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Abstract

In the setting of secure multiparty computation, a set of n parties with private inputs wish
to jointly compute some functionality of their inputs. One of the most fundamental results
of secure computation was presented by Ben-Or, Goldwasser and Wigderson (BGW) in 1988.
They demonstrated that any n-party functionality can be computed with perfect security, in
the private channels model. When the adversary is semi-honest this holds as long as t < n/2
parties are corrupted, and when the adversary is malicious this holds as long as t < n/3 parties
are corrupted. Unfortunately, a full proof of these results was never published. In this paper,
we remedy this situation and provide a full proof of security of the BGW protocol. This
includes a full description of the protocol for the malicious setting, including the construction
of a new subprotocol for the perfect multiplication protocol that seems necessary for the case
of n/4 ≤ t < n/3.
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1 Introduction

1.1 Background – Secure Computation

In the setting of secure multiparty computation, a set of n parties with possibly private inputs wish
to securely compute some function of their inputs in the presence of adversarial behavior. Loosely
speaking, the security requirements from such a computation are that nothing is learned from the
protocol other than the output (privacy), that the output is distributed according to the prescribed
functionality (correctness), that parties cannot choose their inputs as a function of the others’
inputs (independence of inputs), and that all parties receive output (fairness and guaranteed output
delivery). The actual definition [22, 29, 4, 8, 20] formalizes this by comparing the result of a real
protocol execution with the result of an ideal execution in an ideal model where an incorruptible
trusted party carries out the computation for the parties. This definition has come to be known as
the “ideal/real simulation paradigm”.

There are many different settings within which secure computation has been considered. Re-
garding the adversary, one can consider semi-honest adversaries (who follow the protocol specifi-
cation but try to learn more than they should by inspecting the protocol transcript) or malicious
adversaries (who may follow an arbitrary strategy). In addition, an adversary may be limited to
polynomial-time (as in the computational setting) or unbounded (as in the information-theoretic
setting). Finally, the adversary may be static (meaning that the set of corrupted parties is fixed be-
fore the protocol execution begins) or adaptive (meaning that the adversary can adaptively choose
to corrupt throughout the protocol execution).

Wide reaching feasibility results regarding secure multi-party computation were presented in the
mid to late 1980’s. The first feasibility results for secure computation were in the computational
setting and were provided by [34] for the two-party case, and by [21] for the multiparty case.
These results begged the question as to whether it is possible to avoid computational hardness
assumptions; that is, provide analogous results for the information-theoretic setting. This question
was answered in the affirmative by [7, 14] who showed that when less than a third of the parties are
corrupted it is possible to securely compute any functionality in the information-theoretic setting,
assuming an ideal private channel between each pair of parties. The protocol of [7] achieved
perfect security, while the protocol of [14] achieved statistical security. These results were followed
by [31, 3] who showed that if the parties are also given an ideal broadcast channel, then it is possible
to securely compute any functionality with statistical security assuming only an honest majority.

1.2 The BGW Protocol

Our focus is on the results of Ben-Or, Goldwasser and Wigderson (BGW) [7], who showed that
every functionality can be computed with perfect security in the presence of semi-honest adversaries
controlling a minority of parties, and in the presence of malicious adversaries controlling less than
a third of the parties. The discovery that secure computation can be carried out information
theoretically, and the techniques used by BGW, were highly influential. In addition, as we shall
see, the fact that security is perfect – informally meaning that there is a zero probability of cheating
by the adversary – provides real security advantages over protocols that have a negligible probability
of failure (cf. [24]). For this reason, we focus on the BGW protocol [7] rather than on [14].

On a high level, the BGW protocol works by having the parties compute the desired function
f (from n inputs to n outputs) by securely emulating the computation of an arithmetic circuit
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computing f . In this computation, the parties compute shares of the output of a circuit gate given
shares of the input wires of that gate. To be more exact, the parties first share their inputs with
each other using Shamir’s secret sharing [32]; in the case of malicious adversaries, a verifiable secret
sharing protocol (cf. [15, 21]) is used. The parties then emulate the computation of each gate of
the circuit, computing Shamir shares of the gate’s output from the Shamir shares of the gate’s
inputs. As we shall see, this secret sharing has the property that addition gates in the circuit can
be emulated using local computation only. Thus, the parties only interact in order to emulate the
computation of multiplication gates; this step is the most involved part of the protocol. Finally,
the parties reconstruct the secrets from the shares of the output wires of the circuit in order to
obtain their output.

We proceed to describe the protocol in a bit more detail. Shamir’s secret sharing enables the
sharing of a secret s amongst n parties, so that any subset of t + 1 or more parties can efficiently
reconstruct the secret, and any subset of t or less parties learn no information whatsoever about
the secret. Let F be a finite field of size greater than n, let α1, . . . , αn be n distinct non-zero field
elements, and let s ∈ F. Then, in order to share s, a polynomial p(x) ∈ F[x] of degree t with constant
term s is randomly chosen, and the share of the ith party Pi is set to p(αi). By interpolation, given
any t + 1 points it is possible to reconstruct p and compute s = p(0). Furthermore, since p is
random, its values at any t or less of the αi’s give no information about s.

Now, let n denote the number of parties participating in the multiparty computation, and let t
be a bound on the number of corrupted parties. The first step of the BGW protocol is for all parties
to share their inputs using Shamir’s secret sharing scheme. In the case of semi-honest adversaries,
plain Shamir sharing with a threshold t < n/2 is used, and in the case of malicious adversaries
verifiable secret sharing (VSS) with a threshold t < n/3 is used. A verifiable secret sharing protocol
is needed for the case of malicious adversaries in order to prevent cheating, and the BGW paper
was also the first to construct a perfect VSS protocol.

Next, the parties emulate the computation of the gates of the circuit. The first observation is
that addition gates can be computed locally. That is, given shares p(αi) and q(αi) of the two input
wires to an addition gate, it holds that r(αi) = p(αi) + q(αi) is a valid sharing of the output wire.
This is due to the fact that the polynomial r(x) defined by the sum of the shares has the same
degree as both p(x) and q(x), and r(0) = p(0) + q(0).

Regarding multiplication gates, observe that by computing r(αi) = p(αi) · q(αi) the parties
obtain shares of a polynomial r(x) with constant term p(0) · q(0) as desired. However, the degree
of r(x) is 2t, since the degrees of p(x) and q(x) are both t. Since reconstruction works as long as
the polynomial used for the sharing is of degree t, this causes a problem. Thus, the multiplication
protocol works by reducing the degree of the polynomial r(x) back to t. In the case of semi-honest
parties, the degree reduction can be carried out as long as t < n/2 (it is required that t < n/2
since otherwise the degree of r(x) = p(x) · q(x) will be greater than or equal to n, which is not fully
defined by the n parties’ shares). In the case of malicious parties, the degree reduction is much
more complex and works as long as t < n/3. In order to obtain some intuition as to why t < n/3
is needed, observe that a Shamir secret sharing can also be viewed as a Reed-Solomon code of the
polynomial [28]. With a polynomial of degree t, it is possible to correct up (n − t − 1)/2 errors.
Setting t < n/3, we have that n ≥ 3t+1 and so (n−t−1)/2 ≥ t errors can be corrected. This means
that if up to t malicious parties send incorrect values, the honest parties can use error correction
and recover. Indeed, the BGW protocol in the case of malicious adversaries relies heavily on the
use of error correction in order to prevent the adversary from cheating.
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We remark that t < n/3 is not merely a limitation of the way the BGW protocol works. In
particular, the fact that at most t < n/3 corruptions can be tolerated in the malicious model
follows immediately from the fact that at most t < n/3 corruptions can be tolerated for Byzantine
agreement [30]. In contrast, given a broadcast channel, it is possible to securely compute any
functionality with information-theoretic (statistical) security for any t < n/2 [31, 3].

1.3 Our Results

Despite the importance of the BGW result, a full proof of its security has never appeared (and
this is also the state of affairs regarding [14]). In addition, a full description of the protocol in the
malicious setting was also never published. In this paper we remedy this situation and provide a
full description and proof of the BGW protocols, for both the semi-honest and malicious settings.
We prove security relative to the ideal/real definition of security for multiparty computation. This
also involves carefully defining the functionalities and sub-functionalities that are used in order to
achieve the result, as needed for presenting a modular proof. Our main result is a proof of the
following informally stated theorem:

Theorem 1 (basic security of the BGW protocol – informally stated): Consider a synchronous
network with pairwise private channels and a broadcast channel. Then:

1. Semi-honest: For every n-ary functionality f , there exists a protocol for computing f with
perfect security in the presence of a static semi-honest adversary controlling up to t < n/2
parties;

2. Malicious: For every n-ary functionality f , there exists a protocol for computing f with perfect
security in the presence of a static malicious adversary controlling up to t < n/3 parties.

The communication complexity of the protocol is O(poly(n) · |C|) where C is an arithmetic circuit
computing f , and the round complexity is linear in the depth of the circuit C.

All of our protocols are presented in a model with pairwise private channels and secure broad-
cast. Since we only consider the case of t < n/3 malicious corruptions, secure broadcast can be
achieved in a synchronous network with pairwise channels by running Byzantine Generals [30,
25, 18]. In order to obtain (expected) round complexity linear in the depth of |C|, an expected
constant-round Byzantine Generals protocol of [18] (with composition as in [27, 6]) is used.

Security under composition. Theorem 1 is proven in the classic setting of a static adversary
and stand-alone computation, where the latter means that security is proven for the case that only
a single protocol execution takes place at a time. Fortunately, it was shown in [24] that any protocol
that is perfectly secure and has a black-box non-rewinding simulator, is also secure under universal
composability [9] (meaning that security is guaranteed to hold when many arbitrary protocols are
run concurrently with the secure protocol). Since our proof of security satisfies this condition, we
obtain the following corollary, which relates to a far more powerful adversarial setting:

Corollary 2 (UC information-theoretic security of the BGW protocol): Consider a synchronous
network with private channels. Then, for every n-ary functionality f , there exists a protocol for
computing f with perfect universally composable security in the presence of an static semi-honest

3



adversary controlling up to t < n/2 parties, and there exists a protocol for computing f with perfect
universally composable security in the presence of a static malicious adversary controlling up to
t < n/3 parties.

Corollary 2 refers to information-theoretic security in the ideal private channels model. We now
derive a corollary to the computational model with authenticated channels only. In order to derive
this corollary, we first observe that information-theoretic security implies security in the presence
of polynomial-time adversaries (this holds as long as the simulator is required to run in time that is
polynomial in the running time of the adversary, as advocated in [20, Sec. 7.6.1]). Furthermore, the
ideal private channels of the information-theoretic setting can be replaced with computationally
secure channels that can be constructed over authenticated channels using semantically secure
public-key encryption [23, 33]. We have:

Corollary 3 (UC computational security of the BGW protocol): Consider a synchronous network
with authenticated channels. Assuming the existence of semantically secure public-key encryption,
for every n-ary functionality f there exists a protocol for computing f with universally composable
security in the presence of a static malicious adversary controlling up to t < n/3 parties.

We stress that unlike the UC-secure computational protocols of [13] (that are secure for any
t < n), the protocols of Corollary 3 are in the plain model, with authenticated channels but with no
other trusted setup (in particular, no common reference string). Although well accepted folklore,
Corollaries 2 and 3 have never been proved. Thus, our work also constitutes the first full proof
that universally composable protocols exist in the plain model (with authenticated channels) for
any functionality, in the presence of static malicious adversaries controlling any t < n/3 parties.

Adaptive security with inefficient simulation. In [10] it was shown that any protocol that
is proven perfectly secure under the security definition of [16] is also secure in the presence of
adaptive adversaries, alas with inefficient simulation. We use this to derive security in the presence
of adaptive adversaries, albeit with the weaker guarantee provided by inefficient simulation (in
particular, this does not imply adaptive security in the computational setting). See Section 8 for
more details.1

Organization. In Section 2, we present a brief overview of the standard definitions of perfectly
secure multiparty computation and of the modular sequential composition theorem that is used
throughout in our proofs. Then, in Section 3, we describe Shamir’s secret sharing scheme and
rigorously prove a number of useful properties of this scheme. In Section 4 we present the BGW
protocol for the case of semi-honest adversaries. An overview of the overall construction appears in
Section 4.1, and an overview of the multiplication protocol appears at the beginning of Section 4.3.

The BGW protocol for the case of malicious adversaries is presented in Sections 5 to 7. In Sec-
tion 5 we present the BGW verifiable secret sharing (VSS) protocol that uses bivariate polynomials.
This section includes background on Reed-Solomon encoding and properties of bivariate polyno-
mials that are needed for proving the security of the VSS protocol. Next, in Section 6 we present
the most involved part of the protocol – the multiplication protocol for computing shares of the

1In previous versions of this paper [1] and in [2] we mistakenly stated that using [10] it is possible to obtain full
adaptive security with efficient simulation. However, this is actually not known, and [10] only proves that perfect
security under [16] implies adaptive security with inefficient simulation, which is significantly weaker.
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product of shares. This involves a number of steps and subprotocols, some of which are new. The
main tool for the BGW multiplication protocol is a subprotocol for verifiably sharing the product
of a party’s shares. This subprotocol, along with a detailed discussion and overview, is presented
in Section 6.6. Our aim has been to prove the security of the original BGW protocol. However,
where necessary, some changes were made to the multiplication protocol as described originally
in [7]. Finally, in Section 7, the final protocol for secure multiparty computation is presented. The
protocol is proven secure for any VSS and multiplication protocols that securely realize the VSS
and multiplication functionalities that we define in Sections 5 and 6, respectively. In addition,
an exact count of the communication complexity of the BGW protocol for malicious adversaries
is given. We conclude in Section 8 by showing how to derive security in other settings (adaptive
adversaries, composition, and the computational setting).

2 Preliminaries and Definitions

In this section, we review the definition of perfect security in the presence of semi-honest and
malicious adversaries. We refer the reader to [20, Sec. 7.6.1] and [8] for more details and discussion.

In the definitions below, we consider the stand-alone setting with a synchronous network, and
perfectly private channels between all parties. For simplicity, we will also assume that the parties
have a broadcast channel; as is standard, this can be implemented using an appropriate Byzantine
Generals protocol [30, 25]. Since we consider synchronous channels and the computation takes
place in clearly defined rounds, if a message is not received in a given round, then this fact is
immediately known to the party who is supposed to receive the message. Thus, we can write “if
a message is not received” or “if the adversary does not send a message” and this is well defined.
We consider static corruptions meaning that the set of corrupted parties is fixed ahead of time,
and the stand-alone setting meaning that only a single protocol execution takes place; extensions
to the case of adaptive corruptions and composition are considered in Section 8.

Basic notation. For a set A, we write a ∈R A when a is chosen uniformly from A. We denote
the number of parties by n, and a bound on the number of corrupted parties by t. Let f :
({0, 1}∗)n → ({0, 1}∗)n be a possibly probabilistic n-ary functionality, where fi(x1, . . . , xn) denotes
the ith element of f(x1, . . . , xn). We denote by I = {i1, . . . i`} ⊂ [n] the indices of the corrupted
parties, where [n] denotes the set {1, . . . , n}. By the above, |I| ≤ t. Let ~x = (x1, . . . , xn), and let
~xI and fI(~x) denote projections of the corresponding n-ary sequence on the coordinates in I; that
is, ~xI = (xi1 , . . . , xi`) and fI(~x) = (fi1(~x), . . . , fi`(~x)). Finally, to ease the notation, we omit the
index i when we write the set {(i, ai)}ni=1 and simply write {ai}ni=1. Thus, for instance, the set of
shares {(i1, f(αi1)), . . . , (i`, f(αi`))} is denoted as {f(αi)}i∈I .

Terminology. In this paper, we consider security in the presence of both semi-honest and mali-
cious adversaries. As in [20], we call security in the presence of a semi-honest adversary controlling
t parties t-privacy, and security in the presence of a malicious adversary controlling t parties t-
security. Since we only deal with perfect security in this paper, we use the terms t-private and
t-secure without any additional adjective, with the understanding that the privacy/security is al-
ways perfect.
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2.1 Perfect Security in the Presence of Semi-Honest Adversaries

We are now ready to define security in the presence of semi-honest adversaries. Loosely speaking,
the definition states that a protocol is t-private if the view of up to t corrupted parties in a real
protocol execution can be generated by a simulator given only the corrupted parties’ inputs and
outputs.

The view of the ith party Pi during an execution of a protocol π on inputs ~x, denoted viewπ
i (~x),

is defined to be (xi, ri;mi1 , . . . ,mik) where xi is Pi’s private input, ri is its internal coin tosses, and
mij is the jth message that was received by Pi in the protocol execution. For every I = {i1, . . . i`},
we denote viewπ

I (~x) = (viewπ
i1

(~x), . . .viewπ
i`

(~x)). The output of all parties from an execution of π
on inputs ~x is denoted outputπ(~x); observe that the output of each party can be computed from
its own (private) view of the execution.

We first present the definition for deterministic functionalities, since this is simpler than the
general case of probabilistic functionalities.

Definition 2.1 (t-privacy of n-party protocols – deterministic functionalities): Let f : ({0, 1}∗)n →
({0, 1}∗)n be a deterministic n-ary functionality and let π be a protocol. We say that π is t-private
for f if for every ~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|,

outputπ(x1, . . . , xn) = f(x1, . . . , xn) (2.1)

and there exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n] of cardinality
at most t, and every ~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, it holds that:{

S (I, ~xI , fI (~x))
}
≡
{
viewπ

I (~x)
}

(2.2)

The above definition separately considers the issue of output correctness (Eq. (2.1)) and privacy
(Eq. (2.2)), where the latter captures privacy since the ability to generate the corrupted parties’
view given only the input and output means that nothing more than the input and output is learned
from the protocol execution. However, in the case of probabilistic functionalities, it is necessary to
intertwine the requirements of privacy and correctness and consider the joint distribution of the
output of S and of the parties; see [8, 20] for discussion. Thus, in the general case of probabilistic
functionalities, the following definition of t-privacy is used.

Definition 2.2 (t-privacy of n-party protocols – general case): Let f : ({0, 1}∗)n → ({0, 1}∗)n be
a probabilistic n-ary functionality and let π be a protocol. We say that π is t-private for f if there
exists a probabilistic polynomial-time algorithm S such that for every I ⊂ [n] of cardinality at most
t, and every ~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, it holds that:{

(S(I, ~xI , fI(~x)), f(~x))
}
≡
{

(viewπ
I (~x),outputπ(~x))

}
. (2.3)

We remark that in the case of deterministic functionalities, the separate requirements of Equa-
tions (2.1) and (2.2) actually imply the joint distribution of Eq. (2.3). This is due to the fact that
when f is deterministic, f(~x) is a single value and not a distribution.
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Our presentation – deterministic functionalities. For the sake of simplicity and clarity, we
present the BGW protocol and prove its security for the case of deterministic functionalities only.
This enables us to prove the overall BGW protocol using Definition 2.1, which makes the proof
significantly simpler. Fortunately, this does not limit our result since it has already been shown
that it is possible to t-privately compute any probabilistic functionality using a general protocol for
t-privately computing any deterministic functionality; see [20, Sec. 7.3.1].

2.2 Perfect Security in the Presence of Malicious Adversaries

We now consider malicious adversaries that can follow an arbitrary strategy in order to carry out
their attack; we stress that the adversary is not required to be efficient in any way. Security is
formalized by comparing a real protocol execution to an ideal model where the parties just send
their inputs to the trusted party and receive back outputs. See [8, 20] for details on how to define
these real and ideal executions; we briefly describe them here.

Real model: In the real model, the parties run the protocol π. We consider a synchronous
network with private point-to-point channels, and an authenticated broadcast channel. This means
that the computation proceeds in rounds, and in each round parties can send private messages to
other parties and can broadcast a message to all other parties. We stress that the adversary cannot
read or modify messages sent over the point-to-point channels, and that the broadcast channel
is authenticated, meaning that all parties know who sent the message and the adversary cannot
tamper with it in any way. Nevertheless, the adversary is assumed to be rushing, meaning that
in every given round it can see the messages sent by the honest parties before it determines the
messages sent by the corrupted parties.

Let π be a n-party protocol, let A be an arbitrary machine with auxiliary input z, and let
I ⊂ [n] be the set of corrupted parties controlled by A. We denote by REALπ,A(z),I(~x) the random
variable consisting of the view of the adversary A and the outputs of the honest parties, following
a real execution of π in the aforementioned real model, where for every i ∈ [n], party Pi has input
xi.

Ideal model: In the ideal model for a functionality f , the parties send their inputs to an incor-
ruptible trusted party who computes the output for them. We denote the ideal adversary by S
(since it is a “simulator”), and the set of corrupted parties by I. An execution in the ideal model
works as follows:

• Input stage: The adversary S for the ideal model receives auxiliary input z and sees the inputs
xi of the corrupted parties Pi (for all i ∈ I ). S can substitute any xi with any x′i of its choice
under the condition that |x′i| = |xi|.

• Computation: Each party sends its (possibly modified) input to the trusted party; denote the
inputs sent by x′1, . . . , x

′
n. The trusted party computes (y1, . . . , yn) = f(x′1, . . . , x

′
n) and sends

yj to Pj , for every j ∈ [n].

• Outputs: Each honest party Pj (j /∈ I) outputs yj , the corrupted parties output ⊥, and the
adversary S outputs an arbitrary function of its view.

Throughout the paper, we will refer to communication between the parties and the functionality.
For example, we will often write that a party sends its input to the functionality; this is just
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shorthand for saying that the input is sent to the trusted party who computes the functionality.
We denote by IDEALf,S(z),I(~x) the outputs of the ideal adversary S controlling the corrupted

parties in I and of the honest parties after an ideal execution with a trusted party computing f ,
upon inputs x1, . . . , xn for the parties and auxiliary input z for S. We stress that the communication
between the trusted party and P1, . . . , Pn is over an ideal private channel.

Definition of security. Informally, we say that a protocol is secure if its real-world behavior can
be emulated in the ideal model. That is, we require that for every real-model adversary A there
exists an ideal-model adversary S such that the result of a real execution of the protocol with A has
the same distribution as the result of an ideal execution with S. This means that the adversarial
capabilities of A in a real protocol execution are just what S can do in the ideal model.

In the definition of security, we require that the ideal-model adversary S run in time that is poly-
nomial in the running time of A, whatever the latter may be. As argued in [8, 20] this definitional
choice is important since it guarantees that information-theoretic security implies computational
security. In such a case, we say that S is of comparable complexity to A.

Definition 2.3 Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let π be a protocol.
We say that π is t-secure for f if for every probabilistic adversary A in the real model, there exists
a probabilistic adversary S of comparable complexity in the ideal model, such that for every I ⊂ [n]
of cardinality at most t, every ~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, and every z ∈ {0, 1}∗, it holds
that: {

IDEALf,S(z),I(~x)
}
≡
{
REALπ,A(z),I(~x)

}
.

Reactive functionalities. The above definition refers to functionalities that map inputs to out-
puts in a single computation. However, some computations take place in stages, and state is
preserved between stages. Two examples of such functionalities are mental poker (where cards are
dealt and thrown and redealt [21]) and commitment schemes (where there is a separate commit-
ment and decommitment phase; see [9] for a definition of commitments via an ideal functionality).
Such functionalities are called reactive, and the definition of security is extended to this case in the
straightforward way by allowing the trusted party to obtain inputs and send outputs in phases;
see [20, Section 7.7.1.3].

2.3 Modular Composition

The sequential modular composition theorem [8] is an important tool for analyzing the security of
a protocol in a modular way. Let πf be a protocol for securely computing f that uses a subprotocol
πg for computing g. Then, the theorem states that it suffices to consider the execution of πf in
a hybrid model where a trusted third party is used to ideally compute g (instead of the parties
running the real subprotocol πg). This theorem facilitates a modular analysis of security via the
following methodology: First prove the security of πg, and then prove the security of πf in a model
allowing an ideal party for g. The model in which πf is analyzed using ideal calls to g, instead of
executing πg, is called the g-hybrid model because it involves both a real protocol execution and an
ideal trusted third party computing g.

More formally, in the hybrid model, the parties all have oracle-tapes for some oracle (trusted
party) that computes the functionality g. Then, if the real protocol πf instructs the parties to
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run the subprotocol πg using inputs u1, . . . , un, then each party Pi simply writes ui to its outgoing
oracle tape. Then, in the next round, it receives back the output gi(u1, . . . , un) on its incoming
oracle tape. We denote by HYBRID

g
πf ,A(z),I(~x) an execution of protocol πf where each call to πg is

carried out using an oracle computing g. See [8, 20] for a formal definition of this model for both
the semi-honest and malicious cases, and for proofs that if πf is t-private (resp., t-secure) for f in
the g-hybrid model, and πg is t-private (resp., t-secure) for g, then πf when run in the real model
using πg is t-private (resp., t-secure) for f .

3 Shamir’s Secret Sharing Scheme [32] and Its Properties

3.1 The Basic Scheme

A central tool in the BGW protocol is Shamir’s secret-sharing scheme [32]. Roughly speaking, a
(t+ 1)-out-of-n secret sharing scheme takes as input a secret s from some domain, and outputs n
shares, with the property that it is possible to efficiently reconstruct s from every subset of t + 1
shares, but every subset of t or less shares reveals nothing about the secret s. The value t + 1 is
called the threshold of the scheme. Note that in the context of secure multiparty computation with
up to t corrupted parties, the threshold of t + 1 ensures that the corrupted parties (even when
combining all t of their shares) can learn nothing.

A secret sharing scheme consist of two algorithm: the first algorithm, called the sharing algorithm,
takes as input the secret s and the parameters t + 1 and n, and outputs n shares. The second
algorithm, called the reconstruction algorithm, takes as input t + 1 or more shares and outputs a
value s. It is required that the reconstruction of shares generated from a value s yields the same
value s.

Informally, Shamir’s secret-sharing scheme works as follows. Let F be a finite field of size greater
than n and let s ∈ F. The sharing algorithm defines a polynomial q(x) of degree t in F[x], such that
its constant term is the secret s and all the other coefficients are selected uniformly and indepen-
dently at random in F.2 Finally, the shares are defined to be q(αi) for every i ∈ {1, . . . , n}, where
α1, . . . , αn are any n distinct non-zero predetermined values in F. The reconstruction algorithm of
this scheme is based on the fact that any t + 1 points define exactly one polynomial of degree t.
Therefore, using interpolation it is possible to efficiently reconstruct the polynomial q(x) given any
subset of t+ 1 points (αi, q(αi)) output by the sharing algorithm. Finally, given q(x) it is possible
to simply compute s = q(0). We will actually refer to reconstruction using all n points, even though
t+ 1 suffice, since this is the way that we use reconstruction throughout the paper.

In order to see that any subset of t or less shares reveals nothing about s, observe that for every
set of t points (αi, q(αi)) and every possible secret s′ ∈ F, there exists a unique polynomial q′(x)
such that q′(0) = s′ and q′(αi) = q(αi). Since the polynomial is chosen randomly by the sharing
algorithm, there is the same likelihood that the underlying polynomial is q(x) (and so the secret is
s) and that the polynomial is q′(x) (and so the secret is s′). We now formally describe the scheme.

Shamir’s (t + 1)-out-of-n secret sharing scheme. Let F be a finite field of order greater
than n, let α1, . . . , αn be any distinct non-zero elements of F, and denote ~α = (α1, . . . , αn). For a
polynomial q Let eval~α(q(x)) = (q(α1), . . . , q(αn)).

2Throughout, when we refer to a polynomial of degree t, we mean of degree at most t.
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• The sharing algorithm for α1, . . . , αn: Let share~α(s, t+1) be the algorithm that receives for
input s and t+1 where s ∈ F and t < n. Then, share~α chooses t random values q1, . . . qt ∈R F,
independently and uniformly distributed in F, and defines the polynomial:

q(x) = s+ q1x+ . . . qtx
t

where all calculations are in the field F. Finally, share~α outputs eval~α(q(x)) = (q(α1), . . . , q(αn)),
where q(αi) is the share of party Pi.

• The reconstruction algorithm: Algorithm reconstruct~α(β1, . . . , βn) finds the unique poly-
nomial q(x) of degree t such that for every i = 1, . . . , n it holds that q(αi) = βi, when such
a polynomial exists (this holds as long as β1, . . . , βn all lie on a single polynomial). The
algorithm then outputs the coefficients of the polynomial q(x) (note that the original secret
can be obtained by simply computing s = q(0)).

By the above notation, observe that for every polynomial q(x) of degree t < n, it holds that

reconstruct~α(eval~α(q(x))) = q(x). (3.1)

Notation. Let Ps,t be the set of all polynomials with degree less than or equal to t with constant
term s. Observe that for every two values s, s′ ∈ F, it holds that |Ps,t| = |Ps′,t| = |F|t.

3.2 Basic Properties

In this section, we state some basic properties of Shamir’s secret sharing scheme (the proofs of
these claims are standard and appear in [1] for completeness).

In the protocol for secure computation, a dealer hides a secret s by choosing a polynomial f(x)
at random from Ps,t, and each party Pi receives a share, which is a point f(αi). In this context,
the adversary controls a subset of at most t parties, and thus receives at most t shares. We now
show that any subset of at most t shares does not reveal any information about the secret. In
Section 3.1, we explained intuitively why the above holds. This is formalized in the following claim
that states that for every subset I ⊂ [n] with |I| ≤ t and every two secrets s, s′, the distribution
over the shares seen by the parties Pi (i ∈ I) when s is shared is identical to when s′ is shared.

Claim 3.1 For any set of distinct non-zero elements α1, . . . , αn ∈ F, any pair of values s, s′ ∈ F,
any subset I ⊂ [n] where |I| = ` ≤ t, and every ~y ∈ F` it holds that:

Pr
f(x)∈RPs,t

[
~y =

(
{f(αi)}i∈I

)]
= Pr

g(x)∈RPs′,t

[
~y =

(
{g(αi)}i∈I

)]
=

1

|F|`

where f(x) and g(x) are chosen uniformly and independently from Ps,t and Ps′,t, respectively.

As a corollary, we have that any ` ≤ t points on a random polynomial are uniformly distributed
in the field F. This follows immediately from Claim 3.1 because stating that every ~y appears with
probability 1/|F|` is equivalent to stating that the shares are uniformly distributed. That is:

Corollary 3.2 For any secret s ∈ F, any set of distinct non-zero elements α1, . . . , αn ∈ F, and

any subset I ⊂ [n] where |I| = ` ≤ t, it holds that
{
{f(αi)}i∈I

}
≡
{
U

(1)
F , . . . , U

(`)
F

}
, where f(x) is

chosen uniformly at random from Ps,t and U
(1)
F , . . . , U

(`)
F are ` independent random variables that

are uniformly distributed over F.
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Multiple polynomials. In the protocol for secure computation, parties hide secrets and dis-
tribute them using Shamir’s secret sharing scheme. As a result, the adversary receives m · |I|
shares, {f1(αi), . . . , fm(αi)}i∈I , for some value m. The secrets f1(0), . . . , fm(0) may not be inde-
pendent. We therefore need to show that the shares that the adversary receives for all secrets do
not reveal any information about any of the secrets. Intuitively, this follows from the fact that
Claim 3.1 is stated for any two secrets s, s′, and in particular for two secrets that are known and
may be related. The following claim can be proven using standard facts from probability:

Claim 3.3 For any m ∈ N, any set of non-zero distinct values α1, . . . , αn ∈ F, any two sets of
secrets (a1, . . . , am) ∈ Fm and (b1, . . . , bm) ∈ Fm, and any subset I ⊂ [n] of size |I| ≤ t, it holds
that: {

{(f1(αi), . . . , fm(αi))}i∈I
}
≡
{
{(g1(αi), . . . , gm(αi))}i∈I

}
where for every j, fj(x), gj(x) are chosen uniformly at random from Paj ,t and Pbj ,t, respectively.

Hiding the leading coefficient. In Shamir’s secret sharing scheme, the dealer creates shares by
constructing a polynomial of degree t, where its constant term is fixed and all the other coefficients
are chosen uniformly at random. In Claim 3.1 we showed that any t or fewer points on such a
polynomial do not reveal any information about the fixed coefficient which is the constant term.

We now consider this claim when we choose the polynomial differently. In particular, we now
fix the leading coefficient of the polynomial (i.e., the coefficient of the monomial xt), and choose
all the other coefficients uniformly and independently at random, including the constant term. As
in the previous section, it holds that any subset of t or fewer points on such a polynomial do not
reveal any information about the fixed coefficient, which in this case is the leading coefficient. We
will need this claim for proving the security of one of the sub-protocols for the malicious case (in
Section 6.6).

Let P lead
s,t be the set of all the polynomials of degree t with leading coefficient s. Namely, the

polynomials have the structure: f(x) = a0+a1x+ . . . at−1x
t−1+sxt. The following claim is derived

similarly to Corollary 3.2.

Claim 3.4 For any secret s ∈ F, any set of distinct non-zero elements α1, . . . , αn ∈ F, and any
subset I ⊂ [n] where |I| = ` ≤ t, it holds that:{

{f(αi)}i∈I
}
≡
{
U

(1)
F , . . . , U

(`)
F

}
where f(x) is chosen uniformly at random from P lead

s,t and U
(1)
F , . . . , U

(`)
F are ` independent random

variables that are uniformly distributed over F.

3.3 Matrix Representation

In this section we present a useful representation for polynomial evaluation. We being by defining
the Vandermonde matrix for the values α1, . . . , αn. As is well known, the evaluation of a polynomial
at α1, . . . , αn can be obtained by multiplying the associated Vandermonde matrix with the vector
containing the polynomial coefficients.
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Definition 3.5 (Vandermonde matrix for (α1, . . . , αn)): Let α1, . . . , αn be n distinct non-zero el-
ements in F. The Vandermonde matrix V~α for ~α = (α1, . . . , αn) is the n× n matrix over F defined

by V~α[i, j]
def
= (αi)

j−1. That is,

V~α
def
=



1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)n−1


(3.2)

The following fact from linear algebra will be of importance to us:

Fact 3.6 Let ~α = (α1, . . . , αn), where all αi are distinct and non-zero. Then, V~α is invertible.

