Fℓ it holds that:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f(αi)}i∈I

)]
= Pr

g(x)∈RPs′,t

[
y⃗ =

(
{g(αi)}i∈I

)]
=

1

|F|ℓ

where f(x) and g(x) are chosen uniformly and independently at random from Ps,t and Ps′,t, re-
spectively.

Proof: We first prove the claim for the special case that ℓ = t. Fix s, s′ ∈ F, fix non-zero elements
α1, . . . , αn ∈ F, and fix I ⊂ [n] with |I| = t. Moreover, fix y⃗ ∈ Ft. Let yi be the ith element of the
vector y⃗ for every i ∈ {1, . . . , t}. We now show that:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f(αi)}i∈I

)]
=

1

|Ps,t|
.

The values of y⃗ define a unique polynomial from Ps,t. This is because there exists a single
polynomial of degree t that passes through the points (0, s) and {(αi, yi)}i∈I . Let f ′(x) be this
unique polynomial. By definition we have that f ′(x) ∈ Ps,t and so:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f(αi)}i∈I

)]
= Pr

[
f(x) = f ′(x)

]
=

1

|Ps,t|

where the latter is true since f(x) is chosen uniformly at random from Ps,t, and f ′(x) is a fixed
polynomial in Ps,t.

Using the same reasoning, and letting g′(x) be the unique polynomial that passes through the
points (0, s′) and {(αi, yi)}i∈I we have that:

Pr
g(x)∈RPs′,t

[
y⃗ =

(
{g(αi)}i∈I

)]
= Pr

[
g(x) = g′(x)

]
=

1

|Ps′,t|
.

The proof for the case of ℓ = t is concluded by observing that for every s and s′ in F, it holds that
|Ps,t| = |Ps′,t| = |F|t, and so:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f(αi)}i∈I

)]
= Pr

g(x)∈RPs′,t

[
y⃗ =

(
{g(αi)}i∈I

)]
=

1

|F|t
.

For the general case where |I| = ℓ may be less than t, fix J ⊂ [n] with |J | = t and I ⊂ J . Observe
that for every vector y⃗ ∈ Fℓ:

Pr
f(x)∈RPs,t

[
y⃗ =

(
{f(αi)}i∈I

)]
=

∑
y⃗′∈Ft−ℓ

Pr
[
(y⃗, y⃗′) =

(
{f(αi)}i∈I , {f(αj)}j∈J\I

)]
= |F|t−ℓ· 1

|F|t
=

1

|F|ℓ
.

This holds for both s and s′ and so the proof is concluded.

As a corollary, we have that any ℓ ≤ t points on a random polynomial are uniformly distributed
in the field F. This follows immediately from Claim 3.2 because stating that every y⃗ appears with
probability 1/|F|ℓ is equivalent to stating that the shares are uniformly distributed. That is:
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Corollary 3.3 For any secret s ∈ F, any set of distinct non-zero elements α1, . . . , αn ∈ F, and
any subset I ⊂ [n] where |I| = ℓ ≤ t, it holds that:{

{f(αi)}i∈I
}
≡
{
U

(1)
F , . . . , U

(ℓ)
F

}
where f(x) is chosen uniformly at random from Ps,t and U

(1)
F , . . . , U

(ℓ)
F are ℓ independent random

variables that are uniformly distributed over F.

3.3 Multiple Polynomials

In the protocol for secure computation, parties hide secrets and distribute them using Shamir’s
secret sharing scheme. As a result, the adversary receives m · |I| shares, {f1(αi), . . . , fm(αi)}i∈I ,
for some value m. The secrets a1, . . . , am may not be independent. We therefore need to show that
the shares that the adversary receives for all secrets do not reveal any information about any of
the secrets. Intuitively, this follows from the fact that Claim 3.2 is stated for any two secrets s, s′,
and in particular for two secrets that are known and may be related. Formally:

Claim 3.4 For any m ∈ N, any set of non-zero distinct values α1, . . . , αn ∈ F, any two sets of
secrets (a1, . . . , am) ∈ Fm and (b1, . . . , bm) ∈ Fm, and any subset I ⊂ [n] of size |I| ≤ t, it holds
that: {

{(f1(αi), . . . , fm(αi))}i∈I
}
≡
{
{(g1(αi), . . . , gm(αi))}i∈I

}
where for every j, fj(x), gj(x) are chosen uniformly at random from Paj ,t and Pbj ,t, respectively.

Proof Sketch: Define the following hybrid ensemble, for k = 0, . . . ,m:

H(k) =
{
{(f1(αi), . . . , fk(αi), gk+1(αi), . . . , gm(αi))}i∈I

}
First, observe that H(1) = {{(g1(αi), . . . , gm(αi))}i∈I} and H(m) = {{(f1(αi), . . . , fm(αi))}i∈I}.
Next, we claim that H(k) ≡ H(k+1) for every k = 0, . . . ,m − 1. This follows immediately from
Claim 3.2 because the only difference between H(k) and H(k+1) is the (k + 1)th element: in
H(k) it is {gk+1(αi)}i∈I , whereas in H(k+1) it is {fk+1(αi)}i∈I), and by Claim 3.2 we know that
{gk+1(αi)}i∈I ≡ {fk+1(αi)}i∈I . We therefore conclude that H(0) ≡ H(m), and the claim follows.

3.4 Hiding the Leading Coefficient

In Shamir’s secret sharing scheme, the dealer creates shares by constructing a polynomial of degree t,
where its free coefficient is fixed and all the other coefficients are chosen uniformly at random. In
Claim 3.2 we showed that any t or fewer points on such a polynomial do not reveal any information
about the fixed coefficient which is the free coefficient.

We now consider this claim when we choose the polynomial differently. In particular, we now
fix the leading coefficient of the polynomial (i.e., the coefficient of the monomial xt), and choose
all the other coefficients uniformly and independently at random, including the free coefficient. As
in the previous section, we show that any subset of t or fewer points on such a polynomial do not
reveal any information about the fixed coefficient, which in this case is the leading coefficient. We
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will need this claim for proving the security of one of the sub-protocols for the malicious case (in
Section 6.3).

Let P lead
s,t be the set of all the polynomials of degree t with leading coefficient s. Namely, the

polynomials have the structure: f(x) = a[0] + a[1]x+ . . . a[t− 1]xt−1 + sxt. The following claim is
analogous to Claim 3.2:

Claim 3.5 For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values s, s′ ∈ F,
any subset I ⊂ [n] where |I| = ℓ ≤ t, and every y⃗ ∈ Fℓ it holds that:

Pr
f(x)∈RP lead

s,t

[
y⃗ =

(
{f(αi)}i∈I

)]
= Pr

g(x)∈RP lead
s′,t

[
y⃗ =

(
{g(αi)}i∈I

)]
=

1

|F|ℓ

The proof of Claim 3.5 is almost identical to that of Claim 3.2 and is therefore omitted. The
following corollary is derived from Claim 3.5 in the same way that Corollary 3.3 is derived from
Claim 3.2.

Corollary 3.6 For any secret s ∈ F, any set of distinct non-zero elements α1, . . . , αn ∈ F, and
any subset I ⊂ [n] where |I| = ℓ ≤ t, it holds that:{

{f(αi)}i∈I
}
≡
{
U

(1)
F , . . . , U

(ℓ)
F

}
where f(x) is chosen uniformly at random from P lead

s,t and U
(1)
F , . . . , U

(ℓ)
F are ℓ independent random

variables that are uniformly distributed over F.

3.5 Matrix Representation

In this section we present a useful representation for polynomial evaluation. We being by defining
the Vandermonde matrix for the values α1, . . . , αn. As we will see, the computation of a polynomial
on α1, . . . , αn can be obtained by multiplying the associated Vandermonde matrix with the vector
containing the polynomial coefficients.

Definition 3.7 (Vandermonde matrix for (α1, . . . , αn)) Let α1, . . . , αn be n distinct non zero ele-
ments from F. The Vandermonde matrix Vα⃗ for α⃗ = (α1, . . . , αn) is the n×n matrix over F defined

by Vα⃗[i, j]
def
= (αi)

j−1. That is,

Vα⃗
def
=



1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)
n−1


The following fact from linear algebra will be of importance to us:

Fact 3.8 Let α⃗ = (α1, . . . , αn), where all αi are distinct and non-zero. Then, Vα⃗ is invertible.
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Matrix representation of polynomial evaluations. Let Vα⃗ be the Vandermonde matrix for
α⃗ and let q = q[0] + q[1]x+ · · ·+ q[t]xt be a polynomial where t < n. Define the vector q⃗ of length

n as follows: q⃗
def
= (q[0], . . . q[t], 0, . . . , 0). Then, it holds that:

Vα⃗ · q⃗ =



1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)
n−1


·



q[0]

...

q[t]
0
...
0


=



q(α1)

...

...

q(αn)


which is the evaluation of the polynomial q(x) on the points α1, . . . , αn.

4 The Protocol for Semi-Honest Adversaries

4.1 Overview

We now provide a high-level overview of the protocol for t-privately computing any deterministic
functionality in the presence of a semi-honest adversary who has corrupted up to at most t < n/2
parties. Let f be the functionality that the parties wish to compute, and let C be an arithmetic
circuit that computes f . We assume that all arithmetic operations in the circuit are carried out
over a finite field F of size greater than n, and that the input of each party is an element from F. In
addition, we assume that the arithmetic circuit C consists of three types of gates: addition gates,
multiplication gates, and multiplication-by-a-constant gates. We require that no circuit-output
wire in the circuit is used as input into any other gate. This enables a topological sort over the
(computation of the) gates and output wires of the circuit, so that the output wires come strictly
after all gates.

The protocol works by having the parties jointly compute the circuit from the input gates to
the output gates, under the invariant that at each stage of the computation the parties hold Shamir
shares of the values on the wires up to the gates that have not yet been computed. In more detail,
the protocol has three phases:

• The input stage. In this stage, each party creates shares of its input using Shamir’s secret
sharing scheme using threshold t+ 1 (for a given t < n/2), and distributes the shares among
the parties.

• The computation stage. In this stage, the parties jointly compute the circuit C, gate by
gate. In each step, the parties compute shares of the output of a given gate, based on the
shares of the inputs to that gate that they already have. The actions of the parties in this
stage depends on the type of gate being computed:

1. Addition gate: Given shares of the input wires to the gate, the output is computed
without any interaction by each party simply adding their local shares together. Let the
inputs to the gate be a and b and let the shares of the parties be defined by two degree-
t polynomials fa(x) and fb(x) (meaning that each party Pi holds fa(αi), fb(αi) where
fa(0) = a and fb(0) = b). Then the polynomial fa+b(x) defined by shares fa+b(αi) =
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fa(αi) + fb(αi), for every i, is a degree-t polynomial with free coefficient a + b. Thus,
each party simply locally adds its own shares fa(αi), fb(αi) together, and the result is
that the parties hold legal shares of the sum of the inputs, as required.

2. Multiplication-by-a-constant gate: This type of gate can also be computed without any
interaction. Let the input to the gate be a and let fa(x) be the t-degree polynomial
defining the shares, as above. The aim of the parties is to obtain shares of the value c ·a,
where c is the constant of the gate. Then, each party Pi holding fa(αi) simply defines its
output share to be fc·a(αi) = c · fa(αi). It is clear that fc·a(x) is a degree-t polynomial
with free coefficient c · a, as required.

3. Multiplication gate: As above, let the inputs be a and b, and let fa(x) and fb(x) be the
polynomials defining the shares. Here, as in the case of an addition gate, the parties can
just multiply their shares together and define h(αi) = fa(αi) ·fb(αi). The free coefficient
of this polynomial is a · b, as required. However, h(x) may be of degree 2t instead of
t. Furthermore, h(x) is not a “random polynomial” but has a specific structure. For
example, h(x) is typically not irreducible (since it can be expressed as the product of
fa(x) and fb(x)). Thus, it does not suffice to use local computation here. The parties
therefore compute this gate by running an interactive protocol that t-privately computes
the multiplication functionality Fmult, defined by

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
where fab(x) is a random polynomial with free coefficient a · b (i.e., fab(x) ∈R Pa·b,t).

• The output stage. At the end of the computation stage, the parties hold shares of the
output wires. In order to obtain the actual output, the parties send their shares to one
another and reconstruct the values of the output wires. Specifically, if a given output wire
defines output for party Pi, then all parties send their shares of that wire value to Pi.

Organization of this section. In Section 4.2, we fully specify the above protocol and prove its
security in the Fmult-hybrid model. (Recall that in this model, the parties exchange real protocol
messages, and in addition have access to a trusted party who computes Fmult for them.) We also
derive a corollary for t-privately computing any linear function in the plain model (i.e., without any
use of the Fmult subfunctionality). Then, in Section 4.3, we show to t-privately compute the Fmult

functionality for any t < n/2. This involves specifying and implementing two subfunctionalities

F 2t
rand and F deg

reduce; see the beginning of Section 4.3 for an overview of the protocol for t-privately
computing Fmult and for the definition of these subfunctionalities.

4.2 Private Computation in the Fmult-Hybrid Model

In this section we present a formal description and proof of the protocol for t-privately computing
any deterministic functionality f in the Fmult-hybrid model. As we have mentioned, it is assumed
that all inputs are in a known field F of size greater than n, and that the arithmetic circuit C is
over F. Clearly, the field F and thus the circuit C are determined by the lengths of the inputs
and the number of parties. For simplicity, we also assume that each party’s input and output is a
single field element (and thus is associated with a single input and output wire). Thus, we refer to

12



a functionality of the form f : Fn → Fn. The extension to the case where a party’s input may be
comprised of multiple field elements is straightforward.

PROTOCOL 4.1 (t-Private Computation in the Fmult-Hybrid Model)

• Inputs: Each party Pi holds private input xi ∈ F

• Auxiliary input: Each party Pi holds an arithmetic circuit C over the field F, such that
for every x⃗ ∈ Fn it holds that C(x⃗) = f(x⃗), where f : Fn → Fn. The parties also hold a
description of F and distinct non-zero values α1, . . . , αn in F.

• The protocol:

1. The input stage: For every i ∈ {1, . . . , n}, upon input xi, party Pi chooses a
polynomial qi(x) uniformly from the set Pxi,t. For every j ∈ {1, . . . , n}, Pi sends
party Pj the value qi(αj).

Each party Pi records the values q1(αi), . . . , qn(αi) that it received.

2. The computation stage: Let g1, . . . , gℓ be a predetermined topological ordering of
the gates of the circuit. For k = 1, . . . , ℓ the parties work as follows:

– Case 1 – gk is an addition gate: Let βi
k and γi

k be the shares of input wires held
by party Pi. Then, Pi defines its share of the output wire to be δik = βi

k + γi
k.

– Case 2 – gk is a multiplication-by-a-constant gate with constant c: Let βi
k be the

share of the input wire held by party Pi. Then, Pi defines its share of the output
wire to be δik = c · βi

k.

– Case 3 – gk is a multiplication gate: Let βi
k and γi

k be the shares of input wires
held by party Pi. Then, Pi sends (βi

k, γ
i
k) to the ideal functionality Fmult and

receives back a value δik. Party Pi defines its share of the output wire to be δik.

3. The output stage: Let o1, . . . , on be the output wires, where party Pi’s output is
the value on wire oi. For every k = 1, . . . , n, denote by β1

k, . . . , β
n
k the shares that the

parties hold for wire ok. Then, each Pi sends Pk its share βi
k.

Upon receiving all shares, Pk computes reconstruct(β1
k, . . . , β

t+1
k ) and obtains a poly-

nomial gk(x) (note that t+1 of the n shares suffice). Pk then defines its output to be
gk(0).

We now prove the security of Protocol 4.1. We remark that in the Fmult-hybrid model, the
protocol is actually t-private for any t < n. However, as we will see, in order to t-privately compute
the Fmult functionality, we will need to set t < n/2.

Theorem 4.2 Let F be a finite field, let f : Fn → Fn be an n-ary functionality, and let t < n.
Then, Protocol 4.1 t-privately computes f in the Fmult-hybrid model, in the presence of a static
semi-honest adversary.

Proof: Intuitively, the protocol is t-private because the only values that the parties see until the
output stage are random shares. Since the threshold of the secret sharing scheme used is t + 1,
it holds that no adversary controlling t parties can learn anything. The fact that the view of
the adversary can be simulated is due to the fact that t shares of any two secrets are identically
distributed, as was formally proven in Claim 3.2. This implies that the simulator can generate the
shares based on any arbitrary value, and the resulting view is identical to that of a real execution.
Observe that this is true until the output stage where the simulator must make the random shares
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that were used match the actual output of the corrupted parties. This is not a problem because, by
interpolation, any set of t shares can be used to define a t-degree polynomial with its free coefficient
being the actual output.

Since C computes the functionality f , it is immediate that outputπ(x1, . . . , xn) = f(x1, . . . , xn),
where π denotes Protocol 4.1. We now proceed to show the existence of a simulator S as required
by Definition 2.2. Before describing the simulator, we present some necessary notation. Our proof
works by inductively showing that the partial view of the adversary at every stage is identical in
the simulated and real executions. Recall that the view of party Pi is the vector (xi, ri;m

i
1, . . . ,m

i
ℓ),

where xi is the party’s input, ri its random tape, mi
k is the kth message that it receives in the

execution, and ℓ is the overall number of messages received (in our context here, we let mi
k equal

the series of messages that Pi receives when the parties compute gate gk). For the sake of clarity,
we add to the view of each party the values σi

1, . . . , σ
i
ℓ, where σ

i
k equals the shares on the wires that

Party Pi holds after the parties compute gate gk. That is, we denote

viewπ
i (x⃗) =

(
xi, ri;m

i
1, σ

i
1, . . . ,m

i
ℓ, σ

i
ℓ

)
.

We stress that since the σi
k values can be efficiently computed from the party’s input, random tape

and incoming messages, this is equivalent and only a matter of notation.
Denote by viewπ,0

I (x⃗) the view of the corrupted parties after the input stage. Furthermore,

for every k ∈ {1, . . . , ℓ}, denote by viewπ,k
I (x⃗) the view of the parties after the execution of gate

gk. Finally, denote by viewπ,ℓ+1
I (x⃗) the view of the parties at the end of the protocol; that is,

viewπ,ℓ+1
I (x⃗) = viewπ

I (x⃗). Equivalently, we denote by S0 (I, x⃗I , fI (x⃗)) the view generated by
the simulator after the input stage, by Sk (I, x⃗I , fI (x⃗)) the view generated by the simulator after
simulating the execution of the kth gate, and by Sℓ+1 (I, x⃗I , fI (x⃗)) the final output S(I, x⃗I , fI(x⃗))
of the simulator.

We are now ready to describe the simulator S. Loosely speaking, S works by simply sending
random shares of arbitrary values until the output stage. Then, in the final output stage S sends
values so that the reconstruction of the shares on the output wires yield the actual output.

The Simulator S:

• Input: The simulator receives the inputs and outputs, {xi}i∈I and {yi}i∈I respectively, of all
corrupted parties.

• Simulation:

– Simulating the input stage:

1. For every i ∈ I, S chooses a uniformly distributed random tape for Pi; this random
tape and the input xi fully determines the degree-t polynomial q′i(x) ∈ Pxi,t chosen
by Pi in the protocol.

2. For every j /∈ I, S chooses a random degree-t polynomial q′k(x) ∈R P0,t with free
coefficient 0.

3. The view of the corrupted parties is then recorded by S to be {q′1(αi), . . . , q
′
n(αi)}i∈I

along with the random tapes chosen for Pi, for every i ∈ I.
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– Simulating the computation stage: For every gk ∈ {g1, . . . , gℓ}:
1. gk is an addition gate: Let {f(αi)}i∈I and {g(αi)}i∈I be the shares of the input wires

of the corrupted parties that were generated by S (initially these are input wires and
so the shares are defined by q′k(x) above). For every i ∈ I, the simulator S computes
f(αi) + g(αi) = (f + g)(αi) which defines the shares of the output wire of gk.

2. gk is a multiplication-with-constant gate: Let {f(αi)}i∈I be the shares of the input
wire and let c ∈ F be the constant of the gate. S computes c · f(αi) = (c · f)(αi) for
every i ∈ I which defines the shares of the output wire of gk.

3. gk is a multiplication gate: S chooses a degree-t polynomial f(x) uniformly at ran-
dom from P0,t (irrespective of the shares of the input wires), and defines the shares
of the corrupted parties of the output wire of gk to be {f(αi)}i∈I .

S adds the shares to the corrupted parties’ views.

– Simulating the output stage: Let o1, . . . , on be the output wires. We now focus on the
output wires of the corrupted parties. For every k ∈ I, the simulator S has already
defined |I| shares {βi

k}i∈I for the output wire ok. S thus chooses a random polynomial
g′k(x) of degree t under the following constraints:

1. g′k(0) = yk, where yk is the corrupted Pk’s output (the polynomial’s free coefficient
is the correct output).

2. For every i ∈ I, g′k(αi) = βi
k (i.e., the polynomial is consistent with the shares that

have already been defined).

(Note that if |I| = t, then the above constraints fully defines t+ 1 points, which in turn
fully defines the polynomial g′k(x). However, if |I| < t, then S can carry out the above
by choosing t− |I| additional random points and interpolating.)

Finally, S adds the shares {g′k(α1), . . . , g
′
k(αn)} to the view of the corrupted party Pk.

– S outputs the views of the corrupted parties and halts.

We now show by induction that the partial view (of any length) of the corrupted parties in
a real execution is identically distributed to the partial view (of the same length) output by the
simulator. We start with the base case, after the input stage has concluded.

Claim 4.3 For every x⃗ ∈ Fn and every I ⊂ [n] with |I| ≤ t,{
viewπ,0

I (x⃗)
}
≡
{
S0 (I, x⃗I , fI (x⃗))

}
Proof: In a real execution, the corrupted parties receive shares of all the real inputs x⃗, whereas
in the simulation they receive shares of x⃗′ (recall that x′i = xi for every i ∈ I, and x′j = 0 for every
j /∈ I). The view of the corrupted parties in a real execution equals:

viewπ,0
I (x⃗) =

{
{(q1(αi), . . . , qn(αi))}i∈I

}
where qk(x) is chosen uniformly at random in Pxk,t for every k ∈ [n]. The view of the corrupted
parties in the simulation equals:

S0 (I, x⃗I , fI (x⃗)) =
{{

(q′1(αi), . . . , q
′
n(αi))

}
i∈I

}
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where for every i ∈ I we have q′i(x) ∈R Pxi,t, and for every j /∈ I we have q′j(x) ∈R P0,t. Thus,
these differ on the polynomials q′j(x) for all j /∈ I. Nevertheless, by Claim 3.4 (using m = n− |I|),
we have that {

{qj(αi)}j /∈I;i∈I
}
≡
{{

q′j(αi)
}
j /∈I;i∈I

}
.

Thus, {
{(q1(αi), . . . , qn(αi))}i∈I

}
≡
{{

(q′1(αi), . . . , q
′
n(αi))

}
i∈I

}
and the real and simulated views of the input stage are identical.

We now prove the inductive step:

Claim 4.4 Let k ∈ {1, . . . , ℓ}. If{
viewπ,k−1

I (x⃗)
}
≡
{
Sk−1 (I, x⃗I , fI (x⃗))

}
,

then {
viewπ,k

I (x⃗)
}
≡
{
Sk (I, x⃗I , fI (x⃗))

}
.

Proof: Let k ∈ {1, . . . , ℓ}. Then the gate being computed is gk; we separately consider the case
that gk is an addition or multiplication-by-constant gate and the case that gk is a multiplication
gate.

If gk is an addition or multiplication-by-constant gate, then viewπ,k
I (x⃗) is a deterministic func-

tion of viewπ,k−1
I (x⃗), and Sk (I, x⃗I , fI (x⃗)) is a deterministic function of Sk−1 (I, x⃗I , fI (x⃗)). This

is due to the fact that the extension of the view involves either adding shares that appear in the
partial view of length k− 1 or multiplying them by a constant. Thus, if the partial views of length
k − 1 are identically distributed it is immediate that the partial views of length k are identically
distributed. (Stated differently, if X and Y are identically distributed, then A(X) and A(Y ) are
identically distributed for any algorithm A. In this case, A can be defined as the partial-view
extension operation described above.)

If gk is a multiplication gate, then the parties all send their shares on their input wires to
Fmult who sends back random shares of the actual value a · b of the output wire. In contrast, the
simulator chooses these values as random shares of zero. Now, by Claim 3.2 t random shares of
a · b are identically distributed to t random shares of 0. In addition, by the assumption, the partial
views until this point are also identically distributed. Thus, if the shares added in this step are
independent of the partial view of length k−1, then the partial views of length k are also identically
distributed. (This holds because if X1 ≡ Y1 and X2 ≡ Y2, and in addition X1, X2 are independent
and Y1, Y2 are independent, then (X1, X2) ≡ (Y1, Y2).) However, both Fmult and the simulator S
choose the shares randomly and independently of everything else that was generated so far. Thus,
independence holds as required. (We remark that the fact that in the real execution the shares
are to a · b which is related to the previous values is actually of no consequence. This is because
Claim 3.2 holds when both values being shared (in this case a · b and 0) are known, and likewise
the fact that the partial views of length k − 1 are identically distributed holds when x⃗ is known;
this latter fact is implicit in the fact that x⃗ is fixed in the ensemble. Now, observe that the value
a · b is fully determined given x⃗ and thus any dependence of the partial view on this value would
contradict the inductive assumption regarding the partial view of length k − 1.) This completes
the proof of the claim.
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It remains to show that the output of the simulation after the output stage is identical to the
view of the corrupted parties in a real execution. For simplicity, we assume that the output wires
appear immediately after multiplication gates (otherwise, they are fixed functions of these values).

Before proving this, we prove a lemma that describes the processes of the real execution and
simulation in a more abstract way. The aim of the lemma is to prove that the process carried out
by the simulator in the output stage yields the same distribution as in a protocol execution. We
first describe two processes and prove that they yield the same distribution, and later show how
these are actually the real and simulation processes.

Random Variable X(s) Random Variable Y (s)

(1) Choose f(x) ∈R Ps,t (1) Choose f ′(x) ∈R P0,t

(2) ∀i ∈ I, set βi = f(αi) (2) ∀i ∈ I, set β′
i = f ′(αi)

(3) – (3) Choose g(x) ∈R Ps,t s.t. ∀i ∈ I g(αi) = β′
i

(4) Output f(x) (4) Output g(x)

Observe that in Y (s) the polynomial f ′(x) is first chosen with free coefficient 0, and then only
afterwards g(x) is chosen with free coefficient s.

Lemma 4.5 For every s ∈ F, it holds that {X(s)} ≡ {Y (s)}.

Proof: Define X(s) = (X1, X2) and Y (s) = (Y1, Y2), where X1 (resp., Y1) are the output values
from step (2) of the process, and X2 (resp., Y2) are the output polynomials from step (4) of the
process. From Claim 3.2, it immediately follows that {X1} ≡ {Y1}. It therefore suffices to show
that {X2 | X1} ≡ {Y2 | Y1}. Stated equivalently, we wish to show that for every set of field values
{βi}i∈I and every h(x) ∈ Ps,t,

Pr
[
X2(x) = h(x) | ∀i : X2(αi) = βi

]
= Pr

[
Y2(x) = h(x) | ∀i : Y2(αi) = βi

]
where {βi}i∈I are the conditioned values in X1 and Y1 (we use the same βi for both since these are
identically distributed and we are now conditioning them). First, if there exists an i ∈ I such that
h(αi) ̸= βi then both probabilities above are 0. We now compute these probabilities for the case
that h(αi) = βi for all i ∈ I. We first claim that

Pr
[
Y2(x) = h(x) | ∀i : Y2(αi) = βi

]
=

1

|F|t−|I| .

This follows immediately from the process for generating the random variable Y (s), because Y2(x) =
g(x) is chosen at random under the constraint that for every i ∈ I, g(αi) = βi. Since |I|+ 1 points
are already fixed (the βi values and the free coefficient s), there are |F|t−|I| different polynomials
of degree-t that meet these constraints, and Y2 is chosen uniformly from them.

It remains to show that

Pr
[
X2(x) = h(x) | ∀i : X2(αi) = βi

]
=

1

|F|t−|I| .

In order to see this, observe that

Pr
[
X2(x) = h(x) ∧ ∀i : X2(αi) = βi

]
= Pr

[
X2(x) = h(x)

]
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because in this case, we consider only polynomials h(x) for which h(αi) = βi for all i ∈ I, and so
the conditioning adds nothing. We conclude that

Pr
[
X2(x) = h(x) | ∀i : X2(αi) = βi

]
=

Pr
[
X2(x) = h(x) ∧ ∀i : X2(αi) = βi

]
Pr
[
∀i : X2(αi) = βi

]
=

Pr
[
X2(x) = h(x)

]
Pr
[
∀i : X2(αi) = βi

]
=

1

|F|t
· |F||I| = 1

|F|t−|I| ,

where the last equality follows because f(x) = X2(x) ∈R Ps,t and by Claim 3.2 the probability
that the points X2(αi) = βi for all i ∈ I equals |F|−|I|.

The random variables X(s) and Y (s) can be extended to X(s⃗) and Y (s⃗) for any s⃗ ∈ Fm (for
some m ∈ N); the proof of the analogous lemma then follows from standard arguments, as in
Corollary 3.4.

Claim 4.6 If {
viewπ,ℓ

I (x⃗)
}
≡
{
Sℓ (I, x⃗I , fI (x⃗))

}
, (3)

then {
viewπ,ℓ+1

I (x⃗)
}
≡
{
Sℓ+1 (I, x⃗I , fI (x⃗))

}
.

Proof: In the output stage, for every k ∈ I, the corrupted parties receive the points gk(α1), . . . ,
gk(αn) (resp. the points g′k(α1), . . . , g

′
k(αn) in the simulation). Equivalently, we can say that the

corrupted parties receive the polynomials {gk(x)}k∈I (resp. {g′k(x)}k∈I).
In the protocol execution, functionality Fmult chose the polynomial fk(x) for the output wire

of Pk uniformly at random in Pyk,t. Then, the corrupted parties received values βi = fk(αi) (for
every i ∈ I). Finally, as we have just described, in the output stage, the corrupted parties receive
the polynomials fk(x) themselves. Thus, this is exactly the process X(yk). Extending to all k ∈ I,
we have that this is the extended process X(s⃗) with s⃗ being the vector containing the corrupted
parties’ output values {yk}k∈I .

In contrast, in the simulation of the multiplication gate leading to the output wire for party Pk,
the simulator S chose the polynomial f ′

k(x) uniformly at random in P0,t (see the specification of S
above), and the corrupted parties received values βi = fk(αi) (for every i ∈ I). Now, in the output
stage, S chose g′k(x) at random from Pyk,t under the constraint that g′k(αi) = βi for every i ∈ I.
Thus, this is exactly the process Y (yk). Extending to all k ∈ I, we have that this is the extended
process Y (s⃗) with s⃗ being the vector containing the corrupted parties’ output values {yk}k∈I . The
claim thus follows from Lemma 4.5.

Combining Claims 4.3 to 4.6 we have that
{
Sℓ+1 (I, x⃗I , fI (x⃗))

}
≡
{
viewπ,ℓ+1

I (x⃗)
}
. This com-

pletes the proof because Sℓ+1 (I, x⃗I , fI (x⃗)) = S (I, x⃗I , fI(x⃗)) and viewπ,ℓ+1
I (x⃗) = viewπ

I (x⃗).
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Privately computing linear functionalities in the real model. Theorem 4.2 states that
every function can be t-privately computed in the Fmult-hybrid model, for any t < n. However, a
look at Protocol 4.1 and its proof of security show that Fmult is only used for computing multipli-
cation gates in the circuit. Thus, Protocol 4.1 can actually be directly used for privately computing
any linear functionality f , since such functionalities can be computed by circuits containing only
addition and multiplication-by-constant gates. Furthermore, the protocol is secure for any t < n;
in particular, no honest majority is needed. This yields the following corollary.

Corollary 4.7 Let t < n. Then, any linear functionality f can be t-privately computed in the
presence of a static semi-honest adversary. In particular, the matrix-multiplication functionality
FA(x⃗) = A · x⃗ for matrix A ∈ Fn×n can be t-privately computed in the presence of a static semi-
honest adversary.

4.3 Privately Computing the Fmult Functionality

We have shown how to t-privately compute any functionality in the Fmult-hybrid model. In order
to achieve private computation in the plain model, it therefore remains to show how to privately
compute the Fmult functionality. We remark that the threshold needed to privately compute Fmult

is t < n/2, and thus the overall threshold for the generic BGW protocol is t < n/2. Recall that the
Fmult functionality is defined by

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
where fa(x) ∈ Pa,t, fb(x) ∈ Pb,t, and fab(x) ∈R Pa·b,t for some a, b. Equivalently, this can defined
as follows:

Fmult((β1, γ1), . . . , (βn, γn)) = (δ1, . . . , δn)

where reconstruct(β1, . . . , βn) is a polynomial fa(x) ∈ Pa,t, reconstruct(γ1, . . . , γn) is a polynomial
fb(x) ∈ Pb,t, and reconstruct(δ1, . . . , δn) is a random polynomial fab(x) ∈R Pa·b,t. (Here we use
reconstruct to denote the unique polynomial defined by the points it receives.)

As we have discussed above, the simple solution where each party locally multiplies its two
shares does not work here, for two reasons. First, the resulting polynomial is of degree 2t and not t
as required. Second, the resulting polynomial is not uniformly distributed amongst all polynomials
with the required free coefficient. Based on the above, the Fmult functionality is computed according
to the following steps:

1. Each party locally multiplies its input shares.

2. The parties run a protocol to generate a random polynomial in P0,2t, and each party receives
a share based on this polynomial. Then, each party adds its share of the product (from the
previous step) with its share of this polynomial. The resulting shares thus define a polynomial
which is uniformly distributed in Pa·b,2t.

3. The parties run a protocol to reduce the degree of the polynomial to t, with the result being
a polynomial that is uniformly distributed in Pa·b,t, as required. This computation uses a
t-private protocol for computing matrix multiplication. Fortunately, we have already shown
how to achieve this in Corollary 4.7 at the end of Section 4.2.
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The randomizing and degree-reduction functionalities for carrying out the above steps are formally
defined as follows:

• The randomization functionality: The randomization functionality is defined as follows:

F 2t
rand(λ, . . . , λ) = (σ1, . . . , σn),

where reconstruct(σ1, . . . , σn) ∈R P0,2t, and λ denotes the empty string. We will show how to
t-privately compute this functionality in Section 4.3.2.

• The degree-reduction functionality: Let h(x) = h[0]+ . . .+h[2t]x2t be a polynomial, and denote
by trunct(h(x)) the polynomial of degree t with coefficients h[0], . . . , h[t]. That is, trunct(h(x)) =
h[0]+h[1]x+. . .+h[t]xt. (Observe that this is a deterministic functionality.) Formally, we define

F deg
reduce(β1, . . . , βn) = (δ1, . . . , δn) where reconstruct(δ1, . . . , δn) = trunct(reconstruct(β1, . . . , βn)).

Note that if reconstruct(β1, . . . , βn) is a random polynomial then it has random coefficients. This
then implies that the truncated polynomial is also random (because it has the same coefficients).
We will show how to t-privately compute this functionality in Section 4.3.3.

4.3.1 Privately Computing Fmult in the (F 2t
rand, F

deg
reduce)-Hybrid Model

We now prove that Fmult is reducible to the functionalities F 2t
rand and F deg

reduce; that is, we construct

a protocol that t-privately computes Fmult given access to ideal functionalities F deg
reduce and F 2t

rand.

PROTOCOL 4.8 (t-Privately Computing Fmult)

• Input: Each party Pi holds values βi, γi, such that reconstruct(β1, . . . , βn) ∈ Pa,t and
reconstruct(γ1, . . . , γn) ∈ Pb,t for some a, b ∈ F.

• The protocol:

1. Each party locally computes si = βi · γi.
2. Randomize: Each party Pi sends λ to F 2t

rand (formally, it writes λ on its oracle tape
for F 2t

rand). Let σi be the oracle response for party Pi.

3. Reduce the degree: Each party Pi sends (si + σi) to F deg
reduce. Let δi be the oracle

response for Pi.

4. Each party Pi outputs δi.

Proposition 4.9 Let t < n/2. Then, Protocol 4.8 t-privately computes Fmult in the (F 2t
rand, F

deg
reduce)-

hybrid model, in the presence of a static semi-honest adversary.

Proof: The parties do not receive messages from other parties in the oracle-aided protocol; rather
they receive messages from the oracles only. Therefore, our simulator only needs to simulate the
oracle-response messages. Since the Fmult functionality is probabilistic, we must prove its security
using Definition 2.1.

In the real execution of the protocol, the corrupted parties’ inputs are given by {fa(αi)}i∈I
and {fb(αi)}i∈I . Then, in the randomize step of the protocol they receive shares σi of a random
polynomial of degree 2t with free coefficient 0. Denoting this polynomial by r(x), we have that the

corrupted parties receive the values {r(αi)}i∈I . Next, the parties invoke the functionality F deg
reduce
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and receive back the values δi (these are points of the polynomial trunct(fa(x) ·fb(x)+r(x))). These
values are actually the parties’ output, and thus the simulator must make the output of the call to
F deg
reduce be the shares {δi}i∈I of the corrupted parties outputs.

The simulator S:

• Input: The simulator receives as input I, the inputs of the corrupted parties {(βi, γi)}i∈I ,
and their outputs {δi}i∈I .

• Simulation:

– S chooses |I| values uniformly and independently at random, {vi}i∈I .
– For every i ∈ I, the simulator defines the view of the party Pi to be: (βi, γi, vi, δi), where

(βi, γi) is Pi’s input, vi is Pi’s oracle response from F 2t
rand, and δi is Pi’s oracle response

from F deg
reduce.

Intuitively, the above simulation strategy is as required since F 2t
rand returns shares that are

independent of both the input and output. It is immediate that the shares are independent of the
input. Regarding the output, this follows from the fact that F 2t

rand returns a random polynomial
of degree 2t and the output shares are influenced only by the first t coefficients. Thus, the last t
coefficients provide sufficient randomness to create independence between the |I| ≤ t shares viewed
by the corrupted parties after F 2t

rand, and the overall output of the protocol.
We now proceed to prove that the joint distribution of the output of all the parties, together

with the view of the corrupted parties is distributed identically to the output of all parties as
computed from the functionality Fmult and the output of the simulator. We first show that the
outputs of all parties are distributed identically in both cases. Then, we show that the view of the
corrupted parties is distributed identically, given the outputs (and inputs) of all parties.

The outputs. Since the inputs and outputs of all the parties lie on the same polynomials, it
is enough to show that the polynomials are distributed identically. Let fa(x), fb(x) be the input
polynomials. Let r(x) be the output of the F 2t

rand functionality. Finally, denote the truncated result

by ĥ(x)
def
= trunc(fa(x) · fb(x) + r(x)).

In the real execution of the protocol, the parties output shares based on the polynomial ĥ(x).
From the way it is defined, it is immediate that ĥ(x) is a degree-t polynomial that is uniformly
distributed in Pa·b,t. (In order to see that it is uniformly distributed, observe that with the exception
of the free coefficient, all the coefficients of the degree-2t polynomial fa(x) ·fb(x)+r(x) are random.
Thus the coefficients of x, . . . , xt in ĥ(x) are random, as required.)

On the other hand, the functionality Fmult return shares for a random polynomial of degree t
that hides the free coefficient fa(0) · fb(0) = a · b. Thus, the outputs of the parties in both cases are
distributed identically.

The view of the corrupted parties. We show that the view of the corrupted parties is dis-
tributed identically, given the inputs and outputs of all parties. Observe that the inputs and outputs
define the polynomials fa(x), fb(x) and fab(x). Now, the output of the simulator is{

{fa(αi), fb(αi), vi, fab(αi)}i∈I
}
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where all the vi values are uniformly distributed in F, and independent of fa(x), fb(x) and fab(x). It
remains to show that in a protocol execution the analogous values – which are the outputs received
by the corrupted parties from F 2t

rand – are also uniformly distributed and independent of fa(x), fb(x)

and ĥ(x) (where ĥ(x) is distributed identically to a random fab(x), as already shown above). In
order to prove this, it suffices to prove that for every vector y⃗ ∈ F|I|,

Pr
[
y⃗ = r⃗ | fa(x), fb(x), ĥ(x)

]
=

1

|F||I|
(4)

where r⃗ = (r(αi1), . . . , r(αi|I|)) for I = {i1, . . . , i|I|}; i.e., r⃗ is the vector of outputs from F 2t
rand,

computed from the polynomial r(x) ∈R P0,2t, that are received by the corrupted parties. Observe
that it suffices to prove Eq. (4) since if this probability is indeed 1/|F||I|, then this implies that r⃗
is comprised of |I| uniformly and independently distributed elements from F.

We write r(x) = r1(x)+xt · r2(x), where r1(x) ∈R P0,t and r2(x) ∈R P0,t. In addition, we write
fa(x) · fb(x) = h1(x) + xt · h2(x), where h1(x) ∈ Pab,t and h2(x) ∈ P0,t. Observe that:

ĥ(x) = trunc
(
fa(x) · fb(x) + r(x)

)
= trunc

(
h1(x) + r1(x) + xt · (h2(x) + r2(x))

)
= h1(x) + r1(x)

where the last step is true since the free coefficient of both h2(x), r2(x) is 0, and they therefore add
nothing to the coefficient of xt. Rewriting Eq. (4), we need to prove that for every vector y⃗ ∈ F|I|,

Pr
[
y⃗ = r⃗ | fa(x), fb(x), h1(x) + r1(x)

]
=

1

|F||I|

where the kth element rk of r⃗ is r1(αik) + (αik)
t · r2(αik). It follows that for any given yk ∈ F, the

equality yk = r1(αik)+ (αik)
t · r2(αik) holds if and only if r2(αik) = (αik)

−t · (yk− r1(αik), where by
the conditioning all the values αik , yk, r1(αik) on the right hand side are fixed (observe that h1(x)
is fixed given fa(x) and fb(x), and thus r1(x) is fixed given fa(x), fb(x) and h1(x) + r1(x)). In
addition, by the protocol description, r2(x) is clearly independent of fa(x), fb(x) and h1(x)+ r1(x).
We conclude that Eq. (4) holds if and only if

Pr

[ ∧
k∈I

r2(αik) = (αik)
−t · (yk − r1(αik))

]
=

1

|F||I|
,

which is exactly what is proven in Corollary 3.3. We conclude that the view of the corrupted
parties is identically distributed to the output of the simulator, when conditioning on the inputs
and outputs of all parties.

4.3.2 Privately Computing F 2t
rand in the Plain Model

The randomization functionality is defined as follows:

F 2t
rand(λ, . . . , λ) = (δ1, . . . , δn),

where reconstruct(δ1, . . . , δn) ∈R P0,2t, and λ denotes the empty string. The protocol for implement-
ing the functionality works as follows. Each party Pi chooses a random polynomial qi(x) ∈R P0,2t

and sends the share qi(αj) to every party Pj . Then, each party Pi outputs δi =
∑n

k=1 qk(αi).
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Clearly, the shares δ1, . . . , δn define a polynomial with free coefficient 0, because all the polynomi-
als in the sum have a zero free coefficient. Furthermore, the sum of random 2t-degree polynomials
is a random polynomial in P0,2t, as required. See Protocol 4.10 for a formal description.

PROTOCOL 4.10 (Privately Computing F 2t
rand)

• Input: The parties do not have inputs for this protocol.

• The protocol:

– Each party Pi chooses a random polynomial qi(x) ∈R P0,2t. Then, for every j ∈
{1, . . . , n} it sends si,j = qi(αj) to party Pj .

– Each party Pi receives s1,i, . . . , sn,i and computes δi =
∑n

j=1 sj,i.

– Each party Pi outputs δi.

We now prove that Protocol 4.10 t-privately computes F 2t
rand.

Claim 4.11 Let t < n/2. Then, Protocol 4.10 t-privately computes the F 2t
rand functionality, in the

presence of a static semi-honest adversary.

Proof: Intuitively, the protocol is secure because the only messages that the parties receive
are random shares of polynomials in P0,2t. The simulator can easily simulate these messages by
generating the shares itself. However, in order to make sure that the view of the corrupted parties
is consistent with the actual output provided by the functionality, the simulator needs to choose
the shares so that their sum equals δi, the output provided by the functionality to each Pi.

The simulator S:

• Input: The simulator receives as input I and the outputs of the corrupted parties {δi}i∈I .

• Simulation:

– S chooses n random polynomials q′j(x) ∈R P0,2t for every j ∈ [n], under the constraint
that (

∑n
j=1 q

′
j(αi)) = δi, for every i ∈ I. (Note that for i ∈ I, this involves setting the

random tape of Pi so that it results in it choosing q′i(x).)

– S sets s′j,i = q′j(αi) for every j ∈ [n] and every i ∈ I, and writes the incoming messages
of corrupted party Pi in the protocol to be (s′1,i, . . . , s

′
n,i).

We now show that the view of the corrupted parties and the output of all parties is distributed
identically to the output of the simulator and the output of all parties as received from the func-
tionality. The output of all the parties lie on a single polynomial and so we show that the joint
distribution of the corrupted parties’ view (containing the polynomials {qi(x)}i∈I and the points
{qj(αi)}j /∈I;i∈I) and the output polynomial is the same in the real and ideal executions.

More formally, we need to prove that:{qi(x), q1(αi), . . . , qn(αi)}i∈I ,
n∑

j=1

qj(x)

 ≡
{q′i(x), q′1(αi), . . . , q

′
n(αi)

}
i∈I , q

′(x)

 (5)
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where for every j ∈ [n] the polynomials qj(x) are distributed uniformly at random in P0,2t (this
is the left-hand side that relates to a real protocol execution), and the polynomials q′j(x) are

distributed uniformly at random in P0,2t under the constraint that
∑n

j=1 q
′
j(αi) = δi, for every

i ∈ I. The polynomial q′(x) is the unique polynomial passing through all points {(αj , δj)}nj=1.
First observe that since all the polynomials q′(x), q1(x), . . . , qn(x) are chosen uniformly at ran-

dom from P0,2t, we have that q′(x)

 ≡


n∑
j=1

qj(x)

 ,

implying that the outputs of all parties are identically distributed in the real and ideal execution.
We proceed to show that the view of the corrupted parties is distributed identically, conditioned
on the output of all parties. That is, we show that:{qi(x), q1(αi), . . . , qn(αi)}i∈I

∣∣∣ n∑
j=1

qj(x)

 ≡
{q′i(x), q′1(αi), . . . , q

′
n(αi)

}
i∈I

∣∣∣ q′(x)


The conditional distribution on the left-hand side is equivalent to fixing a polynomial q(x), choosing
q1(x), . . . , qn(x) at random under the constraint that

∑n
j=1 qj(x) = q(x), and then outputting

the corrupted parties’ polynomials {qi(x)}i∈I and points {q1(αi), . . . , qn(αi)}i∈I . In contrast, the
conditional distribution on the right-hand side is exactly what the simulator does (since it receives
points from an already fixed q′(x)). The actions of the simulator are equivalent to choosing the
points q′1(αi), . . . , q

′
n(αi) at random under the constraint that

∑n
j=1 q

′
j(αi) = q′(αi) = δi, for every

i ∈ I, and then choosing the remaining points completely at random. The equivalence follows
since these two processes are identical (choosing random polynomials under the constraint and
outputting points and choosing random points under the constraint and completing the polynomials
at random).

4.3.3 Privately Computing F deg
reduce in the FA(x⃗)-Hybrid Model

Recall that the F deg
reduce functionality is defined by

F deg
reduce(β1, . . . , βn) = (δ1, . . . , δn),

where reconstruct(δ1, . . . , δn) = trunct(reconstruct(β1, . . . , βn)), and trunct(h(x)) is the polynomial
of degree t with coefficients h[0], . . . , h[t]. We begin by showing that in order to transform a vector
of shares of the polynomial h(x) to shares of the polynomial trunct(h(x)), it suffices to multiply the
input shares by a certain matrix of constants.

Claim 4.12 There exists a constant matrix A ∈ Fn×n such that the following holds. For every pair
of vectors β⃗ = (β1, . . . , βn) and δ⃗ = (δ1, . . . , δn) such that reconstruct(β1, . . . , βn) is a polynomial
of degree 2t with t < n/2 and reconstruct(δ1, . . . , δn) = trunct(reconstruct(β1, . . . , βn)), it holds that
δ⃗ = A · β⃗.

Proof: Let h(x) = reconstruct(β1, . . . , βn) and denote h(x) = h[0] + h[1]x+ . . . h[2t]x2t. Further-
more, denote by h⃗ the vector of length n:

h⃗ = (h[0], . . . , h[t], . . . , h[2t], 0, . . . 0) .
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By definition, βi = h(αi) for every i ∈ {1, . . . , n}. Let Vα⃗ be the n × n Vandermonde matrix for
the set α⃗. As we have seen in Section 3.5, it holds that:

Vα⃗ · h⃗ = β⃗ .