Matrix representation of polynomial evaluations. Let V~α be the Vandermonde matrix for
~α and let q = q0 + q1x+ · · ·+ qtx

t be a polynomial where t < n. Define the vector ~q of length n as

follows: ~q
def
= (q0, . . . qt, 0, . . . , 0). Then, it holds that:

V~α · ~q =



1 α1 . . . (α1)
n−1

1 α2 . . . (α2)
n−1

...
...

...

1 αn . . . (αn)n−1


·



q0

...

qt
0
...
0


=



q(α1)

...

...

q(αn)


which is the evaluation of the polynomial q(x) on the points α1, . . . , αn.

4 The Protocol for Semi-Honest Adversaries

4.1 Overview

We now provide a high-level overview of the protocol for t-privately computing any deterministic
functionality in the presence of a semi-honest adversary who controls up to at most t < n/2 parties.
Let F be a finite field of size greater than n and let f : Fn → Fn be the functionality that the parties
wish to compute. Note that we assume that each party’s input and output is a single field element.
This is only for the sake of clarity of exposition, and the modifications to the protocol for the
general case are straightforward. Let C be an arithmetic circuit with fan-in of 2 that computes
f . We assume that all arithmetic operations in the circuit are carried out over F. In addition, we
assume that the arithmetic circuit C consists of three types of gates: addition gates, multiplication
gates, and multiplication-by-a-constant gates. Recall that since a circuit is acyclic, it is possible to
sort the wires so that for every gate the input wires come before the output wires.

The protocol works by having the parties jointly propagate values through the circuit from the
input wires to the output wires, so that at each stage of the computation the parties obtain Shamir
shares of the value on the wire that is currently being computed. In more detail, the protocol has
three phases:
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• The input sharing stage: In this stage, each party creates shares of its input using Shamir’s
secret sharing scheme using threshold t+ 1 (for a given t < n/2), and distributes the shares
among the parties.

• The circuit emulation stage: In this stage, the parties jointly emulate the computation of
the circuit C, gate by gate. In each step, the parties compute shares of the output of a given
gate, based on the shares of the inputs to that gate that they already have. The actions of
the parties in this stage depends on the type of gate being computed:

1. Addition gate: Given shares of the input wires to the gate, the output is computed
without any interaction by each party simply adding their local shares together. Let
the inputs to the gate be a and b and let the shares of the parties be defined by two
degree-t polynomials fa(x) and fb(x) (meaning that each party Pi holds fa(αi) and
fb(αi) where fa(0) = a and fb(0) = b). Then the polynomial fa+b(x) defined by shares
fa+b(αi) = fa(αi)+fb(αi), for every i, is a degree-t polynomial with constant term a+b.
Thus, each party simply locally adds its own shares fa(αi) and fb(αi) together, and the
result is that the parties hold legal shares of the sum of the inputs, as required.

2. Multiplication-by-a-constant gate: This type of gate can also be computed without any
interaction. Let the input to the gate be a and let fa(x) be the t-degree polynomial
defining the shares, as above. The aim of the parties is to obtain shares of the value c ·a,
where c is the constant of the gate. Then, each party Pi holding fa(αi) simply defines its
output share to be fc·a(αi) = c · fa(αi). It is clear that fc·a(x) is a degree-t polynomial
with constant term c · a, as required.

3. Multiplication gate: As in (1) above, let the inputs be a and b, and let fa(x) and fb(x) be
the polynomials defining the shares. Here, as in the case of an addition gate, the parties
can just multiply their shares together and define h(αi) = fa(αi) · fb(αi). The constant
term of this polynomial is a · b, as required. However, h(x) will be of degree 2t instead of
t; after repeated multiplications the degree will be n or greater and the parties’ n shares
will not determine the polynomial or enable reconstruction. In addition, h(x) generated
in this way is not a “random polynomial” but has a specific structure. For example, h(x)
is typically not irreducible (since it can be expressed as the product of fa(x) and fb(x)),
and this may leak information. Thus, local computation does not suffice for computing
a multiplication gate. Instead, the parties compute this gate by running an interactive
protocol that t-privately computes the multiplication functionality Fmult, defined by

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
(4.1)

where fab(x) ∈R Pa·b,t is a random degree-t polynomial with constant term a · b.3

• The output reconstruction stage: At the end of the computation stage, the parties hold
shares of the output wires. In order to obtain the actual output, the parties send their shares
to one another and reconstruct the values of the output wires. Specifically, if a given output
wire defines output for party Pi, then all parties send their shares of that wire value to Pi.

3This definition of the functionality assumes that all of the inputs lie on the polynomials fa(x), fb(x) and ignores
the case that this does not hold. However, since we are dealing with the semi-honest case here, the inputs are always
guaranteed to be correct. This can be formalized using the notion of a partial functionality [20, Sec. 7.2].
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Organization of this section. In Section 4.2, we fully describe the above protocol and prove its
security in the Fmult-hybrid model. (Recall that in this model, the parties have access to a trusted
party who computes Fmult for them, and in addition exchange real protocol messages.) We also
derive a corollary for t-privately computing any linear function in the plain model (i.e., without any
use of the Fmult functionality), that is used later in Section 4.3.3. Then, in Section 4.3, we show
how to t-privately compute the Fmult functionality for any t < n/2. This involves specifying and

implementing two functionalities F 2t
rand and F degreduce; see the beginning of Section 4.3 for an overview

of the protocol for t-privately computing Fmult and for the definition of these functionalities.

4.2 Private Computation in the Fmult-Hybrid Model

In this section we present a formal description and proof of the protocol for t-privately computing
any deterministic functionality f in the Fmult-hybrid model. As we have mentioned, it is assumed
that each party has a single input in a known field F of size greater than n, and that the arithmetic
circuit C is over F. See Protocol 4.1 for the description.

PROTOCOL 4.1 (t-Private Computation in the Fmult-Hybrid Model)

• Inputs: Each party Pi has an input xi ∈ F.

• Auxiliary input: Each party Pi has an arithmetic circuit C over the field F, such that
for every ~x ∈ Fn it holds that C(~x) = f(~x), where f : Fn → Fn. The parties also have a
description of F and distinct non-zero values α1, . . . , αn in F.

• The protocol:

1. The input sharing stage: Each party Pi chooses a polynomial qi(x) uniformly
from the set Pxi,t of all polynomials of degree t with constant term xi. For every
j ∈ {1, . . . , n}, Pi sends party Pj the value qi(αj).

Each party Pi records the values q1(αi), . . . , qn(αi) that it received.

2. The circuit emulation stage: Let G1, . . . , G` be a predetermined topological or-
dering of the gates of the circuit. For k = 1, . . . , ` the parties work as follows:

– Case 1 – Gk is an addition gate: Let βki and γki be the shares of input wires held
by party Pi. Then, Pi defines its share of the output wire to be δki = βki + γki .

– Case 2 – Gk is a multiplication-by-a-constant gate with constant c: Let βki be the
share of the input wire held by party Pi. Then, Pi defines its share of the output
wire to be δki = c · βki .

– Case 3 – Gk is a multiplication gate: Let βki and γki be the shares of input wires
held by party Pi. Then, Pi sends (βki , γ

k
i ) to the ideal functionality Fmult of

Eq. (4.1) and receives back a value δki . Party Pi defines its share of the output
wire to be δki .

3. The output reconstruction stage: Let o1, . . . , on be the output wires, where party
Pi’s output is the value on wire oi. For every k = 1, . . . , n, denote by βk1 , . . . , β

k
n the

shares that the parties hold for wire ok. Then, each Pi sends Pk the share βki .

Upon receiving all shares, Pk computes reconstruct~α(βk1 , . . . , β
k
n) and obtains a poly-

nomial gk(x) (note that t+ 1 of the n shares suffice). Pk then defines its output to be
gk(0).

We now prove the security of Protocol 4.1. We remark that in the Fmult-hybrid model, the
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protocol is actually t-private for any t < n. However, as we will see, in order to t-privately compute
the Fmult functionality, we will need to set t < n/2.

Theorem 4.2 Let F be a finite field, let f : Fn → Fn be an n-ary functionality, and let t < n. Then,
Protocol 4.1 is t-private for f in the Fmult-hybrid model, in the presence of a static semi-honest
adversary.

Proof: Intuitively, the protocol is t-private because the only values that the parties see until the
output stage are random shares. Since the threshold of the secret sharing scheme used is t + 1,
it holds that no adversary controlling t parties can learn anything. The fact that the view of the
adversary can be simulated is due to the fact that t shares of any two possible secrets are identically
distributed; see Claim 3.1. This implies that the simulator can generate the shares based on any
arbitrary value, and the resulting view is identical to that of a real execution. Observe that this
is true until the output stage where the simulator must make the random shares that were used
match the actual output of the corrupted parties. This is not a problem because, by interpolation,
any set of t shares can be used to define a t-degree polynomial with its constant term being the
actual output.

Since C computes the functionality f , it is immediate that outputπ(x1, . . . , xn) = f(x1, . . . , xn),
where π denotes Protocol 4.1. We now proceed to show the existence of a simulator S as required
by Definition 2.1. Before describing the simulator, we present some necessary notation. Our proof
works by inductively showing that the partial view of the adversary at every stage is identical in
the simulated and real executions. Recall that the view of party Pi is the vector (xi, ri;m

1
i , . . . ,m

`
i),

where xi is the party’s input, ri its random tape, mk
i is the kth message that it receives in the

execution, and ` is the overall number of messages received (in our context here, we let mk
i equal

the series of messages that Pi receives when the parties compute gate Gk). For the sake of clarity,
we add to the view of each party the values σ1i , . . . , σ

`
i , where σki equals the shares on the wires

that Party Pi holds after the parties emulate the computation of gate Gk. That is, we denote

viewπ
i (~x) =

(
xi, ri;m

1
i , σ

1
i , . . . ,m

`
i , σ

`
i

)
.

We stress that since the σki values can be efficiently computed from the party’s input, random tape
and incoming messages, the view including the σki values is equivalent to the view without them,
and this is only a matter of notation.

We are now ready to describe the simulator S. Loosely speaking, S works by simply sending
random shares of arbitrary values until the output stage. Then, in the final output stage S sends
values so that the reconstruction of the shares on the output wires yield the actual output.

The Simulator S:

• Input: The simulator receives the inputs and outputs, {xi}i∈I and {yi}i∈I respectively, of all
corrupted parties.

• Simulation:

1. Simulating the input sharing stage:

(a) For every i ∈ I, the simulator S chooses a uniformly distributed random tape for Pi;
this random tape and the input xi fully determines the degree-t polynomial q′i(x) ∈
Pxi,t chosen by Pi in the protocol.
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(b) For every j /∈ I, the simulator S chooses a random degree-t polynomial q′k(x) ∈R P0,t

with constant term 0.

(c) The view of the corrupted party Pi in this stage is then constructed by S to be the
set of values {qj(αi)}j /∈I (i.e., the share sent by each honest Pj to Pi). The view of
the adversary A consists of the view of Pi for every i ∈ I.

2. Simulating the circuit emulation stage: For every Gk ∈ {G1, . . . , G`}:
(a) Gk is an addition gate: Let {fa(αi)}i∈I and {fb(αi)}i∈I be the shares of the input

wires of the corrupted parties that were generated by S (initially these are input
wires and so the shares are defined by q′k(x) above). For every i ∈ I, the simulator
S computes fa(αi) + fb(αi) = (fa + fb)(αi) which defines the shares of the output
wire of Gk.

(b) Gk is a multiplication-with-constant gate: Let {fa(αi)}i∈I be the shares of the input
wire and let c ∈ F be the constant of the gate. S computes c · fa(αi) = (c · fa)(αi)
for every i ∈ I which defines the shares of the output wire of Gk.

(c) Gk is a multiplication gate: S chooses a degree-t polynomial fab(x) uniformly at
random from P0,t (irrespective of the shares of the input wires), and defines the
shares of the corrupted parties of the output wire of Gk to be {fab(αi)}i∈I .

S adds the shares to the corrupted parties’ views.

3. Simulating the output reconstruction stage: Let o1, . . . , on be the output wires. We now
focus on the output wires of the corrupted parties. For every k ∈ I, the simulator S
has already defined |I| shares {βik}i∈I for the output wire ok. S thus chooses a random
polynomial g′k(x) of degree t under the following constraints:

(a) g′k(0) = yk, where yk is the corrupted Pk’s output (the polynomial’s constant term is
the correct output).

(b) For every i ∈ I, g′k(αi) = βik (i.e., the polynomial is consistent with the shares that
have already been defined).

(Note that if |I| = t, then the above constraints yield t+ 1 equations, which in turn fully
determine the polynomial g′k(x). However, if |I| < t, then S can carry out the above by
choosing t− |I| additional random points and interpolating.)

Finally, S adds the shares {g′k(α1), . . . , g
′
k(αn)} to the view of the corrupted party Pk.

4. S outputs the views of the corrupted parties and halts.

Denote by ṽiew
π
I (~x) the view of the corrupted parties up to the output reconstruction stage

(and not including that stage). Likewise, we denote by S̃ (I, ~xI , fI (~x)) the view generated by the
simulator up to but not including the output reconstruction stage.

We begin by showing that the partial views of the corrupted parties up to the output recon-
struction stage in the real execution and simulation are identically distributed.

Claim 4.3 For every ~x ∈ Fn and every I ⊂ [n] with |I| ≤ t,{
ṽiew

π
I (~x)

}
≡
{
S̃ (I, ~xI , fI (~x))

}

16



Proof: The only difference between the partial views of the corrupted parties in a real and
simulated execution is that the simulator generates the shares in the input-sharing stage and in
multiplication gates from random polynomials with constant term 0, instead of with the correct
value defined by the actual inputs and circuit. Intuitively, the distributions generated are the same
since the shares are distributed identically, for every possible secret.

Formally, we construct an algorithm H that receives as input n−|I|+` sets of shares: n−|I| sets

of shares {(i, β1i )}i∈I , . . . , {(i, βn−|I|i )}i∈I and ` sets of shares {(i, γ1i )}i∈I , . . . , {(i, γ`i )}i∈I . Algorithm
H generates the partial view of the corrupted parties (up until but not including the output
reconstruction stage) as follows:

• H uses the jth set of shares {βji }i∈I as the shares sent by the jth honest party to the corrupted
parties in the input sharing stage (here j = 1, . . . , n− |I|),

• H uses the kth set of shares {γki }i∈I are viewed as the shares received by the corrupted parties
from Fmult in the computation of the k gate Gk, if it is a multiplication gate (here k = 1, . . . , `).

Otherwise, H works exactly as the simulator S.
It is immediate that if H receives shares that are generated from random polynomials that all

have constant term 0, then the generated view is exactly the same as the partial view generated by
S. In contrast, if H receives shares that are generated from random polynomials that have constant
terms as determined by the inputs and circuit (i.e., the shares βji are generated using the input of
the jth honest party, and the shares γki are generated using the value on the output wire of Gk
which is fully determined by the inputs and circuit), then the generated view is exactly the same
as the partial view in a real execution. This is due to the fact that all shares are generated using
the correct values, like in a real execution. By Claim 3.1, these two sets of shares are identically
distributed and so the two types of views generated by H are identically distribution; that is, the
partial views from the simulated and real executions are identically distributed.

It remains to show that the output of the simulation after the output reconstruction stage is
identical to the view of the corrupted parties in a real execution. For simplicity, we assume that
the output wires appear immediately after multiplication gates (otherwise, they are fixed functions
of these values).

Before proving this, we prove a claim that describes the processes of the real execution and
simulation in a more abstract way. The aim of the claim is to prove that the process carried out
by the simulator in the output reconstruction stage yields the same distribution as in a protocol
execution. We first describe two processes and prove that they yield the same distribution, and
later show how these are related to the real and simulation processes.

Random Variable X(s) Random Variable Y (s)

(1) Choose q(x) ∈R Ps,t (1) Choose q′(x) ∈R P0,t

(2) ∀i ∈ I, set βi = q(αi) (2) ∀i ∈ I, set β′i = q′(αi)
(3) – (3) Choose r(x) ∈R Ps,t s.t. ∀i ∈ I r(αi) = β′i
(4) Output q(x) (4) Output r(x)

Observe that in Y (s), first the polynomial q′(x) is chosen with constant term 0, and then r(x)
is chosen with constant term s, subject to it agreeing with q′ on {αi}i∈I .

Claim 4.4 For every s ∈ F, it holds that {X(s)} ≡ {Y (s)}.
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Intuitively, this follows from the fact that the points {q(αi)}i∈i are distributed identically to
{q′(αi)}i∈I . The formally proof of the claim follows from a standard probabilistic argument, and
appears in [1].

The random variables X(s) and Y (s) can be extended to X(~s) and Y (~s) for any ~s ∈ Fm (for
some m ∈ N); the proof of the analogous claim then follows. From this claim, we get:

Claim 4.5 If
{
ṽiew

π
I (~x)

}
≡
{
S̃ (I, ~xI , fI (~x))

}
, then {viewπ

I (~x)} ≡ {S (I, ~xI , fI (~x))}.

Proof: In the output reconstruction stage, for every k ∈ I, the corrupted parties receive the
points gk(α1), . . . , gk(αn) in the real execution, and the points g′k(α1), . . . , g

′
k(αn) in the simulation.

Equivalently, we can say that the corrupted parties receive the polynomials {gk(x)}k∈I in a real
execution, and the polynomials {g′k(x)}k∈I in the simulation.

In the protocol execution, functionality Fmult chooses the polynomial f
(k)
ab (x) for the output

wire of Pk uniformly at random in Pyk,t, and the corrupted parties receive values βi = f
(k)
ab (αi)

(for every i ∈ I). Finally, as we have just described, in the output stage, the corrupted parties

receive the polynomials f
(k)
ab (x) themselves. Thus, this is the process X(yk). Extending to all k ∈ I,

we have that this is the extended process X(~s) with ~s being the vector containing the corrupted
parties’ output values {yk}k∈I .

In contrast, in the simulation of the multiplication gate leading to the output wire for party

Pk, the simulator S chooses the polynomial f
(k)
ab (x) uniformly at random in P0,t (see Step 2c in

the specification of S above), and the corrupted parties receive values βi = f
(k)
ab (αi) (for every

i ∈ I). Then, in the output stage, S chose g′k(x) at random from Pyk,t under the constraint that
g′k(αi) = βi for every i ∈ I. Thus, this is the process Y (yk). Extending to all k ∈ I, we have that
this is the extended process Y (~s) with ~s being the vector containing the corrupted parties’ output
values {yk}k∈I . The claim thus follows from Claim 4.4.

Combining Claims 4.3 and 4.5 we have that {S (I, ~xI , fI(~x))} ≡ {viewπ
I (~x)}, as required.

Privately computing linear functionalities in the real model. Theorem 4.2 states that
every function can be t-privately computed in the Fmult-hybrid model, for any t < n. However, a
look at Protocol 4.1 and its proof of security show that Fmult is only used for computing multipli-
cation gates in the circuit. Thus, Protocol 4.1 can actually be directly used for privately computing
any linear functionality f , since such functionalities can be computed by circuits containing only
addition and multiplication-by-constant gates. Furthermore, the protocol is secure for any t < n;
in particular, no honest majority is needed. This yields the following corollary.

Corollary 4.6 Let t < n. Then, any linear functionality f can be t-privately computed in the
presence of a static semi-honest adversary. In particular, the matrix-multiplication functionality
FAmat(~x) = A · ~x for matrix A ∈ Fn×n can be t-privately computed in the presence of a static
semi-honest adversary.

Corollary 4.6 is used below in order to compute the degree-reduction functionality, which is
used in order to privately compute Fmult.
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4.3 Privately Computing the Fmult Functionality

We have shown how to t-privately compute any functionality in the Fmult-hybrid model. In order
to achieve private computation in the plain model, it remains to show how to privately compute the
Fmult functionality. We remark that the threshold needed to privately compute Fmult is t < n/2,
and thus the overall threshold for the generic BGW protocol is t < n/2. Recall that the Fmult
functionality is defined as follows:

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
where fa(x) ∈ Pa,t, fb(x) ∈ Pb,t, and fab(x) is a random polynomial in Pa·b,t.

As we have discussed previously, the simple solution where each party locally multiplies its two
shares does not work here, for two reasons. First, the resulting polynomial is of degree 2t and not t
as required. Second, the resulting polynomial of degree 2t is not uniformly distributed amongst all
polynomials with the required constant term. Therefore, in order to privately compute the Fmult
functionality, we first randomize the degree-2t polynomial so that it is uniformly distributed, and
then reduce its degree to t. That is, Fmult is computed according to the following steps:

1. Each party locally multiplies its input shares.

2. The parties run a protocol to generate a random polynomial in P0,2t, and each party receives
a share based on this polynomial. Then, each party adds its share of the product (from the
previous step) with its share of this polynomial. The resulting shares thus define a polynomial
which is uniformly distributed in Pa·b,2t.

3. The parties run a protocol to reduce the degree of the polynomial to t, with the result being
a polynomial that is uniformly distributed in Pa·b,t, as required. This computation uses a t-
private protocol for computing matrix multiplication. We have already shown how to achieve
this in Corollary 4.6.

The randomizing (i.e., selecting a random polynomial in P0,2t) and degree-reduction functionalities
for carrying out the foregoing steps are formally defined as follows:

• The randomization functionality: The randomization functionality is defined as follows:

F 2t
rand(λ, . . . , λ) = (r(α1), . . . , r(αn)),

where r(x) ∈R P0,2t is random, and λ denotes the empty string. We will show how to t-privately
compute this functionality in Section 4.3.2.

• The degree-reduction functionality: Let h(x) = h0 + . . . + h2tx
2t be a polynomial, and denote

by trunct(h(x)) the polynomial of degree t with coefficients h0, . . . , ht. That is, trunct(h(x)) =
h0 + h1x+ . . .+ htx

t (observe that this is a deterministic functionality). Formally, we define

F degreduce(h(α1), . . . , h(αn)) = (ĥ(α1), . . . , ĥ(αn))

where ĥ(x) = trunct(h(x)). We will show how to t-privately compute this functionality in
Section 4.3.3.
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4.3.1 Privately Computing Fmult in the (F 2t
rand, F

deg
reduce)-Hybrid Model

We now prove that Fmult is reducible to the functionalities F 2t
rand and F degreduce; that is, we construct

a protocol that t-privately computes Fmult given access to ideal functionalities F degreduce and F 2t
rand.

The full specification appears in Protocol 4.7.
Intuitively, this protocol is secure since the randomization step ensures that the polynomial

defining the output shares is random. In addition, the parties only see shares of the randomized
polynomial and its truncation. Since the randomized polynomial is of degree 2t, seeing 2t shares of
this polynomial still preserves privacy. Thus, the t shares of the randomized polynomial together
with the t shares of the truncated polynomial (which is of degree t), still gives the adversary no
information whatsoever about the secret. (This last point is the crux of the proof.)

PROTOCOL 4.7 (t-Privately Computing Fmult)

• Input: Each party Pi holds values βi, γi, such that reconstruct~α(β1, . . . , βn) ∈ Pa,t and
reconstruct~α(γ1, . . . , γn) ∈ Pb,t for some a, b ∈ F.

• The protocol:

1. Each party locally computes si = βi · γi.
2. Randomize: Each party Pi sends λ to F 2t

rand (formally, it writes λ on its oracle tape
for F 2t

rand). Let σi be the oracle response for party Pi.

3. Reduce the degree: Each party Pi sends (si + σi) to F degreduce. Let δi be the oracle
response for Pi.

• Output: Each party Pi outputs δi.

We therefore have:

Proposition 4.8 Let t < n/2. Then, Protocol 4.7 is t-private for Fmult in the (F 2t
rand, F

deg
reduce)-

hybrid model, in the presence of a static semi-honest adversary.

Proof: The parties do not receive messages from other parties in the oracle-aided protocol; rather
they receive messages from the oracles only. Therefore, our simulator only needs to simulate the
oracle-response messages. Since the Fmult functionality is probabilistic, we must prove its security
using Definition 2.2.

In the real execution of the protocol, the corrupted parties’ inputs are {fa(αi)}i∈I and {fb(αi)}i∈I .
Then, in the randomize step of the protocol they receive shares σi of a random polynomial of degree
2t with constant term 0. Denoting this polynomial by r(x), we have that the corrupted parties

receive the values {r(αi)}i∈I . Next, the parties invoke the functionality F degreduce and receive back
the values δi (these are points of the polynomial trunct(fa(x) · fb(x) + r(x))). These values are

actually the parties’ outputs, and thus the simulator must make the output of the call to F degreduce

be the shares {δi}i∈I of the corrupted parties outputs.

The simulator S:

• Input: The simulator receives as input I, the inputs of the corrupted parties {(βi, γi)}i∈I ,
and their outputs {δi}i∈I .
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• Simulation:

– S chooses |I| values uniformly and independently at random, {vi}i∈I .
– For every i ∈ I, the simulator defines the view of the party Pi to be: (βi, γi, vi, δi),

where (βi, γi) represents Pi’s input, vi represents Pi’s oracle response from F 2t
rand, and δi

represents Pi’s oracle response from F degreduce.

We now proceed to prove that the joint distribution of the output of all the parties, together
with the view of the corrupted parties is distributed identically to the output of all parties as
computed from the functionality Fmult and the output of the simulator. We first show that the
outputs of all parties are distributed identically in both cases. Then, we show that the view of the
corrupted parties is distributed identically, conditioned on the values of the outputs (and inputs)
of all parties.

The outputs. Since the inputs and outputs of all the parties lie on the same polynomials, it
is enough to show that the polynomials are distributed identically. Let fa(x), fb(x) be the input
polynomials. Let r(x) be the output of the F 2t

rand functionality. Finally, denote the truncated result

by ĥ(x)
def
= trunc(fa(x) · fb(x) + r(x)).

In the real execution of the protocol, the parties output shares of the polynomial ĥ(x). From the
way ĥ(x) is defined, it is immediate that ĥ(x) is a degree-t polynomial that is uniformly distributed
in Pa·b,t. (In order to see that it is uniformly distributed, observe that with the exception of the
constant term, all the coefficients of the degree-2t polynomial fa(x) ·fb(x)+r(x) are random. Thus
the coefficients of x, . . . , xt in ĥ(x) are random, as required.)

Furthermore, the functionality Fmult return shares for a random polynomial of degree t with
constant term fa(0) · fb(0) = a · b. Thus, the outputs of the parties from a real execution and from
the functionality are distributed identically.

The view of the corrupted parties. We show that the view of the corrupted parties in the
real execution and the simulation are distributed identically, given the inputs and outputs of all
parties. Observe that the inputs and outputs define the polynomials fa(x), fb(x) and fab(x). Now,
the view that is output by the simulator is{

{fa(αi), fb(αi), vi, fab(αi)}i∈I
}

where all the vi values are uniformly distributed in F, and independent of fa(x), fb(x) and fab(x). It
remains to show that in a protocol execution the analogous values – which are the outputs received
by the corrupted parties from F 2t

rand – are also uniformly distributed and independent of fa(x), fb(x)

and ĥ(x) (where ĥ(x) is distributed identically to a random fab(x), as already shown above).
In order to prove this, it suffices to prove that for every vector ~y ∈ F|I|,

Pr
[
~r = ~y | fa(x), fb(x), ĥ(x)

]
=

1

|F||I|
(4.2)

where ~r = (r(αi1), . . . , r(αi|I|)) for I = {i1, . . . , i|I|}; that is, ~r is the vector of outputs from F 2t
rand,

computed from the polynomial r(x) ∈R P0,2t, that are received by the corrupted parties.
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We write r(x) = r1(x) +xt · r2(x), where r1(x) ∈R P0,t and r2(x) ∈R P0,t. In addition, we write
fa(x) · fb(x) = h1(x) + xt · h2(x), where h1(x) ∈ Pab,t and h2(x) ∈ P0,t. Observe that:

ĥ(x) = trunc
(
fa(x) · fb(x) + r(x)

)
= trunc

(
h1(x) + r1(x) + xt · (h2(x) + r2(x))

)
= h1(x) + r1(x)

where the last equality holds since the constant term of both h2(x) and r2(x) is 0. Rewriting
Eq. (4.2), we need to prove that for every vector ~y ∈ F|I|,

Pr
[
~r = ~y | fa(x), fb(x), h1(x) + r1(x)

]
=

1

|F||I|

where the kth element rk of ~r is r1(αik) + (αik)t · r2(αik). The claim follows since r2(x) is random
and independent of fa(x), fb(x), h1(x) and r1(x). Formally, for any given yk ∈ F, the equality
yk = r1(αik) + (αik)t · r2(αik) holds if and only if r2(αik) = (αik)−t · (yk − r1(αik)). Since αik , yk
and r1(αik) are all fixed by the conditioning, the probability follows from Claim 3.1.

We conclude that the view of the corrupted parties is identically distributed to the output of
the simulator, when conditioning on the inputs and outputs of all parties.

4.3.2 Privately Computing F 2t
rand in the Plain Model

Recall that the randomization functionality is defined as follows:

F 2t
rand(λ, . . . , λ) = (r(α1), . . . , r(αn)), (4.3)

where r(x) ∈R P0,2t, and λ denotes the empty string. The protocol for implementing the function-
ality works as follows. Each party Pi chooses a random polynomial qi(x) ∈R P0,2t and sends the
share qi(αj) to every party Pj . Then, each party Pi outputs δi =

∑n
k=1 qk(αi). Clearly, the shares

δ1, . . . , δn define a polynomial with constant term 0, because all the polynomials in the sum have
a zero constant term. Furthermore, the sum of these random 2t-degree polynomials is a random
polynomial in P0,2t, as required. See Protocol 4.9 for a formal description.

PROTOCOL 4.9 (Privately Computing F 2t
rand)

• Input: The parties do not have inputs for this protocol.

• The protocol:

– Each party Pi chooses a random polynomial qi(x) ∈R P0,2t. Then, for every j ∈
{1, . . . , n} it sends si,j = qi(αj) to party Pj .

– Each party Pi receives s1,i, . . . , sn,i and computes δi =
∑n
j=1 sj,i.

• Output: Each party Pi outputs δi.

We now prove that Protocol 4.9 is t-private for F 2t
rand.

Claim 4.10 Let t < n/2. Then, Protocol 4.9 is t-private for the F 2t
rand functionality, in the presence

of a static semi-honest adversary.

Proof: Intuitively, the protocol is secure because the only messages that the parties receive
are random shares of polynomials in P0,2t. The simulator can easily simulate these messages by
generating the shares itself. However, in order to make sure that the view of the corrupted parties
is consistent with the actual output provided by the functionality, the simulator chooses the shares
so that their sum equals δi, the output provided by the functionality to each Pi.
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The simulator S:

• Input: The simulator receives as input I and the outputs of the corrupted parties {δi}i∈I .
• Simulation:

1. Fix ` /∈ I
2. S chooses n− 1 random polynomials q′j(x) ∈ P0,2t for every j ∈ [n] \ {`}. Note that for

i ∈ I, this involves setting the random tape of Pi so that it results in it choosing q′i(x).

3. S sets the values of the remaining polynomial q′`(x) on the points {αi}i∈I by computing
q′`(αi) = δi −

∑
j 6=` q

′
j(αi) for every i ∈ I.

4. S sets the incoming messages of corrupted party Pi in the protocol to be (q′1(αi), . . . , q
′
n(αi);

observe that all of these points are defined.

• Output: S sets the view of each corrupted Pi (i ∈ I) to be the empty input λ, the random tape
determined in Step (2) of the simulation, and the incoming messages determined in Step (4).

We now show that the view of the adversary (containing the views of all corrupted parties) and
the output of all parties in a real execution is distributed identically to the output of the simulator
and the output of all parties as received from the functionality in an ideal execution.

In order to do this, consider an fictitious simulator S ′ who receives the polynomial r(x) instead
of the points {δi = r(αi)}i∈I . Simulator S ′ works in exactly the same way as S except that it fully
defines the remaining polynomial q′`(x) (and not just its values on the points {αi}i∈I) by setting
q′`(x) = r(x)−

∑
j 6=` q

′
j(x). Then, S ′ computes the values q′`(αi) for every i ∈ I from q′`(x). The only

difference between the simulator S and the fictitious simulator S ′ is with respect to the value of the
polynomial q′`(x) on points outside of {αi}i∈I . The crucial point to notice is that S does not define
these points differently to S ′; rather S does not define them at all. That is, the simulation does
not require S to determine the value of q′`(x) on points outside of {αi}i∈I , and so the distributions
are identical.

Finally observe that the output distribution generated by S ′ is identical to the output of a real
protocol. This holds because in a real protocol execution random polynomials q1(x), . . . , qn(x) are
chosen and the output points are derived from

∑n
j=1 qj(x), whereas in the fictitious simulation with

S ′ the order is just reversed; i.e., first r(x) is chosen at random and then q′1(x), . . . , q′n(x) are chosen
at random under the constraint that their sum equals r(x). Note that this uses the fact that r(x)
is randomly chosen.

4.3.3 Privately Computing F deg
reduce in the Plain Model

Recall that the F degreduce functionality is defined by

F degreduce(h(α1), . . . , h(αn)) = (ĥ(α1), . . . , ĥ(αn))

where ĥ(x) = trunct(h(x)) is the polynomial h(x) truncated to degree t (i.e., the polynomial with
coefficients h0, . . . , ht). We begin by showing that in order to transform a vector of shares of the
polynomial h(x) to shares of the polynomial trunct(h(x)), it suffices to multiply the input shares
by a certain matrix of constants.