Since Vα⃗ is invertible, we have that

h⃗ = V −1
α⃗ · β⃗. (6)

Let k = trunct(h) be the truncated polynomial k(x) = h[0]+h[1]x+ . . . h[t]xt. Again, by definition,
δi = k(αi). Furthermore, denoting

k⃗ = (h[0], . . . , h[t], 0, . . . , 0).

we have that

Vα⃗ · k⃗ = δ⃗ . (7)

Now, let T = {1, . . . , t}, and let PT be the linear projection of T ; i.e., PT is an n× n matrix such
that PT (i, j) = 1 for every i = j ∈ T , and PT (i, j) = 0 for all other values. It thus follows that

PT · h⃗ = k⃗ . (8)

Combining Equations (7) and (8), we have that:

Vα⃗ · PT · h⃗ = δ⃗ .

Next, combining this with Eq. (6) we have:

Vα⃗ · PT · V −1
α⃗ · β⃗ = δ⃗.

Defining the constant matrix A
def
= Vα⃗ · PT · V −1

α⃗ , we have that for every β⃗ and δ⃗ as in the claim, it
holds that

A · β⃗ = δ⃗,

as required.

By the above claim it follows that the parties can compute F deg
reduce by simply multiplying their

shares with the constant matrix A from above. That is, the entire protocol for t-privately computing
F deg
reduce works by the parties t-privately computing the matrix multiplication functionality FA(x⃗)

with matrix A as above. By Corollary 4.7 (see the end of Section 4.2), FA(x⃗) can be t-privately com-
puted for any t < n. Since the entire degree reduction procedure consists of t-privately computing
FA(x⃗), we have the following proposition:

Proposition 4.13 For every t < n/2, there exists a protocol for t-privately computing the F deg
reduce,

in the presence of a static semi-honest adversary.

25



4.4 Conclusion

In Section 4.3.1 we proved that there exists a t-private protocol for computing the Fmult functionality
in the (F 2t

rand, F
deg
reduce)-hybrid model, for any t < n/2. Then, in Sections 4.3.2 and 4.3.3 we showed

that F 2t
rand and F deg

reduce, respectively, can be t-privately computed (in the plain model) for any
t < n/2. Finally, in Theorem 4.2 we showed that any n-ary functionality can be privately computed
in the Fmult-hybrid model, for any t < n. Combining the above with the modular sequential
composition theorem described in Section 2.3, we conclude that:

Corollary 4.14 Let F be a finite field, let f : Fn → Fn be an n-ary functionality, and let t < n/2.
Then, there exists a protocol for t-privately computing f in the presence of a static semi-honest
adversary.

5 Verifiable Secret Sharing (VSS)

5.1 Background

Verifiable secret sharing [10] (VSS) is a protocol for sharing a secret in the presence of malicious
adversaries. Recall that a secret sharing scheme (with threshold t+1) is made up of two stages. In
the first stage, the dealer shares a well-defined secret so that any t+1 parties can later reconstruct
the secret, while any subset of t or fewer parties will learn nothing whatsoever about the secret. In
the second stage, a set of t+1 or more parties reconstruct the secret. If we consider Shamir’s secret-
sharing scheme, as in the semi-honest BGW construction, much can go wrong if the adversary is
malicious. First, in order to share a secret s, the dealer is supposed to choose a random polynomial
q(·) of degree t with q(0) = s and then hand each party Pi its share q(αi). However, nothing
prevents the dealer from choosing a polynomial of higher degree. This is a problem because it
means that different subsets of t + 1 parties may reconstruct different values. Thus, the shared
value is not well defined. Second, in the reconstruction phase each party Pi provides its share
q(αi). However, a corrupted party can provide a different value, thus effectively changing the value
of the reconstructed secret, and the other parties have no way of knowing that the provided value is
incorrect. Thus, we must use a method that either prevents the corrupted parties from presenting
incorrect shares, or ensures that it is possible to reconstruct the correct secret s given n− t correct
shares even if they are mixed together with t incorrect shares (and no one knows which of the shares
are correct or incorrect). Note that in the context of multiparty computation, n parties participate
in the reconstruction and not just t+ 1; this is utilized in the construction.

The BGW protocol for verifiable secret sharing solves the above problems by adding elements
to the share stage of the protocol so that the shares received by the honest parties (with t < n/3)
are guaranteed to be q(αi) for a well-defined degree-t polynomial q, even if the dealer is corrupted.
Then, they show that as long as t < n/3, it is possible to use techniques from the field of error-
correcting codes in order to reconstruct q (and thus q(0) = s) as long as n − t correct shares are
provided. Indeed, they observe that Shamir’s secret-sharing scheme when looked at in this context
is exactly a Reed-Solomon code, and Reed-Solomon codes can correct up to t errors, for t < n/3.
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5.2 The Reed-Solomon Code

We briefly describe the Reed-Solomon code, and its use in our context. First, recall that a linear
[n, k, d]-code over a field F of size q is a code of length n (meaning that each codeword is comprised
of n field elements), of dimension k (meaning that there are qk different codewords), and of distance
d (meaning that every two codewords are of Hamming distance at least d from each other).

We are interested in constructing a code of length n and dimension k = t+1. The Reed-Solomon
code for these parameters is constructed as follows. Let F be a finite field such that F > n, and
let α1, . . . , αn be distinct field elements. Let m = (m0, . . . ,mt) be a message to be encoded, where
each mi ∈ F. The encoding of m is as follows:

1. Define a polynomial pm(x) = m0 +m1x+ . . .+mtx
t of degree t

2. Compute the codeword C(m) = ⟨pm(α1), . . . , pm(αn)⟩

It is well known that the distance of this code is n− t. (In order to see this, recall that for any two
different polynomials p1, p2 of degree at most t, there are at most t points α for which p1(α) = p2(α).
Noting that m ̸= m′ define different polynomials pm ̸= pm′ , we have that C(m) and C(m′) agree
in at most t places, and so d(C(m), C(m′)) ≥ n − t.) The following is a well-known fact from the
error correcting code literature:

Fact 5.1 The Reed-Solomon code is a linear [n, t + 1, n − t]-code. In addition, there exists an
efficient decoding algorithm that corrects up to n−t−1

2 errors. That is, for every m ∈ Ft+1 and every
x ∈ Fn such that d(x,C(m)) ≤ n−t−1

2 , the decoding algorithm returns m.

Let t < n/3, and so n ≥ 3t + 1. Plugging this into the above, we have that it is possible to
efficiently correct up to 3t+1−t−1

2 = t errors.

Reed-Solomon and Shamir’s secret-sharing. Assume that n parties hold shares q(αi) of a
degree-t polynomial, as in Shamir’s secret-sharing scheme. That is, the dealer distributed shares
q(αi) where q ∈R Ps,t for a secret s ∈ F. We can view the shares ⟨q(α1), . . . , q(αn)⟩ as a Reed-
Solomon codeword. Now, in the reconstruction phase, the honest parties all provide their correct
share q(αi), whereas the corrupted parties may provide incorrect values. However, since the number
of corrupted parties is t < n/3, it follows that at most t of the symbols are incorrect.3 Thus, the
Reed-Solomon reconstruction procedure can be run and the honest parties can all obtain the correct
polynomial q, and can compute q(0) = s.

We conclude that in such a case the corrupted parties cannot effectively cheat in the recon-
struction phase. Indeed, even if they provide incorrect values, it is possible for the honest parties
to correctly reconstruct the secret with probability 1. Thus, the main challenge in constructing a
verifiable secret-sharing protocol is how to force a corrupted dealer to distribute shares that are
consistent with a degree-t polynomial. Once we have achieved this, the corrupted parties cannot
do anything to interfere with the reconstruction of the correct secret.

3This is one of the reasons that in the case of a malicious adversary, we can only tolerate t < n/3 corrupted
parties, whereas in the case of a semi-honest adversary we could tolerate up to t < n/2 corrupted parties.
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5.3 Bivariate Polynomials

Bivariate polynomials are a central tool used by the BGW verifiable secret sharing protocol (in the
sharing stage). We therefore provide a short background to bivariate polynomials in this section.

A bivariate polynomial of degree t is a polynomial over two variables, each of which has degree
at most t. Such a polynomial is defined as follows:

f(x, y) =

t∑
i=0

t∑
j=0

ai,j · xi · yj .

We denote by Bs,t the set of all bivariate polynomials of degree t and with free coefficient s (we
stress that whenever we say the degree t of a bivariate polynomial, we mean that it is of degree at
most t in each one of the variables). Note that the number of coefficients of a bivariate polynomial
in Bs,t is (t+1)2−1 = t2+2t (there are (t+1)2 coefficients, but the free coefficient is already fixed
to be s).

When considering univariate polynomials, t+1 points define a unique polynomial of degree t. In
this case, each point is a pair (αk, βk) and there exists a unique polynomial f such that f(αk) = βk
for all t+ 1 given points {(αk, βk)}t+1

k=1.
The analogous statement for bivariate polynomials is that t + 1 univariate polynomials of de-

gree t define a unique bivariate polynomial of degree t. In the case of a degree-t bivariate polynomial
S(x, y), fixing the y-value to be some α defines a degree-t univariate polynomial f(x) = S(x, α).
Likewise, fixing any t + 1 values α1, . . . , αt+1 fully defines t + 1 degree-t univariate polynomials
fk(x) = S(x, αk). What we show now is that like in the univariate case, this works in the oppo-
site direction as well. Specifically, given t + 1 values α1, . . . , αt+1 and t + 1 degree-t polynomials
f1(x), . . . , ft+1(x) there exists a unique bivariate polynomial S(x, y) such that S(x, αk) = fk(x),
for every k = 1, . . . , t+ 1. This is formalized in the next claim, which was proven in [13]:

Claim 5.2 Let t be a nonnegative integer, let α1, . . . , αt+1 be t+ 1 distinct elements in F, and let
f1(x), . . . , ft+1(x) be t+1 polynomials of degree t. Then, there exists a unique bivariate polynomial
S(x, y) of degree t such that for every k = 1, . . . , t+ 1 it holds that:

S(x, αk) = fk(x) (9)

Proof: Define the bivariate polynomial S(x, y) via the Lagrange interpolation:

S(x, y) =
t+1∑
i=1

fi(x) ·
∏

j ̸=i(y − αj)∏
j ̸=i(αi − αj)

It is easy to see that S(x, y) has degree t. Moreover, for every k = 1, . . . , t+ 1 it holds that:

S(x, αk) =
t+1∑
i=1

fi(x) ·
∏

j ̸=i(αk − αj)∏
j ̸=i(αi − αj)

= fk(x) ·
∏

j ̸=k(αk − αj)∏
j ̸=k(αk − αj)

+
∑

i∈[t+1]\{k}

fi(x) ·
∏

j ̸=i(αk − αj)∏
j ̸=i(αi − αj)

= fk(x) + 0

= fk(x)
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and S(x, y) therefore satisfies Eq. (9). It remains to show that S is unique. Assume that there
exist two different t-degree bivariate polynomials S1(x, y) and S2(x, y) that satisfy Eq. (9). Define
the polynomial

R(x, y)
def
= S1(x, y)− S2(x, y) =

t∑
i=0

t∑
j=0

ri,jx
iyj .

We will now show that R(x, y) = 0. First, for every k ∈ [t+ 1] it holds that:

R(x, αk) =

t∑
i,j=0

ri,jx
i(αk)

j = S1(x, αk)− S2(x, αk) = fk(x)− fk(x) = 0,

where the last equality follows from Eq. (9). We can rewrite the univariate polynomial R(x, αk) as

R(x, αk) =

t∑
i=0

 t∑
j=0

ri,j(αk)
j

 · xi
 .

As we have seen, R(x, αk) = 0 for every x. Thus, its coefficients are all zeroes,4 implying that for
every fixed i ∈ [t + 1] it holds that

∑t
j=0 ri,j(αk)

j = 0. This in turn implies that for every fixed

i ∈ [t+1], the polynomial hi(x) =
∑t

j=0 ri,jx
j is zero for t+1 points (i.e., the points α1, . . . , αt+1),

and so hi(x) is also the zero polynomial. Thus, its coefficients ri,j equal 0 for every j ∈ [t+1]. This
holds for every fixed i, and therefore for every i, j ∈ [t+1] we have that ri,j = 0. We conclude that
R(x, y) = 0 for every x and y, and hence S1(x, y) = S2(x, y).

Secret sharing from bivariate polynomials. It is possible to define a secret sharing scheme
using bivariate polynomials as follows. Let s ∈ F be a secret, let α1, . . . , αn be distinct non-zero
field elements, and let S(x, y) ∈ Bs,t be a random degree-t polynomial with free coefficient s. Then,
party Pi’s share is the univariate polynomial fi(x) = S(x, αi). Observe that by Claim 5.2, any t+1
parties can reconstruct S given their shares. In addition to the above, we define Pi’s “dual share”
to be the univariate polynomial gi(y) = S(αi, y). In the protocol for verifiable secret sharing, each
party Pi will receive fi(x) and gi(y). This enables Pi to check the shares received by the other
parties. This is due to the fact that for every i, j ∈ [n], it holds that fi(αj) = S(αj , αi) = gj(αi),
and gi(αj) = S(αi, αj) = fj(αi).

The VSS protocol works by embedding a univariate degree-t polynomial q(z) with q(0) = s into
the bivariate polynomial S(x, y). Specifically, S(x, y) is chosen at random under the constraint that
S(0, z) = q(z); the values q(α1), . . . , q(αn) are thus the univariate Shamir-shares embedded into
S(x, y). Observe that based on the above definition of the polynomials fi(x) from S(x, y), we have
that fi(0) = S(0, αi) = q(αi). Thus, given the bivariate share (fi(x), gi(y)) party Pi can locally
compute its univariate Shamir-share as q(αi) = fi(0).

We now prove a “secrecy lemma” based on bivariate polynomials. Loosely speaking, we prove
that the shares {fi(x), gi(y)}i∈I that the corrupted parties receive do not reveal any information
about the secret s. In fact, we show something much stronger: for every two degree-t polynomials

4In order to see that all the coefficients of a polynomial which is identical to zero are zeroes, let p(x) =
∑t

i=0 aix
t,

where p(x) = 0 for every x. Let a⃗ be a vector of the coefficients of p, and let β⃗ be some vector of size t+ 1 of some

distinct non-zero elements. Let Vβ⃗ be the Vandermonde matrix for β⃗. Then, Vβ⃗ · a⃗ = 0, and therefore a⃗ = V −1

β⃗
·0 = 0.
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q1, q2 such that q1(αi) = q2(αi) = fi(0), the distribution over the shares {fi(x), gi(y)}i∈I received
by the corrupted parties when S(x, y) is chosen based on q1(z) is identical to the distribution when
S(x, y) is chosen based on q2(z). An immediate corollary of this is that no information is revealed
about the secret s1 = q1(0) or s2 = q2(0). Note that the following is essentially the bivariate
analogue of Claim 3.2.

Claim 5.3 Let α1, . . . , αn ∈ F be n distinct non-zero values. For every I ⊂ [n] where |I| ≤ t and
every two degree-t polynomials q1, q2 over F for which q1(αi) = q2(αi) for every i ∈ I, it holds that:{

{(i, f (1)
i (x), g

(1)
i (y))}i∈I

}
≡
{
{(i, f (2)

i (x), g
(2)
i (y))}i∈I

}
where S1(x, y) ∈R Bq1(0),t under the constraint that S1(0, z) = q1(z) and S2(x, y) ∈R Bq2(0),t under
the constraint that S2(0, z) = q2(z), and f

(1)
i (x) = S1(x, αi), g

(2)
i (y) = S1(αi, y), f

(2)
i (x) = S2(x, αi)

and g
(2)
i (y) = S2(αi, y), for every i ∈ I.

Proof: We begin by defining ensembles S1 and S2, as follows:

S1 =
{
{(i, S1(x, αi), S1(αi, y))}i∈I | S1 ∈R Bq1(0),t s.t. S1(0, z) = q1(z)

}
S2 =

{
{(i, S2(x, αi), S2(αi, y))}i∈I | S2 ∈R Bq2(0),t s.t. S2(0, z) = q2(z)

}
Given this notation, an equivalent formulation of the claim is that S1 ≡ S2.

In order to prove that this holds, we first show that for any set of pairs of degree-t polynomials
Z = {(i, fi(x), gi(y))}i∈I , the number of bivariate polynomials in the support of S1 that are con-
sistent with Z equals the number of bivariate polynomials in the support of S2 that are consistent
with Z (where consistency means that fi(x) = S(x, αi) and gi(y) = S(y, αi)). Now, if there exist
i, j ∈ I such that fi(αj) ̸= gj(αi) then there does not exist any bivariate polynomial in the support
of S1 or S2 that is consistent with Z. In addition, if there exists an i ∈ I such that fi(0) ̸= q1(αi),
then once again there is no polynomial from S1 or S2 that is consistent. We stress that this holds
for both S1 and S2 because q1(αi) = q2(αi) for all i ∈ I.

Otherwise, there do exist, and we begin by counting how many such polynomials exist in the
support of S1. We have that Z contains |I| degree-t polynomials {fi(x)}i∈I , and recall that t + 1
such polynomials fi(x) fully define a degree-t bivariate polynomial. Thus, we need to choose
t − |I| + 1 more polynomials fj(x) (j ̸= i) that are consistent with q1(z) and with gi(y). In order
for a polynomial fj(x) to be consistent, it must hold that fj(αi) = gi(αj) and in addition that
fj(0) = q1(αj). Thus, for each such fj(x) that we add, |I|+ 1 points of fj are already determined.
Since t+ 1 points determine a degree-t univariate polynomial, it follows that an additional t− |I|
points can be chosen in all possible ways and the result will be consistent with Z. We conclude
that there exist (t − |I| + 1) · |F|t−|I| ways to choose S1 according to S1 that will be consistent.
(Note that if |I| = t then there is just one way.) The important point here is that the exact same
calculation holds for S2 chosen according to S2, and thus exactly the same number of polynomials
from S1 are consistent with Z as from S2.

Now, let Z = {(i, fi(x), gi(y))}i∈I be a set of |I| pairs of univariate degree-t polynomials. We
wish to show that the probability that Z is the set obtained from S1 equals the probability that Z
is the set obtained from S2, where the probabilities are taken over the choice of S1 and S2 in S1 and
S2, respectively. We have already seen that the number of polynomials in the support of S1 that
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are consistent with Z (0 or (t−|I|+1) · |F|t−|I|) equals the number of polynomials in the support of
S2 that are consistent with Z. In addition, the number of polynomials overall in the support of S1
equals the number of polynomials overall in the support of S2. Finally, the polynomials S1 and S2

are chosen uniformly at randomly from all polynomials in the support of S1 and S2, respectively.
This implies that the probability that we obtain Z after choosing S1 equals the probability that we
obtain Z after choosing S2.

5.4 The Verifiable Secret Sharing Protocol

In the VSS functionality, the dealer inputs a polynomial q(x) of degree t, and the parties receive
shares of that polynomial. The “verifiable” part is that if q is of degree greater than t, then the
parties reject the dealer’s shares and output ⊥. The functionality is formally defined as follows:

FV SS (q(x), λ, . . . , λ) =

{
(q(α1), . . . , q(αn)) if deg(q) ≤ t
(⊥, . . . ,⊥) otherwise

Observe that the secret s = q(0) is only implicitly defined in the functionality; it is however well
defined. Thus, in order to share a secret s, the functionality is used by having the dealer first
choose a random polynomial q ∈R Ps,t and then running FV SS with input q(x).

We present the protocol of BGW with the simplification of the complaint phase suggested
by [12]; this simplification was suggested in the BGW paper itself. The protocol uses private point-
to-point channels between each pair of parties and an authenticated broadcast channel (meaning
that the identity of the broadcaster is given); the broadcast channel can be implemented using
Byzantine agreement [22, 19]. See Protocol 5.4 for a full specification.

The security of Protocol 5.4. Before we prove that Protocol 5.4 securely computes the FV SS

functionality, we present an intuitive argument as to why this holds. First, consider the case that
the dealer is honest. In this case, an honest party Pj only broadcasts a complaint if a corrupted
party sends it incorrect values. However, if this occurs then the dealer will not send a reveal of
the honest party’s polynomials (because its values are correct). Furthermore, if any corrupted
party Pi broadcasts a complaint with incorrect values (u, v), the dealer can send the correct reveal
message. In such a case, the check carried out by each honest party Pj in Step 5(b)ii will pass
and so every honest party will broadcast good. Thus, at least n − t parties broadcast good (since
there are at least n − t honest parties) and so all honest parties output fi(0) = S(0, αi) = q(αi),
by the way the dealer chooses S(x, y). Next, consider the case that the dealer is corrupted. In
this case, the honest parties may receive polynomials that are not consistent with each other; i.e.,
Pj and Pk may receive polynomials fj(x), gj(y) and fk(x), gk(y) such that either fj(αk) ̸= gk(αj)
or fk(αj) ̸= gj(αk). However, in such a case both parties complain, and the dealer must send a
valid reveal message or no honest party will broadcast good. In order for n− t parties to broadcast
good, there must be at least n− 2t = t+ 1 honest parties that broadcast good. This implies that
these t + 1 honest parties all received polynomials fj(x) and gj(y) that are consistent with all of
the “fixed” values in the reveal messages. Thus, there are at least t+ 1 polynomials fj(x) that are
consistent with all honest parties and these define a unique bivariate polynomial S(x, y), as proven
in Claim 5.2. We now proceed to the formal proof.
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PROTOCOL 5.4 (Securely Computing FV SS)

• Input: The dealer D = P1 holds a private polynomial q(x) of degree at most t. The other
parties P2, . . . , Pn have no input.

• Common input: The description of a field F and n specified elements α1, . . . , αn ∈ F.

• The protocol:

1. Round 1 (send shares) – the dealer:

(a) The dealer selects a uniformly distributed bivariate polynomial S(x, y) ∈R Bq(0),t,
under the constraint that S(0, z) = q(z).

(b) For every i ∈ {1, . . . , n}, the dealer defines the polynomials fi(x)
def
= S(x, αi) and

gi(y)
def
= S(αi, y). It then sends to each Party Pi the polynomials fi(x) and gi(y).

2. Round 2 (exchange subshares) – each party Pi:

(a) Store the polynomials fi(x) and gi(y) that were received from the dealer. (If
fi(x) or gi(y) is of degree greater than t then truncate it to be of degree t.5)

(b) For every j ∈ {1, . . . , n}, send fi(αj) and gi(αj) to party Pj .

3. Round 3 (broadcast complaints) – each party Pi:

(a) For every j ∈ {1, . . . , n}, let (uj , vj) denote the values received from player Pj in
Round 2 (these are supposed to be uj = fj(αi) and vj = gj(αi)).

If uj ̸= gi(αj) or vj ̸= fi(αj), then broadcast complaint(i, j, fi(αj), gi(αj)).

(b) If no parties broadcast a complaint, then every party Pi outputs fi(0) and halts.

4. Round 4 (resolve complaints) – the dealer:

(a) Upon viewing a message complaint(i, j, u, v) broadcast by Pi, check that u =
S(αj , αi) and v = S(αi, αj). If the above condition holds, do nothing. Otherwise,
broadcast reveal(i, fi(x), gi(y)).

5. Round 5 (evaluate complaint resolutions) – each party Pi:

(a) If Pi views two messages complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broad-
cast by Pk and Pj , respectively, such that u1 ̸= v2 or v1 ̸= u2, then Pi checks that
the dealer broadcast the message reveal(k, fk(x), gk(y)) or reveal(j, fj(x), gj(y)).
If the dealer did not broadcast either one of these messages then go to Step 6
(and do not broadcast good).

(b) Upon receiving a message reveal(j, fj(x), gj(y)), truncated to degree t if necessary
as above:

i. If j = i then reset the stored polynomials fi(x) and gi(y) to the new poly-
nomials that were received, and go to Step 6 (without broadcasting good).

ii. If j ̸= i then check that fi(αj) = gj(αi) and gi(αj) = fj(αi). If the above
condition does not hold, go to Step 6 (without broadcasting good).

(c) Broadcast the message good.

6. Output decision – each party Pi: If at least n− t parties broadcast good, output
fi(0). Otherwise, output ⊥.

5If the parties do not truncate in this case, a corrupted dealer can send consistent polynomials of a higher degree
to all parties, with the result that they will accept shares of a polynomial of degree greater than t. This check, that
was not explicitly stated in [3], is therefore critical.
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Theorem 5.5 Let t < n/3. Then, Protocol 5.4 t-securely computes the FV SS functionality in the
presence of a static malicious adversary.

Proof: Let A be an adversary in the real world. We show the existence of a simulator S such that
for any set of corrupted parties I and for all inputs, the output of all parties and the adversary A
in an execution of the real protocol with A is identical to the outputs in an execution with S in the
ideal model. We separately prove the case that the dealer is honest and the case that the dealer is
corrupted.

Case 1 – the Dealer is Honest

In this case in the ideal model, the dealer sends q(x) to the trusted party and each honest party Pj

outputs q(αj), and never outputs ⊥. Observe that none of the corrupted parties have input and
so the adversary has no influence on the output of the honest parties. We begin by showing that
this always holds in a real execution as well; i.e., in a real execution each honest party Pj always
outputs q(αj) and never outputs ⊥.

Now, since the dealer is honest, it chooses a bivariate polynomial as described in the protocol
and sends each party the prescribed values. In this case, an honest party Pj always outputs either
fj(0) or ⊥. This is due to the fact that its polynomial fj(x) will never be changed; it can only be
changed if a reveal(j, f ′

j(x), gj(y)) message is sent with f ′
j(x) ̸= fj(x). However, an honest dealer

never does this. Thus, it remains to show that Pj never outputs ⊥. In order to see this, recall
that an honest party outputs fj(0) = q(αj) and not ⊥ if and only if at least n− t = 2t+ 1 parties
broadcast good. Thus, it suffices to show that all honest parties broadcast good. An honest party
Pj broadcasts good if and only if the following conditions hold:

• The dealer resolves all conflicts: whenever a pair of complaint messages complaint(k, ℓ, u1, v1)
and complaint(ℓ, k, u2, v2) were broadcast such that u1 ̸= v2 and v1 ̸= u2 for some k and ℓ,
the dealer broadcasts a reveal message for ℓ, k or both.

• Every revealed polynomial fits an honest Pj ’s polynomials: whenever the dealer broadcasts
reveal(k, fk(x), gk(y)), it holds that fj(αk) = gk(αj) and gj(αk) = fk(αj).

• The dealer did not broadcast reveal(j, fj(x), gj(y)).

Since the dealer is honest, whenever there is a conflict between two parties, the dealer will broadcast
a reveal message. This is due to the fact that if u1 ̸= v2 or u2 ̸= v1, it cannot hold that both (u1, v1)
and (u2, v2) are consistent with S(x, y). Thus, by its instructions, the dealer will broadcast at least
one reveal message, and so condition (1) holds. In addition, it is immediate that since the dealer
is honest, condition (2) also holds. Finally, the dealer broadcasts a reveal(j, fj(x), gj(y)) message if
and only if Pj sends a complaint with an incorrect pair (u, v); i.e., Pj broadcast (j, k, u, v) where
u ̸= fj(αk) or v ̸= gj(αk). However, since both the dealer and Pj are honest, any complaint sent
by Pj will be with the correct (u, v) values. Thus, the dealer will not broadcast a reveal of Pj ’s
polynomials and condition (3) also holds. We conclude that every honest party broadcasts good
and so all honest parties Pj output fj(0) = q(αj), as required.

Since the outputs of the honest parties are fully determined and always the same, it remains
to show the existence of an ideal-model adversary/simulator S that can generate the view of the
adversary A in an execution of the real protocol, given only the outputs q(αi) of the corrupted
parties Pi for every i ∈ I.
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The simulator S:

• S invokes A on the auxiliary input z.

• Interaction with the trusted party: S receives the output values {q(αi)}i∈I .

• Generating the view of the corrupted parties: S chooses any polynomial q′(x) under the
constraint that q′(αi) = q(αi) for every i ∈ I. Then S runs all honest parties (including the
honest dealer) in an interaction with A, with the dealer input polynomial as q′(x).

• S outputs whatever A outputs, and halts.

We now prove that the distribution generated by S is as required. We begin by observing that
the only information that the corrupted parties view is the set of polynomials {fi(x), gi(y)}i∈I . This
set is what the dealer/simulator sends the corrupted parties. In addition, all points fj(αi), gj(αi)
sent by the honest parties can be computed by the adversary given the set {fi(x), gi(y)}i∈I . Finally,
the question of whether an honest party sends a complaint based on the corrupted parties’ messages
can be deterministically determined from the corrupted parties’ messages alone. We stress that
the simulation can be carried out given only this set of polynomials. This is due to the fact that
even if an honest party complains, in the case of an honest dealer, the resolution of the complaint
will involve broadcasting the corrupted party’s polynomials only. Therefore, if the polynomials
{fi(x), gi(y)}i∈I in the real protocol execution are identically distributed to those from the simu-
lation (generated by the simulator from q′(x)), then the output distributions of the real and ideal
execution are also identical. However, this is exactly what is proven in Claim 5.3. This completes
the proof of the case that the dealer is honest.

Case 2 – the Dealer is Corrupted

In this case, the adversary A controls the dealer. Briefly speaking, the simulator S just plays
the role of all honest parties (recall that all actions of the parties, apart from the dealer, are
deterministic). If the simulated execution is such that the parties output ⊥, the simulator sends
an invalid polynomial (say q(x) = x2t) to the trusted party. Otherwise, the simulator uses the fact
that it sees all shares sent by A in order to interpolate and find the polynomial q(x), which it then
sends to the trusted party computing the functionality. We now formally describe the simulator:

The simulator S:

1. S invokes A on its auxiliary input z.

2. S plays the role of all the n−|I| honest parties interacting with A, as specified by the protocol,
running until the end.

3. Let num be the number of (honest and corrupted) parties Pj that broadcast good in the simu-
lation:

(a) If num < n− t, S sends the trusted party the polynomial q(x) = x2t as the dealer input.

(b) If num ≥ n − t, then S defines a degree-t polynomial q(x) as follows. For every
honest party Pj (j /∈ I) that broadcast good in the simulation, S defines the point
(αj , fj(0)). Then, S finds the degree-t polynomial q′(x) that passes through all of these
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points (αj , fj(0)). (In the analysis below we show that there is exactly one polynomial
fulfilling this.) Finally, S sends q′(x) to the trusted party (we stress that this is not
necessarily related to the polynomial q(x) that the dealer – equivalently P1 – receives for
input).

4. S halts and outputs whatever A outputs.

Observe that all parties, including the simulator, are deterministic since the only party who
tosses coins in the protocol is the honest dealer (we can assume that A is deterministic because it is
computationally unbounded). The concrete outputs of the parties are therefore fully determined;
i.e., every time the protocol is run with A the exact same outputs are obtained, as is the case every
time the simulation with S is run. We therefore show that the (concrete) outputs of the adversary
and the parties in a real execution with A are equal to the outputs in an ideal execution with S.

First, observe that the simulator plays the role of all the honest parties in an ideal execution,
following the exact protocol specification. Since the honest parties have no input, the messages
sent by the simulator in the ideal execution are exactly the same as those sent by the honest parties
in a real execution of the protocol. Thus, the value that is output by A in a real execution equals
the value that is output by A in the ideal execution with S. It remains to show that the outputs
of the honest parties are also the same in the real and ideal executions. Let outputJ denote the
outputs of the parties Pj for all j ∈ J . We prove:

Claim 5.6 Let J = [n] \ I be the set of indices of the honest parties. For every adversary A
controlling I including the dealer, every polynomial q(x) and every auxiliary input z ∈ {0, 1}∗ for
A, it holds that:

outputJ

(
REALπ,A(z),I (q(x), λ, . . . , λ)

)
= outputJ

(
IDEALFV SS ,S(z),I (q(x), λ, . . . , λ)

)
.

Proof: Let A be an adversary, and let q(x) be the input polynomial of the dealer. Let x⃗ =
(q(x), λ, . . . , λ) (the vector of inputs). We separately analyze the case where some honest party
outputs ⊥ and the case where no honest party outputs ⊥.
Case 1: There exists a j ∈ J such that outputj(REALπ,A(z),I(q(x), λ, . . . , λ)) = ⊥. We show that
in this case all the honest parties output ⊥ in both the real and ideal executions. Let j be such that
outputj(REALπ,A(z),I(x⃗)) = ⊥. By the protocol specification, an honest party Pj outputs ⊥ (in

the real world) if and only if it receives less than n− t “good” messages over the broadcast channel.
Since these messages are broadcast, it holds that all the parties receive the same messages. Thus,
if an honest Pj output ⊥ we have that it and all the honest parties received less than n − t such
“good” messages. Therefore, every honest party outputs ⊥.

We now claim that in the ideal execution, all honest parties also output ⊥. The output of the
honest parties in the ideal execution are determined by the trusted third party, based on the input
sent by S. Thus, all honest parties output ⊥ if and only if S sends x2t to the trusted third party.
As we have mentioned, the simulator S follows the instructions of the honest parties exactly in the
simulation. Thus, if in a real execution with A it holds that less than n− t parties broadcast good,
then the same is also true in the simulation with S. (We stress that exactly the same messages
are sent by A and the honest parties in a real protocol execution and in the simulation with S.)
Now, by the instructions of S, if less than n − t parties broadcast good then num < n − t and S
sends q(x) = x2t to the trusted party. We conclude that all honest parties output ⊥ in the ideal
execution as well.
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Case 2: For every j ∈ J it holds that outputj(REALπ,A(z),I(x⃗)) ̸= ⊥. By what we have discussed
above, this implies that in the simulation with S, at least n − t parties broadcast good. Since
n ≥ 3t+ 1 this implies that at least 3t+ 1− t = 2t+ 1 parties broadcast good. Furthermore, since
there are at most t corrupted parties, we have that at least t + 1 honest parties broadcast good.
Recall that an honest party Pj broadcasts good if and only if the following conditions hold:

• The dealer resolves all conflicts.

• Every revealed polynomial fits Pj ’s polynomials.

• The dealer did not broadcast reveal(j, fj(x), gj(y)).

Let K ⊂ [n] be a fixed subset of t + 1 honest parties that broadcast good (it is possible that
more than t + 1 honest parties broadcast good; in such a case we take the t + 1 honest parties
with the smallest indices). For each of these parties the above conditions hold. Thus, there exists
a set of t + 1 pairs of polynomials {fk(x), gk(y)}k∈K , such that for every k, ℓ ∈ K it holds that
fk(αℓ) = gℓ(αk). Taking the t + 1 distinct points {αk}k∈K , we can apply Claim 5.2 that states
that there exists a unique bivariate polynomial S such that S(x, αk) = fk(x) for every k ∈ K.
The simulator S defines q′(x) to be the unique polynomial that passes through all of the points
(αk, fk(0)). Given the uniqueness of the bivariate polynomial S, an equivalent way of defining the
polynomial q′(x) that S sends to the trusted party is via the points (αk, S(0, αk)). Since S sends
q′(x) to the trusted party in an ideal execution, we have that all honest parties Pj output q

′(αj) in
an ideal execution. We now prove that the same also holds in a real protocol execution.

We stress that the polynomial q′(x) is defined as a deterministic function of the transcript of
messages sent by A in a real or ideal execution. Furthermore, since the execution is deterministic,
the exact same polynomial q′(x) is defined in both the real and ideal executions. It therefore
remains to show that each honest party Pj outputs q′(αj) in a real execution. We first observe
that any honest party Pk for k ∈ K clearly outputs q′(αk). This follows from the fact that by the
protocol specification, each party Pi that does not output ⊥ outputs fi(0). Thus, each such Pk

outputs fk(0). We have already seen that q′(x) is the unique polynomial that passes through the
points (αk, fk(0)) and thus q′(αk) = fk(0) for every k ∈ K.

It remains to show that every honest party Pj for j /∈ K also outputs q′(αj). Let Fj(x) and
Gj(x) be the polynomials that Pj holds at the end of the computation (note that these polynomials
may be different from the original polynomials that Pj received from the dealer at the first stage).
We stress that this party Pj may or may not have broadcast good, and therefore we cannot rely on
the conditions above. However, for every party Pk (k ∈ K) who broadcast good, we are guaranteed
that the polynomials fk(x) and gk(y) are consistent with the values of the polynomials of Pj . That
is, it holds that fk(αj) = Gj(αk) and gk(αj) = Fj(αk). This follows from the fact that all conflicts
are properly resolved (and so if they are inconsistent a reveal message must have been sent to make
them consistent). This implies that for t+ 1 points k ∈ K, it holds that Fj(αk) = S(αk, αj). Now,
since Fj(x) is a polynomial of degree t (by the truncation instruction; see the protocol specification),
it follows that Fj(x) = S(x, αj). Thus, Fj(0) = S(0, αj) and we have that Pj outputs S(0, αj).
This completes the proof because q′(αj) = S(0, αj), as described above.

This completes the proof of Theorem 5.5.

Efficiency. We remark that in the case that no parties behave maliciously in Protocol 5.4, the
protocol merely involves the dealer sending two polynomials to each party, and then each party
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sending two field elements to every other party. We stress that when a secure broadcast protocol
is used, all parties need to wait in round 3 the appropriate number of rounds in order to be sure
that no party indeed broadcast a complaint; however, no messages need to be sent. Thus, using a
broadcast that requires t + 1 rounds, we have that in the “good” case where no one attempts to
cheat, Protocol 5.4 runs in t + 3 rounds, and each party just needs to send and receive 2n field
elements (beyond the 2 polynomials sent by the dealer to every party).

6 Multiplication in the Presence of Malicious Adversaries

In this section, we show how to securely compute shares of the product of shared values, in the
presence of a malicious adversary corrupting any t < n/3 parties. We use the simplification of
the original multiplication protocol of [3] that appears in [14]; this simplification is described in
detail in Section 6.4. As in the semi-honest case, the multiplication protocol works by having the
parties compute a linear function of the product of their shares. The main problem and difficulty
that arises in the case of malicious adversaries is that corrupted parties may not input the correct
values. Since the local product of shares of degree-t polynomials define a polynomial of degree-2t,
there is not enough redundancy to correct such errors.

The solution to this problem is as follows:

1. The parties first distribute shares of their inputs shares (on each wire) to all other parties,
in a verifiable way. Observe that the input shares are from a degree-t polynomial. There
is therefore enough redundancy to correct errors and so any incorrect values provided by
corrupted parties are corrected. This operation is carried out using the F subshare

V SS functionality,
described in Section 6.1.

2. Next, each party distributes shares of the product of its two input shares. Since all other
parties already hold shares of the individual input shares, it is possible for them to verify that
the shares received now are on a degree-t polynomial with the appropriate free coefficient.
This operation is carried out using the Fmult

V SS functionality, described in Section 6.3. We
remark that in order to compute Fmult

V SS , we need to use another functionality called Feval that
is first defined and constructed in Section 6.2.

3. Finally, after the previous step, all parties verifiably hold degree-t shares of the product of the
input shares of every party. This enables them to multiply easily, using the method of [14].
This is the final multiplication protocol and it is described in Section 6.4.

6.1 The F subshare
V SS Functionality for Sharing Shares

Defining the functionality. We begin by defining the F subshare
V SS functionality. Informally speak-

ing, this functionality is a way for a set of parties to verifiably give out shares of values that are
themselves shares. Specifically, assume that the parties P1, . . . , Pn hold values f(α1), . . . , f(αn),
respectively, where f is a degree-t polynomial. The aim of the parties is for each to share its share
f(αi) with all other parties. In the semi-honest setting, this can be achieved simply by having
each party Pi choose a random polynomial gi(x) with free coefficient f(αi) and then send each Pj

the share gi(αj). However, in the malicious setting a number of problems may arise. First, we
must ensure that the corrupted parties choose polynomials gi(x) of degree-t; this can be solved
using VSS. Second, we must ensure that a corrupted party Pi uses a polynomial gi(x) with the
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correct free coefficient f(αi), where f(x) is the degree-t polynomial defined by the honest parties’
inputs (we stress that since there are more than t honest parties, the free coefficients of their input
polynomials fully determine f(x)). This is much more problematic, and is the main challenge in
implementing this functionality. We remark that in the case that a corrupted party Pi does not
provide a valid input (i.e., it does not input a degree-t polynomial gi(x) such that gi(0) = f(αi)),
the functionality defines a new polynomial g′i(x) which is the constant polynomial g′i(x) = f(αi) for
all x, and uses this in place of gi(x) in the outputs. In addition, the corrupted parties may choose
their input polynomials after seeing shares of gj(x) for j /∈ I. Nevertheless, this suffices for its use
in the BGW protocol. Therefore, we explicitly define the functionality so that this is allowed. This
requires a definition of a reactive functionality ; see Section 2.2.

FUNCTIONALITY 6.1 (The reactive F subshare
V SS functionality)

1. The F subshare
V SS functionality receives the inputs of the honest parties {βj}j /∈I . Let f(x) be

the unique degree-t polynomial determined by the points {(αj , βj)}j /∈I .
6

2. For every j /∈ I, F subshare
V SS chooses a random degree-t polynomial gj(x) under the constraint

that gj(0) = βj = f(αj).

F subshare
V SS sends shares {gj(αi)}j /∈I;i∈I to the (ideal) adversary.

3. F subshare
V SS receives polynomials from the corrupted parties {gi(x)}i∈I ; if a polynomial gi(x)

is not received, then F subshare
V SS sets gi(x) = 0.

4. F subshare
V SS determines the output polynomials g′1(x), . . . , g

′
n(x):

(a) For every j /∈ I, F subshare
V SS sets g′j(x) = gj(x).

(b) For every i ∈ I, F subshare
V SS checks that gi(0) = f(αi) and that deg(gi) = t. If yes, it

sets g′i(x) = gi(x). Else, it sets g′i(x) = f(αi); i.e., g
′
i(x) is the constant polynomial

equalling f(αi) everywhere.

5. F subshare
V SS sends the polynomial g′k(x) and the shares (g′1(αk), . . . , g

′
n(αk)) to party Pk, for

every k = 1, . . . , n.

Background to implementing F subshare
V SS . Let G ∈ F(t+1)×n be the generator matrix for a

(generalized) Reed-Solomon code of length n = 3t+1, dimension k = t+1 and distance d = 2t+1.
In matrix notation, the encoding of a vector a⃗ = (a0, . . . , at) ∈ Ft+1 is given by a⃗ ·G, where:

G
def
=


1 1 . . . 1
α1 α2 . . . αn
...

...
...

αt
1 αt

2 . . . αt
n

 .

Letting f(x) =
∑t

k=0 a0 · xt be a degree-t polynomial, we have that the Reed-Solomon encoding of
a⃗ is the vector ⟨f(α1), . . . , f(αn)⟩. Let H ∈ F2t×n be the parity-check matrix of G; the matrix is of

6If not all the points lie on a single degree-t polynomial, then no security guarantees are obtained. Formally, this
is achieved by defining that in this case the functionality sends the inputs of the honest parties to the corrupted
parties, and sets the output of the honest parties to be whatever the adversary desires. In this way, any protocol is
secure in this “bad case”. From now on we just ignore this case, since in all uses of the functionality we have that all
of the honest parties’ points lie on a single degree-t polynomial.
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the form:

H =


1 1 . . . 1
α1 α2 . . . αn
...

...
...

α2t−1
1 α2t−1

2 . . . α2t−1
n

 ·
 v1 0

. . .

0 vn

 (10)

for non-zero values v1, . . . , vn such that G ·HT = 0. The syndrome of a word y⃗ ∈ Fn is given by
S(y⃗) = y⃗ ·HT ∈ F2t. A basic fact from error-correcting codes is that for any y = a⃗ ·G, S(y⃗) = 02t.

The protocol. In the protocol, each party Pi is instructed to choose a random polynomial gi(x)
under the constraint that gi(0) = f(αi), as in the simple semi-honest protocol described above.
The parties then share the gi(x) polynomials using FV SS ; unlike the semi-honest case, corrupted
parties may share polynomials gi(x) with arbitrary free coefficients. Now, let y⃗ ∈ Fn be the vector
(y1, . . . , yn) = (g1(0), . . . , gn(0)). For all honest parties Pj it is guaranteed that gj(0) = f(αj),
whereas there is no guarantee regarding the values gi(0) for corrupted Pi. It follows that y⃗ is a word
that is at most distance t from the vector ⟨f(α1), . . . , f(αn)⟩ which is a Reed-Solomon codeword of
length n = 3t+1. Thus, in principle, it is possible to correct the word y⃗ using Reed-Solomon error
correction. Since the protocol cannot reveal the actual values f(αj), this error correction is carried
out from the shares themselves. Specifically, in the protocol, the parties compute the syndrome
S(y⃗) from their shares. The crucial observation is that since the computation of the syndrome
is just matrix multiplication, it is a linear function. Therefore, shares of the syndrome can be
computed locally from shares of the points y1, . . . , yn. Furthermore, as is shown in the proof, the
syndrome itself can be computed by adversary in the ideal model. Thus, the parties can all send
their shares of the syndrome to all other parties, enabling each to reconstruct the syndrome S(y⃗).
This then enables the parties to run the Reed-Solomon error-correcting procedure and obtain the
error vector (the error vector e⃗ = (e1, . . . , en) is such that for every i, yi − ei = f(αi)); we remark
that the error vector can be computed from the syndrome alone. This error vector then provides
the honest parties all the information that they need to compute the output. Specifically, if ei = 0,
then this implies that Pi used a “correct” polynomial gi(x) for which gi(0) = f(αi), and so the
parties can just output the shares gi(αj) that they received in the FV SS sharing at the onset. In
contrast, if ei ̸= 0 then the parties know that Pi is malicious, and can all send each other the shares
gi(αj) that they received in the FV SS sharing. This enables them to reconstruct the polynomial
gi(x) and compute gi(0) − ei = f(αi). Thus, they obtain the actual share of the corrupted party,
as required in the functionality definition. See Protocol 6.3 for the full specification.

Theorem 6.2 Let t < n/3. Then, Protocol 6.3 t-securely computes the F subshare
V SS functionality in

the FV SS-hybrid model, in the presence of a static malicious adversary.

Proof: Intuitively, the simulator S that we construct receives the outputs {g′j(αi)}j /∈I for every
i ∈ I and sends these to the real adversary A as its output from each FV SS invocation with the
honest Pj as dealer. It then receives the polynomials {gi(x)}i∈I as the corrupted parties’ inputs to
the FV SS invocations in which a corrupted Pi plays dealer; S sends these polynomials to the trusted
party computing F subshare

V SS . Finally, S receives back the outputs of the corrupted parties, and uses
these outputs to generate the messages that the real adversary A would receive from the honest
parties in a real execution of Protocol 6.3. The main challenge is to show how S can compute the
syndrome values correctly from the corrupted parties’ input/output values.

39



PROTOCOL 6.3 (Securely computing F subshare
V SS in the FV SS-hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αj , βj) for every
honest Pj all lie on a single degree-t polynomial (see the definition of F subshare

V SS above and
Footnote 6).

• Common input: The description of a field F and n specified elements α1, . . . , αn ∈ F.

• The protocol:

1. Each party Pi chooses a random degree-t polynomial gi(x) under the constraint that
gi(0) = βi, and invokes the FV SS functionality as dealer with gi(x) as its private
input.

2. At the end of this stage, each party Pi holds the values g1(αi), . . . , gn(αi). If any value
is missing (or equals ⊥), Pi replaces it with 0.

3. For every r = 1, . . . , 2t, each party Pi computes:

Sr(αi) =
n∑

k=1

gk(αi) · vk · (αk)
r−1

Observe that Sr(0) = sr, the rth value in the syndrome of the word (g1(0), . . . , gn(0)).

4. Each party Pi sends Sr(αi) for every (1 ≤ r ≤ 2t) to every Pj (1 ≤ j ≤ n).

5. At this stage, each party Pk holds Sr(α1), . . . , Sr(αn) for every r = 1, . . . , 2t (if any
value is missing, it replaces it with 0). Pi uses the Reed-Solomon decoding procedure
(with d = 2t+ 1) to reconstruct the polynomial Sr(x) for every r = 1, . . . , 2t.

6. Let sr = Sr(0) and define the syndrome to be s⃗ = (s1, . . . , s2t). Each party locally
runs the Reed-Solomon decoding procedure using s⃗ only, and receives back an error
vector e⃗ = (e1, . . . , en).

7. For every k such that ek = 0: each party Pi sets g
′
k(αi) = gk(αi).

8. For every k such that ek ̸= 0:

(a) Each party Pi sends gk(αi) to every Pj .

(b) Each party Pi receives gk(α1), . . . , gk(αn); if any value is missing, it sets it to 0.
Pi runs the Reed-Solomon decoding procedure on these values to reconstruct
gk(x).

(c) Each party Pi computes gk(0), and sets g′k(αi) = gk(0)−ek (which equals f(αk)).

9. Pi outputs gi(x) and g′1(αi), . . . , g
′
n(αi).

We now proceed to provide a full description of the simulator.

The simulator S:

1. S invokes A with its auxiliary input z.

2. S receives the values {gj(αi)}j /∈I;i∈I from the trusted party computing F subshare
V SS .

3. For every i ∈ I and j /∈ I, the simulator S simulates the honest party Pj sending gj(αi) to Pi

(where gj(αi) is the appropriate value received from F subshare
V SS in the previous step).
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4. For every i ∈ I, the simulator S receives from A the polynomial gi(x) that A sends as input
to the FV SS functionality with Pi as dealer. If deg(gi(x)) > t or was not sent by A, then S
replaces it with the constant polynomial gi(x) = 0.