23



Claim 4.11 Let t < n/2. Then, there exists a constant matrix A ∈ Fn×n such that for every
degree-2t polynomial h(x) =

∑2t
j=0 hj · xj and truncated ĥ(x) = trunct(h(x)), it holds that:(

ĥ(α1), . . . , ĥ(αn)
)T

= A ·
(
h(α1), . . . , h(αn)

)T
.

Proof: Let ~h = (h0, . . . , ht, . . . , h2t, 0, . . . 0) be a vector of length n, and let V~α be the n×n Vander-
monde matrix for ~α = (α1, . . . , αn). As we have seen in Section 3.3, V~α ·~hT = (h(α1), . . . , h(αn))T .

Since V~α is invertible, we have that ~hT = V −1~α · (h(α1), . . . , h(αn))T . Similarly, letting
~̂
h =

(ĥ0, . . . , ĥt, 0, . . . 0) we have that
(
ĥ(α1), . . . , ĥ(αn)

)T
= V~α ·

~̂
hT .

Now, let T = {1, . . . , t}, and let PT be the linear projection of T ; i.e., PT is an n × n matrix
such that PT (i, j) = 1 for every i = j ∈ T , and PT (i, j) = 0 for all other values. It thus follows

that PT · ~hT =
~̂
hT . Combining all of the above, we have that(

ĥ(α1), . . . , ĥ(αn)
)T

= V~α ·~̂hT = V~α · PT · ~hT = V~α · PT · V −1~α · (h(α1), . . . , h(αn))T .

The claim follows by setting A = V~α · PT · V −1~α .

By the above claim it follows that the parties can compute F degreduce by simply multiplying their
shares with the constant matrix A from above. That is, the entire protocol for t-privately computing
F degreduce works by the parties t-privately computing the matrix multiplication functionality FAmat(~x)
with the matrix A. By Corollary 4.6 (see the end of Section 4.2), FAmat(~x) can be t-privately com-
puted for any t < n. Since the entire degree reduction procedure consists of t-privately computing
FAmat(~x), we have the following proposition:

Proposition 4.12 For every t < n/2, there exists a protocol that is t-private for F degreduce, in the
presence of a static semi-honest adversary.

4.4 Conclusion

In Section 4.3.1 we proved that there exists a t-private protocol for computing the Fmult functionality
in the (F 2t

rand, F
deg
reduce)-hybrid model, for any t < n/2. Then, in Sections 4.3.2 and 4.3.3 we showed

that F 2t
rand and F degreduce, respectively, can be t-privately computed (in the plain model) for any

t < n/2. Finally, in Theorem 4.2 we showed that any n-ary functionality can be privately computed
in the Fmult-hybrid model, for any t < n. Combining the above with the modular sequential
composition theorem (described in Section 2.3), we conclude that:

Theorem 4.13 Let F be a finite field, let f : Fn → Fn be an n-ary functionality, and let t < n/2.
Then, there exists a protocol that is t-private for f in the presence of a static semi-honest adversary.

5 Verifiable Secret Sharing (VSS)

5.1 Background

Verifiable secret sharing (VSS), defined by Chor et al. [15], is a protocol for sharing a secret in
the presence of malicious adversaries. Recall that a secret sharing scheme (with threshold t + 1)
is made up of two stages. In the first stage (called sharing), the dealer shares a secret so that
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any t + 1 parties can later reconstruct the secret, while any subset of t or fewer parties will learn
nothing whatsoever about the secret. In the second stage (called reconstruction), a set of t+ 1 or
more parties reconstruct the secret. If we consider Shamir’s secret-sharing scheme, much can go
wrong if the dealer or some of the parties are malicious (e.g., consider the use of secret sharing
in Section 4). First, in order to share a secret s, the dealer is supposed to choose a random
polynomial q(·) of degree t with q(0) = s and then hand each party Pi its share q(αi). However,
nothing prevents the dealer from choosing a polynomial of higher degree. This is a problem because
it means that different subsets of t + 1 parties may reconstruct different values. Thus, the shared
value is not well defined. Second, in the reconstruction phase each party Pi provides its share
q(αi). However, a corrupted party can provide a different value, thus effectively changing the value
of the reconstructed secret, and the other parties have no way of knowing that the provided value is
incorrect. Thus, we must use a method that either prevents the corrupted parties from presenting
incorrect shares, or ensures that it is possible to reconstruct the correct secret s given n− t correct
shares, even if they are mixed together with t incorrect shares (and no one knows which of the
shares are correct or incorrect). Note that in the context of multiparty computation, n parties
participate in the reconstruction and not just t+ 1; this is utilized in the following construction.

The BGW protocol for verifiable secret sharing ensures that (for t < n/3) the shares received
by the honest parties are guaranteed to be q(αi) for a well-defined degree-t polynomial q, even if
the dealer is corrupted. This “secure sharing step” is the challenging part of the protocol. Given
such a secure sharing it is possible to use techniques from the field of error-correcting codes in order
to reconstruct q (and thus q(0) = s) as long as n− t correct shares are provided and t < n/3. This
is due to the fact that Shamir’s secret-sharing scheme when looked at in this context is exactly a
Reed-Solomon code, and Reed-Solomon codes can efficiently correct up to t errors, for t < n/3.

5.2 The Reed-Solomon Code

We briefly describe the Reed-Solomon code, and its use in our context. First, recall that a linear
[n, k, d]-code over a field F of size q is a code of length n (meaning that each codeword is a sequence
of n field elements), of dimension k (meaning that there are qk different codewords), and of distance
d (meaning that every two codewords are of Hamming distance at least d from each other).

We are interested in constructing a code of length n, dimension k = t + 1, and distance n− t.
The Reed-Solomon code for these parameters is constructed as follows. Let F be a finite field such
that |F| > n, and let α1, . . . , αn be distinct field elements. Let m = (m0, . . . ,mt) be a message to
be encoded, where each mi ∈ F. The encoding of m is as follows:

1. Define a polynomial pm(x) = m0 +m1x+ . . .+mtx
t of degree t.

2. Compute the codeword C(m) = 〈pm(α1), . . . , pm(αn)〉.

It is well known that the distance of this code is n − t. (In order to see this, recall that for any
two different polynomials p1 and p2 of degree at most t, there are at most t points α for which
p1(α) = p2(α). Noting that m 6= m′ define different polynomials pm 6= pm′ , we have that C(m)
and C(m′) agree in at most t places.) Let d(x, y) denote the Hamming distance between words
x, y ∈ Fn. The following is a well-known result from the error correcting code literature:

Theorem 5.1 The Reed-Solomon code is a linear [n, t + 1, n − t]-code over F. In addition, there
exists an efficient decoding algorithm that corrects up to n−t−1

2 errors. That is, for every m ∈ Ft+1

and every x ∈ Fn such that d(x,C(m)) ≤ n−t−1
2 , the decoding algorithm returns m.

25



Let t < n/3, and so n ≥ 3t+ 1. Plugging this into Theorem 5.1, we have that it is possible to
efficiently correct up to 3t+1−t−1

2 = t errors.

Reed-Solomon and Shamir’s secret-sharing. Assume that n parties hold shares {q(αi)}i∈[n]
of a degree-t polynomial, as in Shamir’s secret-sharing scheme. That is, the dealer distributed
shares {q(αi)}i∈[n] where q ∈R Ps,t for a secret s ∈ F. We can view the shares 〈q(α1), . . . , q(αn)〉
as a Reed-Solomon codeword. Now, in order for the parties to reconstruct the secret from the
shares, all parties can just broadcast their shares. Observe that the honest parties provide their
correct share q(αi), whereas the corrupted parties may provide incorrect values. However, since
the number of corrupted parties is t < n/3, it follows that at most t of the symbols are incorrect.
Thus, the Reed-Solomon reconstruction procedure can be run and the honest parties can all obtain
the correct polynomial q, and can compute q(0) = s.

We conclude that in such a case the corrupted parties cannot effectively cheat in the recon-
struction phase. Indeed, even if they provide incorrect values, it is possible for the honest parties
to correctly reconstruct the secret (with probability 1). Thus, the main challenge in constructing
a verifiable secret-sharing protocol is how to force a corrupted dealer to distribute shares that are
consistent with some degree-t polynomial.

5.3 Bivariate Polynomials

Bivariate polynomials are a central tool used by the BGW verifiable secret sharing protocol (in the
sharing stage). We therefore provide a short background to bivariate polynomials in this section.

A bivariate polynomial of degree t is a polynomial over two variables, each of which has degree
at most t. Such a polynomial can be written as follows:

f(x, y) =
t∑
i=0

t∑
j=0

ai,j · xi · yj .

We denote by Bs,t the set of all bivariate polynomials of degree t and with constant term s. Note
that the number of coefficients of a bivariate polynomial in Bs,t is (t+ 1)2 − 1 = t2 + 2t (there are
(t+ 1)2 coefficients, but the constant term is already fixed to be s).

Recall that when considering univariate polynomials, t + 1 points define a unique polynomial
of degree t. In this case, each point is a pair (αk, βk) and there exists a unique polynomial f such
that f(αk) = βk for all t + 1 given points {(αk, βk)}t+1

k=1. The analogous statement for bivariate
polynomials is that t+ 1 univariate polynomials of degree t define a unique bivariate polynomial of
degree t; see Claim 5.2 below. For a degree-t bivariate polynomial S(x, y), fixing the y-value to be
some α defines a degree-t univariate polynomial f(x) = S(x, α). Likewise, any t + 1 fixed values
α1, . . . , αt+1 define t + 1 degree-t univariate polynomials fk(x) = S(x, αk). What we show now is
that like in the univariate case, this works in the opposite direction as well. Specifically, given t+ 1
values α1, . . . , αt+1 and t+ 1 degree-t polynomials f1(x), . . . , ft+1(x) there exists a unique bivariate
polynomial S(x, y) such that S(x, αk) = fk(x), for every k = 1, . . . , t+ 1. This is formalized in the
next claim, which is a variant of the classic Lagrange interpolation theorem (a proof can also be
found in [18, 1]):

Claim 5.2 Let t be a nonnegative integer, let α1, . . . , αt+1 be t+ 1 distinct elements in F, and let
f1(x), . . . , ft+1(x) be t+ 1 polynomials of degree t. Then, there exists a unique bivariate polynomial
S(x, y) of degree t such that for every k = 1, . . . , t+ 1 it holds that S(x, αk) = fk(x).
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Verifiable secret sharing using bivariate polynomials. The verifiable secret-sharing pro-
tocol works by embedding a random univariate degree-t polynomial q(z) with q(0) = s into the
bivariate polynomial S(x, y). Specifically, S(x, y) is chosen at random under the constraint that
S(0, z) = q(z); the values q(α1), . . . , q(αn) are thus the univariate Shamir-shares embedded into
S(x, y). Then, the dealer sends each party Pi two univariate polynomials as intermediate shares;
these polynomials are fi(x) = S(x, αi) and gi(y) = S(αi, y). By the definition of these polynomials,
it holds that fi(αj) = S(αj , αi) = gj(αi), and gi(αj) = S(αi, αj) = fj(αi). Thus, any two parties Pi
and Pj can verify that the univariate polynomials that they received are pairwise consistent with
each other by checking that fi(αj) = gj(αi) and gi(αj) = fj(αi). As we shall see, this prevents the
dealer from distributing shares that are not consistent with a single bivariate polynomial. Finally,
party Pi defines its output (i.e., “Shamir share”) as fi(0) = q(αi), as required.

We begin by proving that pairwise consistency checks as described above suffice for uniquely
determining the bivariate polynomial S. Specifically:

Claim 5.3 Let K ⊆ [n] be a set of indices such that |K| ≥ t + 1, let {fk(x), gk(y)}k∈K be a set
of pairs of degree-t polynomials, and let {αk}k∈K be distinct non-zero elements in F. If for every
i, j ∈ K, it holds that fi(αj) = gj(αi), then there exists a unique bivariate polynomial S of degree-t
in both variables such that fk(x) = S(x, αk) and gk(y) = S(αk, y) for every k ∈ K.

Proof: Let L be any subset of K of cardinality exactly t+ 1. By Claim 5.2, there exists a unique
bivariate polynomial S(x, y) of degree-t in both variables, for which S(x, α`) = f`(x) for every ` ∈ L.
We now show if fi(αj) = gj(αi) for all i, j ∈ K, then for every k ∈ K it holds that fk(x) = S(x, αk)
and gk(y) = S(αk, y).

By the consistency assumption, for every k ∈ K and ` ∈ L we have that gk(α`) = f`(αk).
Furthermore, by the definition of S from above we have that f`(αk) = S(αk, α`). Thus, for all
k ∈ K and ` ∈ L it holds that gk(α`) = S(αk, α`). Since both gk(y) and S(αk, y) are degree-t
polynomials, and gk(α`) = S(αk, α`) for t + 1 points α`, it follows that gk(y) = S(αk, y) for every
k ∈ K.

It remains to show that fk(x) = S(x, αk) for all k ∈ K (this trivially holds for all k ∈ L by the
definition of S from above, but needs to be proven for k ∈ K\L). By consistency, for every j, k ∈ K,
we have that fk(αj) = gj(αk). Furthermore, we have already proven that gj(αk) = S(αj , αk) for
every j, k ∈ K. Therefore, fk(αj) = S(αj , αk) for every j, k ∈ K, implying that fk(x) = S(x, αk)
for every k ∈ K (because they are degree-t polynomials who have the same value on more than t
points). This concludes the proof.

We now proceed to prove a “secrecy lemma” for bivariate polynomial secret-sharing. Loosely
speaking, we prove that the shares {fi(x), gi(y)}i∈I (for |I| ≤ t) that the corrupted parties receive
do not reveal any information about the secret s. In fact, we show something much stronger:
for every two degree-t polynomials q1 and q2 such that q1(αi) = q2(αi) = fi(0) for every i ∈ I,
the distribution over the shares {fi(x), gi(y)}i∈I received by the corrupted parties when S(x, y)
is chosen based on q1(z) is identical to the distribution when S(x, y) is chosen based on q2(z).
An immediate corollary of this is that no information is revealed about whether the secret equals
s1 = q1(0) or s2 = q2(0).

Claim 5.4 Let α1, . . . , αn ∈ F be n distinct non-zero values, let I ⊂ [n] with |I| ≤ t, and let q1 and
q2 be two degree-t polynomials over F such that q1(αi) = q2(αi) for every i ∈ I. Then,{{

(i, S1(x, αi), S1(αi, y))
}
i∈I

}
≡
{{

(i, S2(x, αi), S2(αi, y))
}
i∈I

}
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where S1(x, y) and S2(x, y) are degree-t bivariate polynomial chosen at random under the constraints
that S1(0, z) = q1(z) and S2(0, z) = q2(z), respectively.

Proof: We begin by defining probability ensembles S1 and S2, as follows:

S1 =
{
{(i, S1(x, αi), S1(αi, y))}i∈I | S1 ∈R Bq1(0),t s.t. S1(0, z) = q1(z)

}
S2 =

{
{(i, S2(x, αi), S2(αi, y))}i∈I | S2 ∈R Bq2(0),t s.t. S2(0, z) = q2(z)

}
Given this notation, an equivalent formulation of the claim is that S1 ≡ S2.

In order to prove that this holds, we first show that for any set of pairs of degree-t polynomials
Z = {(i, fi(x), gi(y))}i∈I , the number of bivariate polynomials in the support of S1 that are con-
sistent with Z equals the number of bivariate polynomials in the support of S2 that are consistent
with Z, where consistency means that fi(x) = S(x, αi) and gi(y) = S(αi, y).

First note that if there exist i, j ∈ I such that fi(αj) 6= gj(αi) then there does not exist any
bivariate polynomial in the support of S1 or S2 that is consistent with Z. Also, if there exists
an i ∈ I such that fi(0) 6= q1(αi), then once again there is no polynomial from S1 or S2 that is
consistent (this holds for S1 since fi(0) = S(0, αi) = q1(αi) should hold, and it holds similarly for
S2 because q1(αi) = q2(αi) for all i ∈ I).

Let Z = {(i, fi(x), gi(y))}i∈I be a set of degree-t polynomials such that for every i, j ∈ I it holds
that fi(αj) = gj(αi), and in addition for every i ∈ I it holds that fi(0) = q1(αi) = q2(αi). We begin
by counting how many such polynomials exist in the support of S1. We have that Z contains |I|
degree-t polynomials {fi(x)}i∈I , and recall that t+ 1 such polynomials fi(x) fully define a degree-t
bivariate polynomial. Thus, we need to choose t+ 1− |I| more polynomials fj(x) (j 6= i) that are
consistent with q1(z) and with {gi(y)}i∈I . In order for a polynomial fj(x) to be consistent in this
sense, it must hold that fj(αi) = gi(αj) for every i ∈ I, and in addition that fj(0) = q1(αj). Thus,
for each such fj(x) that we add, |I| + 1 values of fj are already determined. Since the values of
fj at t + 1 points determine a degree-t univariate polynomial, it follows that an additional t − |I|
points can be chosen in all possible ways and the result will be consistent with Z. We conclude that

there exist
(
|F|t−|I|

)(t+1−|I|)
ways to choose S1 according to S1 that will be consistent. (Note that

if |I| = t then there is just one way.) The important point here is that the exact same calculation
holds for S2 chosen according to S2, and thus exactly the same number of polynomials from S1 are
consistent with Z as from S2.

Now, let Z = {(i, fi(x), gi(y))}i∈I be a set of |I| pairs of univariate degree-t polynomials. We
have already shown that the number of polynomials in the support of S1 that are consistent with
Z equals the number of polynomials in the support of S2 that are consistent with Z. Since the
polynomials S1 and S2 (in S1 and S2, respectively) are chosen randomly among those consistent
with Z, it follows that the probability that Z is obtained is exactly the same in both cases, as
required.

5.4 The Verifiable Secret Sharing Protocol

In the VSS functionality, the dealer inputs a polynomial q(x) of degree t, and each party Pi receives
its Shamir share q(αi) based on that polynomial.4 The “verifiable” part is that if q is of degree

4This is a specific VSS definition that is suited for the BGW protocol. We remark that it is possible to define
VSS in a more general and abstract way (like a multiparty “commitment”). However, since we will need to compute
on the shares q(α1), . . . , q(αn), these values need to be explicitly given in the output.
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greater than t, then the parties reject the dealer’s shares and output ⊥. The functionality is formally
defined as follows:

FUNCTIONALITY 5.5 (The BGW FV SS functionality)

FV SS (q(x), λ, . . . , λ) =

{
(q(α1), . . . , q(αn)) if deg(q) ≤ t
(⊥, . . . ,⊥) otherwise

Observe that the secret s = q(0) is only implicitly defined in the functionality; it is however
well defined. Thus, in order to share a secret s, the functionality is used by having the dealer first
choose a random polynomial q ∈R Ps,t (where Ps,t is the set of all degree-t univariate polynomials
with constant term s) and then run FV SS with input q(x).

The protocol idea. We present the VSS protocol of BGW with the simplification of the com-
plaint phase suggested by [17]. The protocol uses private point-to-point channels between each
pair of parties and an authenticated broadcast channel (meaning that the identity of the broad-
caster is given). The protocol works by the dealer selecting a random bivariate polynomial S(x, y)
of degree t under the constraint that S(0, z) = q(z). The dealer then sends each party Pi two
polynomials that are derived from S(x, y): the polynomial fi(x) = S(x, αi) and the polynomial
gi(y) = S(αi, y). As we have shown in Claim 5.4, t pairs of polynomials fi(x), gi(y) received by the
corrupted parties reveal nothing about the constant term of S (i.e., the secret being shared). In
addition, given these polynomials, the parties can verify that they have consistent inputs. Specifi-
cally, since gi(αj) = S(αi, αj) = fj(αi), it follows that each pair of parties Pi and Pj can check that
their polynomials fulfill fi(αj) = gj(αi) and gi(αj) = fj(αi) by sending each other these points. If
all of these checks pass, then by Claim 5.3 it follows that all the polynomials are derived from a
single bivariate polynomial S(x, y), and thus the sharing is valid and the secret is fully determined.

The problem that arises is what happens if the polynomials are not all consistent; i.e., if Pj
receives from Pi values fi(αj), gi(αj) such that fj(αi) 6= gi(αj) or gj(αi) 6= fi(αj). This can
happen if the dealer is corrupted, or if Pi is corrupted. In such a case, Pj issues a “complaint” by
broadcasting its inconsistent values (j, i, fj(αi), gj(αi)) defined by the shares fj(x), gj(y) it received
from the dealer. Then, the dealer checks if these values are correct, and if they are not then it
is required to broadcast the correct polynomials for that complaining party. We stress that in
this case the dealer broadcasts the entire polynomials fj(x) and gj(y) defining Pj ’s share, and
this enables all other parties Pk to verify that these polynomials are consistent with their own
shares, thus verifying their validity. Note that if the values broadcast are correct (e.g., in the case
that the dealer is honest and Pi sent Pj incorrect values) then the dealer does not broadcast Pj ’s
polynomials. This ensures that an honest dealer does not reveal the shares of honest parties.

This strategy is sound since if the dealer is honest, then all honest parties will have consistent
values. Thus, the only complaints will be due to corrupted parties complaining falsely (in which case
the dealer will broadcast the corrupted parties polynomials, which gives them no more information),
or due to corrupted parties sending incorrect values to honest parties (in which case the dealer
does not broadcast anything, as mentioned). In contrast, if the dealer is not honest, then all
honest parties will reject and output ⊥ unless it re-sends consistent polynomials to all, thereby
guaranteeing that S(x, y) is fully defined again, as required. This complaint resolution must be
carried out carefully in order to ensure that security is maintained. We defer more explanation
about how this works until after the full specification, given in Protocol 5.6.
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PROTOCOL 5.6 (Securely Computing FV SS)

• Input: The dealer D = P1 holds a polynomial q(x) of degree at most t (if not, then the
honest dealer just aborts at the onset). The other parties P2, . . . , Pn have no input.

• Common input: The description of a field F and n non-zero elements α1, . . . , αn ∈ F.

• The protocol:

1. Round 1 (send shares) – the dealer:

(a) The dealer selects a uniformly distributed bivariate polynomial S(x, y) ∈ Bq(0),t,
under the constraint that S(0, z) = q(z).

(b) For every i ∈ {1, . . . , n}, the dealer defines the polynomials fi(x)
def
= S(x, αi) and

gi(y)
def
= S(αi, y). It then sends to each party Pi the polynomials fi(x) and gi(y).

2. Round 2 (exchange subshares) – each party Pi:

(a) Store the polynomials fi(x) and gi(y) that were received from the dealer. (If
fi(x) or gi(y) is of degree greater than t then truncate it to be of degree t.)

(b) For every j ∈ {1, . . . , n}, send fi(αj) and gi(αj) to party Pj .

3. Round 3 (broadcast complaints) – each party Pi:

(a) For every j ∈ {1, . . . , n}, let (uj , vj) denote the values received from player Pj in
Round 2 (these are supposed to be uj = fj(αi) and vj = gj(αi)).

If uj 6= gi(αj) or vj 6= fi(αj), then broadcast complaint(i, j, fi(αj), gi(αj)).

(b) If no parties broadcast a complaint, then every party Pi outputs fi(0) and halts.

4. Round 4 (resolve complaints) – the dealer: For every complaint message re-
ceived, do the following:

(a) Upon viewing a message complaint(i, j, u, v) broadcast by Pi, check that u =
S(αj , αi) and v = S(αi, αj). (Note that if the dealer and Pi are honest, then it
holds that u = fi(αj) and v = gi(αj).) If the above condition holds, then do
nothing. Otherwise, broadcast reveal(i, fi(x), gi(y)).

5. Round 5 (evaluate complaint resolutions) – each party Pi:

(a) For every j 6= k, party Pi marks (j, k) as a joint complaint if it viewed two
messages complaint(k, j, u1, v1) and complaint(j, k, u2, v2) broadcast by Pk and
Pj , respectively, such that u1 6= v2 or v1 6= u2. If there exists a joint com-
plaint (j, k) for which the dealer did not broadcast reveal(k, fk(x), gk(y)) nor
reveal(j, fj(x), gj(y)), then go to Step 6 (and do not broadcast consistent). Oth-
erwise, proceed to the next step.

(b) Consider the set of reveal(j, fj(x), gj(y)) messages sent by the dealer (truncating
the polynomials to degree t if necessary as in Step 2a):

i. If there exists a message in the set with j = i then reset the stored polyno-
mials fi(x) and gi(y) to the new polynomials that were received, and go to
Step 6 (without broadcasting consistent).

ii. If there exists a message in the set with j 6= i and for which fi(αj) 6= gj(αi)
or gi(αj) 6= fj(αi), then go to Step 6 (without broadcasting consistent).

If the set of reveal messages does not contain a message that fulfills either one of
the above conditions, then proceed to the next step.

(c) Broadcast the message consistent.

6. Output decision (if there were complaints) – each party Pi: If at least n− t
parties broadcast consistent, output fi(0). Otherwise, output ⊥.
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The security of Protocol 5.6. Before we prove that Protocol 5.6 is t-secure for the FV SS
functionality, we present an intuitive argument as to why this holds. First, consider the case that
the dealer is honest. In this case, all of the polynomials received by the parties are consistent (i.e.,
for every pair Pi, Pj it holds that fi(αj) = gj(αi) and fj(αi) = gi(αj)). Thus, an honest party Pj
only broadcasts a complaint if a corrupted party sends it incorrect values and the values included
in that complaint are known already to the adversary. However, if this occurs then the dealer will
not send a reveal of the honest party’s polynomials (because its values are correct). Furthermore,
if any corrupted party Pi broadcasts a complaint with incorrect values (u, v), the dealer can send
the correct reveal message (this provides no additional information to the adversary since the reveal
message just contains the complainant’s shares). In such a case, the check carried out by each
honest party Pj in Step 5(b)ii will pass and so every honest party will broadcast consistent. Thus,
at least n− t parties broadcast consistent (since there are at least n− t honest parties) and so every
honest party Pj outputs fj(0) = S(0, αj) = q(αj), where the last equality is due to the way the
dealer chooses S(x, y).

Next, consider the case that the dealer is corrupted. In this case, the honest parties may
receive polynomials that are not consistent with each other; that is, honest Pj and Pk may receive
polynomials fj(x), gj(y) and fk(x), gk(y) such that either fj(αk) 6= gk(αj) or fk(αj) 6= gj(αk).
However, in such a case both honest parties complain, and the dealer must send a valid reveal
message (in the sense described below) or no honest party will broadcast consistent. In order for
n− t parties to broadcast consistent, there must be at least (n− t)− t = t+ 1 honest parties that
broadcast consistent. This implies that these t+ 1 or more honest parties all received polynomials
fj(x) and gj(y) in the first round that are pairwise consistent with each other and with all of the
“fixed” values in the reveal messages. Thus, by Claim 5.3 the polynomials fj(x) and gj(y) of these
t+ 1 (or more) parties are all derived from a unique degree-t bivariate polynomial S(x, y), meaning
that fj(x) = S(x, αj) and gj(y) = S(αj , y). (The parties who broadcasted consistent are those that
make up the set K in Claim 5.3.)

The above suffices to argue that the polynomials of all the honest parties that broadcast
consistent are derived from a unique S(x, y). It remains to show that if at least t + 1 honest
parties broadcast consistent, then the polynomials of all the other honest parties that do not broad-
cast consistent are also derived from the same S(x, y). Assume that this is not the case. That is,
there exists an honest party Pj such that fj(x) 6= S(x, αj) (an analogous argument can be made
with respect to gj(x) and S(αj , y)). Since fj(x) is of degree-t this implies that fj(αk) = S(αk, αj)
for at most t points αk. Thus, Pj ’s points are pairwise consistent with at most t honest parties
that broadcast consistent (since for all of these parties gk(y) = S(αk, y)). This implies that there
must have been a joint complaint between Pj and an honest party Pk who broadcasted consistent,
and so this complaint must have been resolved by the dealer broadcasting polynomials fj(x) and
gj(y) such that fj(αk) = gk(αj) for all Pk who broadcasted consistent (otherwise, they would not
have broadcasted consistent). We now proceed to the formal proof.

Theorem 5.7 Let t < n/3. Then, Protocol 5.6 is t-secure for the FV SS functionality in the
presence of a static malicious adversary.

Proof: Let A be an adversary in the real world. We show the existence of a simulator SIM
such that for any set of corrupted parties I and for all inputs, the output of all parties and the
adversary A in an execution of the real protocol with A is identical to the outputs in an execution
with SIM in the ideal model. We separately deal with the case that the dealer is honest and the
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case that the dealer is corrupted. Loosely speaking, when the dealer is honest we show that the
honest parties always accept the dealt shares, and in particular that the adversary cannot falsely
generate complaints that will interfere with the result. In the case that the dealer is corrupted
the proof is more involved and consists of showing that if the dealer resolves complaints so that at
least n− t parties broadcast consistent, then this implies that at the end of the protocol all honest
parties hold consistent shares, as required.

Case 1 – the Dealer is Honest

In this case in an ideal execution, the dealer sends q(x) to the trusted party and each honest party
Pj receives q(αj) from the trusted party, outputs it, and never outputs ⊥. Observe that none of
the corrupted parties have input and so the adversary has no influence on the output of the honest
parties. We begin by showing that this always holds in a real execution as well; i.e., in a real
execution each honest party Pj always outputs q(αj) and never outputs ⊥.

Since the dealer is honest, it chooses a bivariate polynomial as described in the protocol and
sends each party the prescribed values. In this case, an honest party Pj always outputs either
fj(0) = S(0, αj) = q(αj) or ⊥. This is due to the fact that its polynomial fj(x) will never be
changed, because it can only be changed if a reveal(j, f ′j(x), gj(y)) message is sent with f ′j(x) 6= fj(x).
However, an honest dealer never does this. Thus, it remains to show that Pj never outputs ⊥. In
order to see this, recall that an honest party outputs fj(0) and not ⊥ if and only if at least n − t
parties broadcast consistent. Thus, it suffices to show that all honest parties broadcast consistent.
An honest party Pj broadcasts consistent if and only if the following conditions hold:

1. The dealer resolves all conflicts: Whenever a pair of complaint messages complaint(k, `, u1, v1)
and complaint(`, k, u2, v2) were broadcast such that u1 6= v2 and v1 6= u2 for some k and `,
the dealer broadcasts a reveal message for ` or k or both in Step 4a (or else Pj would not
broadcast consistent as specified in Step 5a).

2. The dealer did not broadcast reveal(j, fj(x), gj(y)). (See Step 5(b)i.)

3. Every revealed polynomial fits Pj ’s polynomials: Whenever the dealer broadcasts a message
reveal(k, fk(x), gk(y)), it holds that gk(αj) = fj(αk) and fk(αj) = gj(αk). (See Step 5(b)ii.)

Since the dealer is honest, whenever there is a conflict between two parties, the dealer will broadcast
a reveal message. This is due to the fact that if u1 6= v2 or u2 6= v1, it cannot hold that both (u1, v1)
and (u2, v2) are consistent with S(x, y) (i.e., it cannot be that u1 = S(α`, αk) and v1 = S(αk, α`)
as well as u2 = S(αk, α`) and v2 = S(α`, αk)). Thus, by its instructions, the dealer will broadcast
at least one reveal message, and so condition (1) holds. In addition, it is immediate that since
the dealer is honest, condition (3) also holds. Finally, the dealer broadcasts a reveal(j, fj(x), gj(y))
message if and only if Pj sends a complaint with an incorrect pair (u, v); i.e., Pj broadcast (j, k, u, v)
where either u 6= fj(αk) or v 6= gj(αk). However, since both the dealer and Pj are honest, any
complaint sent by Pj will be with the correct (u, v) values. Thus, the dealer will not broadcast
a reveal of Pj ’s polynomials and condition (2) also holds. We conclude that every honest party
broadcasts consistent and so all honest parties Pj output fj(0) = q(αj), as required.

Since the outputs of the honest parties are fully determined by the honest dealer’s input, it
remains to show the existence of an ideal-model adversary/simulator SIM that can generate the
view of the adversary A in an execution of the real protocol, given only the outputs q(αi) of the
corrupted parties Pi for every i ∈ I.
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The simulator SIM:

• SIM invokes A on the auxiliary input z.

• Interaction with the trusted party: SIM receives the output values {q(αi)}i∈I .

• Generating the view of the corrupted parties: SIM chooses any polynomial q′(x) under the
constraint that q′(αi) = q(αi) for every i ∈ I. Then, SIM runs all honest parties (including
the honest dealer) in an interaction with A, with the dealer input polynomial as q′(x).

• SIM outputs whatever A outputs, and halts.

We now prove that the distribution generated by SIM is as required. First, observe that
all that the corrupted parties see in the simulation by SIM is determined by the adversary and
the sequence of polynomial pairs {(fi(x), gi(y))}i∈I , where fi(x) and gi(y) are selected based on
q′(x), as described in the protocol. In order to see this, note that the only information sent
after Round 1 are parties’ complaints, complaint resolutions, and consistent messages. However,
when the dealer is honest any complaint sent by an honest party Pj can only be due it receiving
incorrect (ui, vi) from a corrupted party Pi (i.e., where either ui 6= fj(αi) or vi 6= gj(αi) or both).
Such a complaint is of the form (j, i, fj(αi), gj(αi)), which equals (j, i, gi(αj), fi(αj)) since the
dealer is honest, and so this complaint is determined by (fi(x), gi(x)) where i ∈ I. In addition,
since the honest parties’ complaints always contain correct values, the dealer can only send reveal
messages reveal(i, fi(x), gi(x)) where i ∈ I; once again this information is already determined by
the polynomial pairs of Round 1. Thus, all of the messages sent by SIM in the simulation can be
computed from the sequence {(fi(x), gi(y))}i∈I only. Next, observe that the above is also true for
a real protocol execution as well. Thus, the only difference between the real and ideal executions
is whether the sequence {(fi(x), gi(y))}i∈I is based on the real polynomial q(x) or the simulator-
chosen polynomial q′(x). However, by Claim 5.4 these distributions (i.e., {(fi(x), gi(y))}i∈I) of are
identical). This completes the proof of the case that the dealer is honest.