5. For every i ∈ I, S instructs party Pi in the ideal model to send gi(x) to F subshare
V SS .

6. S receives back outputs g′i(x) and (g′1(αi), . . . , g
′
n(αi)) for every i ∈ I.

7. S generates the messages of the honest parties: S uses the outputs that it received in order
to generate the view that A would have in a real execution. It does this, according to the
following steps:

(a) Construct the error vector e⃗ for decoding:

• For every j ̸∈ I, S sets e[j] = 0.

• For every i ∈ I:

• If g′i(x) = gi(x), then S sets e[i] = 0 (recall that g′i(x) is part of the output
received by S and gi(x) is the input used by A to FV SS)

• If g′i(x) ̸= gi(x), then S sets e[i] = g′i(0) − gi(0) (note that e[i] = f(αi) − gi(0)
because, by the definition of F subshare

V SS , in this case g′i(x) = f(αi) is a constant
polynomial)

(b) Compute the syndrome: S computes (s1, . . . , s2t) = S(e⃗) = e⃗ · HT , where H is the
parity-check matrix of the code, as described above.

(c) Find the polynomials Sr(x): For every r = 1, . . . , 2t, S chooses a random polynomial
Sr(x) of degree t such that:

i. Sr(0) = sr; the rth value of the syndrome

ii. For every i ∈ I, Sr(αi) =
∑n

k=1 gk(αi) · vk · (αk)
r−1

Observe that if |I| = t then the constraints define t + 1 points and so the polynomial
Sr(x) is fully determined.

8. Send the messages that honest parties would send:

(a) For every j ̸∈ I, S simulates Pj sending S1(αj), . . . , S2t(αj) to all parties.

(b) For every i ∈ I for which e[i] ̸= 0 and every j /∈ I, S simulates Pj sending gi(αj) to all
parties.

We remark that S must compute the actual syndrome (and not just shares of it), because the
parties all receive the reconstructed polynomials Sr(x) in the protocol, for r = 1, . . . , 2t. The idea
behind the way that S constructs the syndrome is based on the fact that the syndrome of any
word equals the syndrome of the error vector. Since S can compute the error vector exactly (it
knows that there is no error for every j /∈ I and it can check if g′i(x) = gi(x) for every i ∈ I), S
can compute the syndrome of the word correctly. This enables it to then generate the appropriate
distribution, as described. We now prove that for every I ⊂ [n] with |I| ≤ t:{

IDEALF subshare
V SS ,S(z),I(x⃗)

}
z∈{0,1}∗;x⃗∈Fn

≡
{
HYBRID

FV SS

π,A(z),I(x⃗)
}
z∈{0,1}∗;x⃗∈Fn

.
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We first show that the outputs of the honest parties are distributed identically in the real and
ideal executions. Then, we show that the view of the corrupted parties, given the output of the
honest parties, is distributed identically in the real and ideal executions. This implies that the joint
distribution of the outputs of all parties in the real and ideal executions are identical.

The honest parties’ outputs. In a real protocol execution, each party Pj distributes shares of
its chosen polynomial gj(x), using the FV SS functionality. Then, each party Pj locally computes
the values S1(αj), . . . , S2t(αj), where for each r = 1, . . . , 2t it holds that:

Sr(x) =

n∑
k=1

gk(x) · vk · (αk)
r−1. (11)

Note that although each honest party Pj computes Sr(αj) locally, they all compute relative to the
same polynomial Sr(x). This is guaranteed since the gk(x) polynomials are shared using FV SS .
Thus, there exist degree-t polynomials g1(x), . . . , gn(x) such that every honest party Pj receives
{gk(αj)}k∈[n] (or ⊥ in which case all honest parties uses the share 0).

After each Pj locally computes the Sr(αj) values, the parties all send these values to each
other, and each party locally reconstructs the polynomials S1(x), . . . , S2t(x). Observe that since all
the polynomials gi(x) are of degree t, the shares Sr(αi) are from a polynomial of degree t. Thus,
for every r = 1, . . . , 2t, each honest party holds a vector (σ1

r , . . . , σ
n
r ) where for every j /∈ I it is

guaranteed that σj
r = Sr(αj). Stated differently, each honest party holds a word that is at most

distance t from a Reed-Solomon codeword ⟨Sr(α1), . . . , Sr(αn)⟩ of length n = 3t + 1. Thus, using
the Reed-Solomon decoding procedure, each honest party obtains the same polynomial Sr(x), as
defined in Eq. (11).

Next, each honest party computes sr = Sr(0) and constructs the vector (s1, . . . , s2t). Let
y⃗ = (g1(0), . . . , gn(0)). We now claim that the syndrome S(y⃗) = y⃗ ·HT of y⃗ is exactly the vector
(s1, . . . , s2t). In order to see this observe that by Eq. (10) the rth element of S(y⃗) equals

∑n
k=1 gk(0)·

vk · (αk)
r−1, which is exactly Sr(0) as defined in Eq. (11). Under the assumption (see Footnote 6)

that there exists a degree-t polynomial f(x) such that for every j /∈ I it holds that gj(0) = f(αj),
we have that y⃗ is at most distance t from the Reed-Solomon codeword ⟨f(α1), . . . , f(αn)⟩. Thus, it
is possible to efficiently compute the error vector (e1, . . . , en) from the syndrome (s1, . . . , s2t). By
definition, this error vector has the property that for every k, yk − ek = f(αk). Equivalently, we
have that for every k ∈ [n],

gk(0)− ek = f(αk).

We are now ready to analyze the output distribution of the honest parties in the real and ideal
executions. Clearly, the polynomial g′j(x) output by every honest party Pj is distributed identically
in the real and ideal executions, because in each case gj(x) is a random polynomial with free
coefficient βj = f(αj) and it always holds that g′j(x) = gj(x) for an honest Pj . We now proceed
to analyze the distribution over the shares (g′1(αj), . . . , g

′
n(αj)) received by every honest Pj . We

separately consider the shares g′k(αj) where Pk is honest and where Pk is corrupted:
For every honest party Pk (k /∈ I) we have that by our assumption gk(0) = f(αk). Therefore,

yk = gk(0) is a correct element in the codeword and ek = 0. Thus, every honest party Pj sets
g′k(αj) = gk(αj). Furthermore, by the protocol specification, honest party Pk chose gk(0) to be a
random polynomial with free coefficient f(αk). Thus, the polynomial g′j(x) and values {g′k(αj)}k/∈I
output by an honest Pj are identically distributed to these analogous values in the output generated
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by the trusted party computing F subshare
V SS (since F subshare

V SS chooses the g′k(x) polynomials for honest
Pk in the same way).

We now proceed to consider the values g′k(αj) for corrupted Pk (k ∈ I). There are two cases,
depending on the value of ek. We stress that since the Reed-Solomon decoding can correct up to t
incorrect values, each honest party obtains the same polynomials S1(x), . . . , S2t(x). Thus, all the
honest parties obtain the same value of ek. We have the following cases:

1. Case 1 – ek = 0: By the property of the error vector, this implies that gk(0) = f(αk). Thus,
in the ideal model, the trusted party computing F subshare

V SS sets g′k(x) = gk(x) and each honest
Pj receives the share g′k(αj). (This holds as long as gk(x) is of degree t. If gk(x) is not of
degree t, then the output share of each Pj determined by F subshare

V SS for every Pj is the constant
value f(αk). In contrast, in the real execution, if gk(x) is of degree greater than t, the output
from the FV SS execution in the protocol is ⊥ to each honest party. Thus, the honest parties
all set their values to 0 and so gk(x) is taken to be the constant polynomial gk(x) = 0. Since
we are in the case that ek = 0 this implies that f(αk) = 0. Thus, in the real model each
honest party Pj outputs g

′
k(αj) = 0, which is the same as the ideal model because f(αk) = 0.)

2. Case 2 – ek ̸= 0: In this case, each honest party Pj sends gk(αj) to all others. The parties then
reconstruct the polynomial gk(x). As before, since gk(x) is distributed using FV SS , we are
guaranteed that the honest parties hold correct shares and therefore there are at least 2t+ 1
correct shares of the polynomial gk(x). Thus, the Reed-Solomon error correction procedure
will result in the exact polynomial gk(x). All honest parties then output the same fixed value
gk(0)− ek. Since gk(0)− ek = f(αk), it follows that all honest parties output the same value
f(αk). Now, since ek ̸= 0 it follows that gk(0) ̸= f(αk) and so in the ideal model, F subshare

V SS

sets g′k(x) = f(αk). This implies that, exactly as in a real execution, all honest parties output
the same value αk.

The adversary’s view. We now show that the view of the adversary A is identically distributed
in the real and ideal executions, given the outputs of the honest parties. Fix {g′j(x)}j /∈I and
{g′k(αj)}j ̸∈I;k∈[n] as the output of the honest parties in the real and ideal executions; i.e., honest
party Pj receives g′j(x) and (g′1(αj), . . . , g

′
n(αj)). Note that the output of the honest parties de-

termines all of the polynomials, including g′i(x) for i ∈ I; this is due to the fact that the honest
parties’ outputs include more than t shares of each of these polynomials.

In the first step of the protocol, the parties choose random degree-t polynomials gj(x) such that
gj(0) = βj . As we have shown above, in a real protocol execution it holds that g′j(x) = gj(x) for
every honest party Pj . Thus, the shares {gj(αi)}i∈I;j /∈I received by the corrupted parties as output
from the FV SS sharing step in the protocol are computed from the polynomials {g′j(x)}j /∈I which
are fixed here from the given honest parties’ output. Likewise, in the ideal simulation by S, the
shares received by A as output from the FV SS step are exactly those that S received from F subshare

V SS

as output, which are computed from the polynomials {gj(x)}j /∈I . Thus, when conditioning on
the output of the honest parties, the shares received by the corrupted parties in a real protocol
execution and in the simulation by S are exactly the same. (We stress that there is no randomness
here; the values are exactly the same and not just distributed identically.)

In the next step of the protocol, the parties all send shares of the polynomials S1(x), . . . , S2t(x).
In the simulation by S, the polynomials Sr(x) are computed differently and we therefore have to
show that they have the same distribution. In the protocol, the parties compute and send the
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shares Sr(αi) =
∑n

k=1 gk(αi) · vk · (αk)
r−1, and then reconstruct the polynomials:

Sr(x) =

n∑
k=1

gk(x) · vk · (αk)
r−1.

As we have seen, for every r = 1, . . . , 2t it holds that Sr(0) = y⃗ ·H. Furthermore, by the property
of the error vector in error-correcting codes it holds that e⃗ ·H = y⃗ ·H and so Sr(0) = e⃗ ·H. Thus,
the error vector e⃗ computed by S (by setting e[i] = f(αi) − gi(0) for every i ∈ I) yields exactly
the same syndrome string (s1, . . . , s2t) as that computed by the honest parties in a real execution.
Note that S generates (s1, . . . , s2t) from e⃗ whereas the honest parties compute e⃗ from (s1, . . . , s2t).
There are two cases:

1. Case 1 – |I| = t: In this case, the syndrome (s1, . . . , s2t) and the values {Sr(αi)}i∈I;r∈[2t],
which can all be computed by S, fully determine the polynomials S1(x), . . . , S2t(x). Further-
more, these values are all fully determined from the polynomials {gi(x)}i∈I sent by A in the
FV SS step and by the polynomials {g′j(x)}j /∈I in the output of the honest parties. Since the
values received by A in the first step of the simulation are identical in the real and ideal execu-
tions (conditioned on the honest parties’ outputs), it follows that the polynomials {gi(x)}i∈I
and {g′j(x)}j /∈I are identical, and so the polynomials S1(x), . . . , S2t(x) are also identical in
the real and ideal executions. We therefore conclude that the view of A in a real execution is
identical to its view in an ideal execution (where both are conditioned on the outputs of the
honest parties). We stress that in this case, the views are identical in the sense that the string
generated by S contains the exact same messages that A would receive in a real execution.
This is because when |I| = t and the honest parties’ outputs are fixed, there is no randomness
at all.

2. Case 2 – |I| < t: In this case, for every r = 1, . . . , 2t, S chooses a random polynomial Sr(x)
of degree-t such that Sr(0) = sr and for every i ∈ I, Sr(αi) =

∑n
k=1 gk(αi) · vk · (αk)

r−1.
In contrast, in a real execution, Sr(x) is computed also from points Sr(αj) for some j /∈ I.
Specifically, in order to fully determine Sr(x), it is necessary to add t−|I| points (αj , Sr(αj)).
Furthermore, Sr(αj) is a function of gk(αj) for every k ∈ [n] and in particular for the unknown
gk(αj) with k /∈ I. Thus, Sr(x) is determined by t − |I| additional points (αj , gk(αj)) for
every k /∈ I (i.e., for each of these k, we need (αj , gk(αj)) for t − |I| different values of
j /∈ I). However, by Corollary 3.6, we have that for k /∈ I the values gk(αj) are uniformly
distributed.7 This implies that Sr(αj) is uniformly distributed, and so the distribution over
the polynomials Sr(x) chosen by S in the simulation is identical to those computed in a real
protocol execution.

The proof is concluded by noting that as long as the Sr(x) polynomials are correctly distributed
and the error vector e⃗ is correct, the messages sent by S are exactly the same as those sent by the
honest parties in a real protocol execution.

7Actually, Corollary 3.6 refers to the case that none of the points are given, and here |I| out of the t are given.
Nevertheless, it trivially follows when conditioning on some of the points because the random variables in the corollary
are independent.
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6.2 The Feval Functionality for Evaluating a Shared Polynomial

In the protocol for verifying the multiplication of shares, the parties need to process complaints
by evaluating shared polynomials at the point of the complaining party. Specifically, given shares
f(α1), . . . , f(αn), of a polynomial f , the parties need to compute f(αk) for a predetermined k,
without revealing anything else. We begin by formally defining the functionality; the functionality
is parameterized by an index k that determines at which point the polynomial is to be evaluated.

FUNCTIONALITY 6.4 (The F k
eval functionality)

1. The F k
eval functionality receives the inputs of the honest parties {βj}j /∈I . Let f(x) be the

unique degree-t polynomial determined by the points {(αj , βj)}j /∈I . (If not all the points lie
on a single degree-t polynomial, then no security guarantees are obtained; see Footnote 6.)

2. The functionality F k
eval sends the output pair (f(αi), f(αk)) to every party Pi, for i =

1, . . . , n.

Equivalently, in function notation, we have:

F k
eval

(
β1, . . . , βn

)
=
(
((f(α1), f(αk)), . . . , (f(αn), f(αk))

)
where f is the result of Reed-Solomon decoding on (β1, . . . , βn). We remark that although each
party Pi already holds f(αi) as part of its input, we need the output to include this value in order
to simulate in the case that a corrupted party has incorrect input. This will not make a difference
in its use, since f(αi) is supposed to be known to Pi in any case.

Background. The parties’ inputs are a vector β⃗
def
= (β1, . . . , βn) where for every j /∈ I it holds

that βj = f(αj). Thus, the parties’ inputs are computed by

β⃗ = Vα⃗ · f⃗ ,

where Vα⃗ is the Vandermonde matrix, and f⃗ is the vector of coefficients for the polynomial f(x).
We remark that f⃗ is of length n, and is padded with zeroes beyond the (t + 1)th entry. Let
α⃗k = (1, αk, (αk)

2, . . . , (αk)
n−1) be the kth row of Vα⃗. Then the output of the functionality is

f(αk) = α⃗k · f⃗ .

We have:
α⃗k · f⃗ = α⃗k ·

(
V −1
α⃗ · Vα⃗

)
· f⃗ =

(
α⃗k · V −1

α⃗

)
·
(
Vα⃗ · f⃗

)
=
(
α⃗k · V −1

α⃗

)
· β⃗

and so there exists a vector of constants (α⃗k · V −1
α⃗ ) so that the inner product of this vector and

the inputs yields the desired result. In other words, F k
eval is simply a linear function of the parties’

inputs.

The protocol. Since F k
eval is simply a linear function of the parties’ inputs, it can be computed

by each party sharing its share and then locally computing the function on the shares. The result
is that each party Pi holds a share δi of a polynomial whose free coefficient is the result f(αk).
Thus, the parties can now simply send their δi shares and reconstruct the resulting polynomial.

45



In order to prevent malicious parties from cheating, the F subshare
V SS functionality is used in order

to share the shares. Then, the reconstruction in the last stage is carried out using Reed-Solomon
decoding; this ensures that t < n/3 malicious parties cannot affect the result. See Protocol 6.5 for
the full description.

PROTOCOL 6.5 (Securely computing F k
eval in the F subshare

V SS -hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αj , βj) for every honest
Pj all lie on a single degree-t polynomial f (see the definition of F k

eval above and Footnote 6).

• Common input: The description of a field F and n specified elements α1, . . . , αn ∈ F.

• The protocol:

1. The parties invoke the F subshare
V SS functionality with each party Pi using βi as its private

input.

2. At the end of this stage, each party Pi holds g1(αi), . . . , gn(αi), where all the gi(x) are
of degree t, and for every i, gi(0) = f(αi).

3. Each party Pi locally computes: H(αi) =
∑n

ℓ=1 γℓ ·gℓ(αi), where (γ1, . . . , γn) = α⃗k ·V −1
α⃗ .

Each party Pi sends H(αi) to all Pj .

4. Upon receiving (Ĥ(α1), . . . , Ĥ(αn)), each party runs the Reed-Solomon decoding proce-
dure and receives (H(α1), . . . ,H(αn)). It then reconstructs H(x) and computes H(0).

5. Each party Pi outputs (βi,H(0)).

We have already provided the motivation behind the security of the protocol; we therefore
proceed directly to the proof of security.

Theorem 6.6 Let t < n/3. Then, Protocol 6.5 t-securely computes the F k
eval functionality in the

F subshare
V SS -hybrid model, in the presence of a static malicious adversary.

Proof: Intuitively, the simulator just sends random shares for the outputs that the corrupted
parties expect to receive from the F subshare

V SS executions when the dealer is honest (when the dealer
is dishonest, the simulator just answers exactly as F subshare

V SS would). Then, the simulator simulates
the sending of shares of a random polynomial H ′(x) with free coefficient f(αk), which it received
as output from F k

eval, and which agrees with the adversary’s view (i.e., equals
∑n

ℓ=1 γℓ · gℓ(αi) at
αi, for every i ∈ I). The formal description follows:

The simulator S:

1. S invokes A with the auxiliary input z.

2. S receives from the trusted party the output values {(f(αi), f(αk))}i∈I ; observe that the cor-
rupted parties provide no input to F k

eval.

3. S simulates the F subshare
V SS invocations:

(a) For every j ̸∈ I, S chooses uniformly at random a polynomial q′j(x) from P0,t, and sends

A the values
{
q′j(αi)

}
i∈I,j ̸∈I

as the corrupted parties’ outputs of the first phase in the

F subshare
V SS ; recall that F subshare

V SS is a reactive functionality.
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(b) S receives from A the inputs {qi(x)}i∈I of the corrupted parties to F subshare
V SS . If A did

not reply with some polynomial qi(x), then S sets q′i(x) = 0.

(c) For every i ∈ I, S checks that deg(qi) = t and qi(0) = f(αi). If this check fails, S
sets q′i(x) = f(αi), where f(αi) is part of the output received by S from F k

eval (i.e, this
simulates the case where F subshare

V SS functionality rejects the polynomial qi(x) and sets the
output to be the constant polynomial equalling f(αi) everywhere).

(d) S simulates each corrupted party Pi receiving output q
′
i(x) and {q′ℓ(αi)}ℓ∈I from F subshare

V SS .

4. S simulates the sending of the shares H(αj):

(a) S selects a random polynomial H ′(x) of degree t under the constraint that:

• The free coefficient of H ′(x) is f(αk); i.e., H
′(0) = f(αk).

• H ′(x) passes through the points that the corrupted parties hold. That is, for every
i ∈ I it holds that H ′(αi) =

∑n
ℓ=1 γℓ · q′ℓ(αi).

(Observe that if |I| = t, then the above constraints fully determine H ′(x).)

(b) For every j ̸∈ I, S simulates honest party Pj sending the value H ′(αj).

5. S outputs whatever A outputs and halts.

We now prove that for every I ⊆ [n], such that |I| ≤ t,{
IDEALFk

eval,S(z),I,S(z),I
(β⃗)
}
β⃗∈Fn,z∈{0,1}∗

≡
{
HYBRID

F subshare
V SS

π,A(z),I (β⃗)
}
β⃗∈Fn,z∈{0,1}∗

.

We begin by showing that the outputs of the honest parties are distributed identically in the ideal
world and in the protocol execution in the F subshare

V SS -hybrid model. Then, we show that the view
of the corrupted parties is distributed identically, when the output of the honest parties is given.
This implies that the joint distributions are identical.

The honest parties’ outputs. We analyze the distribution of the output of the honest parties.
Let the inputs of the honest parties be shares of the degree-t polynomial f(x). Then, in the ideal
world the output of the each honest party Pj is (f(αj), f(αk)); i.e., the output of each party is a
deterministic function of the inputs of all honest parties.

In the protocol execution in the F subshare
V SS model, again when the inputs of the honest parties are

shares of a degree-t polynomial f(x), the F subshare
V SS functionality guarantees that the shares obtained

by each party are g1(αj), . . . , gn(αj) where for every ℓ = 1, . . . , n it holds that gℓ(0) = f(αℓ) and
deg(gℓ) = t. In the protocol each honest party locally computes share of the polynomial

H(x) = γ1 · g1(x) + . . .+ γn · gn(x),
for which it holds that

H(0) = γ1 · g1(0) + . . . γn · gn(0) = γ1 · f(α1) + . . .+ γn · f(αn) = f(αk).

Thus, the F subshare
V SS functionality guarantees that the free coefficient of the polynomial H(x) is the

correct output. In addition, it guarantees that each polynomial gℓ(x) is of degree t, in turn implying
that H(x) is also of degree t. Therefore, after the parties send their shares in the final stage, each
honest party holds at least 2t+1 correct shares of the degree-t polynomial H(x). This implies that
the Reed-Solomon error correction procedure yields the correct codeword, irrespective of the values
sent by the corrupted parties. Thus, each honest party obtains the correct polynomial H(x) and
outputs the value H(0) = f(αk). We conclude that the exact values output by the honest parties
in a protocol execution are identical to those output by the honest parties in the ideal model.

47



The adversary’s view. We now show that the view of the adversary is identical in the hybrid
and the ideal executions, given the output of the honest parties. (In fact, since the output of the
honest parties is a deterministic function of their inputs, this is the same as conditioning on the
inputs.) We separate the protocol into three phases: in the first phase the adversary receives shares
from the F subshare

V SS functionality; in the second phase the adversary sends its polynomials to the
F subshare
V SS functionality and receives back the corrected polynomials from F subshare

V SS ; in the third
phase the adversary receives shares of the polynomial H(x) as sent in the protocol. We first show
that the partial view of the adversary in the first phase is distributed identically to the partial
output of the simulator. Then, we show that the remaining view and the remaining output (of each
phase) are distributed identically when conditioned on the partial view and output of the previous
stage(s) that are given.

In the first phase of the protocol execution, the adversary receives shares from the F subshare
V SS

functionality. That is, it receives {gj(αi)}i∈I;j ̸∈I where each gj(x) ∈R Pf(αj),t. In the ideal world,

the adversary receives from S simulating F subshare
V SS the shares

{
q′j(αi)

}
i∈I;j ̸∈I

where each q′j ∈R P0,t.