Case 2 – the Dealer is Corrupted

In this case, the adversary A controls the dealer. Briefly speaking, the simulator SIM just plays
the role of all honest parties. Recall that all actions of the parties, apart from the dealer, are
deterministic and that these parties have no inputs. If the simulated execution is such that the
parties output ⊥, the simulator sends an invalid polynomial (say q(x) = x2t) to the trusted party.
Otherwise, the simulator uses the fact that it sees all “shares” sent by A to honest parties in order
to interpolate and find the polynomial q(x), which it then sends to the trusted party computing the
functionality. That is, here the simulator invokes the trusted party after simulating an execution
of the protocol. We now formally describe the simulator:

The simulator SIM:

1. SIM invokes A on its auxiliary input z.

2. SIM plays the role of all the n − |I| honest parties interacting with A, as specified by the
protocol, running until the end.
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3. Let num be the number of (honest and corrupted) parties Pj that broadcast consistent in the
simulation:

(a) If num < n − t, then SIM sends the trusted party the polynomial q′(x) = x2t as the
dealer input (this causes the trusted party to send ⊥ as output to all parties in the ideal
model).

(b) If num ≥ n− t, then SIM defines a degree-t polynomial q′(x) as follows. Let K ⊂ [n]\I
be the set of all honest parties that broadcast consistent in the simulation. SIM finds the
unique degree-t bivariate polynomial S that is guaranteed to exist by Claim 5.3 for this set
K (later we will show why Claim 5.3 can be used). Then, SIM defines q′(x) = S(0, x)
and sends it to the trusted party (we stress that q′(x) is not necessarily equal to the
polynomial q(x) that the dealer – equivalently P1 – receives as input).

SIM receives the output {q′(αi)}i∈I of the corrupted parties from the trusted party.
(Since these values are already known to SIM, they are not used. Nevertheless, SIM
must send q′(x) to the trusted party since this results in the honest parties receiving their
output from FV SS.)

4. SIM halts and outputs whatever A outputs.

Observe that all parties, as well as the simulator, are deterministic since the only party who
tosses coins in the protocol is the honest dealer (where here the dealer is played by A and we can
assume that A is deterministic because its auxiliary input can contain the “best” random coins for
its attack). Thus, the outputs of all parties are fully determined both in the real execution of the
protocol with A and in the ideal execution with SIM. We therefore show that the outputs of the
adversary and the parties in a real execution with A are equal to the outputs in an ideal execution
with SIM.

First, observe that the simulator plays the role of all the honest parties in an ideal execution,
following the exact protocol specification. Since the honest parties have no input, the messages sent
by the simulator in the ideal execution are exactly the same as those sent by the honest parties in
a real execution of the protocol. Thus, the value that is output by A in a real execution equals the
value that is output by A in the ideal execution with SIM. It remains to show that the outputs
of the honest parties are also the same in the real and ideal executions. Let outputJ denote the
outputs of the parties Pj for all j ∈ J . We prove:

Claim 5.8 Let J = [n] \ I be the set of indices of the honest parties. For every adversary A
controlling I including the dealer, every polynomial q(x) and every auxiliary input z ∈ {0, 1}∗ for
A, it holds that:

outputJ

(
REALπ,A(z),I (q(x), λ, . . . , λ)

)
= outputJ

(
IDEALFV SS ,S(z),I (q(x), λ, . . . , λ)

)
.

Proof: Let ~x = (q(x), λ, . . . , λ) be the vector of inputs. We separately analyze the case that in
the real execution some honest party outputs ⊥ and the case where no honest party outputs ⊥.

Case 1: There exists a j ∈ J such that outputj(REALπ,A(z),I(q(x), λ, . . . , λ)) = ⊥. We show that
in this case all the honest parties output ⊥ in both the real and ideal executions. Let j be such
that outputj(REALπ,A(z),I(~x)) = ⊥. By the protocol specification, an honest party Pj outputs ⊥
(in the real world) if and only if it receives less than n− t “consistent” messages over the broadcast
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channel. Since these messages are broadcast, it holds that all the parties receive the same messages.
Thus, if an honest Pj output ⊥ in the real execution, then each honest party received less than
n− t such “consistent” messages, and so every honest party outputs ⊥ (in the real execution).

We now claim that in the ideal execution, all honest parties also output ⊥. The output of the
honest parties in the ideal execution are determined by the trusted third party, based on the input
sent by SIM. It follows by the specification of SIM that all honest parties output ⊥ if and only
if SIM sends x2t to the trusted third party. As we have mentioned, the simulator SIM follows
the instructions of the honest parties exactly in the simulation. Thus, if in a real execution with A
less than n− t parties broadcast consistent, then the same is also true in the simulation with SIM.
(We stress that exactly the same messages are sent by A and the honest parties in a real protocol
execution and in the simulation with SIM.) Now, by the instructions of SIM, if less than n− t
parties broadcast consistent, then num < n − t, and SIM sends q(x) = x2t to the trusted party.
We conclude that all honest parties output ⊥ in the ideal execution as well.

Case 2: For every j ∈ J it holds that outputj(REALπ,A(z),I(~x)) 6= ⊥. By what we have discussed
above, this implies that in the simulation with SIM, at least n−t parties broadcast consistent. Since
n ≥ 3t+1 this implies that at least 3t+1−t ≥ 2t+1 parties broadcast consistent. Furthermore, since
there are at most t corrupted parties, we have that at least t+1 honest parties broadcast consistent.
Recall that an honest party Pj broadcasts consistent if and only if the following conditions hold (cf.
the case of honest dealer):

1. The dealer resolves all conflicts (Step 5a of the protocol).

2. The dealer did not broadcast reveal(j, fj(x), gj(y)) (Step 5(b)i of the protocol).

3. Every revealed polynomial fits Pj ’s polynomials (Step 5(b)ii of the protocol).

Let K ⊂ [n] be the set of honest parties that broadcast consistent as in Step 3b of SIM. For each
of these parties the above conditions hold. Thus, for every i, j ∈ K it holds that fi(αj) = gj(αi)
and so Claim 5.3 can be applied. This implies that there exists a unique bivariate polynomial S
such that S(x, αk) = fk(x) and S(αk, y) = gk(y) for every k ∈ K. Since S is unique, it also defines
a unique polynomial q′(x) = S(0, x). Now, since SIM sends q′(x) to the trusted party in an ideal
execution, we have that all honest parties Pj output q′(αj) in an ideal execution. We now prove
that the same also holds in a real protocol execution.

We stress that the polynomial q′(x) is defined as a deterministic function of the transcript of
messages sent by A in a real or ideal execution. Furthermore, since the execution is deterministic,
the exact same polynomial q′(x) is defined in both the real and ideal executions. It therefore
remains to show that each honest party Pj outputs q′(αj) in a real execution. We first observe
that any honest party Pk for k ∈ K clearly outputs q′(αk). This follows from the fact that by
the protocol description, each party Pi that does not output ⊥ outputs fi(0). Thus, each such Pk
outputs fk(0). We have already seen that q′(x) is the unique polynomial that passes through the
points (αk, fk(0)) and thus q′(αk) = fk(0) for every k ∈ K.

It remains to show that every honest party Pj for j /∈ K also outputs q′(αj); i.e., it remains
to show that every honest party Pj who did not broadcast consistent also outputs q′(αj). Let
f ′j(x) and g′j(x) be the polynomials that Pj holds after the possible replacement in Step 5(b)i of
the protocol (note that these polynomials may be different from the original polynomials that Pj
received from the dealer at the first stage). We stress that this party Pj did not broadcast consistent,
and therefore we cannot rely on the conditions above. However, for every party Pk (k ∈ K) who
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broadcast consistent, we are guaranteed that the polynomials fk(x) and gk(y) are consistent with
the values of the polynomials of Pj ; that is, it holds that fk(αj) = g′j(αk) and gk(αj) = f ′j(αk).
This follows from the fact that all conflicts are properly resolved (and so if they were inconsistent
then a reveal message must have been sent to make them consistent). This implies that for t + 1
points k ∈ K, it holds that f ′j(αk) = S(αk, αj), and so since f ′j(x) is a polynomial of degree t (by
the truncation instruction; see the protocol specification) it follows that f ′j(x) = S(x, αj) (because
both are degree-t polynomials in x). Thus, f ′j(0) = S(0, αj) and we have that Pj outputs S(0, αj).
This completes the proof because q′(αj) = S(0, αj), as described above.

This completes the proof of Theorem 5.7.

Efficiency. We remark that in the case that no parties behave maliciously in Protocol 5.6, the
protocol merely involves the dealer sending two polynomials to each party, and each party sending
two field elements to every other party. Specifically, if no party broadcasts a complaint, then the
protocol can conclude immediately after Round 3.

6 Multiplication in the Presence of Malicious Adversaries

6.1 High-Level Overview

In this section, we show how to securely compute shares of the product of shared values, in the
presence of a malicious adversary controlling any t < n/3 parties. We use the simplification of the
original multiplication protocol of [7] that appears in [19]. We start with a short overview of the
simplification of [19] in the semi-honest model, and then we show how to move to the malicious case.

Assume that the values on the input wires are a and b, respectively, and that each party holds
degree-t shares ai and bi. Recall that the values ai · bi define a (non random) degree-2t polynomial
that hides a · b. The semi-honest multiplication protocol of [7] works by first re-randomizing this
degree-2t polynomial, and then reducing its degree to degree-t while preserving the constant term
which equals a·b (see Section 4.3). Recall also that the degree-reduction works by running the BGW
protocol for a linear function, where the first step involves each party sharing its input by a degree-t
polynomial. In our case, the parties’ inputs are themselves shares of a degree-2t polynomial, and
thus each party “subshares” its share.

The method of [19] simplifies this protocol by replacing the two different stages of rerandomiza-
tion and degree-reduction with a single step. The simplification is based on an observation that a
specific linear combination of all the subshares of all ai ·bi defines a random degree-t polynomial that
hides a · b (where the randomness of the polynomial is derived from the randomness of the polyno-
mials used to define the subshares). Thus, the protocol involves first subsharing the share-product
values ai · bi, and then carrying out a local linear combination of the obtained subshares.

The main problem and difficulty that arises in the case of malicious adversaries is that corrupted
parties may not subshare the correct values ai · bi. We therefore need a mechanism that forces the
corrupted parties to distribute the correct values, without revealing any information. Unfortunately,
it is not possible to simply have the parties VSS-subshare their share products ai · bi and then use
error correction to correct any corrupt values. This is due to the fact that the shares ai · bi lie on a
degree-2t polynomial, which in turn defines a Reed-Solomon code of parameters [n, 2t+ 1, n− 2t].
For such a code, it is possible to correct up to n−2t−1

2 errors (see Section 5.2); plugging in n = 3t+1
we have that it is possible to correct up to t

2 errors. However, there are t corrupted parties and
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so incorrect values supplied by more than half of them cannot be corrected.5 The BGW protocol
therefore forces the parties to distribute correct values, using the following steps:

1. The parties first distribute subshares of their input shares on each wire (rather than the
subshares of the product of their input shares) to all other parties in a verifiable way. That is,
each party Pi distributes subshares of ai and subshares of bi. Observe that the input shares
are points on degree-t polynomials. Thus, these shares constitute a Reed-Solomon code with
parameters [n, t+ 1, n− t] for which it is possible to correct up to t errors. There is therefore
enough redundancy to correct errors, and so any incorrect values provided by corrupted parties
can be corrected. This operation is carried out using the F subshareV SS functionality, described in
Section 6.4.

2. Next, each party distributes subshares of the product ai · bi. The protocol for subsharing the
product uses the separate subshares of ai and bi obtained in the previous step, in order to
verify that the correct product ai ·bi is shared. Stated differently, this step involves a protocol
for verifying that a party distributes shares of ai · bi (via a degree-t polynomial), given shares
of ai and shares of bi (via degree-t polynomials). This step is carried out using the FmultV SS

functionality, described in Section 6.6. In order to implement this step, we introduce a new
functionality called Feval in Section 6.5.

3. Finally, after the previous step, all parties verifiably hold (degree-t) subshares of all the
products ai·bi of every party. As described above, shares of the product a · b can be obtained
by computing a linear function of the subshares obtained in the previous step. Thus, each
party just needs to carry out a local computation on the subshares obtained. This is described
in Section 6.7.

Before we show how to securely compute the F subshareV SS functionality, we present relevant pre-
liminaries in Sections 6.2 and 6.3. Specifically, in Section 6.2 we introduce the notion of corruption-
aware functionalities. These are functionalities whose behavior may depend on which parties are
corrupted. We use this extension of standard functionalities in order to prove the BGW protocol
in a modular fashion. Next, in Section 6.3 we present a subprotocol for securely computing ma-
trix multiplication over a shared vector. This will be used in the protocol for securely computing
F subshareV SS , which appears in Section 6.4.

6.2 Corruption-Aware Functionalities and Their Use

In the standard definition of secure computation (see Section 2.2 and [8, 20]) the functionality
defines the desired input/output behavior of the computation. As such, it merely receives inputs
from the parties and provides outputs. However, in some cases, we wish to provide the corrupted
parties, equivalently the adversary, with some additional power over the honest parties.

In order to see why we wish to do this, consider the input sharing phase of the BGW protocol,
where each party distributes its input using secret sharing. This is achieved by running n executions

5We remark that in the case of t < n/4 (i.e., n ≥ 4t + 1), the parties can correct errors directly on degree-2t
polynomials. Therefore, the parties can distribute subshares of the products ai · bi, and correct errors on these shares
using (a variant of) the F subshare

V SS functionality directly. Thus, overall, the case of t < n/4 is significantly simpler,
since there is no need for the Fmult

V SS subprotocol that was mentioned in the second step described above. A full
specification of this simplification is described in Appendix A; the description assumes familiarity with the material
appearing in Sections 6.2, 6.3, 6.4 and 6.7, and therefore should be read after these sections.
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of VSS where in the ith copy party Pi plays the dealer with a polynomial qi(x) defining its input. The
question that arises now is what security is obtained when running these VSS invocations in parallel,
and in particular we need to define the ideal functionality that such parallel VSS executions fulfills.
Intuitively, the security of the VSS protocol guarantees that all shared values are independent.
Thus, one could attempt to define the “parallel VSS” functionality as follows:

FUNCTIONALITY 6.1 (Parallel VSS (naive attempt) – Fn
V SS)

1. The parallel FnV SS functionality receives inputs q1(x), . . . , qn(x) from parties P1, . . . , Pn,
respectively. If Pi did not send a polynomial qi(x), or deg(qi) > t, then FnV SS defines
qi(x) = ⊥ for every x.

2. For every i = 1, . . . , n, the functionality FnV SS sends (q1(αi), . . . , qn(αi)) to party Pi.

This is the naive extension of the single FV SS functionality (Functionality 5.5), and at first sight
seems to be the appropriate ideal functionality for a protocol consisting of n parallel executions
of Protocol 5.6 for computing FV SS . However, we now show that this protocol does not securely
compute the parallel VSS functionality as defined.

Recall that the adversary is rushing, which means that it can receive the honest parties’ messages
in a given round before sending its own. In this specific setting, the adversary can see the corrupted
parties’ shares of the honest parties’ polynomials before it chooses the corrupted parties’ input
polynomials (since these shares of the honest parties’ polynomials are all sent to the corrupted
parties in the first round of Protocol 5.6). Thus, the adversary can choose the corrupted parties’
polynomials in a way that is related to the honest parties’ polynomials. To be specific, let Pj be
an honest party with input qj(x), and let Pi be a corrupted party. Then, the adversary can first
see Pi’s share qj(αi), and then choose qi(x) so that qi(αi) = qj(αi), for example. In contrast, the
adversary in the ideal model with FnV SS cannot achieve this effect since it receives no information
about the honest parties’ polynomials before all input polynomials, including those of the corrupted
parties, are sent to the trusted party. Thus, n parallel executions of Protocol 5.6 does not securely
compute FnV SS as defined in Functionality 6.1.

Despite the above, we stress that in many cases (and, in particular, in the application of parallel
VSS in the BGW protocol) this adversarial capability is of no real concern. Intuitively, this is due to
the fact that qj(αi) is actually independent of the constant term qj(0) and so making qi(αi) depend
on qj(αi) is of no consequence in this application. Nevertheless, the adversary can set qi(x) in this
way in the real protocol (due to rushing), but cannot do so in the ideal model with functionality
FnV SS (as in Functionality 6.1). Therefore, the protocol consisting of n parallel calls to FV SS does
not securely compute the FnV SS functionality. Thus, one has to either modify the protocol or change
the functionality definition, or both. Observe that the fact that in some applications we don’t care
about this adversarial capability is immaterial: The problem is that the protocol does not securely
compute Functionality 6.1 and thus something has to be changed.

One possible modification to both the protocol and functionality is to run the FV SS executions
sequentially in the real protocol and define an ideal (reactive) functionality where each party Pi
first receives its shares q1(αi), . . . , qi−1(αi) from the previous VSS invocations before sending its
own input polynomial qi(x). This solves the aforementioned problem since the ideal (reactive) func-
tionality allows each party to make its polynomial depend on shares previously received. However,
this results in a protocol that is not constant round, which is a significant disadvantage.

Another possible modification is to leave the protocol unmodified (with n parallel calls to FV SS),
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and change the ideal functionality as follows. First, the honest parties send their input polynomials
qj(x) (for every j /∈ I). Next, the corrupted parties receive their shares on these polynomials (i.e.,
qj(αi) for every j /∈ I and i ∈ I), and finally the corrupted parties send their polynomials qi(x)
(for every i ∈ I) to the trusted party. This reactive functionality captures the capability of the
adversary to choose the corrupted parties’ polynomials based on the shares qj(αi) that it views on
the honest parties’ polynomials, but nothing more. Formally, we define:

FUNCTIONALITY 6.2 (Corruption-aware parallel VSS – Fn
V SS)

FnV SS receives a set of indices I ⊆ [n] and works as follows:

1. FnV SS receives an input polynomial qj(x) from every honest Pj (j /∈ I).

2. FnV SS sends the (ideal model) adversary the corrupted parties’ shares {qj(αi)}j /∈I for every
i ∈ I, based on the honest parties’ polynomials.

3. FnV SS receives from the (ideal model) adversary an input polynomial qi(x) for every i ∈ I.

4. FnV SS sends the shares (q1(αj), . . . , qn(αj)) to every party Pj (j=1, . . . , n). If deg(qi(x)) > t
then ⊥ is sent in place of qi(αj).

6

This modification to the definition of FnV SS solves our problem. However, the standard definition
of security, as referred in Section 2.2, does not allow us to define a functionality in this way. This
is due to the fact that the standard formalism does not distinguish between honest and malicious
parties. Rather, the functionality is supposed to receive inputs from each honest and corrupt party
in the same way, and in particular does not “know” which parties are corrupted. We therefore
augment the standard formalism to allow corruption-aware functionalities (CA functionalities) that
receive the set I of the identities of the corrupted parties as additional auxiliary input when invoked.
We proceed by describing the changes required to the standard (stand-alone) definition of security
of Section 2.2 in order to incorporate corruption awareness.

Definition. The formal definition of security for a corruption-aware functionality is the same as
Definition 2.3 with the sole change being that f is a function of the subset of corrupted parties and
the inputs; formally, f : 2[n] × ({0, 1}∗)n → ({0, 1}∗)n. We denote by fI(~x) = f(I, ~x) the function
f with the set of corrupted parties fixed to I ⊂ [n]. Then, we require that for every subset I (of
cardinality at most t), the distribution IDEALfI ,S(z),I(~x) is distributed identically to REALπ,A(z),I(~x).
We stress that in the ideal model, the subset I that is given to a corruption-aware functionality as
auxiliary input (upon initialization) is the same subset I of corrupted parties that the adversary
controls. Moreover, the functionality receives this subset I at the very start of the ideal process, in
the exact same way as the (ideal model) adversary receives the auxiliary input z, the honest parties
receive their inputs, and so on. We also stress that the honest parties (both in the ideal and real
models) do not receive the set I, since this is something that is of course not known in reality (and
so the security notion would be nonsensical). Formally,
Definition 6.3 Let f : 2[n]× ({0, 1}∗)n → ({0, 1}∗)n be a corruption-aware n-ary functionality and
let π be a protocol. We say that π is t-secure for f if for every probabilistic adversary A in the real
model, there exists a probabilistic adversary S of comparable complexity in the ideal model, such
that for every I ⊂ [n] of cardinality at most t, every ~x ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, and

every z ∈ {0, 1}∗, it holds that:
{
IDEALfI ,S(z),I(~x)

}
≡
{
REALπ,A(z),I(~x)

}
.

6It actually suffices to send the shares (q1(αj), . . . , qn(αj)) only to parties Pj for j /∈ I since all other parties have
already received these values. Nevertheless, we present it in this way for the sake of clarity.
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We stress that since we only consider static adversaries here, the set I is fully determined before
the execution begins, and thus this is well defined.

This idea of having the behavior of the functionality depend on the adversary and/or the
identities of the corrupted parties was introduced by [9] in order to provide more flexibility in
defining functionalities, and is heavily used in the universal composability framework.7

The hybrid model and modular composition. In the hybrid model, where the parties have
oracle tapes for some ideal functionality (trusted party), in addition to regular communication
tapes, the same convention for corruption awareness is followed as in the ideal model. Specifically,
an execution in the GI -hybrid model, denoted HYBRID

GI
f,A(z),I(~x), is parameterized by the set I of

corrupted parties, and this set I is given to functionality G upon initialization of the system just
like the auxiliary input is given to the adversary. As mentioned above, I is fixed ahead of time and
so this is well-defined. We stress again that the honest parties do not know the set of indices I, and
real messages sent by honest parties and their input to the ideal functionality are independent of I.

In more detail, in an ideal execution the behavior of the trusted party depends heavily on the set
of corrupted parties I, and in some sense, its exact code is fixed only after we determine the set of
corrupted parties I. In contrast, in a real execution the specification of the protocol is independent
of the set I, and the code that the honest parties execute is fixed ahead of time and is the same one
for any set of corrupted parties I. An execution in the hybrid model is something in between: the
code of the honest parties is independent of I and is fixed ahead of time (like in the real model);
however, the code of the aiding functionality is fixed only after we set I (as in the ideal model).

Throughout our proof of security of the BGW protocol for malicious adversaries, some of the
functionalities we use are corruption aware and some are not; in particular, as we will describe,
our final functionality for secure computation with the BGW protocol is not corruption aware. In
order to be consistent with respect to the definition, we work with corruption-aware functionalities
only and remark that any ordinary functionality f (that is not corruption aware) can be rewritten
as a fictitiously corruption-aware functionality fI where the functionality just ignores the auxiliary
input I. An important observation is that a protocol that securely computes this fictitiously
corruption-aware functionality, securely computes the original functionality in the standard model
(i.e., when the functionality does not receive the set I as an auxiliary input). This holds also
for protocols that use corruption-aware functionalities as subprotocols (as we will see, this is the
case with the final BGW protocol). This observation relies on the fact that a protocol is always
corruption unaware, and that the simulator knows the set I in both the corruption aware and the
standard models. Thus, the simulator is able to simulate the corruption-aware subprotocol, even in
the standard model. Indeed, since the corruption-aware functionality fI ignores the set I, and since
the simulator knows I in both models, the two ensembles IDEALfI ,S(z),I(~x) (in the corruption-aware
model) and IDEALf,S(z),I(~x) (in the standard model) are identical. Due to this observation, we are
able to conclude that the resulting BGW protocol securely computes any standard (not corruption
aware) functionality in the standard model, even though it uses corruption-aware subprotocols.

Regarding composition, the sequential modular composition theorems of [8, 20] do not consider
corruption-aware functionalities. Nevertheless, it is straightforward to see that the proofs hold also

7In the UC framework, the adversary can communicate directly with the ideal functionality and it is mandated
that the adversary notifies the ideal functionality (i.e., trusted party) of the identities of all corrupted parties.
Furthermore, ideal functionalities often utilize this information (i.e., they are corruption aware) since the way that
the universal composability framework is defined typically requires functionalities to treat the inputs of honest and
corrupted parties differently. See Section 6 of the full version of [9] for details.
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for this case, with no change whatsoever. Thus, the method described in Section 2.3 for proving
security in a modular way can be used with corruption-aware functionalities as well.

Discussion. The augmentation of the standard definition with corruption-aware functionalities
enables more flexibility in protocol design. Specifically, it is possible to model the situation where
corrupted parties can learn more than just the specified output, or can obtain some other “prefer-
ential treatment” (like in the case of parallel VSS where they are able to set their input polynomials
as a partial function of the honest parties’ input). In some sense, this implies a weaker security
guarantee than in the case where all parties (honest and corrupted) receive the same treatment.
However, since the ideal functionality is specified so that the “weakness” is explicitly stated, the
adversary’s advantage is well defined.

This approach is not foreign to modern cryptography and has been used before. For exam-
ple, secure encryption is defined while allowing the adversary a negligible probability of learning
information about the plaintext. A more significant example is the case of two-party secure com-
putation. In this case, the ideal model is defined so that the corrupted party explicitly receives
the output first and can then decide whether or not the honest party also receives output. This
is weaker than an ideal model in which both parties receive output and so “complete fairness” is
guaranteed. However, since complete fairness cannot be achieved (in general) without an honest
majority, this weaker ideal model is used, and the security weakness is explicitly modeled.

In the context of this paper, we use corruption awareness in order to enable a modular analysis
of the BGW protocol. In particular, for some of the subprotocols used in the BGW protocol, it
seems hard to define an appropriate ideal functionality that is not corruption aware. Nevertheless,
our final result regarding the BGW protocol is for standard functionalities. That is, when we
state that every functionality can be securely computed by BGW (with the appropriate corruption
threshold), we refer to regular functionalities and not to corruption-aware ones.

The reason why the final BGW protocol works for corruption unaware functionalities only is
due to the fact that the protocol emulates the computation of a circuit that computes the desired
functionality. However, not every corruption-aware functionality can be computed by a circuit that
receives inputs from the parties only, without also having the identities of the set of corrupted
parties as auxiliary input. Since the real protocol is never allowed to be “corruption aware”, this
means that such functionalities cannot be realized by the BGW protocol. We remark that this is
in fact inherent, and there exist corruption-aware functionalities that cannot be securely computed
by any protocol. In particular, consider the functionality that just announces to all parties who
is corrupted. Since a corrupted party may behave like an honest one, it is impossible to securely
compute such a functionality.

Finally, we note that since we already use corruption awareness anyhow in our definitions of
functionalities (for the sake of feasibility and/or efficiency), we sometimes also use it in order
to simplify the definition of a functionality. For example, consider a secret sharing reconstruction
functionality. As we have described in Section 5.2, when t < n/3, it is possible to use Reed-Solomon
error correction to reconstruct the secret, even when up to t incorrect shares are received. Thus, an
ideal functionality for reconstruction can be formally defined by having the trusted party run the
Reed-Solomon error correction procedure. Alternatively, we can define the ideal functionality so
that it receive shares from the honest parties only, and reconstructs the secret based on these shares
only (which are guaranteed to be correct). This latter formulation is corruption aware, and has the
advantage of making it clear that the adversary cannot influence the outcome of the reconstruction
in any way.
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Convention. For the sake of clarity, we will describe (corruption-aware) functionalities as having
direct communication with the (ideal) adversary. In particular, the corrupted parties will not send
input or receive output, and all such communication will be between the adversary and functionality.
This is equivalent to having the corrupted parties send input as specified by the adversary.

Moreover, we usually omit the set of corrupted parties I in the notation of a corruption-aware
functionality (i.e., we write G instead of GI). However, in the definition of any corruption-aware
functionality we add an explicit note that the functionality receives as auxiliary input the set
of corrupted parties I. In addition, for any protocol in the corruption-aware hybrid model, we
add an “aiding ideal-functionality initialization” step, to explicitly emphasize that the aiding ideal
functionalities receive the set I upon initialization.

6.3 Matrix Multiplication in the Presence of Malicious Adversaries

We begin by showing how to securely compute the matrix-multiplication functionality, that maps
the input vector ~x to ~x ·A for a fixed matrix A, where the ith party holds xi and all parties receive
the entire vector ~x · A as output. Beyond being of interest in its own right, this serves as a good
warm-up to secure computation in the malicious setting. In addition, we will explicitly use this as
a subprotocol in the computation of F subshareV SS in Section 6.4.

The basic matrix-multiplication functionality is defined by a matrix A ∈ Fn×m, and the aim
of the parties is to securely compute the length-m vector (y1, . . . , ym) = (x1, . . . , xn) · A, where
x1, . . . , xn ∈ F are their respective inputs. (Indeed, the case m = 1 is also of interest, but we
shall need m = 2t.) We will actually need to define something more involved, but we begin by
explaining how one can securely compute the basic functionality. Note first that matrix multipli-
cation is a linear functionality (i.e., it can be computed by circuits containing only addition and
multiplication-by-constant gates). Thus, we can use the same methodology as was described at
the end of Section 4.2 for privately computing any linear functionality, in the semi-honest model.
Specifically, the inputs are first shared. Next, each party locally computes the linear functionality
on the shares it received. Finally, the parties send their resulting shares in order to reconstruct the
output. The difference here in the malicious setting is simply that the verifiable secret sharing func-
tionality is used for sharing the inputs, and Reed-Solomon decoding (as described in Section 5.2)
is used for reconstructing the output. Thus, the basic matrix multiplication functionality can be
securely computed as follows:

1. Input sharing phase: Each party Pi chooses a random polynomial gi(x) under the constraint
that gi(0) = xi. Then, Pi shares its polynomial gi(x) using the ideal FV SS functionality.
After all polynomials are shared, party Pi has the shares g1(αi), . . . , gn(αi).

2. Matrix multiplication emulation phase: Given the shares from the previous step, each party
computes its Shamir-share of the output vector of the matrix multiplication by computing
~yi = (g1(αi), . . . , gn(αi)) ·A. Note that:

~yi = (g1(αi), . . . , gn(αi)) ·A = [g1(αi), g2(αi), . . . , gn(αi)] ·


a1,1 . . . a1,m
a2,1 . . . a2,m

...
...

an,1 . . . an,m


and so the jth element in ~yi equals

∑n
`=1 g`(αi) · a`,j . Denoting the jth element in ~yi by yij ,

we have that y1j , . . . , y
n
j are Shamir-shares of the jth element of ~y = (g1(0), . . . , gn(0)) ·A.
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3. Output reconstruction phase:

(a) Each party Pi sends its vector ~yi to all other parties.

(b) Each party Pi reconstructs the secrets from all the shares received, thereby obtaining
~y = (g1(0), . . . , gn(0)) · A. This step involves running (local) error correction on the
shares, in order to neutralize any incorrect shares sent by the malicious parties. Observe
that the vectors sent in the protocol constitute the rows in the matrix

← ~y1 →
← ~y2 →

...
← ~yn →

 =


∑n

`=1 g`(α1) · a`,1 · · ·
∑n

`=1 g`(α1) · a`,m∑n
`=1 g`(α2) · a`,1 · · ·

∑n
`=1 g`(α2) · a`,m

...
...∑n

`=1 g`(αn) · a`,1 · · ·
∑n

`=1 g`(αn) · a`,m


and the jth column of the matrix constitutes Shamir-shares on the polynomial with
constant term

∑n
`=1 g`(0) · aj,`, which is the jth element in the output. Thus, Reed-

Solomon error correction can be applied to the columns in order to correct any incorrect
shares and obtain the correct output.

The above protocol computes the correct output: The use of FV SS in the first step prevents any
malicious corrupted party from sharing an invalid polynomial, while the use of error correction in
the last step ensures that the corrupted parties cannot adversely influence the output.

However, as we have mentioned, we need matrix multiplication in order to secure compute the
F subshareV SS functionality in Section 6.4. In this case, the functionality that is needed is a little more
involved than basic matrix multiplication. First, instead of each party Pi inputting a value xi, we
need its input to be a degree-t polynomial gi(x) and the constant term gi(0) takes the place of xi.

8

Next, in addition to obtaining the result ~y = (g1(0), . . . , gn(0)) · A of the matrix multiplication,
each party Pi also outputs the shares g1(αi), . . . , gn(αi) that it received on the input polynomials
of the parties. Based on the above, one could define the functionality as

FAmat(g1, . . . , gn) =

(
(~y, {g`(α1)}n`=1) , (~y, {g`(α2)}n`=1) . . . , (~y, {g`(αn)}n`=1)

)
,

where ~y = (g1(0), . . . , gn(0)) · A. Although this looks like a very minor difference, as we shall see
below, it significantly complicates things. In particular, we will need to define a corruption aware
variant of this functionality.