By Claim 3.4 these distributions are identical.
In the second phase, the adversary sends to F subshare

V SS a set of polynomials {qi(x)}i∈I . Since the
view of the adversary is distributed identically in both worlds up until this point, the distribution of
the polynomials that it sends F subshare

V SS are also identically distributed. The F subshare
V SS functionality

“corrects” the adversary’s polynomials, and sends them back to the adversary. This correction
merely requires the functionality to check the degree of the polynomials and that their free coeffi-
cients are correct; i.e., qi(0) = f(αi). The simulator S carries out exactly the same check, and it
can do this because it received the values f(αi) for every i ∈ I from the trusted party computing
F k
eval. Therefore, the values sent by S to A in the simulation are identical to those sent by the

F subshare
V SS functionality to A in this stage of the protocol. Thus, the view of the corrupted parties

up until the end of phase two of the protocol are distributed identically in both worlds.
Finally, in the last phase of the protocol, the adversary receives the shares {H(αj)}j /∈I , where

H(x) is a polynomial that satisfies:

H(x) =

n∑
ℓ=1

γℓ · gℓ(x) (12)

In contrast, in the simulation, the adversary receives shares {H ′(αj)}j /∈I , where H ′(x) is a random
polynomial that satisfies that H ′(0) = f(αk) and H ′(αi) =

∑n
ℓ=1 γℓ · q′ℓ(αi). We now show that

H(x) and H ′(x) are identically distributed. We do this by showing that for any fixed polynomial
h(x), and any (valid) partial view of the adversary in the first two phases together with the honest
parties’ output T ,

Pr[H(x) = h(x) | T ] = Pr[H ′(x) = h(x) | T ]

where H(x) is the polynomial of Eq. (12) from the real protocol, and H ′(x) is the polynomial above
chosen by S in the ideal simulation. There are three cases:

• Case 1 – deg(h(x)) > t: In the ideal simulation, H ′(x) chosen by S is always of degree-t and
so Pr[H ′(x) = h(x) | T ] = 0. Likewise, in the protocol execution, F subshare

V SS guarantees that
g1(x), . . . , gn(x) are all of degree-t and so by Eq. (12), H(x) is also of degree-t. This implies
that Pr[H(x) = h(x) | T ] = 0 as well.

• Case 2 – h(x) is not consistent with the points of the corrupted parties: This case refers to
the event that there exists an i ∈ I such that h(αi) ̸=

∑n
ℓ=1 γℓ · gℓ(αi) (in the real protocol
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execution), or h(αi) ̸=
∑n

ℓ=1 γℓ · q′ℓ(αi) (in the ideal simulation). Note that the points gℓ(αi)
(resp., q′ℓ(αi)) for i ∈ I are fully determined by the partial view T . In the ideal simulation,
H ′(x) is chosen by S so that for every i, h(αi) =

∑n
ℓ=1 γℓ · q′ℓ(αi) and so the probability is

again 0. Likewise, by Eq. (12), the polynomial H(x) defined in the protocol execution is
always consistent and the probability is 0.

• Case 3 – otherwise: In this case, deg(h(x)) = t, and for every i ∈ I it holds that: h(αi) =∑n
ℓ=1 γℓ · gℓ(αi) (resp., h(αi) =

∑n
ℓ=1 γℓ · q′ℓ(αi)). In the protocol execution, F subshare

V SS guar-
antees that the polynomials {gj(x)}j /∈I are all random polynomials under the constraint that
gj(0) = f(αj). The polynomial H(x) is a linear function of all the polynomials {gk(x)}nk=1.
Fix j /∈ I. By the definition of F subshare

V SS , gj(x) is a random polynomial under the constraint
that gj(0) = f(αj). By Corollary 3.3, given {gj(αi)}i∈I and a fixed gj(0), it holds that for
any t − |I| points αℓ (with ℓ /∈ I) the points gj(αℓ) – which are not seen by the adversary –
are uniformly distributed. This implies that for any t− |I| points αℓ (with ℓ /∈ I) the points
H(αℓ) are uniformly distributed. This is identical to the way that S chooses H ′(x).

6.3 The Fmult
V SS Functionality for Sharing a Product of Shares

Recall that in the semi-honest protocol for multiplication, each party locally computes the product
of its shares on the input wires and distributes shares of this product to all other parties (i.e., it
defines a polynomial with free coefficient that equals the product of its shares). In the protocol
for malicious adversaries, the same procedure needs to be followed. However, in contrast to the
semi-honest case, a mechanism is needed to enforce the malicious parties to indeed use the product
of their shares. Note that using F subshare

V SS , we can force the malicious parties to distributes shares
of their shares. The functionality and protocol described in this section uses this to ensure that
the malicious parties also distribute shares of the product of their shares. Stated differently, Fmult

V SS

is the analog of F subshare
V SS , but rather than sharing the input shares the result of the functionality

is a sharing of the product of some party’s input shares. As with F subshare
V SS , for technical reasons to

enable the simulation, we need to define Fmult
V SS as a reactive functionality.

FUNCTIONALITY 6.7 (The reactive Fmult
V SS functionality)

1. The Fmult
V SS functionality receives the inputs (aj , bj) from every honest party Pj (j /∈ I) .

2. Fmult
V SS computes the unique degree-t polynomials A′ and B′ such that A′(αj) = aj and

B′(αj) = bj for every j /∈ I (if no such A′ or B′ exist of degree-t, then Fmult
V SS behaves

differently as in Footnote 6).

3. Fmult
V SS sends (A′(x), B′(x)) to the dealer P1.

4. Fmult
V SS receives the input of the dealer P1, which is a polynomial C or a special symbol ∗:

(a) If the input is the special symbol ∗, then Fmult
V SS chooses a random degree-t polynomial

C ′ under the constraint that C ′(0) = A′(0) ·B′(0).

(b) Else, if the input is a polynomial C such that deg(C) = t and C(0) = A′(0) · B′(0),
then Fmult

V SS sets C ′ = C.

(c) Otherwise, if either deg(C) > t or C(0) ̸= A′(0) · B′(0), then Fmult
V SS sets C ′(x) =

A′(0) ·B′(0) to be the constant polynomial equalling A′(0) ·B′(0) everywhere.

5. Fmult
V SS sends C ′(x) to the dealer P1, and sends (A′(αi), B

′(αi), C
′(αi)) to every Pi.
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The special input symbol ∗ is an instruction for the trusted party computing Fmult
V SS to choose

the polynomial C ′(x) determining the output shares itself. This is the input used by honest parties.
We remark that although the dealing party P1 is supposed to already have A′(x), B′(x) as part

of its input and each party Pi is also supposed to already have A′(αi) and B′(αi) as part of its
input, this information is provided as output in order to enable simulation in the case that the
corrupted parties use incorrect inputs.

The protocol. In the protocol we assume that the parties already hold shares of a and b (where
a and b are the original shares of the dealer); as is clear from the functionality definition, their aim
is to now obtain shares of a · b. We stress that a and b are not values on the wires, but rather
are the shares of the dealing party of the original values on the wires. Let A(x) and B(x) be
polynomials such that A(0) = a and B(0) = b; i.e., A(x) and B(x) are the polynomials used to
share a and b. The idea behind the protocol is for the dealer to first define a series of t polynomials
D1(x), . . . , Dt(x), all of degree-t, such that C(x) = A(x) · B(x) −

∑t
k=1 x

kDk(x) is a random
degree-t polynomial with free coefficient equalling a · b. The dealer then shares the polynomials
D1(x), . . . , Dt(x) and each party can then locally compute shares of C(x). The important thing
to note is that the free coefficient of C(x) equals A(0) · B(0) = a · b for every possible choice of
polynomials D1(x), . . . , Dt(x). This is due to the fact that each Dk(x) is multiplied by xk and so
these do not affect C(0). This guarantees that even if the dealer is malicious, the polynomial C(x)
must have the correct free coefficient.

In more detail, after defining D1(x), . . . , Dt(x), the dealer shares them all using FV SS ; this
ensures that all polynomials are of degree-t and all parties have correct shares. Since each party
already holds a valid share of A(x) and B(x), this implies that each party can locally compute
its share of C(x). Specifically, given A(αj), B(αj) and D1(αj), . . . , Dt(αj), party Pj can simply
compute C(αj) = A(αj) · B(αj) −

∑t
k=1(αj)

kDk(αj). The crucial properties are that (a) if the
dealer is honest, then all the honest parties hold valid shares of a random degree-t polynomial with
free coefficient a · b, as required, and (b) if the dealer is malicious, all honest parties are guaranteed
to hold valid shares of a polynomial with free coefficient a · b. Thus, all that remains is for the
parties to verify that the shares that they hold for C(x) define a degree-t polynomial.

It may be tempting to try to solve this problem by simply having the dealer share C(x) using
FV SS , and then having each party check that the share that it received from this FV SS equals
the value C(αj) that it computed above. Since FV SS guarantees that the polynomial shared is
of degree-t, and the above strategy ensures that the computed polynomial has the correct free
coefficient, this seems to suffice. However, this does not work because it is possible for the dealer
to define the D1(x), . . . , Dt(x) polynomials so that C(x) is a degree 2t polynomial that agrees with
some other degree-t polynomial C ′(x) on up to 2t of the honest parties’ points αj , but for which
C ′(0) ̸= a · b. A malicious dealer can then share C ′(x) using FV SS and no honest parties would
detect any cheating.8 Observe that at least one honest party would detect cheating and could
complain (because C(x) only agrees with C ′(x) on 2t of the points, and there are at least 2t + 1
honest parties). However, this is not enough to act upon because when the dealer is honest, up to t
of the parties could present fake complaints because they are malicious. We solve this problem by

8An alternative strategy could be to run the FV SS protocol on the shares C(αj) that the parties computed in order
to verify that it is a degree-t polynomial. The problem with this strategy is that if C(x) is not a degree-t polynomial,
then the protocol for FV SS changes the points that the parties receive so that it is a degree-t polynomial. However,
in this process, the free coefficient of the resulting polynomial may also change. Thus, there will no longer be any
guarantee that the honest parties hold shares of a polynomial with the correct free coefficient.
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having the parties unequivocally verify every complaint to check if it is legitimate. If the complaint
is legitimate, then they just reconstruct the initial shares a and b and all output the constant
share a · b. In contrast, if the complaint is not legitimate, the parties just ignore it. This guarantees
that if no honest parties complain (legitimately), then the degree-t polynomial C ′(x) shared using
FV SS agrees with the computed polynomial C(x) on at least 2t+ 1 points. Since C(x) if of degree
at most 2t, this implies that C(x) = C ′(x) and so it is actually of degree-t, as required.

In order to detect complaints, we use the new functionality defined in Section 6.2 called Feval

that reconstructs the input share of the complainant (given that all honest parties hold valid
shares of a degree-t polynomial). Now, if a party Pj complains legitimately, then this implies that
C ′(αj) ̸= A(αj) ·B(αj)−

∑t
k=1(αj)

kDk(αj). Observe that the parties are guaranteed to have valid
shares of all the polynomials C ′(x), D1(x), . . . , Dt(x), since they are shared using FV SS and also of
A(x) and B(x) by the assumption on the inputs. Thus, they can use Feval to obtain all of the values
A(αj), B(αj), D1(αj), . . . , Dt(αj), and C ′(αj) and then each party can just check if C ′(αj) equals
A(αj) ·B(αj)−

∑t
k=1(αj)

kDk(αj). If yes, then the complaint is false. If no, then the complaint is
valid and they reconstruct a · b.

Building the polynomial C(x). As we have mentioned above, the protocol works by having
the dealer choose t polynomials D1(x), . . . , Dt(x) with the property that C(x) = A(x) · B(x) −∑t

k=1 x
k ·Dk(x) is a uniformly distributed polynomial in Pa·b,t, where A(0) = a and B(0) = b. We

now show how the dealer chooses these polynomials. The dealer first defines the polynomial D(x)
as follows:

D(x)
def
= A(x) ·B(x) = a · b+ d1x+ . . .+ d2tx

2t.

Next it defines the polynomials:

Dt(x) = rt,0 + rt,1x+ . . .+ rt,t−1x
t−1 + d2tx

t

Dt−1(x) = rt−1,0 + rt−1,1x+ . . .+ rt−1,t−1x
t−1 + (d2t−1 − rt,t−1)x

t

...

D1(x) = r1,0 + r1,1x+ . . . r1,t−1x
t−1 + (dt+1 − ri,1 − ri−1,2 − . . .− r2,t−1)x

t

where all ri,j ∈R F are random values, and all the di values are the coefficients from D(x). In
general, polynomial Dk(x) for 1 ≤ k ≤ t is defined by:

Dk(x) =

t−1∑
ℓ=0

rk,ℓ · xℓ +

dk+t −
t∑

j=k+1

rj,t+k−j

 · xt
and the polynomial C(x) is computed by:

C(x) = D(x)−
t∑

k=1

xk ·Dk(x)

where D(x) = A(x) ·B(x).
Before proceeding, we show that when the polynomials D1(x), . . . , Dt(x) are chosen in this way,

it holds that C(x) is a degree-t polynomial with free coefficient A(0) · B(0) = a · b. For every
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polynomial Dk(x), we have that: Dk(x) =
∑t−1

ℓ=0 rk,ℓ · xℓ +Rk,t · xt, where

Rk,t = dk+t −
t∑

j=k+1

rj,t+k−j . (13)

We now analyze the structure of the polynomial
∑t

k=1 x
k · Dk(x). First, observe that it is a

polynomial of degree 2t with free coefficient 0. Next, the coefficient of the monomial xℓ is the sum
of the coefficients of the ℓth column in Table 1; in the table, the coefficients of the polynomial
Dk(x) are written in the kth row and are shifted k places to the right since the polynomial C(x)
contains the term xk ·Dk(x).

x x2 x3 . . . xt xt+1 xt+2 . . . x2t−2 x2t−1 x2t

Dt rt,0 rt,1 rt,2 . . . rt,t−2 rt,t−1 Rt,t

Dt−1 . . . rt−1,1 rt−1,2 rt−1,3 . . . rt−1,t−1 Rt−1,t

Dt−2 . . . rt−2,2 rt−2,3 rt−2,4 . . . Rt−2,t
... . .

. ...
...

... . .
.

D3 r3,0 . . . r3,t−3 r3,t−2 r3,t−1 . . .
D2 r2,0 r2,1 . . . r2,t−2 r2,t−1 R2,t

D1 r1,0 r1,1 r1,2 . . . r1,t−1 R1,t

Table 1: Coefficients of the polynomial
∑t

k=1 x
k ·Dk(x).

We will now show that for every ℓ = 1, . . . , t the coefficient of the monomial xt+ℓ in the poly-
nomial

∑t
k=1 x

k ·Dk(x) equals dt+ℓ. Now, the sum of the (t+ ℓ)th column of the above table (for
1 ≤ ℓ ≤ t) is

Rℓ,t + rℓ+1,t−1 + rℓ+2,t−2 + · · ·+ rt,ℓ = Rℓ,t +
t∑

j=ℓ+1

rj,t+ℓ−j

and so the coefficient of xℓ+t in the polynomial
∑t

k=1 x
k ·Dk(x) equals dt+ℓ if and only if

Rℓ,t = dℓ+t −
t∑

j=ℓ+1

rj,t+ℓ−j ,

which is exactly what is defined in Eq. (13). We conclude that the (k + t)th coefficient of the
polynomial C(x) = D(x)−

∑t
k=1 x

k ·Dk(x) equals dk+t−dk+t = 0, and thus C(x) is of degree t, as
required. The fact that C(0) = a ·b follows immediately from the fact that each Dk(x) is multiplied
by xk and so this does not affect the free coefficient of D(x). Finally, observe that the coefficients
of x, . . . , xt are all random (since the values ri,0 appears only in the coefficient of xi) and so the
polynomial C(x) also has random coefficients everywhere except for the free coefficient.

The protocol. The protocol is implemented in the (FV SS , Feval)-hybrid model. We assume that
the dealer has already distributed its shares for the polynomials A(x) and B(x) using the F subshare

V SS

functionality. The full description appears in Protocol 6.8.
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PROTOCOL 6.8 (Securely computing Fmult
V SS in the FV SS-Feval-hybrid model)

• Inputs:

1. Each party Pi holds a pair of shares ai and bi such that ai = A(αi) and bi = B(αi).

2. The dealer has the degree-t polynomials A and B as auxiliary input.

We assume that the above structure of the inputs holds for all honest Pj when the dealer is
also honest (see the definition of Fmult

V SS above and Footnote 6 for when this does not hold).

• Common input: The description of a field F and n specified elements α1, . . . , αn ∈ F.

• The protocol:

1. Dealing phase:

(a) The dealer P1 defines the degree-2t polynomial D(x) = A(x) · B(x); denote

D(x) = a · b+
∑2t

k=1 dk · xk.

(b) P1 chooses t
2 values {rk,j} uniformly and independently at random from F, where

k = 1, . . . , t, and j = 0, . . . , t− 1.

(c) For every k = 1, . . . , t, the dealer defines the polynomial Dk(x):

Dk(x) =
t−1∑
ℓ=0

rk,ℓ · xℓ +

dk+t −
t∑

j=k+1

rj,t+k−j

 · xt.

(d) P1 computes the polynomial:

C(x) = D(x)−
t∑

k=1

xk ·Dk(x).

(e) P1 invokes the FV SS functionality as dealer with input C(x); denote by c(i) the
output share received by party Pi.

(f) P1 invokes the FV SS functionality as dealer with input Dk(x) for every k =
1, . . . , t; denote by dk(i) the output share received by party Pi.

(g) P1 outputs (A(x), B(x), C(x)).

2. Verify phase: Each party Pi works as follows:

(a) If any of c(i), dk(i) equal ⊥ then Pi proceeds to the reject phase (note that if one
honest party received ⊥ then all did).

(b) Pi computes c′(i) = ai · bi −
∑t

k=1(αi)
k · dk(i). If c′(i) ̸= c(i) then Pi broadcasts

(complaint, i).

(c) If any party Pj broadcast (complaint, j) then go to the complaint resolution phase.

3. Complaint resolution phase: Run the following for every (complaint, j) message:

(a) Run t+3 invocations of F j
eval, with party Pi inputting ai, bi, c(i), d1(i), . . . , dt(i).

(b) Let Ã(αj), B̃(αj), C̃(αj), D̃1(αj), . . . , D̃t(αj) be the respective outputs from the

invocations. Compute C̃ ′(αj) = Ã(αj) · B̃(αj)−
∑t

k=1(αj)
k · D̃k(αj).

(c) If C̃(αj) ̸= C̃ ′(αj), then proceed to the reject phase.

4. Reject phase:

(a) Every party Pi broadcasts ai. Given the broadcast values a⃗ = (a1, . . . , an), where
aj = 0 if it was not broadcast, Pi computes A′(x) to be output of Reed-Solomon
decoding on a⃗.

(b) Every party Pi broadcasts bi. Given the broadcast values b⃗ = (b1, . . . , bn), where
bj = 0 if it was not broadcast, Pi computes B′(x) to be output of Reed-Solomon

decoding on b⃗.

(c) Every party Pi sets c(i) = A′(0) ·B′(0).

5. Outputs: Every party Pi outputs c(i).
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Theorem 6.9 Let t < n/3. Then, Protocol 6.8 t-securely computes the Fmult
V SS functionality in the

(FV SS , Feval)-hybrid model, in the presence of a static malicious adversary.

Proof: We separately prove the security of the protocol when the dealer is honest and when the
dealer is corrupted.

Case 1 – the dealer P1 is honest: Intuitively, in this case the simulator S receives the outputs
(A′(αi), B

′(αi), C
′(αi)) for every i ∈ I, and simulates the view of the adversary by choosing random

degree-t polynomials D2(x), . . . , Dt(x) and defining D1(x) so that

αi ·D1(αi) = A′(αi) ·B′(αi)− C ′(αi)−
t∑

k=2

(αi)
k ·Dk(αi).

This computation makes sense because

C(x) = D(x)−
t∑

k=1

xk ·Dk(x) = A(x) ·B(x)− x ·D1(x)−
t∑

k=2

xk ·Dk(x)

implying that

x ·D1(x) = A(x) ·B(x)− C(x)−
t∑

k=2

xk ·Dk(x).

As we will see, the polynomials Dk(x) chosen by an honest dealer have the same distribution as
that here (i.e., they are random under the constraint that C(x) = A(x) ·B(x)−

∑t
k=1 x

k ·Dk(x)).
In order to simulate complaints, observe that no honest party broadcasts a complaint. Furthermore,
for every (complaint, i) value broadcast by A (for i ∈ I), the complaint resolution phase can easily
be simulated since S knows the correct values Ã(αi) = A′(αi), B̃(αi) = B′(αi), C̃(αi) = C ′(αi).
Furthermore, for every k, S uses D̃k(αi) = Dk(αi) as chosen initially in the simulation. We now
formally describe the simulator.

The simulator S:

1. S invokes the adversary A with the auxiliary input z.

2. S receives from Fmult
V SS the values (A′(αi), B

′(αi), C
′(αi)) for every i ∈ I.

3. S chooses t− 1 random degree-t polynomials D2(x), . . . , Dt(x).

4. For every i ∈ I, S computes:

D1(αi) = (αi)
−1 ·

(
A′(αi) ·B′(αi)− C ′(αi)−

t∑
k=2

(αi)
k ·Dk(αi)

)

5. S simulates the FV SS invocations, and simulates every corrupted party Pi receiving outputs
C ′(αi), D1(αi), . . . , Dt(αi) from FV SS in the respective invocations.

6. For every i ∈ I for which A instructs the corrupted party Pi to broadcast a (complaint, i)
message, S simulates the complaint resolution phase by simulating Pi receiving outputs A

′(αi),
B′(αi), C

′(αi), D1(αi), . . . , Dt(αi) from the respective Feval invocations.

7. S outputs whatever A outputs, and halts.
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We prove that for every for every I ⊆ [n], every z ∈ {0, 1}∗ and all vectors of inputs x⃗,{
IDEALFmult

V SS ,S(z),I (x⃗)
}
≡
{
HYBRID

FV SS ,Feval

Fmult
V SS ,A(z),I

(x⃗)
}
.

We begin by showing that the output of the honest parties is distributed identically in the ideal
world and the hybrid world. Then, we show that the view of the corrupted parties is distributed
identically, when the output of the honest parties is given.

The honest parties’ outputs. We analyze the distribution of the output of honest parties.
Let the inputs of the honest parties be shares of the degree-t polynomials A(x) and B(x). Then,
in the ideal model the trusted party chooses a C ′(x) that is distributed uniformly at random in
PA(0)·B(0),t, and sends each party Pj the output (A(αj), B(αj), C

′(αj)); note that when the dealer
is honest it holds that A′ = A and B′ = B.

In the protocol execution in the FV SS-hybrid model, we have that the honest dealer chooses
D1(x), . . . , Dt(x) as instructed. It is immediate that the polynomial C in the protocol is such that
C(0) = A(0) · B(0) and that each honest party Pj outputs c(j) = C(αj). This is due to the fact
that all complaints that are broadcasted are such that C̃(αj) = Ã(αj) ·B̃(αj)−

∑t
k=1(αj)

k ·D̃k(αj),
since the dealer is honest. Thus, in the protocol execution, the honest parties output shares of a
polynomial in PA(0)·B(0),t. It remains to show that C(x) is of degree-t and is uniformly distributed
in PA(0)·B(0),t. In the discussion above, we have already shown that deg(C) = t. We now show
that every coefficient of C(x), except for the free coefficient, is uniformly distributed. In order
to see this, observe that for every k = 1, . . . , t the value rk,0 appears only in the polynomial
Dk(x). Furthermore, recall that the sum of polynomials to compute C(x) includes xk · Dk(x)
and thus the kth coefficient of C(x) includes rk,0. Thus, fixing all other values and then choosing
r1,0, . . . , rt,0 ∈R F randomly, we have that the kth coefficient is uniformly distributed (because
we add the random rk,0 to it), and so all coefficients except for the free coefficient are uniformly
distributed.

We conclude that C(x) as computed by the honest parties is uniformly distributed in PA(0)·B(0),t

and so the distribution over the outputs of the honest parties in the real and ideal executions are
identical.

The adversary’s view. We now show that the view of the adversary is identical in the real
protocol and ideal executions, given the honest parties’ outputs. Fix the honest parties’ outputs
(A′(αj), B

′(αj), C
′(αj)) for every j /∈ I. Observe that this fully determines the polynomial C ′ since

there are more than t points (since we have already shown that the outputs of the honest parties
are identically distributed we have that deg(C ′) = t in the protocol execution as well). (Of course,
A′ and B′ are also fully determined, but this is anyway the case since the dealer is honest and so
they are its input.)

The view of the adversary in a real protocol execution consists of the shares:{
D1(αi)

}
i∈I

, . . . ,
{
Dt(αi)

}
i∈I

,
{
C(αi)

}
i∈I

and the messages from the complaints phase.9 The trusted party sends the simulator the points

9We stress that any complaints that are broadcast by corrupted parties provide no new information since the
corrupted parties merely obtain the values that they already hold. Formally, since the simulator in the ideal model
receives all of the values received in a complaint phase, the view obtained in the real and ideal executions are identical,
as long as the Dk(αi) values received are also identically distributed.
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{C ′(αi)}i∈I , where C ′ is a polynomial that was chosen uniformly at random from PA(0)·B(0),t (this
is due to the fact that we have assumed that the input of an honest dealer is always C ′ = ∗). Since
C is fully determined by the honest parties’ outputs (as we have seen, when the dealer is honest
we have that C = C ′), it follows that the shares obtained {C(αi)}i∈I by the honest parties in the
real execution are identical to those obtained in the ideal model. It therefore suffices to show that
the shares {Dk(αi)}i∈I;k∈[t] are also identically distributed, conditioned on the values {C(αi)}i∈I .

We denote by DS
2 (x), . . . , D

S
t (x) the polynomials chosen by S in the simulation, and by D2(x),

. . . , Dt(x) the polynomials chosen by the honest dealer in a protocol execution. We now show
inductively that for every j = t down to 2,{

DS
t (αi), . . . , D

S
j (αi)

}
i∈I
≡
{
Dt(αi), . . . , Dj(αi)

}
i∈I

(14)

(recall that this is conditioned on the fixed A′(x), B′(x), C ′(x) polynomials, but in this case of an
honest dealer A′(x) = A(x), B′(x) = B(x), and C ′(x) = C(x)). Consider first the case of j = t. In
this case, we compare {DS

t (αi)}i∈I to {Dt(αi)}i∈I . By the definition of Dt(x), the coefficient of xℓ

for ℓ = 1, . . . , t−1 is a random value rt,ℓ which does not appear in C(x), A(x) or B(x). In contrast,
rt,0 is included in the computation of the tth coefficient of C(x), which is fixed. Nevertheless, the
tth coefficient of C(x) also includes r1,t−1 from D1 which is uniformly distributed and so rt,0 is
independent of C(x). Furthermore, the coefficient of xt in Dt(x) equals Rt,t = d2t which is the
2tth coefficient of A(x) · B(x); see Table 1. However, by Corollary 3.6, any t points {f(αi)}i∈I
are uniformly distributed, when f is a degree-t polynomial for which its first t coefficients are
uniformly distributed. Since, DS

t (x) is chosen randomly by S, the points {DS
t (αi)}i∈I are also

uniformly distributed.

Next, fix
{
DS

t (αi), . . . , D
S
j+1(αi)

}
i∈I

and {Dt(αi), . . . , Dj+1(αi)}i∈I . We prove that the distri-

bution over {DS
j (αi)}i∈I is identical to {Dj(αi)}i∈I , conditioned on A(x), B(x), C(x) and on the

points
{
DS

t (αi), . . . , D
S
j+1(αi)

}
i∈I

and {Dt(αi), . . . , Dj+1(αi)}i∈I , respectively. Abusing notation,

we write: {
DS

j (αi)
∣∣∣ DS

t (αi), . . . , D
S
j+1(αi), A(x), B(x), C(x)

}
i∈I

≡
{
Dj(αi)

∣∣∣ Dt(αi), . . . , Dj+1(αi), A(x), B(x), C(x)
}
i∈I

It is clear that the points {DS
j (αi)}i∈I are uniformly distributed, because S chooses DS

j (x) uni-

formly at random (and independently of DS
t (x), . . . , D

S
j+1(x), A(x), B(x), C(x)). In contrast, there

seems to be dependence between Dj(x) and Dt(x), . . . , Dj+1(x), A(x), B(x), C(x). First, regard-
ing A(x), B(x), C(x), the polynomial Dj(x) is independent because of the coefficients of D1, as
mentioned above for the case of j = t. Regarding Dt(x), . . . , Dj+1(x), observe that the ℓth co-
efficient (0 ≤ ℓ ≤ t − 1) of Dj(x) is rj,ℓ and this is not dependent on any of the polynomi-
als Dj+1(x), . . . , Dt(x). In order to see this, recall that Rk,t depends only on rj,ζ values with
j > k (see Table 1 and Eq. (13)). Thus, the Rk,t values for k = j + 1, . . . , t do not contain
the values rj,ℓ at all. In contrast, the tth coefficient is fully determined by the polynomials
Dj+1(x), . . . , Dt(x), A(x), B(x). Nevertheless, by once again applying Corollary 3.6, we have that
the points received by the adversary are uniformly distributed. We therefore conclude that Eq. (14)
holds.
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It remains now to show that the points {DS
1 (αi)}i∈I and {D1(αi)}i∈I are also identically

distributed, conditioned on all the other points {Dk(αi)}i∈I and the polynomial C(x). How-
ever, the polynomial D1 chosen by the dealer in the real protocol is fully determined by C(x)
and D2(x), . . . , Dt(x). Indeed, an equivalent way of describing the dealer is for it to choose all
D2(x), . . . , Dt(x) as before, to choose C(x) uniformly at random in Pa·b,t and then to choose D1(x)
so that

x ·D1(x) = A(x) ·B(x)− C(x)−
t∑

k=2

xk ·Dk(x).

(In order to see that this is true, observe that the tth coefficient of D1(x) is fully determined
by this equation because it must equal the t + 1th coefficient of A(x) · B(x) − C(x) −

∑t
k=2 x

k ·
Dk(x), and C(x) is only of degree-t so has no influence on this. Then, choosing all the other
coefficients of D1(x) at random is equivalent to choosing C(x) at random from Pa·b,t.) Thus, once
D2(x), . . . , Dt(x), A(x), B(x), C(x) are fixed, the polynomial D1(x) is fully determined. Likewise,
in the simulation, the points {D1(αi)}i∈I are fully determined by {D2(αi), . . . , Dt(αi), A(αi), B(αi),
C(αi)}i∈I , by the same equation as in the real protocol execution.

We conclude that the view of the corrupted parties in the protocol is identically distributed to
the adversary’s view in the ideal simulation, given the outputs of the honest parties. Combining
this with the fact that the outputs of the honest parties are identically distributed in the real and
ideal executions, we conclude that the joint distributions of the adversary’s output and the honest
parties’ outputs in the ideal and real executions are identical.

Case 2 – the dealer is corrupted: Intuitively, security holds in this case because (a) the
dealer receives no messages from the honest parties (unless there are complaints in which case it
learns nothing it did not know), and (b) any deviation by a corrupted dealer from the prescribed
instructions is detected in the verify phase. We now formally describe the simulator.

The simulator S:

1. S invokes A with the auxiliary input z.

2. S receives (A′(x), B′(x)) from Fmult
V SS .

3. S receives the polynomials C(x), D1(x), . . . , Dt(x) that A instructs the corrupted dealer to
use in the FV SS invocations.

4. If deg(C) > t or if deg(Dk) > t for some k, then S proceeds to Step 8 below.

5. For every j /∈ I such that C(αj) ̸= A′(αj)·B′(αj)−
∑t

k=1(αj)
k ·Dk(αj), simulator S simulates

Pj broadcasting (complaint, j) and simulates the complaint resolution phase. In this phase, S
uses the polynomials A′(x), B′(x), C(x) and D1(x), . . . , Dk(x) in order to compute the values
received from the Feval invocations. If there exists such a j /∈ I as above, then S proceeds to
Step 8 below.

6. For every (complaint, i) message that was broadcast by a corrupted party Pi, simulator S
generates the results of the Feval executions. Then, if there exists an i ∈ I such that C(αi) ̸=
A′(αi) ·B′(αi)−

∑t
k=1(αi)

k ·Dk(αi), simulator S proceeds to Step 8 below.
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7. If S reaches this point, then it sends C(x), obtained from A above, to Fmult
V SS . It then skips to

Step 9 below.

8. Simulating reject:

(a) S sends C(x) = xt+1 to the trusted party computing Fmult
V SS (i.e., S sends a polynomial

C such that deg(C) > t).

(b) S receives C ′(x) from Fmult
V SS , simulates every honest party Pj broadcasting aj = A′(αj)

and bj = B′(αj) as in the reject phase.

9. S outputs whatever A outputs, and halts.

The simulator obtains A′(x), B′(x) from Fmult
V SS and therefore can compute the actual inputs

aj = A′(αj) and bj = B′(αj) held by all honest parties Pj (j /∈ I). Therefore, the view of the
adversary in the simulation is clearly identical to its view in a real execution. We now show that
the output of the honest parties in the ideal model, and in the hybrid model are identical, given
the view of the corrupted parties/adversary. We have two cases:

1. Case 1 – no reject: This case occurs if (a) all the polynomials C(x), D1(x), . . . , Dt(x) are of
degree t, (b) it holds that C(αj) = A′(αj) ·B′(αj)−

∑t
k=1(αj)

k ·Dk(αj) for every j /∈ I, and
(c) if any corrupt Pi broadcast (complaint, i) then C(αi) = A′(αi)·B′(αi)−

∑t
k=1(αi)

k ·Dk(αi).
In this case, each honest party Pj in the real protocol execution outputs C(αj). In the ideal
model, each honest Pj also outputs C(αj) as long as deg(C) = t and C(0) = A′(0) · B′(0).
Now, let C ′(x) = A′(x) · B′(x) −

∑t
k=1 x

k · Dk(x). By the definition of C ′ and the fact
that each Dk(x) is guaranteed to be of degree-t, we have that C ′(x) is of degree at most
2t. Furthermore, in this case, C(x) = C ′(x) on at least 2t + 1 points {αj}j /∈I . Therefore,
C(x) = C ′(x) on all points, and in particular C(0) = C ′(0). Thus, we conclude that C is
a degree-t polynomial such that C(0) = A′(0) · B′(0), and so every honest party Pj outputs
C(αj) in the ideal model.

2. Case 2 – reject: This case occurs if any of (a), (b) or (c) above do not hold. When this occurs,
all honest parties run the reject phase in the real execution and output the value A′(0) ·B′(0).
In the ideal model, in any of these cases the simulator S sends the polynomial C(x) = xt+1

to Fmult
V SS . Upon input of C(x) with deg(C) > t, functionality Fmult

V SS sets C ′(x) = A′(0) ·B′(0)
and so all honest parties output the value A′(0) ·B′(0), exactly as in the real execution.

This concludes the proof.

6.4 The Fmult Functionality and its Implementation

We are finally ready to show how to securely compute the product of shared values, in the presence
of malicious adversaries.

The functionality. We begin by defining the multiplication functionality for the case of malicious
adversaries. In the semi-honest setting, the Fmult functionality was defined as follows:

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
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where fab is a random polynomial with free coefficient fa(0) · fb(0) = a · b. We stress that unlike
in Fmult

V SS , here the values a and b are the actual values on the incoming wires to the multiplication
gate.

In the malicious setting, we need to define the functionality with more care. First, the corrupted
parties are able to influence the output and determine up to |I| of the points of the output polyno-
mial. This is due to the fact that in the protocol, the corrupted parties may choose the polynomials
that they use in Fmult

V SS (for sharing the product of their shares), after receiving the shares of the
products from the honest parties. In addition, as with Feval, the simulator needs to receive the
correct shares of the corrupted parties in order to simulate, and so this is also received as output.
Since this information is anyway given to the corrupted parties, this makes no difference to the use
of the functionality for secure computation. Due to the above, we define the Fmult multiplication
functionality as a reactive functionality:

FUNCTIONALITY 6.10 (The reactive Fmult functionality)

1. The Fmult functionality receives the inputs of the honest parties {(βj , γj)}j /∈I . Let
fa(x), fb(x) be the unique degree-t polynomials determined by the points {(αj , βj)}j /∈I ,
{(αj , γj)}j /∈I , respectively.

(If such polynomials do not exist then no security is guaranteed; see Footnote 6.)

2. Fmult sends {(fa(αi), fb(αi))}i∈I to the (ideal) adversary.

3. Fmult receives points {δi}i∈I from the (ideal) adversary.

4. Fmult chooses a random degree-t polynomial fab(x) under the constraints that:

(a) fab(0) = fa(0) · fb(0), and
(b) For every i ∈ I, fab(αi) = δi.

(such a degree-t polynomial always exists since |I| ≤ t).

5. The functionality Fmult sends the value fab(αj) to every honest party Pj (j ̸∈ I).

We are now ready to show how to multiply in the F subshare
V SS and Fmult

V SS hybrid model. Intuitively,
the parties first distribute shares of their shares and shares of the product of their shares, using
F subshare
V SS and Fmult

V SS , respectively. Next, we use the method from [14] to have the parties directly
compute shares of the product of the values on the input wires. This method is based on the
following observation. Let fa(x) and fb(x) be two degree-t polynomials such that fa(0) = a and
fb(0) = b, and let h(x) = fa(x) · fb(x) = ab + h1 · x + h2 · x2 + . . . + h2t · x2t. Letting Vα⃗ be the
Vandermonde matrix for α⃗, and recalling that Vα⃗ is invertible, we have that

Vα⃗ ·



ab
h1
...

h2t
0
...
0


=


h(α1)
h(α2)

...
h(αn)

 and so



ab
h1
...

h2t
0
...
0


= V −1

α⃗ ·


h(α1)
h(α2)

...
h(αn)

 .
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Let λ1, . . . , λn be the first row of V −1
α⃗ . It follows that

ab = λ1 · h(α1) + . . .+ λn · h(αn) = λ1 · fa(α1) · fb(α1) + . . .+ λn · fa(αn) · fb(αn).

We conclude that the parties simply need to compute a linear function of their inputs. Using
F subshare
V SS and Fmult

V SS , as described above, the parties first distribute random shares of the values
fa(αi) ·fb(αi), for every i = 1, . . . , n. That is, let C1(x), . . . , Cn(x) be random degree-t polynomials
such that for every i it holds that Ci(0) = fa(αi) · fb(αi). Then, the result of the sharing via
Fmult
V SS is that each party Pi holds C1(αi), . . . , Cn(αi). Thus, each Pi can locally compute H(αi) =∑n
ℓ=1 λℓ ·Cℓ(αi) and we have that the parties hold shares of the polynomial H(x) =

∑n
ℓ=1 λℓ ·Cℓ(x).

By the fact that Ci(0) = fa(αi) · fb(αi) for every i, it follows that

H(0) =
n∑

ℓ=1

λℓ · Cℓ(0) =
n∑

ℓ=1

λℓ · fa(αi) · fb(αi) = ab. (15)

Furthermore, since all the Cℓ(x) polynomials are of degree-t, the polynomialH(x) is also of degree-t.
Full details of the protocol are given in Protocol 6.11.

PROTOCOL 6.11 (Computing Fmult in the (F subshare
V SS , Fmult

V SS )-hybrid model)

• Input: Each party Pi holds ai, bi, where ai = fa(αi), bi = fb(αi) for some polynomials
fa(x), fb(x) with degree t, which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote 6.)

• Common input: The description of a field F and n specified elements α1, . . . , αn ∈ F. In
addition, the parties have constants λ1, . . . , λn which are the first row of the matrix V −1

α⃗ .

• The protocol:

1. The parties invoke the F subshare
V SS functionality with each party Pi using ai as its private

input. Each party Pi receives back shares A1(αi), . . . , An(αi), and a polynomial Ai(x).
(Recall that for every i, the polynomial Ai(x) is of degree-t and Ai(0) = fa(αi).)

2. The parties invoke the F subshare
V SS functionality with each party Pi using bi as its private

input. Each party Pi receives back shares B1(αi), . . . , Bn(αi), and a polynomial Bi(x).

3. For every i = 1, . . . , n, the parties invoke the Fmult
V SS functionality as follows:

(a) Inputs: In the ith invocation, party Pi plays the dealer and sends Fmult
V SS the

special input symbol ∗. In addition, all parties Pj (1 ≤ j ≤ n) send Fmult
V SS their

shares Ai(αj), Bi(αj).

(b) Outputs: Pi receives back the polynomial Ci(x) as output (recall that Ci(x) ∈R
PAi(0)·Bi(0),t. Every party Pj (1 ≤ j ≤ n) receives back the value Ci(αj).

4. At this stage, each party Pi holds values C1(αi), . . . , Cn(αi), and locally computes
H(αi) =

∑n
j=1 λj · Cj(αi) and outputs this value.

More efficient multiplication [1]. The protocol that we have presented is very close to that
described by BGW. However, it is possible to use these techniques to achieve a more efficient
multiplication protocol. For example, observe that if the parties already hold shares of all other
parties’ shares, then these can be used directly in Fmult

V SS without running F subshare
V SS at all. Now,
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the verifiable secret sharing protocol of [3] presented here is based on bivariate polynomials, and
so all parties do indeed receive shares of all other parties’ shares. This means that it is possible
to modify Protocol 6.11 so that the parties proceed directly to Fmult

V SS without using F subshare
V SS at

all. Furthermore, the output of each party Pi in Fmult
V SS is the share c(i) received via the FV SS

functionality; see Protocol 6.8. Once again, using VSS based on bivariate polynomials, this means
that the parties can actually output the shares of all other parties’ shares as well. Applying the
linear computation of H(x) to these bivariate shares, we conclude that it is possible to include the
shares of all other parties as additional output from Protocol 6.11. Thus, the next time that Fmult

is called, the parties will again already have the shares of all other parties’ shares and F subshare
V SS

need not be called. This is a significant efficiency improvement. (Note that unless some of the
parties behave maliciously, Fmult

V SS itself requires t + 1 invocations of FV SS and nothing else. With
this efficiency improvement, we have that the entire cost of Fmult is n · (t+1) invocations of FV SS .)
See [1] for more details on this and other ways to further utilize the properties of bivariate secret
sharing in order to obtain simpler and much more efficient multiplication protocols.

Theorem 6.12 Let t < n/3. Then, Protocol 6.11 t-securely computes the Fmult functionality in
the (F subshare

V SS , Fmult
V SS )-hybrid model, in the presence of a static malicious adversary.

Proof: As we have mentioned, in our analysis here we assume that the inputs of the honest parties
all lie on two polynomials of degree t; otherwise (vacuous) security is immediate as described in
Footnote 6. We have already discussed the motivation behind the protocol and therefore proceed
directly to the simulator.

The simulator S.

1. S invokes A with the auxiliary input z.

2. S receives from the trusted party computing Fmult the values (fa(αi), fb(αi)), for every i ∈ I.

3. S simulates the first invocation of F subshare
V SS :

(a) For every j /∈ I, S chooses a uniformly distributed polynomial A′
j(x) ∈R P0,t.

(b) S hands A the values {A′
j(αi)}j /∈I;i∈I as if coming from F subshare

V SS (see Step 2 of the
functionality definition).

(c) S receives from A a set of polynomials {A′
i(x)}i∈I . If any polynomial is missing, then S

sets it to be the constant polynomial 0.

(d) For every i ∈ I, S performs the following checks (as checked by F subshare
V SS ):

i. S checks that A′
i(0) = fa(αi), and

ii. S checks that the degree of A′
i(x) is t.

If either of these checks fail, S sets A′
i(x) to be the constant polynomial that equals fa(αi)

everywhere (recall that S received fa(αi) from Fmult and so can carry out this check and
set the output to be these values if necessary).

(e) S hands A the polynomials {A′
i(x)}i∈I and the shares {A′

1(αi), . . . , A
′
n(αi)}i∈I as if com-

ing from F subshare
V SS .
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4. S simulates the second invocation of F subshare
V SS : This simulation is carried out in an identical

way using the points {fb(αi)}i∈I . Let B′
1(x), . . . , B

′
n(x) be the resulting polynomials held by S

after the simulation of this step.

(Note that at this point S holds a set of degree-t polynomials {A′
k(x), B

′
k(x)}k∈[n], where for

every j /∈ I it holds that A′
j(0) = B′

j(0) = 0, and for every i ∈ I it holds that A′
i(0) = fa(αi)

and B′
i(0) = fb(αi).)

5. For every j ̸∈ I, S simulates the Fmult
V SS invocation where the honest party Pj is dealer:

(a) S chooses a uniformly distributed polynomial C ′
j(x) ∈R P0,t, and hands A the values

{A′
j(αi), B

′
j(αi), C

′
j(αi)}i∈I as if coming from Fmult

V SS .

6. For every i ∈ I, S simulates the Fmult
V SS invocation where the corrupted party Pi is dealer:

(a) S hands the adversary A the polynomials (A′
i(x), B

′
i(x)) as if coming from Fmult

V SS .

(b) S receives from A the input that A sends to Fmult
V SS .

i. If the input is the special symbol ∗, then S chooses a random C ′
i(x) ∈R Pfa(αi)·fb(αi),t.

ii. If the input is a polynomial Ci such that deg(Ci) = t and Ci(0) = A′
i(0) · B′

i(0) =
fa(αi) · fb(αi), then S sets C ′

i(x) = Ci(x).

iii. Otherwise, S sets C ′
i(x) to be the constant polynomial equalling fa(αi) · fb(αi) ev-

erywhere.

(c) S hands A the polynomial C ′
i(x) and shares {(A′

i(αk), B
′
i(αk), C

′
i(αk))}k∈I , as if coming

from Fmult
V SS .

7. For every i ∈ I, the simulator S computes H(αi) =
∑n

ℓ=1 λℓ ·C ′
ℓ(αi), where C ′

1(x), . . . , C
′
n(x)

are as determined by S above, and sends the set {H(αi)}i∈I to the Fmult functionality (this
is the set {δi}i∈I in Step 3 of the functionality definition).

8. S outputs whatever A outputs.

Observe that the only difference between the simulation with S and A, and an execution of
Protocol 6.11 with A, is due to the fact that for every j /∈ I, S chooses the polynomials A′

j(x), B
′
j(x),

and C ′
j(x) to have free coefficients of 0 instead of free coefficients fa(αj), fb(αj), and fa(αj) ·fb(αj),

respectively. We stress that apart from this, the executions are identical since S is able to run
the checks of the F subshare

V SS and Fmult
V SS functionalities exactly as they are specified. Our proof

proceeds by first constructing an alternative simulator that is the same as S except that it has
the honest parties’ inputs and uses them to choose A′

j(x), B
′
j(x), and C ′

j(x) like the honest parties.
Then, we show that this alternative simulation is the same as the original one, since |I| points on
these polynomials are distributed identically in both cases. Finally, we show that the alternative
simulation is identical to a real protocol execution, concluding the proof.

An alternative simulator. Let S ′ be exactly the same as S, except that it receives for input
the values fa(αj), fb(αj), for every j /∈ I. Then, instead of choosing A′

j(x) ∈R P0,t, B′
j(x) ∈R P0,t,

and C ′
j(x) ∈R P0,t, the alternative simulator S ′ chooses A′

j(x) ∈R Pfa(αj),t, B′
j(x) ∈R Pfb(αj),t, and

C ′
j(x) ∈R Pfa(αj)·fb(αj),t. We stress that S ′ runs in the ideal model with the same trusted party

running Fmult as S, and the honest parties receive output as specified by Fmult when running with
the ideal adversary S or S ′.
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The original and alternative simulations. We begin by showing that the joint output of the
adversary and honest parties is identical in the original and alternative simulations. That is,{

IDEALFmult,S(z),I(x⃗)
}
x⃗∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALFmult,S′(z′),I(x⃗)

}
x⃗∈({0,1}∗)n,z∈{0,1}∗

where z′ contains the same z as A receives, together with the fa(αj), fb(αj) values. In or-
der to see that the above holds, observe that both S and S ′ can work when given the points
{A′

j(αi), B
′
j(αi), C

′
j(αi)}i∈I;j /∈I , and they don’t actually need the polynomials themselves. Further-

more, the only difference between S and S ′ is whether these polynomials are chosen with zero
free coefficients, or with the “correct” ones. That is, there exists a machine T that receives points
{A′

j(αi), B
′
j(αi), C

′
j(αi)}i∈I;j /∈I and runs the simulation strategy with A while interacting with Fmult

in an ideal execution, such that:

• If A′
j(0) = B′

j(0) = C ′
j(0) = 0 then the joint output of T and the honest parties in the ideal exe-

cution is exactly that of IDEALFmult,S(z),I(x⃗); i.e., an ideal execution with the original simulator.

• If A′
j(0) = fa(αj), B

′
j(0) = fb(αj) and C ′

j(0) = fa(αj) · fb(αj) then the joint output of T and
the honest parties in the ideal execution is exactly that of IDEALFmult,S′(z′),I(x⃗); i.e., an ideal
execution with the alternative simulator.

By Claim 3.4, the points {A′
j(αi), B

′
j(αi), C

′
j(αi)}i∈I;j /∈I when A′

j(0) = B′
j(0) = C ′

j(0) = 0 are
identically distributed to the points {A′

j(αi), B
′
j(αi), C

′
j(αi)}i∈I;j /∈I when A′

j(0) = fa(αj), B
′
j(0) =

fb(αj) and C ′
j(0) = fa(αj) · fb(αj). Thus, the joint outputs of the adversary and honest parties in

both simulations must be identical.

The alternative simulation and a protocol execution. We now proceed to show that the
joint output of the adversary and honest parties are identical in a protocol execution and in the
alternative simulation.:{

IDEALFmult,S′(z′),I(x⃗)
}
x⃗∈({0,1}∗)n,z∈{0,1}∗

≡
{
HYBRID

F subshare
V SS ,Fmult

V SS

π,A(z),I (x⃗)
}
x⃗∈({0,1}∗)n,z∈{0,1}∗

.