We now explain why inputting polynomials g1(x), . . . , gn(x) rather than values x1, . . . , xn (and
likewise outputting the shares) makes a difference. In the protocol that we described above for
matrix multiplication, each party Pi sends its shares ~yi of the output. Now, the vectors ~y1, . . . , ~yn

are fully determined by the input polynomials g1(x), . . . , gn(x). However, in the ideal execution,
the simulator only receives a subset of the shares and cannot simulate all of them. (Note that the
simulator cannot generate random shares since the ~yi vectors are fully determined by the input.)
To be concrete, consider the case that only party P1 is corrupted. In this case, the ideal adversary
receives as output ~y = (g1(0), . . . , gn(0)) ·A and the shares g1(α1), . . . , gn(α1). In contrast, the real
adversary sees all of the vectors ~y2, . . . , ~yn sent by the honest parties in the protocol. However,

8This is needed because in F subshare
V SS the parties need to output gi(x) and so need to know it. It would be possible

to have the functionality choose gi(x) and provide it in the output, but then exactly the same issue would arise. This
is explained in more detail in the next paragraph.
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these vectors (or messages) are a deterministic function of the input polynomials g1(x), . . . , gn(x)
and of the fixed matrix A. Thus, the simulator in the ideal model must be able to generate the
exact messages sent by the honest parties (recall that the distinguisher knows all of the inputs and
outputs and so can verify that the output transcript is truly consistent with the inputs). But, it is
impossible for a simulator who is given only ~y and the shares g1(α1), . . . , gn(α1) to generate these
exact messages, since it doesn’t have enough information. In an extreme example, consider the case
that m = n, the matrix A is the identity matrix, and the honest parties’ polynomials are random.
In this case, ~yi = (g1(αi), . . . , gn(αi)). By the properties of random polynomials, the simulator
cannot generate ~yi for i 6= 1 given only ~y = (g1(0), . . . , gn(0)), the shares (g1(α1), . . . , gn(α1)) and
the polynomial g1(x).

One solution to the above is to modify the protocol by somehow adding randomness, thereby
making the ~yi vectors not a deterministic function of the inputs. However, this would add com-
plexity to the protocol and turns out to be unnecessary. Specifically, we only construct this
protocol for its use in securely computing F subshareV SS , and the security of the protocol for com-
puting F subshareV SS is maintained even if the adversary explicitly learns the vector of m polyno-

mials ~Y (x) = (Y1(x), . . . , Ym(x)) = (g1(x), . . . , gn(x)) · A. (Denoting the jth column of A by
(a1,j , . . . , an,j)

T , we have that Yj(x) =
∑n

`=1 g`(x) · a`,j .) We therefore modify the functionality

definition so that the adversary receives ~Y (x), thereby making it corruption aware (observe that the
basic output (g1(0), . . . , gn(0)) ·A is given by ~Y (0)). Importantly, given this additional information,
it is possible to simulate the protocol based on the methodology described above (VSS sharing,
local computation, and Reed-Solomon reconstruction), and prove its security.

Before formally defining the FAmat functionality, we remark that we also use corruption awareness
in order to deal with the fact that the first step of the protocol for computing FAmat involves running
parallel VSS invocations, one for each party to distribute shares of its input polynomial. As we
described in Section 6.2 this enables the adversary to choose the corrupted parties’ polynomials
gi(x) (for i ∈ I) after seeing the corrupted parties’ shares on the honest parties’ polynomials (i.e.,
gj(αi) for every j /∈ I and i ∈ I). We therefore model this capability in the functionality definition.

FUNCTIONALITY 6.4 (Functionality FA
mat for matrix multiplication, with A ∈ Fn×m)

The FAmat-functionality receives as input a set of indices I ⊆ [n] and works as follows:

1. FAmat receives the inputs of the honest parties {gj(x)}j /∈I ; if a polynomial gj(x) is not
received or its degree is greater than t, then FAmat resets gj(x) = 0.

2. FAmat sends shares {gj(αi)}j /∈I;i∈I to the (ideal) adversary.

3. FAmat receives the corrupted parties’ polynomials {gi(x)}i∈I from the (ideal) adversary; if a
polynomial gi(x) is not received or its degree is greater than t, then FAmat resets gi(x) = 0.

4. FAmat computes ~Y (x) = (Y1(x), . . . , Ym(x)) = (g1(x), . . . , gn(x)) ·A.

5. (a) For every j /∈ I, functionality FAmat sends party Pj the entire length-m vector ~y = ~Y (0),
together with Pj ’s shares (g1(αj), . . . , gn(αj)) on the input polynomials.

(b) In addition, functionality FAmat sends the (ideal) adversary its output: the vec-

tor of polynomials ~Y (x), and the corrupted parties’ outputs (~y together with
(g1(αi), . . . , gn(αi)), for every i ∈ I).

We have already described the protocol intended to securely compute Functionality 6.4 and
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motivated its security. We therefore proceed directly to the formal description of the protocol (see
Protocol 6.5) and its proof of security. We recall that since all our analysis is performed in the
corruption-aware model, we describe the functionality in the corruption-aware hybrid model. Thus,
although the FV SS functionality (Functionality 5.5) is a standard functionality, we refer to it as a
“fictitiously corruption-aware” functionality, as described in Section 6.2.

PROTOCOL 6.5 (Securely computing FA
mat in the FV SS-hybrid model)

• Inputs: Each party Pi holds a polynomial gi(x).

• Common input: A field description F, n distinct non-zero elements α1, . . . , αn ∈ F, and
a matrix A ∈ Fn×m.

• Aiding ideal functionality initialization: Upon invocation, the trusted party comput-
ing the corruption-aware parallel VSS functionality FnV SS (i.e. Functionality 6.2) is given
the set of corrupted parties I.

• The protocol:

1. Each party Pi checks that its input polynomial is of degree-t; if not, it resets gi(x) = 0.
It then sends its polynomial gi(x) to FnV SS as its private input.

2. Each party Pi receives the values g1(αi), . . . , gn(αi) as output from FnV SS . If any value
equals ⊥, then Pi replaces it with 0.

3. Denote ~xi = (g1(αi), . . . , gn(αi)). Then, each party Pi locally computes ~yi = ~xi · A
(equivalently, for every k = 1, . . . ,m, each Pi computes Yk(αi) =

∑n
`=1 g`(αi) · a`,k

where (a1,k, . . . , an,k)T is the kth column of A, and stores ~yi = (Y1(αi), . . . , Ym(αi))).

4. Each party Pi sends ~yi to every Pj (1 ≤ j ≤ n).

5. For every j = 1, . . . , n, denote the vector received by Pi from Pj by ~̂Y (αj) =

(Ŷ1(αj), . . . , Ŷm(αj)). (If any value is missing, it replaces it with 0. We stress that
different parties may hold different vectors if a party is corrupted.) Each Pi works as
follows:

– For every k = 1, . . . ,m, party Pi locally runs the Reed-Solomon decoding proce-
dure (with d = 2t+ 1) on the possibly corrupted codeword (Ŷk(α1), . . . , Ŷk(αn))
to get the codeword (Yk(α1), . . . , Yk(αn)); see Figure 1. It then reconstructs the
polynomial Yk(x) and computes yk = Yk(0).

• Output: Pi outputs (y1, . . . , ym) as well as the shares g1(αi), . . . , gn(αi).

The figure below illustrates Step 5 of Protocol 6.5. Each party receives a vector from every
other party. These vectors (placed as rows) all form a matrix, whose columns are at most distance
t from codewords who define the output.

Figure 1: The vectors received by Pi form a matrix; error correction is run on the columns.
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Theorem 6.6 Let t < n/3. Then, Protocol 6.5 is t-secure for the FAmat functionality in the FV SS-
hybrid model, in the presence of a static malicious adversary.

Proof: We begin by describing the simulator S. The simulator S interacts externally with the
trusted party computing FAmat, and internally invokes the (hybrid model) adversary A, hence simu-
lating an execution of Protocol 6.5 for A. As such, S has external communication with the trusted
party computing FAmat, and internal communication with the real adversary A. As part of the
internal communication with A, the simulator hands A messages that A expects to see from the
honest parties in the protocol execution. In addition, S simulates the interaction of A with the
ideal functionality FV SS and hands it the messages it expects to receives from FV SS in Protocol 6.5.
S works as follows:

1. S internally invokes A with the auxiliary input z.

2. External interaction with Functionality 6.4 (Step 2): After the honest parties send their
inputs to the trusted party computing FAmat, the simulator S receives shares {gj(αi)}j 6∈I,i∈I on
its (external) incoming communication tape from FAmat.

3. Internal simulation of Steps 1 and 2 in Protocol 6.5: S internally simulates the ideal FnV SS
invocation, as follows:

(a) S simulates Step 2 of FnV SS and hands the adversary A the shares {gj(αi)}j /∈I;i∈I it
expects to receive (where the gj(αi) values are those received from FAmat above).

(b) S simulates Step 3 of FnV SS and receives from A the polynomials {gi(x)}i∈I that A sends
as the corrupted parties’ inputs to FnV SS. If deg(gi(x)) > t, then S replaces it with the
constant polynomial gi(x) = 0.

(c) S simulates Step 4 of FnV SS and internally hands A the outputs {(g1(αi), . . . , gn(αi))}i∈I ;
if any polynomial gk(x) is such that deg(gk(x)) > t, then ⊥ is written instead of gk(αi).

4. External interaction with Functionality 6.4 (Step 3): S externally sends the trusted party
computing FAmat the polynomials {gi(x)}i∈I as the inputs of the corrupted parties.

5. External interaction with Functionality 6.4 (Step 5): At this point, the functionality FAmat has
all the parties’ inputs, and so it computes the vector of polynomials ~Y (x) = (g1(x), . . . , gn(x))·
A, and S receives back the following output from FAmat:

(a) The vector of polynomials ~Y (x) = (g1(x), . . . , gn(x)) ·A,

(b) The output vector ~y = (y1, . . . , ym), and

(c) The shares (g1(αi), . . . , gn(αi)) for every i ∈ I.

6. Internal simulation of Step 4 in Protocol 6.5: For every j 6∈ I and i ∈ I, simulator S internally
hands the adversary A the vector ~yj = (Y1(αj), . . . , Ym(αj)) as the vector that honest party
Pj sends to all other parties in Step 4 of Protocol 6.5.

7. S outputs whatever A outputs and halts.
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We now prove that for every I ⊂ [n] with |I| ≤ t:{
IDEALFA

mat,S(z),I(~x)
}
z∈{0,1}∗;~x∈Fn

≡
{
HYBRID

FV SS

π,A(z),I(~x)
}
z∈{0,1}∗;~x∈Fn

. (6.1)

In order to see why this holds, observe first that in the FV SS-hybrid model, the honest parties
actions in the protocol are deterministic (the randomness in the real protocol is “hidden” inside
the protocol for securely computing FV SS), as is the simulator S and the ideal functionality FAmat.
Thus, it suffices to separately show that the view of the adversary is identical in both cases, and
the outputs of the honest parties are identical in both cases.

By inspection of the protocol and simulation, it follows that the shares {(g1(αi), . . . , gn(αi))}i∈I
of the corrupted parties on the honest parties inputs and the vector of polynomials ~Y (x) as received
by S, provide it all the information necessary to generate the exact messages that the corrupted
parties would receive in a real execution of Protocol 6.5. Thus, the view of the adversary is identical
in the ideal execution and in the protocol execution.

Next, we show that the honest party’s outputs are identical in both distributions. In order to see
this, it suffices to show that the vector of polynomials ~Y (x) = (Y1(x), . . . , Ym(x)) computed by FAmat
in Step 4 of the functionality specification is identical to the vector of polynomials (Y1(x), . . . , Ym(x))
computed by each party in Step 5 of Protocol 6.5 (since this defines the outputs). First, the
polynomials of the honest parties are clearly the same in both cases. Furthermore, since the
adversary’s view is the same it holds that the polynomials gi(x) sent by S to the trusted party
computing FAmat are exactly the same as the polynomials used by A in Step 1 of Protocol 6.5. This
follows from the fact that the FV SS functionality is used in this step and so the polynomials of the
corrupted parties obtained by S from A are exactly the same as used in the protocol. Now, observe
that each polynomial Yk(x) computed by the honest parties is obtained by applying Reed-Solomon
decoding to the word (Ŷk(α1), . . . , Ŷk(αn)). The crucial point is that the honest parties compute
the values Ŷk(αi) correctly, and so for every j /∈ I it holds that Ŷk(αj) = Yk(αj). Thus, at least n−t
elements of the word (Ŷk(α1), . . . , Ŷk(αn)) are “correct” and so the polynomial Yk(x) reconstructed
by all the honest parties in the error correction is the same Yk(x) as computed by FAmat (irrespective
of what the corrupted parties send). This completes the proof.

6.4 The F subshare
V SS Functionality for Sharing Shares

Defining the functionality. We begin by defining the F subshareV SS functionality. Informally speak-
ing, this functionality is a way for a set of parties to verifiably give out shares of values that are
themselves shares. Specifically, assume that the parties P1, . . . , Pn hold values f(α1), . . . , f(αn),
respectively, where f is a degree-t polynomial either chosen by one of the parties or generated
jointly in the computation. The aim is for each party to share its share f(αi) – and not any other
value – with all other parties (see Figure 2). In the semi-honest setting, this can be achieved simply
by having each party Pi choose a random polynomial gi(x) with constant term f(αi) and then send
each Pj the share gi(αj). However, in the malicious setting, it is necessary to force the corrupted
parties to share the correct value and nothing else; this is the main challenge. We stress that
since there are more than t honest parties, their shares fully determine f(x), and so the “correct”
share of a corrupted party is well defined. Specifically, letting f(x) be the polynomial defined by
the honest parties’ shares, the aim here is to ensure that a corrupted Pi provides shares using a
degree-t polynomial with constant term f(αi).
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Figure 2: The subsharing process: Pi distributes shares of its share f(αi)

The functionality definition is such that if a corrupted party Pi does not provide a valid input
(i.e., it does not input a degree-t polynomial gi(x) such that gi(0) = f(αi)), then F subshareV SS defines
a new polynomial g′i(x) that is the constant polynomial g′i(x) = f(αi) for all x, and uses g′i(x) in
place of gi(x) in the outputs. This ensures that the constant term of the polynomial is always
f(αi), as required.

We define F subshareV SS as a corruption-aware functionality (see Section 6.2). Among other reasons,
this is due to the fact that the parties distributes subshares of their shares. As we described in
Section 6.2, this enables the adversary to choose the corrupted parties’ polynomials gi(x) (for i ∈ I)
after seeing the corrupted parties’ shares of the honest parties’ polynomials (i.e., gj(αi) for every
j /∈ I and i ∈ I).

In addition, in the protocol the parties invoke the FAmat functionality (Functionality 6.4) with
(the transpose of) the parity-check matrix H of the appropriate Reed-Solomon code (this matrix is
specified below where we explain its usage in the protocol). This adds complexity to the definition
of F subshareV SS because additional information revealed by FAmat to the adversary needs to be revealed
by F subshareV SS as well. In the sequel, we denote the matrix multiplication functionality with (the
transpose of) the parity-check matrix H by FHmat. Recall that the adversary’s output from FHmat
includes ~Y (x) = (g1(x), . . . , gn(x)) ·HT ; see Step 5 in Functionality 6.4. Thus, in order to simulate
the call to FHmat, the ideal adversary needs this information. We deal with this in the same way
as in Section 6.3 (for FHmat), by having the functionality F subshareV SS provide the ideal adversary with
the additional vector of polynomials (g1(x), . . . , gn(x)) · HT . As we will see later, this does not
interfere with our use of F subshareV SS in order to achieve secure multiplication (which is our ultimate
goal). Although it is too early to really see why this is the case, we nevertheless remark that when
H is the parity-check matrix of the Reed-Solomon code, the vector (g1(0), . . . , gn(0)) ·HT can be
determined based on the corrupted parties’ inputs (because we know that the honest parties’ values
are always “correct”), and the vector (g1(x), . . . , gn(x)) ·HT is random under this constraint. Thus,
these outputs can be simulated.
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FUNCTIONALITY 6.7 (Functionality F subshare
V SS for subsharing shares)

F subshareV SS receives a set of indices I ⊆ [n] and works as follows:

1. F subshareV SS receives the inputs of the honest parties {βj}j /∈I . Let f(x) be the unique degree-t
polynomial determined by the points {(αj , βj)}j /∈I .9

2. For every j /∈ I, functionality F subshareV SS chooses a random degree-t polynomial gj(x) under
the constraint that gj(0) = βj = f(αj).

3. F subshareV SS sends the shares {gj(αi)}j /∈I;i∈I to the (ideal) adversary.

4. F subshareV SS receives polynomials {gi(x)}i∈I from the (ideal) adversary; if a polynomial gi(x)
is not received or if gi(x) is of degree higher than t, then F subshareV SS sets gi(x) = 0.

5. F subshareV SS determines the output polynomials g′1(x), . . . , g′n(x):

(a) For every j /∈ I, functionality F subshareV SS sets g′j(x) = gj(x).

(b) For every i ∈ I, if gi(0) = f(αi) then F subshareV SS sets g′i(x) = gi(x). Otherwise it sets
g′i(x) = f(αi) (i.e., g′i(x) is the constant polynomial equalling f(αi) everywhere).

6. (a) For every j 6∈ I, functionality F subshareV SS sends the polynomial g′j(x) and the shares
(g′1(αj), . . . , g

′
n(αj)) to party Pj .

(b) Functionality F subshareV SS sends the (ideal) adversary the vector of polynomials ~Y (x) =
(g1(x), . . . , gn(x)) ·HT , where H is the parity-check matrix of the appropriate Reed-
Solomon code (see below). In addition, it sends the corrupted parties’ outputs g′i(x)
and (g′1(αi), . . . , g

′
n(αi)) for every i ∈ I.

Background to implementing F subshare
V SS . Let G ∈ F(t+1)×n be the generator matrix for a

(generalized) Reed-Solomon code of length n = 3t+ 1, dimension k = t+ 1 and distance d = 2t+ 1.
In matrix notation, the encoding of a vector ~a = (a0, . . . , at) ∈ Ft+1 is given by ~a ·G, where:

G
def
=


1 1 . . . 1
α1 α2 . . . αn
...

...
...

αt1 αt2 . . . αtn

 . (6.2)

Letting f(x) =
∑t

`=0 a` ·x` be a degree-t polynomial, the Reed-Solomon encoding of ~a = (a0, . . . , at)
is the vector 〈f(α1), . . . , f(αn)〉. Let H ∈ F2t×n be the parity-check matrix of G; that is, H is a
rank 2t matrix such that G · HT = 0(t+1)×2t. We stress that H is full determined by α1, . . . , αn
and thus is a constant matrix, known to all parties. The syndrome of a word ~β ∈ Fn is given
by S(~β) = ~β · HT ∈ F2t. A basic fact from error-correcting codes is that, for any codeword
~β = ~a · G, it holds that S(~β) = 02t. Moreover, for every error vector ~e ∈ {0, 1}n, it holds that
S(~β+~e) = S(~e). If ~e is of distance at most t from ~0 (i.e.,

∑
ei ≤ t), then it is possible to correct the

9If all of the points sent by the honest parties lie on a single degree-t polynomial, then this guarantees that f(x)
is the unique degree-t polynomial for which f(αj) = βj for all j /∈ I. If not all the points lie on a single degree-t
polynomial, then no security guarantees are obtained. However, since the honest parties all send their prescribed
input, in our applications, f(x) will always be as desired. This can be formalized using the notion of a partial
functionality [20, Sec. 7.2]. Alternatively, it can be formalized by as follows: In the case that the condition does not
hold, the ideal functionality gives all of the honest parties’ inputs to the adversary and lets the adversary single-
handedly determine all of the outputs of the honest parties. This makes any protocol vacuously secure (since anything
can be simulated).
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vector ~β + ~e and to obtain the original vector ~β. An important fact is that a sub-procedure of the
Reed-Solomon decoding algorithm can extract the error vector ~e from the syndrome vector S(~e)
alone. That is, given a possibly corrupted codeword ~γ = ~β + ~e, the syndrome vector is computed
as S(~γ) = ~γ ·HT = S(~e) and is given to this sub-procedure, which returns ~e. From ~e and ~γ, the
codeword ~β can be extracted easily.

The protocol. In the protocol, each party Pi chooses a random polynomial gi(x) whose constant
term equals its input share βi; let ~β = (β1, . . . , βn). Recall that the input shares are the shares
of some polynomial f(x). Thus, for all honest parties Pj it is guaranteed that gj(0) = βj =
f(αj). In contrast, there is no guarantee regarding the values gi(0) for corrupted Pi. Let ~γ =

(g1(0), . . . , gn(0)). It follows that ~γ is a word that is at most distance t from the vector ~β =
(f(α1), . . . , f(αn)), which is a Reed-Solomon codeword of length n = 3t+ 1. Thus, it is possible to
correct the word ~γ using Reed-Solomon error correction. The parties send the chosen polynomials
(g1(x), . . . , gn(x)) to FHmat (i.e., Functionality 6.4 for matrix multiplication with the transpose of the
parity-check matrix H described above), which hands each party Pi the output (g1(αi), . . . , gn(αi))
and (s1, . . . , s2t) = ~γ ·HT , where the latter equals the syndrome S(~γ) of the input vector ~γ. Each
party uses the syndrome in order to locally carry out error correction and obtain the error vector
~e = (e1, . . . , en) = ~γ−~β. Note that ~e has the property that for every i it holds that gi(0)−ei = f(αi),
and ~e can be computed from the syndrome alone, using the sub-procedure mentioned above. This
error vector now provides the honest parties with all the information that they need to compute
the output. Specifically, if ei = 0, then this implies that Pi used a “correct” polynomial gi(x) for
which gi(0) = f(αi), and so the parties can just output the shares gi(αj) that they received as
output from FHmat. In contrast, if ei 6= 0 then the parties know that Pi is corrupted, and can all
send each other the shares gi(αj) that they received from FHmat. This enables them to reconstruct
the polynomial gi(x), again using Reed-Solomon error correction, and compute gi(0)− ei = f(αi).
Thus, they obtain the actual share of the corrupted party and can set g′i(x) = f(αi), as required
in the functionality definition. See Protocol 6.8 for the full description.

One issue that must be dealt with in the proof of security is due to the fact that the syndrome
~γ · HT is revealed in the protocol, and is seemingly not part of the output. However, recall that
the adversary receives the vector of polynomials ~Y (x) = (g1(x), . . . , gn(x)) ·HT from F subshareV SS and

the syndrome is just ~Y (0). This is therefore easily simulated.
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PROTOCOL 6.8 (Securely computing F subshare
V SS in the FH

mat-hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αj , βj) of the honest
parties all lie on a single degree-t polynomial (see the definition of F subshareV SS above and
Footnote 9 therein).

• Common input: A field description F and n distinct non-zero elements α1, . . . , αn ∈ F,
which determine the matrix H ∈ F2t×n which is the parity-check matrix of the Reed-
Solomon code (with parameters as described above).

• Aiding ideal functionality initialization: Upon invocation, the trusted party comput-
ing the corruption-aware functionality FHmat receives the set of corrupted parties I.

• The protocol:

1. Each party Pi chooses a random degree-t polynomial gi(x) under the constraint that
gi(0) = βi

2. The parties invoke the FHmat functionality (i.e., Functionality 6.4 for matrix multipli-
cation with the transpose of the parity-check matrix H). Each party Pi inputs the
polynomial gi(x) from the previous step, and receives from FHmat as output the shares
g1(αi), . . . , gn(αi) and the length 2t vector ~s = (s1, . . . , s2t) = (g1(0), . . . , gn(0)) ·HT .
Recall that ~s is the syndrome vector of the possible corrupted codeword ~γ =
(g1(0), . . . , gn(0)).10

3. Each party locally runs the Reed-Solomon decoding procedure using ~s only, and re-
ceives back an error vector ~e = (e1, . . . , en).

4. For every k such that ek = 0: each party Pi sets g′k(αi) = gk(αi).

5. For every k such that ek 6= 0:

(a) Each party Pi sends gk(αi) to every Pj .

(b) Each party Pi receives gk(α1), . . . , gk(αn); if any value is missing, it sets it to 0.
Pi runs the Reed-Solomon decoding procedure on the values to reconstruct gk(x).

(c) Each party Pi computes gk(0), and sets g′k(αi) = gk(0)−ek (which equals f(αk)).

• Output: Pi outputs gi(x) and g′1(αi), . . . , g
′
n(αi).

Theorem 6.9 Let t < n/3. Then, Protocol 6.8 is t-secure for the F subshareV SS functionality in the
FHmat-hybrid model, in the presence of a static malicious adversary.

Proof: We begin by describing the simulator S. The simulator interacts externally with the ideal
functionality F subshareV SS , while internally simulating the interaction of A with the honest parties and
FHmat.

1. S internally invokes A with the auxiliary input z.

2. External interaction with Functionality 6.7 (Step 3): After the honest parties send their
polynomials {gj(x)}j 6∈I to the trusted party computing F subshareV SS , simulator S receives the
shares {gj(αi)}j 6∈I,i∈I from F subshareV SS .

3. Internal simulation of Step 2 in Protocol 6.8: S begins to internally simulate the invocation
of FHmat.

10The corrupted parties also receive the vector of polynomials (g1(x), . . . , gn(x))·HT as output from FH
mat. However,

in the protocol, we only specify the honest parties’ instructions.
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(a) Internal simulation of Step 2 in Functionality 6.4: S sends A the shares {gj(αi)}j 6∈I,i∈I
as its first output from the simulated call to FHmat in the protocol.

(b) Internal simulation of Step 3 in Functionality 6.4: S internally receives from A the
polynomials {gi(x)}i∈I that A sends to FHmat in the protocol ().

4. External interaction with Functionality 6.7 (Step 4): S externally sends the F subshareV SS func-
tionality the polynomials {gi(x)}i∈I that were received in the previous step. For the rest of
the execution, if deg(gi) > t for some i ∈ I, S resets gi(x) = 0.

5. External interaction with Functionality 6.7 (Step 6b): S externally receives its output from
F subshareV SS , which is comprised of the vector of polynomials ~Y (x) = (g1(x), . . . , gn(x)) ·HT , and
the corrupted parties’ outputs: polynomials {g′i(x)}i∈I and the shares {g′1(αi), . . . , g′n(αi)}i∈I .
Recall that g′j(x) = gj(x) for every j 6∈ I. Moreover, for every i ∈ I, if gi(0) = f(αi) then
g′i(x) = gi(x), and g′i(x) = f(αj) otherwise.

6. Continue internal simulation of Step 2 in Protocol 6.8 (internally simulate Step 5 of Func-
tionality 6.4): S concludes the internal simulation of FHmat by preparing the output that the
internal A expects to receive from FHmat in the protocol, as follows:

(a) A expects to receive the vector of polynomials ~Y (x) = (g1(x), . . . , gn(x)) ·HT from FHmat;
however, S received this exact vector of polynomials from F subshareV SS and so just hands it
internally to A.

(b) In addition, A expects to receive the corrupted parties’ outputs ~y = ~Y (0) and the shares
{(g1(αi), . . . , gn(αi))}i∈I . Simulator S can easily compute ~y = ~Y (0) since it has the
actual polynomials ~Y (x). In addition, S already received the shares {gj(αi)}j /∈I;i∈I from
F subshareV SS and can compute the missing shares using the polynomials {gi(x)}i∈I . Thus, S
internally hands A the values ~y = ~Y (0) and {(g1(αi), . . . , gn(αi))}i∈I , as expected by A.

7. Internal simulation of Step 5a in Protocol 6.8: S proceeds with the simulation of the protocol as
follows. S computes the error vector ~e = (e1, . . . , en) by running the Reed-Solomon decoding
procedure on the syndrome vector ~s, that it computes as ~s = ~Y (0) (using ~Y (x) that it received
from F subshareV SS ). Then, for every i ∈ I for which ei 6= 0 and for every j /∈ I, S internally
simulates Pj sending gi(αj) to all parties.

8. S outputs whatever A outputs and halts.

We now prove that for every I ⊂ [n] with |I| ≤ t:{
IDEALF subshare

V SS ,S(z),I(~x)
}
z∈{0,1}∗;~x∈Fn

≡
{
HYBRID

FH
mat

π,A(z),I(~x)
}
z∈{0,1}∗;~x∈Fn

.

The main point to notice is that the simulator has enough information to perfectly emulate the
honest parties’ instructions. The only difference is that in a real protocol execution, the honest
parties Pj choose the polynomials gj(x), whereas in an ideal execution the functionality F subshareV SS

chooses the polynomials gj(x) for every j /∈ I. However, in both cases they are chosen at random
under the constraint that gj(0) = βj . Thus, the distributions are identical. Apart from that, S has
enough information to generate the exact messages that the honest parties would send. Finally,
since all honest parties receive the same output from FAmat in the protocol execution, and this fully

52



determines ~e, we have that all honest parties obtain the exact same view in the protocol execution
and thus all output the exact same value. Furthermore, by the error correction procedure, for
every k such that ek 6= 0, they reconstruct the same gk(x) sent by A to FAmat and so all define
g′k(αj) = gk(0)− ek.

A fictitious simulator S ′. In order to prove that the output distribution generated by S is
identical to the output distribution of a real execution, we construct a fictitious simulator S ′ who
generates the entire output distribution of both the honest parties and adversary as follows. For
every j /∈ I, simulator S ′ receives for input a random polynomial gj(x) under the constraint that
gj(0) = βj . Then, S ′ invokes the adversary A and emulates the honest parties and the aiding
functionality FHmat in a protocol execution with A, using the polynomials gj(x). Finally, S ′ outputs
whatever A outputs, together with the output of each honest party. (Note that S ′ does not interact
with a trusted party and is a stand-alone machine.)

The output distributions. It is clear that the output distribution generated by S ′ is identical to
the output distribution of the adversary and honest parties in a real execution, since the polynomials
gj(x) are chosen randomly exactly like in a real execution and the rest of the protocol is emulated
by S ′ exactly according to the honest parties’ instructions.

It remains to show that the output distribution generated by S ′ is identical to the output
distribution of an ideal execution with S and a trusted party computing F subshareV SS . First, observe
that both S ′ and S are deterministic machines. Thus, it suffices to separately show that the
adversary’s view is identical in both cases (given the polynomials {gj(x)}j /∈I), and the outputs of
the honest parties are identical in both case (again, given the polynomials {gj(x)}j /∈I). Now, the
messages generated by S and S ′ for A are identical throughout. This holds because the shares
{gj(αi)}j /∈I;i∈I of the honest parties that A receives from FHmat are the same (S receives them from

F subshareV SS and S ′ generates them itself from the input), as is the vector ~Y (x) = (g1(x), . . . , gn(x))·HT

and the rest of the output from FHmat for A. Finally, in Step 7 of the specification of S above, the
remainder of the simulation after FHmat is carried out by running the honest parties’ instructions.
Thus, the messages are clearly identical and A’s view is identical in both executions by S and S ′.

We now show that the output of the honest parties’ as generated by S ′ is identical to their output
in the ideal execution with S and the trusted party, given the polynomials {gj(x)}j /∈I . In the ideal
execution with S, the output of each honest party Pj is determined by the trusted party computing
F subshareV SS to be g′j(x) and (g′1(αj), . . . , g

′
n(αj)). For every j /∈ I, F subshareV SS sets g′j(x) = gj(x).

Likewise, since the inputs of all the honest parties lie on the same degree-t polynomial, denoted f
(and so f(αj) = βj for every j /∈ I), we have that the error correction procedure of Reed-Solomon
decoding returns an error vector ~e = (e1, . . . , en) such that for every k for which gk(0) = f(αk) it
holds that ek = 0. In particular, this holds for every j /∈ I. Furthermore, FHmat guarantees that all
honest parties receive the same vector ~s and so the error correction yields the same error vector ~e for
every honest party. Thus, for every j, ` /∈ I we have that each honest party P` sets g′j(α`) = gj(α`),
as required.

Regarding the corrupted parties’ polynomials gi(x) for i ∈ I, the trusted party computing
F subshareV SS sets g′i(x) = gi(x) if gi(0) = f(αi), and sets g′i(x) to be a constant polynomial equalling
f(αi) everywhere otherwise. This exact output is obtained by the honest parties for the same
reasons as above: all honest parties receive the same ~s and thus the same ~e. If ei = 0 then all
honest parties Pj set g′i(αj) = gi(αj), whereas if ei 6= 0 then the error correction enables them to
reconstruct the polynomial gi(x) exactly and compute f(αi) = gi(0). Then, by the protocol every
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honest Pj sets its share g′i(αj) = f(αi) − ei, exactly like the trusted party. This completes the
proof.

6.5 The Feval Functionality for Evaluating a Shared Polynomial

In the protocol for verifying the multiplication of shares presented in Section 6.6 (The FmultV SS func-
tionality), the parties need to process “complaints” (which are claims by some of the parties that
others supplied incorrect values). These complaints are processed by evaluating some shared poly-
nomials at the point of the complaining party. Specifically, given shares f(α1), . . . , f(αn), of a
polynomial f , the parties need to compute f(αk) for a predetermined k, without revealing any-
thing else. (To be more exact, the shares of the honest parties define a unique degree-t polynomial
f , and the parties should obtain f(αk) as output.)

We begin by formally defining this functionality. The functionality is parameterized by an
index k that determines at which point the polynomial is to be evaluated. In addition, we define
the functionality to be corruption-aware in the sense that the polynomial is reconstructed from the
honest party’s inputs alone (and the corrupted parties’ shares are ignored). We mention that it is
possible to define the functionality so that it runs the Reed-Solomon error correction procedure on
the input shares. However, defining it as we do makes it more clear that the corrupted parties can
have no influence whatsoever on the output. See Functionality 6.10 for a full specification.

FUNCTIONALITY 6.10 (Functionality F k
eval for evaluating a polynomial on αk)

F keval receives a set of indices I ⊆ [n] and works as follows:

1. The F keval functionality receives the inputs of the honest parties {βj}j /∈I . Let f(x) be the
unique degree-t polynomial determined by the points {(αj , βj)}j /∈I . (If not all the points lie
on a single degree-t polynomial, then no security guarantees are obtained; see Footnote 9.)

2. (a) For every j 6∈ I, F keval sends the output pair (f(αj), f(αk)) to party Pj .

(b) For every i ∈ I, F keval sends the output pair (f(αi), f(αk)) to the (ideal) adversary, as
the output of Pi.

Equivalently, in function notation, we have:

F keval

(
β1, . . . , βn

)
=
(

((f(α1), f(αk)), . . . , (f(αn), f(αk))
)

where f is the result of Reed-Solomon decoding on (β1, . . . , βn). We remark that although each
party Pi already holds f(αi) as part of its input, we need the output to include this value in order
to simulate (specifically, the simulator needs all of the corrupted parties’ shares {f(αi)}i∈I). This
will not make a difference in its use, since f(αi) is anyway supposed to be known to Pi.

Background. We show that the share f(αk) can be obtained by a linear combination of all the

input shares (β1, . . . , βn). The parties’ inputs are a vector ~β
def
= (β1, . . . , βn) where for every j /∈ I

it holds that βj = f(αj). Thus, the parties’ inputs are computed by

~β = V~α · ~fT ,

where V~α is the Vandermonde matrix (see Eq. (3.2)), and ~f is the vector of coefficients for the
polynomial f(x). We remark that ~f is of length n, and is padded with zeroes beyond the (t +
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1)th entry. Let ~αk = (1, αk, (αk)
2, . . . , (αk)

n−1) be the kth row of V~α. Then the output of the
functionality is

f(αk) = ~αk · ~fT .
We have:

~αk · ~fT = ~αk ·
(
V −1~α · V~α

)
· ~fT =

(
~αk · V −1~α

)
·
(
V~α · ~fT

)
=
(
~αk · V −1~α

)
· ~βT (6.3)

and so there exists a vector of fixed constants (~αk · V −1~α ) such that the inner product of this vector
and the inputs yields the desired result. In other words, F keval is simply a linear function of the
parties’ inputs.

The protocol. Since F keval is a linear function of the parties’ inputs (which are themselves shares),
it would seem that it is possible to use the same methodology for securely computing FAmat (or even
directly use FAmat). However, this would allow corrupted parties to input any value they wish in
the computation. In contrast, the linear function that computes F keval (i.e., the linear combination
of Eq. (6.3)) must be computed on the correct shares, where “correct” means that they all lie on
the same degree-t polynomial. This problem is solved by having the parties subshare their input
shares using a more robust input sharing stage that guarantees that all the parties input their
“correct share”. Fortunately, we already have a functionality that fulfills this exact purpose: the
F subshareV SS functionality of Section 6.4. Therefore, the protocol consists of a robust input sharing
phase (i.e., an invocation of F subshareV SS ), a computation phase (which is non-interactive), and an
output reconstruction phase. See Protocol 6.11 for the full description.

PROTOCOL 6.11 (Securely computing F k
eval in the F subshare

V SS -hybrid model)

• Inputs: Each party Pi holds a value βi; we assume that the points (αj , βj) for every honest
Pj all lie on a single degree-t polynomial f (see the definition of F keval above and Footnote 9).

• Common input: The description of a field F and n distinct non-zero elements α1, . . . , αn ∈ F.

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing
the corruption-aware functionality F subshareV SS receives the set of corrupted parties I.

• The protocol:

1. The parties invoke the F subshareV SS functionality with each party Pi using βi as its private
input. At the end of this stage, each party Pi holds g′1(αi), . . . , g

′
n(αi), where all the

g′i(x) are of degree t, and for every i it holds that g′i(0) = f(αi).

2. Each party Pi locally computes: Q(αi) =
∑n
`=1 λ` ·g′`(αi), where (λ1, . . . , λn) = ~αk ·V −1~α .

Each party Pi sends Q(αi) to all Pj .

3. Each party Pi receives all the shares Q̂(αj) from each other party 1 ≤ j ≤ n (if
any value is missing, replace it with 0). Note that some of the parties may hold dif-
ferent values if a party is corrupted. Then, given the possibly corrupted codeword
(Q̂(α1), . . . , Q̂(αn)), each party runs the Reed-Solomon decoding procedure and receives
the codeword (Q(α1), . . . , Q(αn)). It then reconstructs Q(x) and computes Q(0).

• Output: Each party Pi outputs (βi, Q(0)).

Informally speaking, the security of the protocol follows from the fact that the parties only
see subshares that reveal nothing about the original shares. Then, they see n shares of a random
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polynomial Q(x) whose secret is the value being evaluated, enabling them to reconstruct that secret.
Since the secret is obtained by the simulator/adversary as the legitimate output in the ideal model,
this can be simulated perfectly.

The main subtlety that needs to be dealt with in the proof of security is due to the fact that
the F subshareV SS functionality actually “leaks” some additional information to the adversary, beyond
the vectors (g′1(αi), . . . , g

′
n(αi)) for all i ∈ I. Namely, the adversary also receives the vector of

polynomials ~Y (x) = (g1(x), . . . , gn(x)) · HT , where H is the parity-check matrix for the Reed-
Solomon code, and gi(x) is the polynomial sent by the adversary to F subshareV SS for the corrupted Pi
and may differ from g′i(x) if the constant term of gi(x) is incorrect (for honest parties g′j(x) = gj(x)

always). The intuition as to why this vector of polynomials ~Y (x) can be simulated is due to the
fact that the syndrome depends only on the error vector which describes the difference between
the gi(0)’s and f(αi)’s. Details follow. Let ~γ = (γ1, . . . , γn) be the inputs of the parties (where
for i /∈ I it may be the case that γi 6= f(αi)). (We denote the “correct” input vector by ~β –
meaning ~β = (f(α1), . . . , f(αn)) – and the actual inputs used by the parties by ~γ.) The vector
~γ defines a word that is of distance at most t from the valid codeword (f(α1), . . . , f(αn)). Thus,
there exists an error vector ~e of weight at most t such that ~γ − ~e = (f(α1), . . . , f(αn)) = ~β. The
syndrome function S(~x) = ~x ·HT has the property that S(~γ) = S(~β+~e) = S(~e); stated differently,
(β1, . . . , βn) ·HT = ~e ·HT . Now, ~e is actually fully known to the simulator. This is because for every
i ∈ I it receives f(αi) from F keval, and so when A sends gi(x) to F subshareV SS in the protocol simulation,
the simulator can simply compute ei = gi(0) − f(αi). Furthermore, for all j /∈ I, it is always the
case that ej = 0. Thus, the simulator can compute ~e ·HT = ~β ·HT = (g1(0), . . . , gn(0)) ·HT = ~Y (0)
from the corrupted parties’ input and output only (and the adversary’s messages).

We have shown that the simulator can compute ~Y (0). In addition, the simulator has the values
g1(αi), . . . , gn(αi) for every i ∈ I and so can compute ~Y (αi) = (g1(αi), . . . , gn(αi)) · HT . As we
will show, the vector of polynomials ~Y (x) is a series of random degree-t polynomials under the
constraints ~Y (0) and {~Y (αi)}i∈I that S can compute. (Actually, when |I| = t there are t + 1
constraints and so this vector is fully determined. In this case, its actually values are known to the
simulator; otherwise, the simulator can just choose random polynomials that fulfill the constraints.)
Finally, the same is true regarding the polynomial Q(x): the simulator knows |I| + 1 constraints
(namely Q(0) = f(αk) and Q(αi) =

∑n
`=1 λ` · g′`(αi)), and can choose Q to be random under these

constraints in order to simulate the honest parties sending Q(αj) for every j /∈ I. We now formally
prove this.

Theorem 6.12 Let t < n/3. Then, Protocol 6.11 is t-secure for the F keval functionality in the
F subshareV SS -hybrid model, in the presence of a static malicious adversary.

Proof: The simulator interacts externally with a trusted party computing F keval, while internally
simulating the interaction of A with the trusted party computing F subshareV SS and the honest parties.
We have already provided the intuition behind how the simulator works, and thus proceed directly
to its specification.

The simulator S:

1. External interaction with Functionality 6.10 (Step 2b): S receives the ideal adversary’s output
{(f(αi), f(αk))}i∈I from F keval (recall that the corrupted parties have no input in F keval and so
it just receives output).
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2. S internally invokes A with the auxiliary input z, and begins to simulate the protocol execution.

3. Internal simulation of Step 1 in Protocol 6.11: S internally simulates the F subshareV SS invocations:

(a) Internal simulation of Step 3 in the F subshareV SS functionality: S simulates A receiving the
shares {gj(αi)}j /∈I;i∈I : For every j 6∈ I, S chooses uniformly at random a polynomial
gj(x) from P0,t, and sends A the values {gj(αi)}j 6∈I;i∈I .

(b) Internal simulation of Step 4 in the F subshareV SS functionality: S internally receives from
A the inputs {gi(x)}i∈I of the corrupted parties to F subshareV SS . If for any i ∈ I, A did not
send some polynomial gi(x), then S sets gi(x) = 0.

(c) For every i ∈ I, S checks that deg(gi) ≤ t and that gi(0) = f(αi). If this check passes,
S sets g′i(x) = gi(x). Otherwise, S sets g′i(x) = f(αi). (Recall that S has f(αi) from its
output from F keval.)

(d) For every j /∈ I, S sets g′j(x) = gj(x).

(e) Internal simulation of Step 6b in the F subshareV SS functionality: S internally gives the
adversary A the outputs, as follows:

i. The vector of polynomials ~Y (x), which is chosen as follows:

• S sets (e1, . . . , en) such that ej = 0 for every j /∈ I, and ei = gi(0) − f(αi) for
every i ∈ I.

• S chooses ~Y (x) to be a random vector of degree-t polynomials under the con-
straints that ~Y (0) = (e1, . . . , en) ·HT , and for every i ∈ I it holds that ~Y (αi) =
(g1(αi), . . . , gn(αi)) ·HT .

Observe that if |I| = t, then all of the polynomials in ~Y (x) are fully determined by
the above constraints.

ii. The polynomials and values g′i(x) and {g′1(αi), . . . , g′n(αi)} for every i ∈ I

4. S simulates the sending of the shares Q(αj):

(a) Internal simulation of Step 2 in Protocol 6.11: S chooses a random polynomial Q(x) of
degree t under the constraints that:

• Q(0) = f(αk).

• For every i ∈ I, Q(αi) =
∑n

`=1 γ` · g′`(αi).
(b) For every j 6∈ I, S internally simulates honest party Pj sending the value Q(αj).

5. S outputs whatever A outputs and halts.

We now prove that for every I ⊆ [n], such that |I| ≤ t,{
IDEALFk

eval,S(z),I
(~β)
}
~β∈Fn,z∈{0,1}∗

≡
{
HYBRID

F subshare
V SS

π,A(z),I (~β)
}
~β∈Fn,z∈{0,1}∗

.

There are three differences between the simulation with S and A, and an execution of Proto-
col 6.11 with A. First, S chooses the polynomials gj(x) to have constant terms of 0 instead of

constant terms f(αj) for every j /∈ I. Second, S computes the vector of polynomials ~Y (x) based
on the given constraints, rather that it being computed by F subshareV SS based on the polynomials
(g1(x), . . . , gn(x)). Third, S chooses a random polynomial Q(x) under the described constraints in
Step 4a of S, rather than it being computed as a function of all the polynomials g′1(x), . . . , g′n(x).

We eliminate these differences one at a time, by introducing three fictitious simulators.
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The fictitious simulator S1: Simulator S1 is exactly the same as S, except that it receives for
input the values βj = f(αj), for every j = 1, . . . , n (rather than just j ∈ I). In addition, for every
j /∈ I, instead of choosing gj(x) ∈R P0,t, the fictitious simulator S1 chooses gj(x) ∈R Pf(αj),t. We
stress that S1 runs in the ideal model with the same trusted party running F keval as S, and the
honest parties receive output as specified by F keval when running with the ideal adversary S or S1.

We claim that for every I ⊆ [n], such that |I| ≤ t,{
IDEAL

Fk
eval,S1(z,~β),I

(~β)
}
~β∈Fn,z∈{0,1}∗

≡
{
IDEALFk

eval,S(z),I
(~β)
}
~β∈Fn,z∈{0,1}∗

In order to see that the above holds, observe that both S and S1 can work when given the points of
the inputs shares {gj(αi)}i∈I,j 6∈I and they don’t actually need the polynomials themselves. Further-
more, the only difference between S and S1 is whether these points are derived from polynomials
with zero constant terms, or with the “correct” ones. That is, there exists a machine M that
receives points {gj(αi)}i∈I;j /∈I and runs the simulation strategy with A while interacting with F keval
in an ideal execution, such that:

• If gj(0) = 0 then the joint output of M and the honest parties in the ideal execution is exactly

that of IDEALFk
eval,S(z),I

(~β); i.e., an ideal execution with the original simulator.

• If gj(0) = f(αj) then the joint output of M and the honest parties in the ideal execution is

exactly that of IDEAL
Fk
eval,S1(z,~β),I

(~β); i.e., an ideal execution with the fictitious simulator.

By Claim 3.3, the points {gj(αi)}i∈I;j /∈I when gj(0) = 0 are identically distributed to the points
{gj(αi)}i∈I;j /∈I when gj(0) = f(αj). Thus, the joint outputs of the adversary and honest parties in
both simulations are identical.

The fictitious simulator S2: Simulator S2 is exactly the same as S1, except that it computes
the vector of polynomials ~Y (x) in the same way that F subshareV SS computes it in the real execution.
Specifically, for every j /∈ I, S2 chooses random polynomials gj(x) under the constraint that gj(0) =
f(αj) just like honest parties. In addition, for every i ∈ I, it uses the polynomials gi(x) sent by A.
We claim that for every I ⊆ [n], such that |I| ≤ t,{

IDEAL
Fk
eval,S2(z,~β),I

(~β)
}
~β∈Fn,z∈{0,1}∗

≡
{
IDEAL

Fk
eval,S1(z,~β),I

(~β)
}
~β∈Fn,z∈{0,1}∗

This follows from the aforementioned property of the syndrome function S(~x) = ~x·HT . Specifically,
let ~γ be the parties’ actually inputs (for j /∈ I we are given that γj = f(αj), but nothing is
guaranteed about the value of γi for i ∈ I), and let ~e = (e1, . . . , en) be the error vector (for which
γi = f(αi) + ei). Then, S(~γ) = S(~e). If |I| = t, then the constraints fully define the vector of
polynomials ~Y (x), and by the property of the syndrome these constraints are identical in both
simulations by S1 and S2. Otherwise, if |I| < t, then S1 chooses ~Y (x) at random under t + 1
constraints, whereas S2 computes ~Y (x) from the actual values. Consider each polynomial Y`(x)
separately (for ` = 1, . . . , 2t− 1). Then, for each polynomial there is a set of t+ 1 constraints and
each is chosen at random under those constraints. Consider the random processes X(s) and Y (s)
before Claim 4.4 in Section 4.2 (where the value “s” here for Y`(x) is the `th value in the vector
~e ·HT ). Then, by Claim 4.4, the distributions are identical.
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The fictitious simulator S3: Simulator S3 is the same as S2, except that it computes the
polynomial Q(x) using the polynomials g′1(x), . . . , g′n(x) instead of under the constraints. The fact
that this is identical follows the exact same argument regarding ~Y`(x) using Claim 4.4 in Section 4.2.
Thus, {

IDEAL
Fk
eval,S3(z,~β),I

(~β)
}
~β∈Fn,z∈{0,1}∗

≡
{
IDEAL

Fk
eval,S2(z,~β),I

(~β)
}
~β∈Fn,z∈{0,1}∗

Observe that the view of A in IDEAL
Fk
eval,S3(z,~β),I

(~β) is exactly the same as in a real execution. It

remains to show that the honest parties output the same in both this execution and in the F subshareV SS -
hybrid execution of Protocol 6.11. Observe that S3 (and S1/S2) send no input to the trusted party
in the ideal model. Thus, we just need to show that the honest parties always output f(αk) in a
real execution, when f is the polynomial defined by the input points {βj}j /∈I of the honest parties.
However, this follows immediately from the guarantees provided the F subshareV SS functionality and by
the Reed-Solomon error correction procedure. In particular, the only values received by the honest
parties in a real execution are as follows:

1. Each honest Pj receives g′1(αj), . . . , g
′
n(αj), where it is guaranteed by F subshareV SS that for every

i = 1, . . . , n we have g′i(0) = f(αi). Thus, these values are always correct.

2. Each honest Pj receives values (Q̂(α1), . . . , Q̂(αn)). Now, since n−t of these values are sent by
honest parties, it follows that this is a vector that is of distance at most t from the codeword
(Q(α1), . . . , Q(αn)). Thus, the Reed-Solomon correction procedure returns this codeword
to every honest party, implying that the correct polynomial Q(x) is reconstructed, and the
honest party outputs Q(0) = f(αk), as required.

This completes the proof.

6.6 The Fmult
V SS Functionality for Sharing a Product of Shares

The FmultV SS functionality enables a set of parties who have already shared degree-t polynomials
A(x) and B(x) to obtain shares of a random degree-t polynomial C(x) under the constraint that
C(0) = A(0) · B(0). See Section 6.1 for how this functionality is used in the overall multiplication
protocol. We now formally describe the functionality.
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FUNCTIONALITY 6.13 (Functionality Fmult
V SS for sharing a product of shares)

FmultV SS receives a set of indices I ⊆ [n] and works as follows:

1. The FmultV SS functionality receives an input pair (aj , bj) from every honest party Pj (j /∈ I).
(The dealer P1 also has polynomials A(x), B(x) such that A(αj) = aj and B(αj) = bj , for
every j /∈ I.)

2. FmultV SS computes the unique degree-t polynomials A and B such that A(αj) = aj and
B(αj) = bj for every j /∈ I (if no such A or B exist of degree-t, then FmultV SS behaves
differently as in Footnote 9).

3. If the dealer P1 is honest (1 /∈ I), then:

(a) FmultV SS chooses a random degree-t polynomial C under the constraint that C(0) =
A(0) ·B(0).

(b) Outputs for honest: FmultV SS sends the dealer P1 the polynomial C(x), and for every
j /∈ I it sends C(αj) to Pj .

(c) Outputs for adversary: FmultV SS sends the shares (A(αi), B(αi), C(αi)) to the (ideal)
adversary, for every i ∈ I.

4. If the dealer P1 is corrupted (1 ∈ I), then:

(a) FmultV SS sends (A(x), B(x)) to the (ideal) adversary.

(b) FmultV SS receives a polynomial C as input from the (ideal) adversary.

(c) If either deg(C) > t or C(0) 6= A(0) ·B(0), then FmultV SS resets C(x) = A(0) ·B(0); that
is, the constant polynomial equalling A(0) ·B(0) everywhere.

(d) Outputs for honest: FmultV SS sends C(αj) to Pj , for every j /∈ I.

(There is no more output for the adversary in this case.)

We remark that although the dealing party P1 is supposed to already have A(x), B(x) as part
of its input and each party Pi is also supposed to already have A(αi) and B(αi) as part of its input,
this information is provided as output in order to enable simulation. Specifically, the simulator
needs to know the corrupted parties “correct points” in order to properly simulate the protocol
execution. In order to ensure that the simulator has this information (since the adversary is not
guaranteed to have its correct points as input), it is provided by the functionality. In our use of
FmultV SS in the multiplication protocol, this information is always known to the adversary anyway,
and so there is nothing leaked by having it provided again by the functionality.

As we have mentioned, this functionality is used once the parties already hold shares of a and b
(where a and b are the original shares of the dealer). The aim of the functionality is for them to
now obtain shares of a · b via a degree-t polynomial C such that C(0) = A(0) · B(0) = a · b. We
stress that a and b are not values on the wires, but rather are the shares of the dealing party of
the original values on the wires.

The protocol idea. Let A(x) and B(x) be polynomials such that A(0) = a and B(0) = b;
i.e., A(x) and B(x) are the polynomials used to share a and b. The idea behind the protocol is
for the dealer to first define a sequence of t polynomials D1(x), . . . , Dt(x), all of degree-t, such

that C(x)
def
= A(x) · B(x) −

∑t
`=1 x

` · D`(x) is a random degree-t polynomial with constant term
equalling a · b; recall that since each of A(x) and B(x) are of degree t, the polynomial A(x) ·B(x)
is of degree 2t. We will show below how the dealer can choose D1(x), . . . , Dt(x) such that all the
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coefficients from t+ 1 to 2t in A(x) ·B(x) are canceled out, and the resulting polynomial C(x) is of
degree-t (and random). The dealer then shares the polynomials D1(x), . . . , Dt(x), and each party
locally computes its share of C(x). An important property is that the constant term of C(x) equals
A(0) ·B(0) = a · b for every possible choice of polynomials D1(x), . . . , Dt(x). This is due to the fact
that each D`(x) is multiplied by x` (with ` ≥ 1) and so these do not affect C(0). This guarantees
that even if the dealer is malicious and does not choose the polynomials D1(x), . . . , Dt(x) correctly,
the polynomial C(x) must have the correct constant term (but it will not necessarily be of degree t,
as we explain below).

In more detail, after defining D1(x), . . . , Dt(x), the dealer shares them all using FV SS ; this
ensures that all polynomials are of degree-t and all parties have correct shares. Since each party
already holds a valid share of A(x) and B(x), this implies that each party can locally compute
its share of C(x). Specifically, given A(αj), B(αj) and D1(αj), . . . , Dt(αj), party Pj can simply
compute C(αj) = A(αj) · B(αj) −

∑t
`=1(αj)

` · D`(αj). The crucial properties are that (a) if the
dealer is honest, then all the honest parties hold valid shares of a random degree-t polynomial with
constant term a · b, as required, and (b) if the dealer is malicious, all honest parties are guaranteed
to hold valid shares of a polynomial with constant term a · b (but with no guarantee regarding the
degree). Thus, all that remains is for the parties to verify that the shares that they hold for C(x)
define a degree-t polynomial.

It may be tempting to try to solve this problem by having the dealer share C(x) using FV SS ,
and then having each party check that the share that it received from this FV SS equals the value
C(αj) that it computed from its shares A(αj), B(αj), D1(αj), . . . , Dt(αj). To be precise, denote
by C(αj) the share received from FV SS , and denote by C ′(αj) the share obtained from computing
A(αj) ·B(αj)−

∑t
`=1(αj)

` ·D`(αj). If C ′(αj) 6= C(αj), then like in Protocol 5.6 for VSS, the parties
broadcast complaints. If more than t complaints are broadcast then the honest parties know that
the dealer is corrupted (more than t complaints are needed since the corrupted parties can falsely
complain when the dealer is honest). They can then broadcast their input shares to reconstruct
A(x), B(x) and all define their output shares to be a · b = A(0) ·B(0). Since FV SS guarantees that
the polynomial shared is of degree-t and we already know that the computed polynomial has the
correct constant term, this seems to provide the guarantee that the parties hold shares of a degree-t
polynomial with constant term A(0) ·B(0). However, the assumption that t+ 1 correct shares (as
is guaranteed by viewing at most t complaints) determines that the polynomial computed is of
degree-t, or that the polynomial shared with VSS has constant term A(0) · B(0) is false. This is
due to the fact that it is possible for the dealer to define the polynomials D1(x), . . . , Dt(x) so that
C(x) is a degree 2t polynomial that agrees with some other degree-t polynomial C ′(x) on up to 2t
of the honest parties’ points αj , but for which C ′(0) 6= a · b. A malicious dealer can then share
C ′(x) using FV SS and no honest parties would detect any cheating.11 Observe that at least one
honest party would detect cheating and would complain (because C(x) can only agree with C ′(x)
on 2t of the points, and there are at least 2t + 1 honest parties). However, this is not enough to
act upon because, as described, when the dealer is honest up to t of the parties could present fake
complaints because they are malicious.

11An alternative strategy could be to run the verification strategy of Protocol 5.6 for VSS on the shares C(αj)
that the parties computed in order to verify that {C(αj)}nj=1 define a degree-t polynomial. The problem with this
strategy is that if C(x) is not a degree-t polynomial, then the protocol for FV SS changes the points that the parties
receive so that it is a degree-t polynomial. However, in this process, the constant term of the resulting polynomial
may also change. Thus, there will no longer be any guarantee that the honest parties hold shares of a polynomial
with the correct constant term.
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We solve this problem by having the parties unequivocally verify every complaint to check if it
is legitimate. If the complaint is legitimate, then they just reconstruct the initial shares a and b
and all output the constant share a · b. In contrast, if the complaint is not legitimate, the parties
just ignore it. This guarantees that if no honest parties complain (legitimately), then the degree-t
polynomial C ′(x) shared using FV SS agrees with the computed polynomial C(x) on at least 2t+ 1
points. Since C(x) is of degree at most 2t, this implies that C(x) = C ′(x) and so it is actually of
degree-t, as required.

In order to unequivocally verify complaints, we use the F keval functionality defined in Sec-
tion 6.5 to reconstruct all of the input shares A(αk), B(αk), D1(αk), . . . , Dt(αk) and C ′(αk) of
the complainant. Given all of the these shares, all the parties can locally compute C ′(αk) =
A(αk) · B(αk) −

∑t
`=1(αk)

` · D`(αk) and check if C ′(αk) = C(αk) or not. If equality holds, then
the complaint is false, and is ignored. Otherwise, the complaint is valid (meaning that the dealer
is corrupted), and the parties proceed to publicly reconstruct a · b. This methodology therefore
provides a way to fully verify if a complaint was valid or not. (We remark that the parties are
guaranteed to have valid shares of all the polynomials C ′(x), D1(x), . . . , Dt(x) since they are shared
using FV SS , and also shares of A(x) and B(x) by the assumption on the inputs. Thus, they can
use F keval to obtain all of the values A(αk), B(αk), D1(αk), . . . , Dt(αk), and C ′(αk), as required.)

Observe that if the dealer is honest, then no party can complain legitimately. In addition,
when the dealer is honest and an illegitimate complaint is sent by a corrupted party, then this
complaint is verified using Feval which reveals nothing more than the complainants shares. Since
the complainant in this case is corrupted, and so its share is already known to the adversary, this
reveals no additional information.

Constructing the polynomial C(x). As we have mentioned above, the protocol works by
having the dealer choose t polynomials D1(x), . . . , Dt(x) that are specially designed so that C(x) =
A(x) · B(x)−

∑t
`=1 x

` ·D`(x) is a uniformly distributed polynomial in Pa·b,t, where a = A(0) and
b = B(0). We now show how the dealer chooses these polynomials. The dealer first defines the
polynomial D(x):

D(x)
def
= A(x) ·B(x) = a · b+ d1x+ . . .+ d2tx

2t

(D(x) is of degree 2t since both A(x) and B(x) are of degree-t). Next it defines the polynomials:

Dt(x) = rt,0 + rt,1x+ . . .+ rt,t−1x
t−1 + d2tx

t

Dt−1(x) = rt−1,0 + rt−1,1x+ . . .+ rt−1,t−1x
t−1 + (d2t−1 − rt,t−1) · xt

Dt−2(x) = rt−2,0 + rt−2,1x+ . . .+ rt−2,t−1x
t−1 + (d2t−2 − rt−1,t−1 − rt,t−2) · xt

...

D1(x) = r1,0 + r1,1x+ . . . r1,t−1x
t−1 + (dt+1 − rt,1 − rt−1,2 − . . .− r2,t−1)xt

where all ri,j ∈R F are random values, and the di values are the coefficients from D(x) = A(x) ·
B(x).12 That is, in each polynomial D`(x) all coefficients are random expect for the tth coefficient,
which equals the (t + `)th coefficient of D(x). More exactly, for 1 ≤ ` ≤ t polynomial D`(x) is
defined by:

12The naming convention for the ri,j values is as follows. In the first t−1 coefficients, the first index in every ri,j
value is the index of the polynomial and the second is the place of the coefficient. That is, ri,j is the jth coefficient
of polynomial Di(x). The values for the tth coefficient are used in the other polynomials as well, and are chosen to
cancel out; see below.
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D`(x) = r`,0 + r`,1 · x+ · · ·+ r`,t−1 · xt−1 +

(
dt+` −

t∑
m=`+1

rm,t+`−m

)
· xt

and the polynomial C(x) is computed by:

C(x) = D(x)−
t∑

`=1

x` ·D`(x).

Before proceeding, we show that when the polynomials D1(x), . . . , Dt(x) are chosen in this way,
it holds that C(x) is a degree-t polynomial with constant term A(0) · B(0) = a · b. Specifically,
the coefficients in D(x) for powers greater than t cancel out. For every polynomial D`(x), we have
that: D`(x) = r`,0 + r`,1 · x+ · · ·+ r`,t−1 · xt−1 +R`,t · xt, where

R`,t = dt+` −
t∑

m=`+1

rm,t+`−m. (6.4)

(Observe that the sum of the indices (i, j) of the ri,j values inside the sum is always t+` exactly.) We
now analyze the structure of the polynomial

∑t
`=1 x

` ·D`(x). First, observe that it is a polynomial
of degree 2t with constant term 0 (the constant term is 0 since ` ≥ 1). Next, the coefficient of the
monomial x` is the sum of the coefficients of the `th column in Table 1; in the table, the coefficients
of the polynomial D`(x) are written in the `th row and are shifted ` places to the right since D`(x)
is multiplied by x`.

x x2 x3 . . . xt xt+1 xt+2 . . . x2t−2 x2t−1 x2t

Dt rt,0 rt,1 rt,2 . . . rt,t−2 rt,t−1 Rt,t
Dt−1 . . . rt−1,1 rt−1,2 rt−1,3 . . . rt−1,t−1 Rt−1,t
Dt−2 . . . rt−2,2 rt−2,3 rt−2,4 . . . Rt−2,t

... . .
. ...

...
... . .

.

D3 r3,0 . . . r3,t−3 r3,t−2 r3,t−1 . . .
D2 r2,0 r2,1 . . . r2,t−2 r2,t−1 R2,t

D1 r1,0 r1,1 r1,2 . . . r1,t−1 R1,t

Table 1: Coefficients of the polynomial
∑t

`=1 x
` ·D`(x).

We will now show that for every k = 1, . . . , t the coefficient of the monomial xt+k in the
polynomial

∑t
`=1 x

` ·D`(x) equals dt+k. Now, the sum of the (t+ k)th column of the above table
(for 1 ≤ k ≤ t) is

Rk,t + rk+1,t−1 + rk+2,t−2 + · · ·+ rt,k = Rk,t +

t∑
m=k+1

rm,t+k−m.

Combining this with the definition of Rk,t in Eq. (6.4), we have that all of the ri,j values cancel
out, and the sum of the (t+ k)th column is just dt+k. We conclude that the (t+ k)th coefficient of
C(x) = D(x)−

∑t
`=1 x

` ·D`(x) equals dt+k−dt+k = 0, and thus C(x) is of degree t, as required. The
fact that C(0) = a · b follows immediately from the fact that each D`(x) is multiplied by x` and so
this does not affect the constant term of D(x). Finally, observe that the coefficients of x, x2, . . . , xt

are all random (since for every i = 1, . . . , t the value ri,0 appears only in the coefficient of xi). Thus,
the polynomial C(x) also has random coefficients everywhere except for the constant term.

The protocol. See Protocol 6.14 for a full specification in the (FV SS , F
1
eval, . . . , F

n
eval)-hybrid

model. From here on, we write the Feval-hybrid model to refer to all n functionalities F 1
eval, . . . , F

n
eval.
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PROTOCOL 6.14 (Securely computing Fmult
V SS in the FV SS-Feval-hybrid model)

• Input:

1. The dealer P1 holds two degree-t polynomials A and B.

2. Each party Pi holds a pair of shares ai and bi such that ai = A(αi) and bi = B(αi).

• Common input: A field description F and n distinct non-zero elements α1, . . . , αn ∈ F.

• Aiding ideal functionality initialization: Upon invocation, the trusted party computing the
(fictitiously corruption-aware) functionality FV SS and the corruption-aware functionality Feval

receives the set of corrupted parties I.

• The protocol:

1. Dealing phase:

(a) The dealer P1 defines the degree-2t polynomial D(x) = A(x) · B(x); denote D(x) =
a · b+

∑2t
`=1 d` · x

`.

(b) P1 chooses t2 values {rk,j} uniformly and independently at random from F, where
k = 1, . . . , t, and j = 0, . . . , t− 1.

(c) For every ` = 1, . . . , t, the dealer P1 defines the polynomial D`(x):

D`(x) =

(
t−1∑
m=0

r`,m · xm
)

+

(
d`+t −

t∑
m=`+1

rm,t+`−m

)
· xt.

(d) P1 computes the polynomial:

C(x) = D(x)−
t∑

`=1

x` ·D`(x).

(e) P1 invokes FV SS as dealer with input C(x); each party Pi receives C(αi).

(f) P1 invokes FV SS as dealer with input D`(x) for every ` = 1, . . . , t; each party Pi receives
D`(αi).

2. Verify phase: Each party Pi works as follows:

(a) If any of the C(αi), D`(αi) values equals ⊥ then Pi proceeds to the reject phase (note
that if one honest party received ⊥ then all did).

(b) Otherwise, Pi computes c′i = ai ·bi−
∑t

`=1(αi)
` ·D`(αi). If c′i 6= C(αi) then Pi broadcasts

(complaint, i).

(c) If any party Pk broadcast (complaint, k) then go to the complaint resolution phase.
Otherwise, go to the output stage (and output C(αi)).

3. Complaint resolution phase: Set reject = false. Then, run the following for every
(complaint, k) message:

(a) Run t + 3 invocations of F k
eval: in the first (resp., second) invocation each party Pi

inputs ai (resp., bi), in the third invocation each Pi inputs C(αi), and in the (`+ 3)th
invocation each Pi inputs D`(αi) for ` = 1, . . . , t.