In order to see this, we compare the ideal execution of S ′ with Fmult to an ideal execution of yet
another simulator Ŝ with a new functionality F̂mult, defined as follows:

• F̂mult is the same as Fmult except that instead of receiving points {δi}i∈I from the ideal adversary
Ŝ, it receives polynomials C ′

1(x), . . . , C
′
n(x) from Ŝ. It then defines f̂ab(x) =

∑n
ℓ=1 λℓ · C ′

ℓ(x),

and gives party Pj the output f̂ab(αj); recall that in Fmult party Pj receives fab(αj) as output.

• Ŝ is the same as S ′ except that instead of sending points {δi = H(αi)}i∈I to the trusted party,
it sends the polynomials C ′

1(x), . . . , C
′
n(x) that it defined in the (alternative) simulation.

We stress that this modification of Fmult to F̂mult is merely a mental experiment for analyzing
the specific alternative simulator S ′. It is immediate that the joint output of Ŝ and the honest
parties in an ideal execution with F̂mult is identically distributed to the joint output of A and the
honest parties in a real protocol execution. This is due to the fact that S ′ defines the polynomials
A′

ℓ(x), B
′
ℓ(x), C

′
ℓ(x) identically to the way that they are chosen by F subshare

V SS and Fmult
V SS in a real

protocol execution, and due to the fact that the output of the honest parties is defined using the
same linear function H of the polynomials C ′

ℓ(x) in both cases.
It thus remains to show that the joint output of S ′ and the honest parties in an ideal execution

with Fmult is identically distributed to the joint output of Ŝ and the honest parties in an ideal

63



execution with F̂mult. First, for every i ∈ I, define δ̂i =
∑n

ℓ=1 λℓ · C ′
ℓ(αi) in the execution of F̂mult

with Ŝ. By the way that S ′ defines the points {δi}i∈I , we have that δ̂i = δi for every i ∈ I.
Now, f̂ab(αi) = δ̂i (in F̂mult with Ŝ) and fab(αi) = δi (in Fmult with S ′). Thus, the polynomials
fab and f̂ab agree on all the points {αi}i∈I . In addition, fab(0) = f̂ab(0) since they both equal
fa(0) · fb(0); for, fab(0) this is by the way it is chosen, and for f̂ab(0) this is by the property of H
as shown in Eq. (15). If |I| = t then f̂ab(x) = fab(x) because t + 1 points fully define a degree-t
polynomial. Otherwise, the difference between them is that Fmult chooses fab(x) randomly under
the constraint that fab(0) = fa(0) · fb(0) and fab(αi) = δi for every i ∈ I. Observe that this is
equivalent to choosing t−|I| values βℓ ∈R F at random (with ℓ /∈ I), and setting fab to be the unique
polynomial such that fab(αℓ) = βℓ in addition to the above constraints. In contrast, F̂mult defines
fab(x) = H(x) =

∑n
ℓ=1 λℓ · C ′

ℓ(x). Fix j /∈ I. By the way Ŝ works, C ′
j(x) is a random polynomial

under the constraint that C ′
j(0) = fa(αj) ·fb(αj). By Corollary 3.3, for any fixed points {C ′

j(αi)}i∈I
and C ′

j(0), it holds that any subset of t− |I| points of {C ′
j(αℓ)}ℓ/∈I are uniformly distributed (note

that none of the points in {C ′
j(αℓ)}ℓ/∈I are seen by the adversary). This implies that for any t− |I|

points αℓ (with ℓ /∈ I) the points f̂ab(αℓ) are uniformly distributed. This is therefore exactly the
same as choosing t − |I| values βℓ ∈R F at random (with ℓ /∈ I), and setting f̂ab to be the unique
polynomial such that f̂ab(αℓ) = βℓ in addition to the above constraints. Thus, fab(x) and f̂ab(x)
are identically distributed, and so the outputs of the honest parties {fab(αj)}j /∈I and {f̂ab(αj)}j /∈I
are identically distributed.

7 Secure Computation in the (FV SS, Fmult)-Hybrid Model

In this section we show how to t-securely compute any functionality f in the (FV SS , Fmult)-hybrid
model, in the presence of a malicious adversary corrupting any t < n/3 parties. We also assume
that all inputs are in a known field F (with |F| > n), and that the parties all have an arithmetic
circuit C over F that computes f . As in the semi-honest case, we assume that f : Fn → Fn and so
the input and output of each party is a single field element. This means that each party’s input
is associated with a single circuit-input wire and each party’s output is associated with a single
circuit-output wire. This is only for the sake of clarity of exposition, and the modifications to the
protocol for the general case are straightforward.

The protocol here is almost identical to Protocol 4.1 for the semi-honest case; the only difference
is that the verifiable secret-sharing functionality FV SS is used in the input stage, and the Fmult

functionality used for multiplication gates in the computation stage is the reactive one defined for
the case of malicious adversaries. See Section 5.4 for the definition of FV SS , and see Functional-
ity 6.10 in Section 6.4 for the definition of Fmult. Observe that the definition of FV SS is such that
the effect is identical to that of Shamir secret sharing in the presence of semi-honest adversaries.
Furthermore, the correctness of Fmult ensures that at every intermediate stage the (honest) parties
hold correct shares on the wires of the circuit. In addition, observe that Fmult reveals nothing to
the adversary except for its points on the input wires, which it already knows. Thus, the adversary
learns nothing in the computation stage, and after this stage the parties all hold correct shares
on the circuit-output wires. The protocol is therefore concluded by having the parties send their
shares on the output wires to the appropriate recipients (i.e., if party Pj is supposed to receive the
output on a certain wire, then all parties send their shares on that wire to Pj). This step introduces
a difficulty that does not arise in the semi-honest setting; some of the parties may send incorrect
values on these wires. Nevertheless, this is not a problem since it is guaranteed that more than
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2n/3 shares are correct and so each party can apply Reed-Solomon decoding to ensure that the
final output obtained is correct. See Protocol 7.1 for full details.

PROTOCOL 7.1 (t-Secure Computation in the (Fmult, FV SS)-Hybrid Model)

• Inputs: Each party Pi holds private input xi ∈ F

• Common input: Each party Pi holds an arithmetic circuit C over the field F, such that
for every x⃗ ∈ Fn it holds that C(x⃗) = f(x⃗), where f : Fn → Fn. The parties also hold a
description of F and distinct non-zero values α1, . . . , αn in F.

• The protocol:

1. The input stage:

(a) For every i ∈ {1, . . . , n}, party Pi chooses a polynomial qi(x) uniformly at random
from the set Pxi,t. Then, Pi invokes the FV SS functionality as dealer, using qi(x)
as its private input.

(b) Each party Pi records the values q1(αi), . . . , qn(αi) that it received from the FV SS

functionality. If the output from FV SS is ⊥ for any of these values, Pi replaces
the value with 0.

2. The computation stage: Let g1, . . . , gℓ be a predetermined topological ordering of
the gates of the circuit. For k = 1, . . . , ℓ the parties work as follows:

• Case 1 – gk is an addition gate: Let βi
k and γi

k be the shares of input wires held
by party Pi. Then, Pi defines its share of the output wire to be δik = βi

k + γi
k.

• Case 2 – gk is a multiplication-by-a-constant gate with constant c: Let βi
k be the

share of the input wire held by party Pi. Then, Pi defines its share of the output
wire to be δik = c · βi

k.

• Case 3 – gk is a multiplication gate: Let βi
k and γi

k be the shares of input wires
held by party Pi. Then, Pi sends (βi

k, γ
i
k) to the ideal functionality Fmult and

receives back a value δik. Party Pi defines its share of the output wire to be δik.

3. The output stage:

(a) For every circuit-output wire w, the parties work as follows. Let Pj be the party
for whom the wire w contains its output, and denote by β1

k, . . . , β
n
k the shares

that the parties hold for wire w. Then, each Pi sends Pj its share βi
k.

(b) Upon receiving all shares, Pj runs the Reed-Solomon decoding procedure on the

shares to obtain a codeword (β̃1
k, . . . , β̃

n
k ). Then, Pj interpolates in order to obtain

the polynomial qw(x) such that qw(αi) = β̃i
k, for every i ∈ {1, . . . , n}. Pj then

defines its output to be qw(0).

Theorem 7.2 Let F be a finite field of size greater than n, let f : Fn → Fn be an n-ary function-
ality, and let t < n/3. Then, Protocol 7.1 with auxiliary-input C to all parties t-securely computes
f in the (FV SS , Fmult)-hybrid model, in the presence of a static malicious adversary.

Proof: Intuitively, security here follows from the fact that a corrupted party in Protocol 7.1 cannot
do anything but choose its input as it wishes. In order to see this, observe that the entire protocol
is comprised of FV SS and Fmult calls, and in the latter the adversary receives no new information
in its output and has no influence whatsoever on the outputs of the honest parties. Finally, the
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adversary cannot affect the outputs of the honest parties due to the Reed-Solomon decoding carried
out in the output stage. We now formally describe the simulator.

The Simulator S:
• S invokes A with its auxiliary input z.

• The input stage:

1. For every j ̸∈ I, S chooses a uniformly distributed polynomial qj(x) ∈R P0,t with free
coefficient 0, and simulates FV SS sending each party Pi the value qj(αi) for every i ∈ I.

2. For every i ∈ I, S obtains from A the polynomial qi(x) that it instructs Pi to send to the
FV SS functionality when Pi is the dealer. S checks that deg(qi(x)) = t. If yes, it simulates
FV SS sending qi(αℓ) to Pℓ for every ℓ ∈ I. If no, it simulates FV SS sending ⊥ to Pℓ for
every ℓ ∈ I, and sets qi(x) to be constant zero polynomial.

3. For every k ∈ {1, . . . , n}, denote the circuit-input wire that receives Pk’s input by wk. Then,
for every i ∈ I, simulator S stores the value qk(αi) as the share of Pi on the wire wk.

• Interaction with the trusted party:

1. S sends the trusted party computing f the values {xi = qi(0)}i∈I as the inputs of the
corrupted parties.

2. S receives from the trusted party the outputs {yi}i∈I of the corrupted parties.

• The computation stage: Let g1, . . . , gℓ be the gates of the circuit. For k = 1, . . . , ℓ:

1. Case 1 – gk is an addition gate: Let βi
k and γik be the shares that S has stored for the input

wires to gk for the party Pi. Then, for every i ∈ I, S computes the value δik = βi
k + γik as

the share of Pi for the output wire of gk and stores this values.

2. Case 2 – gk is a multiplication-by-a-constant gate with constant c: Let βi
k be the share that

S has stored for the input wire to gk for Pi. Then, for every i ∈ I, S computes the value
δik = c · βi

k as the share of Pi for the output wire of gk and stores this value.

3. Case 3 – gk is a multiplication gate: S plays the trusted party computing Fmult for A, as
follows. Let βi

k and γik be the shares that S has stored for the input wires to gk for the
party Pi. Then, S first hands {(βi

k, γ
i
k)}i∈I to A as if coming from Fmult (see Step 2 of

Functionality 6.10) Next, it obtains from A values {δik}i∈I as the input of the corrupted
parties for the functionality Fmult (if any δik is not sent, then S sets δik = 0). Finally, S
stores δik as the share of Pi for the output wire of gk. (Note that the adversary has no
output from Fmult beyond receiving the (βi

k, γ
i
k) values.)

• The output stage: For every i ∈ I, simulator S works as follows. Denote by w′
i the circuit-

output wire that contains the output of party Pi, and let {βℓ
i }ℓ∈I be the shares that S has stored

for wire w′
i for all corrupted parties Pℓ (ℓ ∈ I). Then, S chooses a random polynomial q′i(x)

under the constraint that q′i(αℓ) = βℓ
i for all ℓ ∈ I, and q′i(0) = yi, where yi is the output of

Pi received by S from the trusted party computing f . Finally, for every j /∈ I, S simulates the
honest party Pj sending q′i(αj) to Pi.
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An alternative simulator S ′: We begin by constructing an alternative simulator S ′ that works
exactly like S except that it receives as input all of the input values x⃗ = (x1, . . . , xn), and chooses
the polynomials qj(x) ∈R Pxj ,t of the honest parties with the correct free coefficient instead of
with free coefficient 0. Apart from this, S ′ works exactly like S and interacts with a trusted party
computing f in the ideal model.

The original and alternative simulations. We now show that the joint output of the adversary
and honest parties is identical in the original and alternative simulations. That is,{

IDEALf,S(z),I(x⃗)
}
x⃗∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALf,S′(x⃗,z),I(x⃗)

}
x⃗∈({0,1}∗)n,z∈{0,1}∗

. (16)

This follows immediately from the fact that both S and S ′ can work identically when receiving the
points {qj(αi)}i∈I;j /∈I externally. Furthermore, the only difference between them is if qj(αi) ∈R P0,t

or qj(αi) ∈R Pxj ,t, for every j /∈ I. Thus, there exists a single machine T that runs in the ideal
model with a trusted party computing f , and that receives points {qj(αi)}i∈I;j /∈I and runs the
simulation using these points. Observe that if qj(αi) ∈R P0,t for every j /∈ I, then the joint output
of T and the honest parties in the ideal execution is exactly the same as in the ideal execution with
S. In contrast, if qj(αi) ∈R Pxj ,t for every j /∈ I, then the joint output of T and the honest parties
in the ideal execution is exactly the same as in the ideal execution with the alternative simulator
S ′. By Claim 3.4, these points are identically distributed in both cases, and thus the joint output
of T and the honest parties are identically distributed in both cases; Eq. (16) follows.

The alternative simulation and a protocol execution. We now proceed to show that:{
IDEALf,S′(x⃗,z),I(x⃗)

}
x⃗∈({0,1}∗)n,z∈{0,1}∗

≡
{
HYBRID

FV SS ,Fmult

π,A(z),I (x⃗)
}
x⃗∈({0,1}∗)n,z∈{0,1}∗

.

We first claim that the output of the honest parties are identically distributed in the real execution
and the alternative simulation. This follows immediately from the fact that the inputs to FV SS

fully determine the inputs x⃗, which in turn fully determine the output of the circuit. In order to
see this, observe that Fmult always sends shares of the product of the input shares (this holds as
long as the honest parties send “correct” inputs which they always do), and the local computation
in the case of multiplication-by-a-constant and addition gates is trivially correct. Thus, the honest
parties all hold correct shares of the outputs on the circuit-output wires. Finally, by the Reed-
Solomon decoding procedure (with code length n and dimension t+ 1), it is possible to correct up
to n−t

2 > 3t−t
2 = t errors. Thus, the values sent by the corrupted parties in the output stage have

no influence whatsoever on the honest parties’ outputs.
Next, we show that the view of the adversary A in the alternative simulation with S ′ is identical

to its view in real protocol execution, conditioned on the honest parties’ outputs {yj}j /∈I . It is
immediate that these views are identical up to the output stage. This is because S ′ uses the same
polynomials as the honest parties in the input stage, and in the computation stage A receives no
output at all (except for its values on the input wires for multiplication gates which are already
known). It thus remains to show that the values {q′i(αj)}i∈I;j /∈I received by A from S ′ in the output
stage are identically distributed to the values received by A from the honest parties Pj . In order to
see this, we describe the difference between the way these values are generated in a real protocol
execution and in the simulation:
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• Real execution: Let {βj
i }j /∈I be the shares that the honest parties have on the circuit-output wire

w′
i; these are the values received by the corrupt Pi in the output stage. Assume for simplicity that

these shares are the direct output of a multiplication gate (otherwise, they are a deterministic
function of other wires), and let {βℓ

i }ℓ∈I be the values sent by A to Fmult as input into this

multiplication. Then, by the definition of Fmult, the shares {βj
i }j /∈I are generated by choosing

a random polynomial q′i(x) under the constraint that q′i(αℓ) = βℓ
i for every ℓ ∈ I, and q′i(0) = y′i

where y′i is the output of the circuit C on wire w′
i. Note that this latter constraint regarding

the free coefficient holds because the output wire of the multiplication gate is the circuit-output
wire w′

i.

• Simulation: In the output stage, S ′ chooses a random polynomial q′i(x) under the constraint

that q′i(αℓ) = βℓ
i for every ℓ ∈ I, and q′i(0) = yi. Then, S ′ simulates each Pj sending βj

i = q′i(αj)
to Pi.

Thus, S ′ actually chooses q′i(x) in exactly the same way as Fmult in the real execution, and the
constraints are identical as long as y′i = yi. However, this follows from the “correctness” of the
computation, in the same way as demonstrated regarding the outputs of the honest parties. This
concludes the proof.

We conclude with the following corollary that considers the plain model (with private channels).
This is obtained by combining Theorems 5.5, 6.2, 6.6, 6.9, 6.12 and 7.2, and using the modular
sequential composition theorem of [4]:

Corollary 7.3 For every functionality f : Fn → Fn and every t < n/3, there exists a protocol that
t-securely computes f in the plain (private channels) model, in the presence of a static malicious
adversary.

8 Security Under Composition and Adaptive Corruptions

Our proof of the security of the protocol of [3] in the semi-honest and malicious cases relates to
the stand-alone model and the case of static corruptions. In addition, in the information-theoretic
setting, we consider perfectly secure (private) channels. In this section, we show that our proof of
security for the limited stand-alone model with static corruptions suffices for obtaining security in
the much more complex settings of composition and adaptive corruptions. This is made possible
due to the fact that the protocol of [3] is perfectly secure, and not just statistically secure.

Adaptive security. In general, security in the presence of a static adversary does not imply
security in the presence of a malicious adversary, even for perfectly-secure protocols. However, as
shown in [6] this does hold for the definition of security of [11]. This definition requires a straight-line
black-box simulator, and also the existence of a committal round at which point the transcript of
the protocol fully defines all of the parties’ inputs. It is not difficult to see that all of the protocols
in this paper meet this definition. Applying the result of [6] we can therefore conclude that all
of the protocols are secure in the presence of adaptive adversaries under the definition of [11].
Furthermore, any protocol that is secure in presence of adaptive adversaries under the definition
of [11] is also secure in the presence of adaptive adversaries under the definition of [4]. We therefore
obtain security in the presence of adaptive adversaries “for free”. We have the following corollary:
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Corollary 8.1 For every functionality f , there exists a protocol for securely computing f in the
presence of adaptive semi-honest adversaries that corrupt up to t < n/2 parties, in the private
channels model. Furthermore, there exists a protocol for securely computing f in the presence of
adaptive malicious adversaries that corrupt up to t < n/3 parties, in the private channels model.

Security under composition. In [18, Theorem 3] it was proven that any protocol that computes
a functionality f with perfect security and has a straight-line black-box simulator (as is the case
with all of our simulators), securely computes f under the definition of universal composability [5]
(or equivalently, concurrent general composition [20]). Furthermore, this holds for both static and
adaptive adversaries. Applying this to Corollary 8.1, and using the terminology UC-secure to mean
secure under the definition of universal composability, we have the following corollary:

Corollary 8.2 For every functionality f , there exists a protocol for UC-securely computing f in
the presence of adaptive semi-honest adversaries that corrupt up to t < n/2 parties, in the private
channels model. Furthermore, there exists a protocol for UC-securely computing f in the presence
of adaptive malicious adversaries that corrupt up to t < n/3 parties, in the private channels model.

Security in the computational setting. There are two differences between the information-
theoretic and computational settings. First, in the information-theoretic setting, the adversary
does not necessarily run in polynomial time. Second, in the information-theoretic setting there
are ideally private channels, whereas in the computational setting it is typically only assumed that
there are authenticated channels. Nevertheless, as advocated by [15, Sec. 7.6.1] the simulators
must be polynomial-time in the running-time of the adversary. Thus, if the real adversary runs in
polynomial-time, then so does the simulator, as required for the computational setting. Second, it
is possible to replace the ideally private channels with public-key encryption for the case of static
adversaries and with non-committing encryption [7] for the case of adaptive adversaries. We state
our corollary here for the most general setting of adaptive adversaries and UC-security, although
analogous corollaries can of course be obtained for the more restricted models as well. This corollary
is obtained by replacing the private channels in Corollary 8.2 with UC-secure channels that can be
constructed for the static and adaptive setting using semantically-secure public-key encryption and
non-committing encryption, respectively [5, 8]. We state the corollary only for the case of malicious
adversaries since the case of semi-honest adversaries has already been proven in [9] for any t < n.

Corollary 8.3 Assume the existence of semantically-secure public-key encryption (resp., non-
committing encryption). Then, for every functionality f , there exists a protocol for UC-securely
computing f in the presence of static (resp., adaptive) malicious adversaries that corrupt up to
t < n/3 parties, in the authenticated channels model.

We stress that the above protocol requires no common reference string or other setup (beyond
that required for obtaining authenticated channels). This is the first full proof of the existence of
such a protocol.
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A Communication Complexity

In this section, we compute the exact communication complexity of the BGW protocol (as presented
here) in the case of malicious adversaries. We count the cost in the “optimistic case” where no
party deviates from the protocol specification, and the “dishonest case” where some party does.
We remark that since the protocol achieves perfect security, nothing can be gained by deviating,
except possible to make the parties run longer. Thus, in general, one would expect that the typical
cost of running the protocol is the “optimistic cost”.

Protocol 5.4 – FV SS.

• The dealer sends each party two polynomials; in total 2n(t+ 1) field elements are sent.

• Cross verification: Each party sends 2 points to each other party. Thus, each party sends 2n
field elements and in all the parties send 2n2 elements.

• If no party has cheated, then the parties stop at this point.

• Otherwise, the cost of the complaints phase is as follows.

– In the worst case, each honest party broadcasts a complaint message containing 2 field
elements. Thus, overall the parties broadcast O(n) field elements.

– If the dealer is honest, it will make all the information of the corrupted parties public.
Thus it will reveal 2t polynomials, where each polynomial is represented by t + 1 field
elements. Since these values are all broadcast, we have that this involves broadcasting
O(t2) = O(n2) field elements.
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Total cost:

Optimistic: O(n2) field elements are sent over the private channels.

Dishonest: O(n2) field elements are sent over the private channels and O(n2)
field elements are broadcast.

Protocol 6.3 – F subshare
V SS .

• Each party plays the dealer in a VSS and thus, this step costs n times the cost of VSS
(optimistic: O(n3) field elements are sent over the private channels; dishonest: O(n3) field
elements over the private channels, and O(n3) field elements are broadcast).

• Each party Pi broadcasts S1(αi), . . . , S2t(αi). Thus, each party broadcasts 2t = O(n) field
elements. In the optimistic case the protocol ends here.

• Resolving errors: There are at most t errors; for each error each party broadcasts a single
field element. Thus, at most t · n = O(n2) field elements are broadcast.

Total cost:

Optimistic: O(n3) field elements are sent over the private channels and O(n2)
field elements are broadcast.

Dishonest: O(n3) field elements are sent over the private channels and O(n3)
field elements are broadcast.

Protocol 6.5 – Feval. The cost of this protocol is a single invocation of F subshare
V SS and each party

broadcasting a single field element.

Total cost:

Optimistic: O(n3) field elements are sent over the private channels and O(n2)
field elements are broadcast.

Dishonest: O(n3) field elements are sent over the private channels and O(n3)
field elements are broadcast.

Protocol 6.8 – Fmult
V SS .

• The parties run t+ 1 = O(n) VSS protocols. If no party cheats, the protocol ends here.

• In the case of dishonest behavior, each complaint is verified using t+ 3 invocations of Feval.
There are at most O(t) = O(n) complaints and so overall this involves O(n2) invocations of
Feval.

Total cost:

Optimistic: O(n3) field elements are sent over the private channels.

Dishonest: O(n5) field elements are sent over the private channels and O(n5)
field elements are broadcast.
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The protocol 6.11 - Fmult. This protocol involves two invocations of F subshare
V SS and n invocations

of Fmult
V SS .

Total cost:

Optimistic: O(n4) field elements are sent over private channels and O(n2) field
elements are broadcast.

Dishonest: O(n6) field elements are sent over private channels and O(n6) field
elements are broadcast.

Recall that when using the bivariate VSS it is not necessary to run F subshare
V SS .

This reduces the cost to that of n times Fmult
V SS , and so in the optimistic case

is O(n4) elements and no broadcast. (Even more efficient protocols appear
in [1].)

Protocol 7.1 for general secure computation.

• The input stage involves n VSS executions.

• The computation stage requires a single invocation of Fmult for every multiplication gate in
the circuit. Denoting the number of multiplication gates in the circuit by C×, we have that
the dominating cost is C× invocations of Fmult.

• In the output stage, each party sends n shares over the private channels.

Total cost:

Optimistic: O(n3 + C×· n4) field elements are sent over the private channels
and O(C×n2) elements are broadcast.

Dishonest: O(n3+C×·n6) field elements are sent over the private channels and
O(n3 + C×· n6) elements are broadcast.

Note that when the more efficient multiplication protocol is used, the optimistic cost is just
O(n3 + C×· n4) field elements over the private channels and no broadcast at all.
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