(b) Let A(αk), B(αk), C̃(αk), D̃1(αk), . . . , D̃t(αk) be the respective outputs that all parties
receive from the invocations. Compute C̃′(αk) = A(αk) · B(αk) −

∑t
`=1 αk

` · D̃`(αk).

(We denote these polynomials by C̃, D̃`, . . . since if the dealer is not honest they may
differ from the specified polynomials above.)

(c) If C̃(αk) 6= C̃′(αk), then set reject = true.

If reject = false, then go to the output stage (and output C(αi)). Else, go to the reject phase.

4. Reject phase:

(a) Every party Pi broadcasts the pair (ai, bi). Let ~a = (a1, . . . , an) and ~b = (b1, . . . , bn)
be the broadcast values (where zero is used for any value not broadcast). Then, Pi

computes A′(x) and B′(x) to be the outputs of Reed-Solomon decoding on ~a and ~b,
respectively.

(b) Every party Pi sets C(αi) = A′(0) ·B′(0).

• Output: Every party Pi outputs C(αi).
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We have the following theorem:

Theorem 6.15 Let t < n/3. Then, Protocol 6.14 is t-secure for the FmultV SS functionality in the
(FV SS , Feval)-hybrid model, in the presence of a static malicious adversary.

Proof: We separately prove the security of the protocol when the dealer is honest and when the
dealer is corrupted.

Case 1 – the dealer P1 is honest: The simulator interacts externally with FmultV SS , while inter-
nally simulating the interaction of A with the honest parties and FV SS , Feval in Protocol 6.14. Since
the dealer is honest, in all invocations of FV SS the adversary has no inputs to these invocations and
just receives shares. Moreover, as specified in the FmultV SS functionality, the ideal adversary/simulator
S has no input to FmultV SS and it just receives the correct input shares (A(αi), B(αi)) and the output
shares C(αi) for every i ∈ I. The simulator S simulates the view of the adversary by choos-
ing random degree-t polynomials D2(x), . . . , Dt(x), and then choosing D1(x) randomly under the
constraint that for every i ∈ I it holds that

αi ·D1(αi) = A(αi) ·B(αi)− C(αi)−
t∑

`=2

αi
` ·D`(αi).

This computation yields D1(αi), . . . , Dt(αi) of the correct distribution since

C(x) = D(x)−
t∑

`=1

x` ·D`(x) = A(x) ·B(x)− x ·D1(x)−
t∑

`=2

x` ·D`(x)

implying that

x ·D1(x) = A(x) ·B(x)− C(x)−
t∑

`=2

x` ·D`(x).

As we will see, the polynomials D`(x) chosen by an honest dealer have the same distribution as those
chosen by S (they are random under the constraint that C(αi) = A(αi) ·B(αi)−

∑t
`=1(αi)

` ·D`(αi)
for all i ∈ I). In order to simulate the complaints, observe that no honest party broadcasts a
complaint. Furthermore, for every (complaint, i) value broadcast by a corrupted Pi (i ∈ I), the
complaint resolution phase can easily be simulated since S knows the correct values Ã(αi) = A(αi),
B̃(αi) = B(αi), C̃(αi) = C(αi). Furthermore, for every ` = 1, . . . , t, S uses D̃`(αi) = D`(αi) as
chosen initially in the simulation as the output from F ieval. We now formally describe the simulator.

The simulator S:

1. S internally invokes the adversary A with the auxiliary input z.

2. External interaction with Functionality 6.13 (Step 3c): S externally receives from FmultV SS the
values (A(αi), B(αi), C(αi)) for every i ∈ I. (Recall that the adversary has no input to FmultV SS

in the case that the dealer is honest.)

3. S chooses t− 1 random degree-t polynomials D2(x), . . . , Dt(x).

4. For every i ∈ I, S computes:

D1(αi) = (αi)
−1 ·

(
A(αi) ·B(αi)− C(αi)−

t∑
`=2

(αi)
` ·D`(αi)

)
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5. Internal simulation of Steps 1e and 1f in Protocol 6.14: S simulates the FV SS invocations,
and simulates every corrupted party Pi (for every i ∈ I) internally receiving outputs C(αi),
D1(αi), . . . , Dt(αi) from FV SS in the respective invocations.

6. Internal simulation of Steps 2 and 3 in Protocol 6.14: For every k ∈ I for which A instructs the
corrupted party Pk to broadcast a (complaint, k) message, S simulates the complaint resolution
phase (Step 3 of Protocol 6.14) by internally simulating the t+3 invocations of F keval: For every
i ∈ I, the simulator internally hands the adversary (A(αi), A(αk)), (B(αi), B(αk)), (C(αi), C(αk))
and {(D`(αi), D`(αk))}t`=1 as Pi’s outputs from the respective invocation of F keval.

7. S outputs whatever A outputs, and halts.

We prove that for every for every I ⊆ [n], every z ∈ {0, 1}∗ and all vectors of inputs ~x,{
IDEALFmult

V SS ,S(z),I
(~x)
}
≡
{
HYBRID

FV SS ,Feval

π,A(z),I (~x)
}
.

We begin by showing that the outputs of the honest parties are distributed identically in an
ideal execution with S and in a real execution of the protocol with A (the protocol is actually
run in the (FV SS , Feval)-hybrid model, but we say “real” execution to make for a less cumbersome
description). Then, we show that the view of the adversary is distributed identically, when the
output of the honest parties is given.

The honest parties’ outputs. We analyze the distribution of the output of honest parties. Let
the inputs of the honest parties be shares of the degree-t polynomials A(x) and B(x). Then, in the
ideal model the trusted party chooses a polynomial C(x) that is distributed uniformly at random
in PA(0)·B(0),t, and sends each party Pj the output (A(αj), B(αj), C(αj)).

In contrast, in a protocol execution, the honest dealer chooses D1(x), . . . , Dt(x) and then de-
rives C(x) from D(x) = A(x) · B(x) and the polynomial D1(x), . . . , Dt(x); see Steps 1a to 1d in
Protocol 6.14. It is immediate that the polynomial C computed by the dealer in the protocol is
such that C(0) = A(0) · B(0) and that each honest party Pj outputs C(αj). This is due to the
fact that, since the dealer is honest, all the complaints that are broadcasted are resolved with the
result that C̃(αk) 6= C̃ ′(αk), and so the reject phase is never reached. Thus, the honest parties
output shares of a polynomial C(x) with the correct constant term. It remains to show that C(x)
is of degree-t and is uniformly distributed in PA(0)·B(0),t. In the discussion above, we have already
shown that deg(C) ≤ t, and that every coefficient of C(x) is random, except for the constant term.

We conclude that C(x) as computed by the honest parties is uniformly distributed in PA(0)·B(0),t

and so the distribution over the outputs of the honest parties in a real protocol execution is identical
to their output in an ideal execution.

The adversary’s view. We now show that the view of the adversary is identical in the real
protocol and ideal executions, given the honest parties’ inputs and outputs. Fix the honest parties’
input shares (A(αj), B(αj)) and output shares C(αj) for every j /∈ I. Observe that these values
fully determine the degree-t polynomials A(x), B(x), C(x) since there are more than t points. Now,
the view of the adversary in a real protocol execution is comprised of the shares{

D1(αi)
}
i∈I

, . . . ,
{
Dt(αi)

}
i∈I

,
{
C(αi)

}
i∈I

(6.5)

66



received from the FV SS invocations, and of the messages from the complaint resolution phase. In
the complaint resolution phase, the adversary merely sees some subset of the shares in Eq. (6.5).
This is due to the fact that in this corruption case where the dealer is honest, only corrupted parties
complain. Since C(x) is fixed (since we are conditioning over the input and output of the honest
parties), we have that it suffices for us to show that the D1(αi), . . . , Dt(αi) values are identically
distributed in an ideal execution and in a real protocol execution.

Formally, denote by DS
1 (x), . . . , DS

t (x) the polynomials chosen by S in the simulation, and by
D1(x), . . . , Dt(x) the polynomials chosen by the honest dealer in a protocol execution. Then, it
suffices to prove that{

DS
1 (αi), . . . , D

S
t (αi) | A(x), B(x), C(x)

}
i∈I
≡
{
D1(αi), . . . , Dt(αi) | A(x), B(x), C(x)

}
i∈I

(6.6)

In order to prove this, we show that for every ` = 1, . . . , t,{
DS
` (αi) | A(x), B(x), C(x), DS

`+1(αi), . . . , D
S
t (αi)

}
i∈I

≡
{
D`(αi) | A(x), B(x), C(x), D`+1(αi), . . . , Dt(αi)

}
i∈I

. (6.7)

Combining all of the above (from ` = t downto ` = 1), we derive Eq. (6.6).
We begin by proving Eq. (6.7) for ` > 1, and leave the case of ` = 1 for the end. Let ` ∈

{2, . . . , t}. It is clear that the points {DS
` (αi)}i∈I are uniformly distributed, because the simulator S

chose DS
` (x) uniformly at random, and independently of A(x), B(x), C(x) and DS

`+1(x), . . . , DS
t (x).

In contrast, in the protocol, there seems to be dependence between D`(x) and the polynomials
A(x), B(x), C(x) and D`+1(x), . . . , Dt(x). In order to see that this is not a problem, note that

D`(x) = r`,0 + r`,1 · x+ · · ·+ r`,t−1 · xt−1 +

(
d`+t −

t∑
m=`+1

rm,t+`−m

)
· xt

where the values r`,0, . . . , r`,t−1 are all random and do not appear in any of the polynomials
D`+1(x), . . . , Dt(x), nor of course in A(x) or B(x); see Table 1. Thus, the only dependency is
in the tth coefficient (since the values rm,t+`−m appear in the polynomials D`+1(x), . . . , Dt(x)).
However, by Claim 3.4 it holds that if D`(x) is a degree-t polynomial in which its first t coeffi-
cients are uniformly distributed, then any t points {D`(αi)}i∈I are uniformly distributed. Finally,
regarding the polynomial C(x) observe that the mth coefficient of C(x), for 1 ≤ m ≤ t in the real
protocol includes the random value r1,m−1 (that appears in no other polynomials; see Table 1), and
the constant term is always A(0) · B(0). Since r1,m−1 are random and appear only in D1(x), this
implies that D`(x) is independent of C(x). This completes the proof of Eq. (6.7) for ` > 1.

It remains now to prove Eq. (6.7) for the case ` = 1; i.e., to show that the points {DS
1 (αi)}i∈I

and {D1(αi)}i∈I are identically distributed, conditioned on A(x), B(x), C(x) and all the points
{D2(αi), . . . , Dt(αi)}i∈I . Observe that the polynomial D1(x) chosen by the dealer in the real
protocol is fully determined by C(x) and D2(x), . . . , Dt(x). Indeed, an equivalent way of describing
the dealer is for it to choose all D2(x), . . . , Dt(x) as before, to choose C(x) uniformly at random in
Pa·b,t and then to choose D1(x) as follows:

D1(x) = x−1 ·

(
A(x) ·B(x)− C(x)−

t∑
k=2

xk ·Dk(x)

)
. (6.8)
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Thus, once D2(x), . . . , Dt(x), A(x), B(x), C(x) are fixed, the polynomial D1(x) is fully determined.
Likewise, in the simulation, the points {D1(αi)}i∈I are fully determined by {D2(αi), . . . , Dt(αi),
A(αi), B(αi), C(αi)}i∈I . Thus, the actual values {D1(αi)}i∈I are the same in the ideal execution
and real protocol execution, when conditioning as in Eq. (6.7). (Intuitively, the above proof shows
that the distribution over the polynomials in a real execution is identical to choosing a random
polynomial C(x) ∈ PA(0)·B(0),t and random points D2(αi), . . . , Dt(αi), and then choosing ran-
dom polynomials D2(x), . . . , Dt(x) that pass through these points, and determining D1(x) so that
Eq. (6.8) holds.)

We conclude that the view of the corrupted parties in the protocol is identically distributed to
the adversary’s view in the ideal simulation, given the outputs of the honest parties. Combining
this with the fact that the outputs of the honest parties are identically distributed in the protocol
and ideal executions, we conclude that the joint distributions of the adversary’s output and the
honest parties’ outputs in the ideal and real executions are identical.

Case 2 – the dealer is corrupted: In the case that the dealer P1 is corrupted, the ideal
adversary sends a polynomial C(x) to the trusted party computing FmultV SS . If the polynomial is of
degree at most t and has the constant term A(0) ·B(0), then this polynomial determines the output
of the honest parties. Otherwise, the polynomial C(x) determining the output shares of the honest
parties is the constant polynomial equalling A(0) ·B(0) everywhere.

Intuitively, the protocol is secure in this corruption case because any deviation by a corrupted
dealer from the prescribed instructions is unequivocally detected in the verify phase via the Feval
invocations. Observe also that in the (FV SS , Feval)-hybrid model, the adversary receives no mes-
sages from the honest parties except for those sent in the complaint phase. However, the adversary
already knows the results of these complaints in any case. In particular, since the adversary (in the
ideal model) knows A(x) and B(x), and it dealt the polynomials C(x), D1(x), . . . , Dt(x), it knows
exactly where a complaint will be sent and it knows the values revealed by the F keval calls.

We now formally describe the simulator (recall that the ideal adversary receives the polynomials
A(x), B(x) from FmultV SS ; this is used to enable the simulation).

The simulator S:

1. S internally invokes A with the auxiliary input z.

2. External interaction with Functionality 6.13 (Step 4a): S externally receives the polynomials
A(x), B(x) from FmultV SS .

3. Internal simulation of Steps 1e and 1f in Protocol 6.14: S internally receives the polynomials
C(x), D1(x), . . . , Dt(x) that A instructs the corrupted dealer to use in the FV SS invocations.

4. If deg(C) > t or if deg(D`) > t for some 1 ≤ ` ≤ t, then S proceeds to Step 8 below (simulating
reject).

5. Internal simulation of Steps 2 and 3 in Protocol 6.14: For every k /∈ I such that C(αk) 6=
A(αk)·B(αk)−

∑t
`=1(αk)

` ·D`(αk), the simulator S simulates the honest party Pk broadcasting
the message (complaint, k). Then, S internally simulates the “complaint resolution phase”. In
this phase, S uses the polynomials A(x), B(x), C(x) and D1(x), . . . , Dt(x) in order to compute
the values output in the F keval invocations. If there exists such a k /∈ I as above, then S proceeds
to Step 8 below.
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6. For every (complaint, k) message (with k ∈ I) that was internally broadcast by the adversary
A in the name of a corrupted party Pk, the simulator S uses the polynomials A(x), B(x), C(x)
and D1(x), . . . , Dt(x) in order to compute the values output in the F keval invocations, as above.
Then, if there exists an i ∈ I such that C(αk) 6= A(αk)·B(αk)−

∑t
`=1(αk)

` ·D`(αk), simulator
S proceeds to Step 8 below.

7. External interaction with Functionality 6.13 (Step 4b): If S reaches this point, then it exter-
nally sends the polynomial C(x) obtained from A above to FmultV SS . It then skips to Step 9 below.

8. Internal simulation of Step 4 in Protocol 6.14: S simulates a reject, as follows:

(a) S externally sends Ĉ(x) = xt+1 to the trusted party computing FmultV SS (i.e., S sends a

polynomial Ĉ such that deg(Ĉ) > t).
(b) S internally simulates every honest party Pj broadcasting aj = A(αj) and bj = B(αj)

as in the reject phase.

9. S outputs whatever A outputs, and halts.

The simulator obtains A(x), B(x) from FmultV SS and can therefore compute the actual inputs
aj = A(αj) and bj = B(αj) held by all honest parties Pj (j /∈ I). Therefore, the view of the
adversary in the simulation is clearly identical to its view in a real execution. We now show that
the output of the honest parties in the ideal model and in a real protocol execution are identical,
given the view of the corrupted parties/adversary. We have two cases in the ideal model/simulation:

1. Case 1 – S does not simulate reject (S does not run Step 8): This case occurs if

(a) All the polynomials C(x), D1(x), . . . , Dt(x) are of degree-t, and

(b) For every j /∈ I, it holds that C(αj) = A(αj) ·B(αj)−
∑t

`=1(αj)
` ·D`(αj), and

(c) If any corrupt Pi broadcast (complaint, i) then C(αi) = A(αi)·B(αi)−
∑t

`=1(αi)
` ·D`(αi).

The polynomials obtained by S from A in the simulation are the same polynomials used by
A in the FV SS calls in the real protocol. Thus, in this case, in the protocol execution it is
clear that each honest party Pj will output C(αj).

In contrast, in the ideal model, each honest Pj will outputs C(αj) as long as deg(C) ≤ t
and C(0) = A(0) · B(0). Now, let C ′(x) = A(x) · B(x) −

∑t
`=1 x

` ·D`(x). By the definition
of C ′ and the fact that each D`(x) is guaranteed to be of degree-t, we have that C ′(x) is of
degree at most 2t. Furthermore, in this case, we know that for every j /∈ I, it holds that
C(αj) = A(αj) · B(αj) −

∑t
`=1(αj)

` · D`(αj) = C ′(αj). Thus, C(x) = C ′(x) on at least
2t+ 1 points {αj}j /∈I . This implies that C(x) = C ′(x), and in particular C(0) = C ′(0). Since
C ′(0) = A(0)·B(0) irrespective of the choice of the polynomials D1(x), . . . , Dt(x), we conclude
that C(0) = A(0) ·B(0). The fact that C(x) is of degree-t follows from the conditions of this
case. Thus, we conclude that in the ideal model, every honest party Pj also outputs C(αj),
exactly as in a protocol execution.

2. Case 2 – S simulates reject (S runs Step 8): This case occurs if any of (a), (b) or (c) above
do not hold. When this occurs in a protocol execution, all honest parties run the reject phase
in the real execution and output the value A(0) · B(0). Furthermore, in the ideal model, in
any of these cases the simulator S sends the polynomial Ĉ(x) = xt+1 to FmultV SS . Now, upon
input of C(x) with deg(C) > t, functionality FmultV SS sets C(x) = A(0) ·B(0) and so all honest
parties output the value A(0) ·B(0), exactly as in a protocol execution.

This concludes the proof.
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6.7 The Fmult Functionality and its Implementation

We are finally ready to show how to securely compute the product of shared values, in the presence
of malicious adversaries. As we described in the high-level overview in Section 6.1, the multiplication
protocol works by first having each party share subshares of its two input shares (using F subshareV SS ),
and then share the product of the shares (using FmultV SS and the subshares obtained from F subshareV SS ).
Finally, given shares of the product of each party’s two input shares, a sharing of the product of
the input values is obtained via a local computation of a linear function by each party.

The functionality. We begin by defining the multiplication functionality for the case of malicious
adversaries. In the semi-honest setting, the Fmult functionality was defined as follows:

Fmult

(
(fa(α1), fb(α1)), . . . , (fa(αn), fb(αn))

)
=
(
fab(α1), . . . , fab(αn)

)
where fab is a random degree-t polynomial with constant term fa(0) · fb(0) = a·b.

In the malicious setting, we need to define the functionality with more care. First, the corrupted
parties are able to influence the output and determine the shares of the corrupted parties in the
output polynomial. In order to see why this is the case, recall that the multiplication works by
the parties running FmultV SS multiple times (in each invocation a different party plays the dealer) and
then computing a linear function of the subshares obtained. Since each corrupted party can choose
which polynomial C(x) is used in FmultV SS when it is the dealer, the adversary can singlehandedly
determine the shares of the corrupted parties in the final polynomial that hides the product of
the values. This is similar to the problem that arises when running FV SS in parallel, as described
in Section 6.2. In addition, there is no dealer, and the corrupted parties have no control over
the resulting polynomial, beyond choosing their own shares. We model this by defining the Fmult
multiplication functionality as a reactive corruption-aware functionality. See Functionality 6.16 for
a full specification.

FUNCTIONALITY 6.16 (Functionality Fmult for emulating a multiplication gate)

Fmult receives a set of indices I ⊆ [n] and works as follows:

1. The Fmult functionality receives the inputs of the honest parties {(βj , γj)}j /∈I . Let
fa(x), fb(x) be the unique degree-t polynomials determined by the points {(αj , βj)}j /∈I ,
{(αj , γj)}j /∈I , respectively. (If such polynomials do not exist then no security is guaran-
teed; see Footnote 9.)

2. Fmult sends {(fa(αi), fb(αi))}i∈I to the (ideal) adversary.13

3. Fmult receives points {δi}i∈I from the (ideal) adversary (if some δi is not received, then it
is set to equal 0).

4. Fmult chooses a random degree-t polynomial fab(x) under the constraints that:

(a) fab(0) = fa(0) · fb(0), and

(b) For every i ∈ I, fab(αi) = δi.

(such a degree-t polynomial always exists since |I| ≤ t).

5. The functionality Fmult sends the value fab(αj) to every honest party Pj (j 6∈ I).

13As with Feval and Fmult
V SS , the simulator needs to receive the correct shares of the corrupted parties in order to
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Before proceeding, we remark that the Fmult functionality is sufficient for use in circuit em-
ulation. Specifically, the only difference between it and the definition of multiplication in the
semi-honest case is the ability of the adversary to determine its own values. However, since fab is of
degree-t, the ability of A to determine t values of fab reveals nothing about fab(0) = a · b. A formal
proof of this is given in Section 7.

The protocol idea. We are now ready to show how to multiply in the F subshareV SS and FmultV SS hybrid
model. Intuitively, the parties first distribute subshares of their shares and subshares of the product
of their shares, using F subshareV SS and FmultV SS , respectively. Note that FmultV SS assumes that the parties
already hold correct subshares,; this is achieved by first running F subshareV SS on the input shares.
Next, we use the method from [19] to have the parties directly compute shares of the product of the
values on the input wires, from the subshares of the product of their shares. This method is based
on the following observation. Let fa(x) and fb(x) be two degree-t polynomials such that fa(0) = a
and fb(0) = b, and let h(x) = fa(x) · fb(x) = a · b+ h1 · x+ h2 · x2 + . . .+ h2t · x2t. Letting V~α be
the Vandermonde matrix for ~α, and recalling that V~α is invertible, we have that

V~α ·



ab
h1
...
h2t
0
...
0


=


h(α1)
h(α2)

...
h(αn)

 and so



ab
h1
...
h2t
0
...
0


= V −1~α ·


h(α1)
h(α2)

...
h(αn)

 .

Let λ1, . . . , λn be the first row of V −1~α . It follows that

a · b = λ1 · h(α1) + . . .+ λn · h(αn) = λ1 · fa(α1) · fb(α1) + . . .+ λn · fa(αn) · fb(αn).

Thus the parties simply need to compute a linear combination of the products fa(α`) · fb(α`) for
` = 1, . . . , n. Using F subshareV SS and FmultV SS , as described above, the parties first distribute random
shares of the values fa(α`) · fb(α`), for every ` = 1, . . . , n. That is, let C1(x), . . . , Cn(x) be random
degree-t polynomials such that for every ` it holds that C`(0) = fa(α`) · fb(α`); the polynomial
C`(x) is shared using FmultV SS where P` is the dealer (since P`’s input shares are fa(α`) and fb(α`)).
Then, the result of the sharing via FmultV SS is that each party Pi holds C1(αi), . . . , Cn(αi). Thus, each
Pi can locally compute Q(αi) =

∑n
`=1 λ` · C`(αi) and we have that the parties hold shares of the

polynomial Q(x) =
∑n

`=1 λ` · C`(x). By the fact that C`(0) = fa(α`) · fb(α`) for every `, it follows
that

Q(0) =

n∑
`=1

λ` · C`(0) =

n∑
`=1

λ` · fa(α`) · fb(α`) = a · b. (6.9)

Furthermore, since all the C`(x) polynomials are of degree-t, the polynomial Q(x) is also of degree-t,
implying that the parties hold a valid sharing of a · b, as required. Full details of the protocol are
given in Protocol 6.17.

simulate, and so this is also received as output. Since this information is anyway given to the corrupted parties, this
makes no difference to the use of the functionality for secure computation.
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PROTOCOL 6.17 (Computing Fmult in the (F subshare
V SS , Fmult

V SS )-hybrid model)

• Input: Each party Pi holds ai, bi, where ai = fa(αi), bi = fb(αi) for some polynomials
fa(x), fb(x) of degree t, which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote 9.)

• Common input: A field description F and n distinct non-zero elements α1, . . . , αn ∈ F.

• Aiding ideal functionality initialization: Upon invocation, the trusted party comput-
ing the corruption-aware functionalities F subshareV SS and FmultV SS receives the set of corrupted
parties I.

• The protocol:

1. The parties invoke the F subshareV SS functionality with each party Pi using ai as its private
input. Each party Pi receives back shares A1(αi), . . . , An(αi), and a polynomial Ai(x).
(Recall that for every i, the polynomial Ai(x) is of degree-t and Ai(0) = fa(αi) = ai.)

2. The parties invoke the F subshareV SS functionality with each party Pi using bi as its private
input. Each party Pi receives back shares B1(αi), . . . , Bn(αi), and a polynomial Bi(x).

3. For every i = 1, . . . , n, the parties invoke the FmultV SS functionality as follows:

(a) Inputs: In the ith invocation, party Pi plays the dealer. All parties Pj (1 ≤ j ≤ n)
send FmultV SS their shares Ai(αj), Bi(αj).

(b) Outputs: The dealer Pi receives Ci(x) where Ci(x) ∈R PAi(0)·Bi(0),t, and every
party Pj (1 ≤ j ≤ n) receives the value Ci(αj).

4. At this stage, each party Pi holds values C1(αi), . . . , Cn(αi), and locally computes
Q(αi) =

∑n
`=1 λ` · C`(αi), where (λ1, . . . , λn) is the first row of the matrix V −1~α .

• Output: Each party Pi outputs Q(αi).

The correctness of the protocol is based on the above discussion. Intuitively, the protocol is
secure since the invocations of F subshareV SS and FmultV SS provide shares to the parties that reveal nothing.
However, recall that the adversary’s output from F subshareV SS includes the vector of polynomials
~Y (x) = (g1(x), . . . , gn(x)) · HT , where g1, . . . , gn are the polynomials defining the parties’ input
shares, and H is the parity-check matrix of the appropriate Reed-Solomon code; see Section 6.4. In
the context of Protocol 6.17, this means that the adversary also obtains the vectors of polynomials
~YA(x) = (A1(x), . . . , An(x)) ·HT and ~YB(x) = (B1(x), . . . , Bn(x)) ·HT . Thus, we must also show
that these vectors can be generated by the simulator for the adversary. The strategy for doing so
is exactly as in the simulation of Feval in Section 6.5. We prove the following:

Theorem 6.18 Let t < n/3. Then, Protocol 6.17 is t-secure for the Fmult functionality in the
(F subshareV SS , FmultV SS )-hybrid model, in the presence of a static malicious adversary.

Proof: As we have mentioned, in our analysis here we assume that the inputs of the honest parties
all lie on two polynomials of degree t; otherwise (vacuous) security is immediate as described in
Footnote 9. We have already discussed the motivation behind the protocol and therefore proceed
directly to the simulator. The simulator externally interacts with the trusted party computing
Fmult, internally invokes the adversary A, and simulates the honest parties in Protocol 6.17 and
the interaction with the F subshareV SS and FmultV SS functionalities.
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The simulator S:

1. S internally invokes A with the auxiliary input z.

2. External interaction with Functionality 6.16 (Step 2): S externally receives from the trusted
party computing Fmult the values (fa(αi), fb(αi)), for every i ∈ I.

3. Internal simulation of Step 1 in Protocol 6.17: S simulates the first invocation of F subshareV SS ,
as follows:

(a) For every j /∈ I, S chooses a polynomial Aj(x) ∈R P0,t uniformly at random.

(b) Internal simulation of Step 3 in Functionality 6.7: S internally hands A the values
{Aj(αi)}j /∈I;i∈I as if coming from F subshareV SS .

(c) Internal simulation of Step 4 in Functionality 6.7: S internally receives from A a set
of polynomials {Ai(x)}i∈I (i.e., the inputs of the corrupted parties to F subshareV SS ). If any
polynomial is missing, then S sets it to be the constant polynomial 0.

(d) Internal simulation of Step 5b in Functionality 6.7: For every i ∈ I, S performs the
following checks:

i. S checks that Ai(0) = fa(αi), and

ii. S checks that the degree of Ai(x) is t.

If both checks pass, then it sets A′i(x) = Ai(x). Otherwise, S sets A′i(x) to be the
constant polynomial that equals fa(αi) everywhere (recall that S received fa(αi) from
Fmult in Step 2 and so can carry out this check and set the output to be these values if
necessary).

For every j /∈ I, S sets A′j(x) = Aj(x).

(e) S computes the vector of polynomials ~YA(x) that A expects to receive from F subshareV SS (in

a real execution, ~YA(x) = (A1(x), . . . , An(x)) ·HT ). In order to do this, S first computes
the error vector ~eA = (eA1 , . . . , e

A
n ) as follows: for every j /∈ I it sets eAj = 0, and for

every i ∈ I it sets eAi = Ai(0)− f(αi). Then, S chooses a vector of random polynomials
~YA(x) = (Y1(x), . . . , Yn(x)) under the constraints that (a) ~YA(0) = (eA1 , . . . , e

A
n ) · HT ,

and (b) ~YA(αi) = (A1(αi), . . . , An(αi)) ·HT for every i ∈ I.

(f) Internal simulation of Step 6b in Functionality 6.7: S internally hands A its output from
F subshareV SS . Namely, it hands the adversary A the polynomials {A′i(x)}i∈I , the shares

{A′1(αi), . . . , A′n(αi)}i∈I , and the vector of polynomials ~YA(x) computed above.

4. Internal simulation of Step 1 in Protocol 6.17 (cont.): S simulates the second invocation of
F subshareV SS . This simulation is carried out in an identical way using the points {fb(αi)}i∈I .
Let B1(x), . . . , Bn(x) and B′1(x), . . . , B′n(x) be the polynomials used by S in the simula-
tion of this step (and so A receives from S as output from F subshareV SS the values {B′i(x)}i∈I ,
{B′1(αi), . . . , B′n(αi)}i∈I and ~YB(x) computed analogously to above).

At this point S holds a set of degree-t polynomials {A′`(x), B′`(x)}`∈[n], where for every j /∈ I
it holds that A′j(0) = B′j(0) = 0, and for every i ∈ I it holds that A′i(0) = fa(αi) and
B′i(0) = fb(αi).
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5. Internal simulation of Step 3 in Protocol 6.17: For every j 6∈ I, S simulates the FmultV SS

invocation where the honest party Pj is dealer:

(a) S chooses a uniformly distributed polynomial C ′j(x) ∈R P0,t.

(b) S internally hands the adversary A the shares {(A′j(αi), B′j(αi), C ′j(αi))}i∈I , as if coming

from FmultV SS (Step 3c in Functionality 6.13).

6. Internal simulation of Step 3 in Protocol 6.17 (cont.): For every i ∈ I, S simulates the FmultV SS

invocation where the corrupted party Pi is dealer:

(a) Internal simulation of Step 4a of Functionality 6.13: S internally hands the adversary A
the polynomials (A′i(x), B′i(x)) as if coming from FmultV SS .

(b) Internal simulation of Step 4b of Functionality 6.13: S internally receives from A the
input polynomial Ci(x) of the corrupted dealer that A sends to FmultV SS .

i. If the input is a polynomial Ci such that deg(Ci) ≤ t and Ci(0) = A′i(0) · B′i(0) =
fa(αi) · fb(αi), then S sets C ′i(x) = Ci(x).

ii. Otherwise, S sets C ′i(x) to be the constant polynomial equalling fa(αi) · fb(αi) ev-
erywhere.

At this point, S holds polynomials C ′1(x), . . . , C ′n(x), where for every j 6∈ I it holds that
C ′j(0) = 0 and for every i ∈ I it holds that C ′j(0) = fa(αi) · fb(αi).

7. External interaction with Functionality 6.16 (Step 3): For every i ∈ I, the simulator S
computes Q(αi) =

∑n
`=1 λ` · C ′`(αi), where C ′1(x), . . . , C ′n(x) are as determined by S above,

and sends the set {Q(αi)}i∈I to the Fmult functionality (this is the set {δi}i∈I in Step 3 of
Functionality 6.16).

8. S outputs whatever A outputs.

The differences between the simulation with S and A, and a real execution of Protocol 6.17
with A are as follows. First, for every j /∈ I, S chooses the polynomials A′j(x), B′j(x), and C ′j(x) to
have constant terms of 0 instead of constant terms fa(αj), fb(αj), and fa(αj) · fb(αj), respectively.

Second, the vectors ~YA(x) and ~YB(x) are computed by S using the error vector, and not using
the actual polynomials A1(x), . . . , An(x) and B1(x), . . . , Bn(x), as computed by F subshareV SS in the
protocol execution. Third, in an ideal execution the output shares are generated by Fmult choosing a
random degree-t polynomial fab(x) under the constraints that fab(0) = fa(0)·fb(0), and fab(αi) = δi
for every i ∈ I. In contrast, in a real execution, the output shares are derived from the polynomial
Q(x) =

∑n
`=1 λ` · C ′`(x). Apart from these differences, the executions are identical since S is able

to run the checks of the F subshareV SS and FmultV SS functionalities exactly as they are specified.
Our proof proceeds by constructing intermediate fictitious simulators to bridge between the real

and ideal executions.

The fictitious simulator S1. Let S1 be exactly the same as S, except that it receives for input
the values fa(αj), fb(αj), for every j /∈ I. Then, instead of choosing A′j(x) ∈R P0,t, B′j(x) ∈R P0,t,

and C ′j(x) ∈R P0,t, the fictitious simulator S1 chooses A′j(x) ∈R Pfa(αj),t, B′j(x) ∈R Pfb(αj),t, and

C ′j(x) ∈R Pfa(αj)·fb(αj),t. We stress that S1 runs in the ideal model with the same trusted party
running Fmult as S, and the honest parties receive output as specified by Fmult when running with
the ideal adversary S or S1.

74



The ideal executions with S and S1. We begin by showing that the joint output of the
adversary and honest parties is identical in the original simulation by S and the fictitious simulation
by S1. That is,{

IDEALFmult,S(z),I(~x)
}
~x∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALFmult,S1(z′),I(~x)

}
~x∈({0,1}∗)n,z∈{0,1}∗

where z′ contains the same z as A receives, together with the fa(αj), fb(αj) values for every j /∈ I.
In order to see that the above holds, observe that both S and S1 can work when given the points of
the inputs shares {(A′j(αi), B′j(αi))}i∈I,j 6∈I and the outputs shares {C ′j(αi)}i∈I;j /∈I and they don’t
actually need the polynomials themselves. Furthermore, the only difference between S and S1 is
whether these polynomials are chosen with zero constant terms, or with the “correct” ones. That
is, there exists a machine M that receives points {A′j(αi), B′j(αi)i∈I;j /∈I , {C ′j(αi)}i∈I;j /∈I and runs
the simulation strategy with A while interacting with Fmult in an ideal execution, such that:

• If A′j(0) = B′j(0) = C ′j(0) = 0 then the joint output of M and the honest parties in the
ideal execution is exactly that of IDEALFmult,S(z),I(~x); i.e., an ideal execution with the original
simulator.

• If A′j(0) = fa(αj), B
′
j(0) = fb(αj) and C ′j(0) = fa(αj) · fb(αj) then the joint output of M and

the honest parties in the ideal execution is exactly that of IDEALFmult,S1(z′),I(~x); i.e., an ideal
execution with the fictitious simulator S1.

By Claim 3.3, the points {A′j(αi), B′j(αi), C ′j(αi)}i∈I;j /∈I when A′j(0) = B′j(0) = C ′j(0) = 0 are
identically distributed to the points {A′j(αi), B′j(αi), C ′j(αi)}i∈I;j /∈I when A′j(0) = fa(αj), B

′
j(0) =

fb(αj) and C ′j(0) = fa(αj) · fb(αj). Thus, the joint outputs of the adversary and honest parties in
both simulations are identical.

The fictitious simulator S2. Let S2 be exactly the same as S1, except that instead of computing
~YA(x) and ~YB(x) via the error vectors (eA1 , . . . , e

A
n ) and (eB1 , . . . , e

B
n ), it computes them like in a

real execution. Specifically, it uses the actual polynomials A1(x), . . . , An(x); observe that S2 has
these polynomials since it chose them.14 The fact that{

IDEALFmult,S2(z′),I(~x)
}
~x∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALFmult,S1(z′),I(~x)

}
~x∈({0,1}∗)n,z∈{0,1}∗

follows from exactly the same argument as in Feval regarding the construction of the vector of
polynomials ~Y (x), using the special property of the Syndrome function.

An ideal execution with S2 and a real protocol execution. It remains to show that the
joint outputs of the adversary and honest parties are identical in a real protocol execution and in
an ideal execution with S2:{

HYBRID
F subshare
V SS ,Fmult

V SS

π,A(z),I (~x)
}
~x∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALFmult,S2(z′),I(~x)

}
~x∈({0,1}∗)n,z∈{0,1}∗

.

14We remark that the original S could not work in this way since our proof that the simulations by S and S1 are
identical uses the fact that the points {A′j(αi), B

′
j(αi)i∈I;j /∈I , {C′j(αi)}i∈I;j /∈I alone suffice for simulation. This is true

when computing ~YA(x) and ~YB(x) via the error vectors, but not when computing them from the actual polynomials
as S2 does.
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The only difference between these two executions is the way the polynomial defining the output
is chosen. Recall that in an ideal execution the output shares are generated by Fmult choosing a
random degree-t polynomial fab(x) under the constraints that fab(0) = fa(0)·fb(0), and fab(αi) = δi
for every i ∈ I. In contrast, in a real execution, the output shares are derived from the polynomial
Q(x) =

∑n
`=1 λ` · C ′`(x). However, by the way that S2 is defined, we have that each δi = Q(αi) =∑n

`=1 λ` ·C ′`(αi) where all polynomials C ′1(x), . . . , C ′n(x) are chosen with the correct constant terms.
Thus, it remains to show that the following distributions are identical:

• Ideal with S2: Choose a degree-t polynomial fab(x) at random under the constraints that
fab(0) = fa(0) · fb(0), and fab(αi) = Q(αi) =

∑n
`=1 λ` · C ′`(αi) for every i ∈ I.

• Real execution: Compute fab(x) = Q(x) =
∑n

`=1 λ` · C ′`(x).

We stress that in both cases, the polynomials C ′1(x), . . . , C ′n(x) have exactly the same distribution.
Observe that if |I| = t, then the constraints in the ideal execution with S2 fully define fab(x) to

be exactly the same polynomial as in the real execution (this is due to the fact that the constraints
define t+ 1 points on a degree-t polynomial).

If |I| < t, then the polynomial fab(x) in the ideal execution with S2 can be chosen by choosing
t − |I| random values β` ∈R F (for ` /∈ I) and letting fab(x) be the unique polynomial fulfilling
the given constraints and passing through the points (α`, β`). Consider now the polynomial fab(x)
generated in a real execution. Fix any j /∈ I. By the way that Protocol 6.17 works, C ′j(x) is a
random polynomial under the constraint that C ′j(0) = fa(αj) · fb(αj). By Corollary 3.2, given
points {(αi, C ′j(αi))}i∈I and a “secret” s = C ′j(0), it holds that any subset of t − |I| points of
{C ′j(α`)}`/∈I are uniformly distributed (note that none of the points in {C ′j(α`)}`/∈I are seen by
the adversary). This implies that for any t − |I| points α` (with ` /∈ I) the points fab(α`) in the
polynomial fab(x) computed in a real execution are uniformly distributed. This is therefore exactly
the same as choosing t−|I| values β` ∈R F at random (with ` /∈ I), and setting fab to be the unique
polynomial such that fab(α`) = β` in addition to the above constraints. Thus, the polynomials
fab(x) computed in an ideal execution with S2 and in a real execution are identically distributed.

This implies that the HYBRID
F subshare
V SS ,Fmult

V SS

π,A(z),I (~x) and IDEALFmult,S2(z′),I(~x) distributions are identical,

as required.

Securely computing Fmult in the plain model. The following corollary is obtained by com-
bining the following:

• Theorem 5.7 (securely compute FV SS in the plain model),

• Theorem 6.6 (securely compute FAmat in the FV SS-hybrid model),

• Theorem 6.9 (securely compute F subshareV SS in the FAmat-hybrid model),

• Theorem 6.12 (securely compute Feval in the F subshareV SS -hybrid model),

• Theorem 6.15 (securely compute FmultV SS in the FV SS , Feval-hybrid model), and

• Theorem 6.18 (securely compute Fmult in the F subshareV SS , FmultV SS -hybrid model)

and using the modular sequential composition theorem of [8]. We have:

Corollary 6.19 Let t < n/3. Then, there exists a protocol that is t-secure for Fmult functionality
in the plain model with private channels, in the presence of a static malicious adversary.
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More efficient constant-round multiplication [2]. The protocol that we have presented is
very close to that described by BGW. However, it is possible to use these techniques to achieve a
more efficient multiplication protocol. For example, observe that if the parties already hold shares
of all other parties’ shares, then these can be used directly in FmultV SS without running F subshareV SS at
all. Now, the verifiable secret sharing protocol of [7] presented in Section 5 is based on bivariate
polynomials, and so all parties do indeed receive shares of all other parties’ shares. This means that
it is possible to modify Protocol 6.17 so that the parties proceed directly to FmultV SS without using
F subshareV SS at all. Furthermore, the output of each party Pi in FmultV SS is the share C(αi) received via
the FV SS functionality; see Protocol 6.14. Once again, using VSS based on bivariate polynomials,
this means that the parties can actually output the shares of all other parties’ shares as well.
Applying the linear computation of Q(x) to these bivariate shares, we conclude that it is possible
to include the shares of all other parties as additional output from Protocol 6.17. Thus, the next
time that Fmult is called, the parties will again already have the shares of all other parties’ shares
and F subshareV SS need not be called. This is a significant efficiency improvement. (Note that unless
some of the parties behave maliciously, FmultV SS itself requires t+ 1 invocations of FV SS and nothing
else. With this efficiency improvement, we have that the entire cost of Fmult is n ·(t+1) invocations
of FV SS .) See [2] for more details on this and other ways to further utilize the properties of bivariate
secret sharing in order to obtain simpler and much more efficient multiplication protocols.

We remark that there exist protocols that are not constant round and have far more efficient
communication complexity; see [5] for such a protocol. In addition, in the case of t < n/4, there
is a much more efficient solution for constant-round multiplication presented in BGW itself; see
Appendix A for a brief description.

7 Secure Computation in the (FV SS, Fmult)-Hybrid Model

7.1 Securely Computing any Functionality

In this section we show how to t-securely compute any functionality f in the (FV SS , Fmult)-hybrid
model, in the presence of a malicious adversary controlling any t < n/3 parties. We also assume
that all inputs are in a known field F (with |F| > n), and that the parties all have an arithmetic
circuit C over F that computes f . As in the semi-honest case, we assume that f : Fn → Fn and so
the input and output of each party is a single field element.

The protocol here is almost identical to Protocol 4.1 for the semi-honest case; the only difference
is that the verifiable secret-sharing functionality FV SS is used in the input stage, and the Fmult
functionality used for multiplication gates in the computation stage is the corruption-aware one
defined for the case of malicious adversaries (see Section 6.7). See Section 5.4 for the definition
of FV SS (Functionality 5.5), and see Functionality 6.16 for the definition of Fmult. Observe that
the definition of FV SS is such that the effect is identical to that of Shamir secret sharing in the
presence of semi-honest adversaries. Furthermore, the correctness of Fmult ensures that at every
intermediate stage the (honest) parties hold correct shares on the wires of the circuit. In addition,
observe that Fmult reveals nothing to the adversary except for its points on the input wires, which
it already knows. Thus, the adversary learns nothing in the computation stage, and after this stage
the parties all hold correct shares on the circuit-output wires. The protocol is therefore concluded
by having the parties send their shares on the output wires to the appropriate recipients (i.e., if
party Pj is supposed to receive the output on a certain wire, then all parties send their shares on
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that wire to Pj). This step introduces a difficulty that does not arise in the semi-honest setting;
some of the parties may send incorrect values on these wires. Nevertheless, as we have seen, this
can be easily solved since it is guaranteed that more than two-thirds of the shares are correct and
so each party can apply Reed-Solomon decoding to ensure that the final output obtained is correct.
See Protocol 7.1 for full details.

PROTOCOL 7.1 (t-Secure Computation of f in the (Fmult, FV SS)-Hybrid Model)

• Inputs: Each party Pi has an input xi ∈ F.

• Common input: Each party Pi holds an arithmetic circuit C over a field F of size greater
than n, such that for every ~x ∈ Fn it holds that C(~x) = f(~x), where f : Fn → Fn. The
parties also hold a description of F and distinct non-zero values α1, . . . , αn in F.

• Aiding ideal functionality initialization: Upon invocation, the trusted parties comput-
ing the (fictitiously corruption-aware) functionality FV SS and the corruption-aware func-
tionality Fmult receive the set of corrupted parties I.

• The protocol:

1. The input sharing stage:

(a) Each party Pi chooses a polynomial qi(x) uniformly at random from the set
Pxi,t of degree-t polynomials with constant-term xi. Then, Pi invokes the FV SS
functionality as dealer, using qi(x) as its input.

(b) Each party Pi records the values q1(αi), . . . , qn(αi) that it received from the FV SS
functionality invocations. If the output from FV SS is ⊥ for any of these values,
Pi replaces the value with 0.

2. The circuit emulation stage: Let G1, . . . , G` be a predetermined topological or-
dering of the gates of the circuit. For k = 1, . . . , ` the parties work as follows:

• Case 1 – Gk is an addition gate: Let βki and γki be the shares of input wires held
by party Pi. Then, Pi defines its share of the output wire to be δki = βki + γki .

• Case 2 – Gk is a multiplication-by-a-constant gate with constant c: Let βki be the
share of the input wire held by party Pi. Then, Pi defines its share of the output
wire to be δki = c · βki .

• Case 3 – Gk is a multiplication gate: Let βki and γki be the shares of input wires
held by party Pi. Then, Pi sends (βki , γ

k
i ) to the ideal functionality Fmult and

receives back a value δki . Party Pi defines its share of the output wire to be δki .

3. The output reconstruction stage:

(a) Let o1, . . . , on be the output wires, where party Pi’s output is the value on wire
oi. For every i = 1, . . . , n, denote by βi1, . . . , β

i
n the shares that the parties hold

for wire oi. Then, each Pj sends Pi the share βij .

(b) Upon receiving all shares, Pi runs the Reed-Solomon decoding procedure on
the possible corrupted codeword (βi1, . . . , β

i
n) to obtain a codeword (β̃i1, . . . , β̃

i
n).

Then, Pi computes reconstruct~α(β̃i1, . . . , β̃
i
n) and obtains a polynomial gi(x). Fi-

nally, Pi then defines its output to be gi(0).

We now prove that Protocol 7.1 can be used to securely compute any functionality. We stress
that the theorem holds for regular functionalities only, and not for corruption-aware functionalities
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(see Section 6.2). This is because not every corruption-aware functionality can be computed by
a circuit that receives inputs from the parties only, without having the set of identities of the
corrupted parties as auxiliary input (such a circuit is what is needed for Protocol 7.1).

Theorem 7.2 Let f : Fn → Fn be any n-ary functionality, and let t < n/3. Then, Protocol 7.1
(with auxiliary-input C to all parties) is t-secure for f in the (FV SS , Fmult)-hybrid model, in the
presence of a static malicious adversary.

Proof: Intuitively, security here follows from the fact that a corrupted party in Protocol 7.1 cannot
do anything but choose its input as it wishes. In order to see this, observe that the entire protocol
is comprised of FV SS and Fmult calls, and in the latter the adversary receives no information in its
output and has no influence whatsoever on the outputs of the honest parties. Finally, the adversary
cannot affect the outputs of the honest parties due to the Reed-Solomon decoding carried out in the
output stage. The simulator internally invokes A and simulates the honest parties in the protocol
executions and the invocations of FV SS and Fmult functionalities and externally interacts with the
trusted party computing f . We now formally describe the simulator.

The Simulator S:

• S internally invokes A with its auxiliary input z.

• The input sharing stage:

1. For every j 6∈ I, S chooses a uniformly distributed polynomial qj(x) ∈R P0,t (i.e., degree-t
polynomial with constant term 0), and for every i ∈ I, it internally sends the adversary A
the shares qj(αi) as it expects from the FV SS invocations.

2. For every i ∈ I, S internally obtains from A the polynomial qi(x) that it instructs Pi to
send to the FV SS functionality when Pi is the dealer. If deg(qi(x)) ≤ t, S simulates FV SS
sending qi(α`) to P` for every ` ∈ I. Otherwise, S simulates FV SS sending ⊥ to P` for
every ` ∈ I, and resets qi(x) to be a constant polynomial equalling zero everywhere.

3. For every j ∈ {1, . . . , n}, denote the circuit-input wire that receives Pj’s input by wj. Then,
for every i ∈ I, simulator S stores the value qj(αi) as the share of Pi on the wire wj.

• Interaction with the trusted party:

1. S externally sends the trusted party computing f the values {xi = qi(0)}i∈I as the inputs
of the corrupted parties.

2. S receives from the trusted party the outputs {yi}i∈I of the corrupted parties.

• The circuit emulation stage: Let G1, . . . , G` be the gates of the circuit according to their
topological ordering. For k = 1, . . . , `:

1. Case 1 – Gk is an addition gate: Let βki and γki be the shares that S has stored for the input
wires to Gk for the party Pi. Then, for every i ∈ I, S computes the value δki = βki + γki as
the share of Pi for the output wire of Gk and stores this values.

2. Case 2 – Gk is a multiplication-by-a-constant gate with constant c: Let βki be the share
that S has stored for the input wire to Gk for Pi. Then, for every i ∈ I, S computes the
value δki = c · βki as the share of Pi for the output wire of Gk and stores this value.

79



3. Case 3 – Gk is a multiplication gate: S internally simulates the trusted party computing
Fmult for A, as follows. Let βki and γki be the shares that S has stored for the input wires
to Gk for the party Pi. Then, S first hands {(βki , γki )}i∈I to A as if coming from Fmult
(see Step 2 of Functionality 6.16) Next, it obtains from A values {δki }i∈I as the input of
the corrupted parties for the functionality Fmult (See step 3 of Functionality 6.16). If any
δki is not sent, then S sets δki = 0. Finally, S stores δki as the share of Pi for the output
wire of Gk. (Note that the adversary has no output from Fmult beyond receiving its own
(βki , γ

k
i ) values.)

• The output reconstruction stage: For every i ∈ I, simulator S works as follows. Denote
by oi the circuit-output wire that contains the output of party Pi, and let {βi`}`∈I be the shares
that S has stored for wire oi for all corrupted parties P` (` ∈ I). Then, S chooses a random
polynomial q′i(x) under the constraint that q′i(α`) = βi` for all ` ∈ I, and q′i(0) = yi, where yi is
the output of Pi received by S from the trusted party computing f . Finally, for every j /∈ I, S
simulates the honest party Pj sending q′i(αj) to Pi.

A fictitious simulator S ′: We begin by constructing a fictitious simulator S ′ that works exactly
like S except that it receives as input all of the input values ~x = (x1, . . . , xn), and chooses the
polynomials qj(x) ∈R Pxj ,t of the honest parties with the correct constant term instead of with
constant term 0. Apart from this, S ′ works exactly like S and interacts with a trusted party
computing f in the ideal model.

The original and fictitious simulations. We now show that the joint output of the adversary
and honest parties is identical in the original and fictitious simulations. That is,{

IDEALf,S(z),I(~x)
}
~x∈({0,1}∗)n,z∈{0,1}∗

≡
{
IDEALf,S′(~x,z),I(~x)

}
~x∈({0,1}∗)n,z∈{0,1}∗

. (7.1)

This follows immediately from the fact that both S and S ′ can work identically when receiving the
points {qj(αi)}i∈I;j /∈I externally. Furthermore, the only difference between them is if qj(αi) ∈R P0,t

or qj(αi) ∈R Pxj ,t, for every j /∈ I. Thus, there exists a single machine M that runs in the ideal
model with a trusted party computing f , and that receives points {qj(αi)}i∈I;j /∈I and runs the
simulation using these points. Observe that if qj(αi) ∈R P0,t for every j /∈ I, then the joint output
ofM and the honest parties in the ideal execution is exactly the same as in the ideal execution with
S. In contrast, if qj(αi) ∈R Pxj ,t for every j /∈ I, then the joint output ofM and the honest parties
in the ideal execution is exactly the same as in the ideal execution with the fictitious simulator S ′.
By Claim 3.3, these points are identically distributed in both cases, and thus the joint output of
M and the honest parties are identically distributed in both cases; Eq. (7.1) follows.

The fictitious simulation and a protocol execution. We now proceed to show that:{
IDEALf,S′(~x,z),I(~x)

}
~x∈({0,1}∗)n,z∈{0,1}∗

≡
{
HYBRID

FV SS ,Fmult

π,A(z),I (~x)
}
~x∈({0,1}∗)n,z∈{0,1}∗

.

We first claim that the output of the honest parties are identically distributed in the real execution
and the alternative simulation. This follows immediately from the fact that the inputs to FV SS
fully determine the inputs ~x, which in turn fully determine the output of the circuit. In order to
see this, observe that Fmult always sends shares of the product of the input shares (this holds as
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long as the honest parties send “correct” inputs which they always do), and the local computation
in the case of multiplication-by-a-constant and addition gates is trivially correct. Thus, the honest
parties all hold correct shares of the outputs on the circuit-output wires. Finally, by the Reed-
Solomon decoding procedure (with code length n and dimension t+ 1), it is possible to correct up
to n−t

2 > 3t−t
2 = t errors. Thus, the values sent by the corrupted parties in the output stage have

no influence whatsoever on the honest parties’ outputs.
Next, we show that the view of the adversary A in the fictitious simulation with S ′ is identical

to its view in real protocol execution, conditioned on the honest parties’ outputs {yj}j /∈I . It is
immediate that these views are identical up to the output stage. This is because S ′ uses the same
polynomials as the honest parties in the input stage, and in the computation stage A receives no
output at all (except for its values on the input wires for multiplication gates which are already
known). It thus remains to show that the values {q′i(αj)}i∈I;j /∈I received by A from S ′ in the output
stage are identically distributed to the values received by A from the honest parties Pj .

Assume for simplicity that the output wire comes directly from a multiplication gate. Then,
Fmult chooses the polynomial that determines the shares on the wire at random, under the constraint
that it has the correct constant term (which in this case we know is yi, since we have already shown
that the honest parties’ outputs are correct). Since this is exactly how S ′ chooses the value, we
have that the distributions are identical. This concludes the proof.

Putting it all together. We conclude with a corollary that considers the plain model with pri-
vate channels. The corollary is obtained by combining Theorem 5.7 (securely computing FV SS in
the plain model), Corollary 6.19 (securely computing Fmult in the plain model) and Theorem 7.2
(securely computing f in the FV SS , Fmult-hybrid model), and using the modular sequential com-
position theorem of [8]:

Corollary 7.3 For every functionality f : Fn → Fn and t < n/3, there exists a protocol that
is t-secure for f in the plain model with private channels, in the presence of a static malicious
adversary.

7.2 Communication and Round Complexity

We begin by summarizing the communication complexity of the BGW protocol (as presented here)
in the case of malicious adversaries. We consider both the cost in the “optimistic case” where
no party deviates from the protocol specification, and in the “pessimistic case” where some party
does deviate. We remark that since the protocol achieves perfect security, nothing can be gained
by deviating, except possible to make the parties run longer. Thus, in general, one would expect
that the typical cost of running the protocol is the “optimistic cost”. In addition, we separately
count the number of field elements sent over the point-to-point private channels, and the number
of elements sent over a broadcast channel. (The “BGW” row in the table counts the overall cost
of computing a circuit C with |C| multiplication gates.)
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Protocol Optimistic Cost Pessimistic Cost

FV SS :
O(n2) over pt-2-pt O(n2) over pt-2-pt

No broadcast O(n2) broadcast

F subshare
V SS :

O(n3) over pt-2-pt O(n3) over pt-2-pt
No broadcast O(n3) broadcast

Feval:
O(n3) over pt-2-pt O(n3) over pt-2-pt

No broadcast O(n3) broadcast

Fmult
V SS :

O(n3) over pt-2-pt O(n5) over pt-2-pt
No broadcast O(n5) broadcast

Fmult:
O(n4) over pt-2-pt O(n6) over pt-2-pt

No broadcast O(n6) broadcast

BGW:
O(|C| · n4) over pt-2-pt O(|C| · n6) over pt-2-pt

No broadcast O(|C| · n6) broadcast

Regarding round complexity, since we use the sequential composition theorem, all calls to func-
tionalities must be sequential. However, in Section 8 we will see that all subprotocols can actually
be run concurrently, and thus in parallel. In this case, we have that all the protocols for computing
FV SS , F subshareV SS , Feval, F

mult
V SS and Fmult have a constant number of rounds. Thus, each level of the

circuit C can be computed in O(1) rounds, and the overall round complexity is linear in the depth
of the circuit C. This establishes the complexity bounds stated in Theorem 1.

8 Adaptive Security, Composition and the Computational Setting

Our proof of the security of the BGW protocol in the semi-honest and malicious cases relates to the
stand-alone model and to the case of static corruptions. In addition, in the information-theoretic
setting, we consider perfectly-secure private channels. In this section, we show that our proof of
security for the limited stand-alone model with static corruptions suffices for obtaining security
in the much more complex settings of composition and adaptive corruptions (where the latter is
for a weaker variant; see below). This is made possible due to the fact that the BGW protocol is
perfectly secure, and not just statistically secure.

Security under composition. In [24, Theorem 3] it was proven that any protocol that computes
a functionality f with perfect security and has a straight-line black-box simulator (as is the case with
all of our simulators), securely computes f under the definition of (static) universal composability [9]
(or equivalently, concurrent general composition [26]). Using the terminology UC-secure to mean
secure under the definition of universal composability, we have the following corollary:

Corollary 8.1 For every functionality f , there exists a protocol for UC-securely computing f in
the presence of static semi-honest adversaries that corrupt up to t < n/2 parties, in the private
channels model. Furthermore, there exists a protocol for UC-securely computing f in the presence of
static malicious adversaries that corrupt up to t < n/3 parties, in the private channels model.

Composition in the computational setting. There are two differences between the information-
theoretic and computational settings. First, in the information-theoretic setting there are ideally
private channels, whereas in the computational setting it is typically only assumed that there are
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authenticated channels. Second, in the information-theoretic setting, the adversary does not nec-
essarily run in polynomial time. Nevertheless, as advocated by [20, Sec. 7.6.1] and adopted in
Definition 2.3, we consider simulators that run in time that is polynomial in the running-time of
the adversary. Thus, if the real adversary runs in polynomial-time, then so does the simulator,
as required for the computational setting. This is also means that it is possible to replace the
ideally private channels with public-key encryption. We state our corollary here for computational
security for the most general setting of UC-security (although an analogous corollary can of course
be obtained for the more restricted stand-alone model as well). The corollary is obtained by re-
placing the private channels in Corollary 8.1 with UC-secure channels that can be constructed
using semantically-secure public-key encryption [9, 12]. We state the corollary only for the case of
malicious adversaries since the case of semi-honest adversaries has already been proven in [13] for
any t < n.

Corollary 8.2 Assuming the existence of semantically-secure public-key encryption, for every func-
tionality f , there exists a protocol for UC-securely computing f in the presence of static malicious
adversaries that corrupt up to t < n/3 parties, in the authenticated channels model.

We stress that the above protocol requires no common reference string or other setup (beyond
that required for obtaining authenticated channels). This is the first full proof of the existence of
such a UC-secure protocol.

Adaptive security with inefficient simulation. In general, security in the presence of a static
adversary does not imply security in the presence of an adaptive adversary, even for perfectly-secure
protocols [10]. This is true, for example, for the definition of security of adaptive adversaries that
appears in [8]. However, there is an alternative definition of security (for static and adaptive
adversaries) due to [16] that requires a straight-line black-box simulator, and also the existence
of a committal round at which point the transcript of the protocol fully defines all of the parties’
inputs. Furthermore, it was shown in [10] that security in the presence of static adversaries in the
strong sense of [16] does imply security in the presence of adaptive adversaries (also in the strong
sense of [16]), as long as the simulator is allowed to be inefficient (i.e., the simulator is not required
to be of comparable complexity to the adversary; see Definition 2.3). It turns out that all of the
protocols in this paper meet this definition. Thus, applying the result of [10] we can conclude that
all of the protocols in this paper are secure in the presence of adaptive adversaries with inefficient
simulation, under the definition of [16]. Finally, we observe that any protocol that is secure in
the presence of adaptive adversaries under the definition of [16] is also secure in the presence of
adaptive adversaries under the definition of [8]. We therefore obtain security in the presence of
adaptive adversaries with inefficient simulation “for free”. This is summarized as follows.

Corollary 8.3 For every functionality f , there exists a protocol for securely computing f in the
presence of adaptive semi-honest adversaries that corrupt up to t < n/2 parties with, in the pri-
vate channels model (with inefficient simulation). Furthermore, there exists a protocol for securely
computing f in the presence of adaptive malicious adversaries that corrupt up to t < n/3 parties,
in the private channels model (with inefficient simulation).
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A Multiplication in the Case of t < n/4

In this section, we describe how to securely compute shares of the product of shared values, in
the presence of a malicious adversary controlling only t < n/4 parties. This is much simpler than
the case of t < n/3, since in this case there is enough redundancy to correct errors in polynomials
with degree-2t. Due to this, it is similar in spirit to the semi-honest multiplication protocol, using
the simplification of [19]. In this appendix, we provide a full-description of this simpler and more
efficient protocol, without a proof of security. In our presentation here, we assume familiarity with
the material appearing in Sections 6.2, 6.3, 6.4 and 6.7.

High-level description of the protocol. Recall that the multiplication protocol works by
having the parties compute a linear function of the product of their shares. That is, each party
locally multiplies its two shares, and then subshares the result using a degree-t polynomial. The
final result is then a specific linear combination of these subshares. Similarly to the case of t < n/3
we need a mechanism that verifies that the corrupted parties have shared the correct products. In
this case where t < n/4, this can be achieved by directly using the error correction property of
the Reed-Solomon code, since we can correct degree-2t polynomials. The high-level protocol is as
follows:

• Each party holds inputs ai and bi, which are shares of two degree-t polynomials that hide
values a and b, respectively.

• Each party locally computes the product ai · bi. The parties then distribute subshares of
ai · bi to all other parties in a verifiable way using a variant of the F subshareV SS . Observe that the
products are points on degree-2t polynomials. Thus, these shares constitute a Reed-Solomon
code with parameters [4t+ 1, 2t+ 1, 2t+ 1] for which it is possible to correct up to t errors.
There is therefore enough redundancy to correct errors, unlike the case where t < n/3 where t
errors can not necessarily be corrected on a 2t-degree polynomial. This enables us to design a
variant of the F subshareV SS functionality (Section 6.4) that works directly on the products ai · bi.

• At this point, all parties verifiably hold (degree-t) subshares of the product of the input
shares of every party. As shown in [19], shares of the product of the values on the wires can
be obtained by computing a linear function of the subshares obtained in the previous step.

In the following, we show how to slightly modify the F subshareV SS functionality (Section 6.4) to work
with the case of t < n/4 (as we will explain, the protocol actually remains the same). In addition,
we provide a full specification for the protocol that implements the multiplication functionality,
Fmult; i.e., the modifications to Protocol 6.17.

We stress that in the case that t < n/3 it is not possible to run F subshareV SS directly on the products
ai · bi of the input shares since they define a degree-2t polynomial and so at most n−2t−1

2 = t/2
errors can be corrected. Thus, it is necessary to run F subshareV SS separately on ai and bi, and then use
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the Fmult functionality to achieve a sharing of ai · bi. It follows that in this case of t < n/4, there
is no need for the involved FmultV SS functionality, making the protocol simpler and more efficient.

The F subshare
V SS functionality and protocol. We reconsider the definition of the F subshareV SS func-

tionality, and present the necessary modifications for the functionality. Here, we assume that the
inputs of the 3t+ 1 honest parties {(αj , βj)}j 6∈I define a degree-2t polynomial instead of a degree-t
polynomial. The definition of the functionality remains unchanged except for this modification.

We now proceed to show that Protocol 6.8 that implements the F subshareV SS functionality works as
is also for this case, where the inputs are shares of a degree-2t polynomial. In order to see this, recall
that there are two steps in the protocol that may be affected by the change of the inputs and should
be reconsidered: (1) the parity check matrix H, which is the parameter for the FHmat-functionality,
and (2) Step 3, where each party locally computed the error vector using the syndrome vector
(the output of the FHmat), and the error correction procedure of the Reed-Solomon code. These
steps could conceivably be different since in this case the parameters of the Reed-Solomon codes
are different. Regarding the parity-check matrix, the same matrix is used for both cases. Recall
that the case of t < n/3 defines a Reed-Solomon code with parameters [3t + 1, t + 1, 2t + 1], and
the case of t < n/4 defines a code with parameters [4t + 1, 2t + 1, 2t + 1]. Moreover, recall that a
Reed-Solomon code with parameters [n, k, n − k + 1] has a parity-check matrix H ∈ F(n−k)×n. In
the case of n = 3t+ 1 we have that k = t+ 1 and so n− k = 2t. Likewise, in the case of n = 4t+ 1,
we have that k = 2t + 1 and so n − k = 2t. It follows that in both case, the parity-check matrix
H is of dimension 2t× n, and so is the same (of course, for different values of t a different matrix
is used, but what we mean is that the protocol description is exactly the same). Next, in Step 3
of the protocol, each party locally executes the Reed-Solomon error correction procedure given the
syndrome vector that is obtained using FHmat. This procedure depends on the distance of the code.
However, this is 2t+ 1 in both cases and so the protocol description remains exactly the same.

The protocol for Fmult. We now proceed to the specification of the functionality Fmult. As
we have mentioned, this protocol is much simpler than Protocol 6.17 since the parties can run the
F subshareV SS functionality directly on the product of their inputs, instead of first running it on ai, then
on bi, and then using Fmult to obtain a sharing of ai · bi. The protocol is as follows:

PROTOCOL A.1 (Computing Fmult in the F subshare
V SS -hybrid model (with t < n/4))

• Input: Each party Pi holds ai, bi, where ai = fa(αi), bi = fb(αi) for some polynomials
fa(x), fb(x) of degree t, which hide a, b, respectively. (If not all the points lie on a single
degree-t polynomial, then no security guarantees are obtained. See Footnote 9.)

• Common input: A field description F and n distinct non-zero elements α1, . . . , αn ∈ F.

• The protocol:

1. Each party locally computes ci = ai · bi.
2. The parties invoke the F subshareV SS functionality with each party Pi using ci as its private

input. Each party Pi receives back shares C1(αi), . . . , Cn(αi), and a polynomial Ci(x).
(Recall that for every i, the polynomial Ci(x) is of degree-t and Ci(0) = ci = ai · bi =
fa(αi) · fb(αi))

3. Each party locally computes Q(αi) =
∑n
j=1 λj ·Cj(αi), where (λ1, . . . , λn) is the first

row of the matrix V −1~α (see Section 6.7).

• Output: Each party Pi outputs Q(αi).
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