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Abstract

We consider the problem of extracting randomness from sources that are efficiently sam-
plable, in the sense that each output bit of the sampler only depends on some small number d
of the random input bits. As our main result, we construct a deterministic extractor that, given

any d-local source with min-entropy k on n bits, extracts Ω(k2/nd) bits that are 2−nΩ(1)

-close
to uniform, provided d ≤ o(logn) and k ≥ n2/3+γ (for arbitrarily small constants γ > 0).

Using our result, we also improve a result of Viola (FOCS 2010), who proved a 1/2 −
O(1/ logn) statistical distance lower bound for o(log n)-local samplers trying to sample input-
output pairs of an explicit boolean function, assuming the samplers use at most n+n1−δ random
bits for some constant δ > 0. Using a different function, we simultaneously improve the lower

bound to 1/2− 2−nΩ(1)

and eliminate the restriction on the number of random bits.

1 Introduction

Randomness extraction is the following general problem. Given a sample from an imperfect physical
source of randomness, which is modeled as a probability distribution on bit strings of length n,
we wish to apply an efficient deterministic algorithm to the sample to produce an output which is
almost uniformly distributed (and thus is suitable for use by a randomized algorithm). Of course,
to extract randomness from a source, the source needs to “contain” a certain amount of randomness
in the first place. It is well established that the most suitable measure of the amount of randomness
in a source is its min-entropy (a distribution is said to have at least k bits of min-entropy if each
outcome occurs with probability at most 2−k). However, even if the source is known to have at least
n− 1 bits of min-entropy, no algorithm can extract even a single bit that is guaranteed to be close
to uniformly distributed (see, for example, [Vad, Sha11] for proofs of this folklore observation).
To deal with this problem, researchers have constructed seeded extractors (introduced by [NZ96]),
which have access to a short uniformly random seed that is statistically independent of the source
and which acts as a catalyst for the extraction process (see [Sha02, Vad, Sha11] for introductions).

However, there is a sense in which seeded extractors are overkill: They are guaranteed to work
for completely arbitrary sources that have high enough min-entropy. It is reasonable to assume
the physical source of randomness has some limited structure, in which case deterministic (that is,
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seedless) extraction may become viable. There are several classes of sources for which researchers
have constructed good deterministic extractors. One such class is independent sources, where
the n bits are partitioned into blocks which are assumed to be statistically independent of each
other [CG88, DEOR04, BIW06, Bou05, BKS+10, Raz05, Sha08, Rao09a, BRSW06, Rao08, RZ08,
RY11, TKLR09, Li11a]. Other such classes include so-called bit-fixing sources [CFG+85, KZ07,
GRS06, Rao09b], affine sources [GR08a, Bou07, Rao09b, DG10, Yeh11, Li11b], polynomial sources
[DGW09, BSG11], and algebraic varieties [Dvi09].

Trevisan and Vadhan [TV00] considered deterministic extractors for the class of sources that
are samplable by efficient algorithms given uniform random bits. One may initially be concerned
that extracting randomness from such sources is somehow circular or vacuous: We are assuming
uniform random bits are used to sample the source, and our goal then is to “undo” the sampling and
get uniform random bits back. The point is that this class of sources is just a model for physical
sources. This is motivated by the following postulate about the universe: A physical source of
randomness is generated by an efficient process in nature, so it is reasonable to model the source
as being sampled by an efficient algorithm.

Trevisan and Vadhan constructed extractors for the class of sources samplable by general
time-bounded algorithms, but their constructions are conditional on (somewhat non-standard)
complexity-theoretic conjectures. It is common in other areas of research, such as proving lower
bounds and constructing pseudorandom generators, that proving unconditional limits on the power
of time-bounded algorithms is beyond the reach of current techniques. Thus researchers consider
more restricted types of algorithms, such as small-space algorithms and bounded-depth circuits,
which are combinatorially simple enough for us to prove unconditional results. Hence it is nat-
ural to try to construct unconditional deterministic extractors for sources samplable by such re-
stricted algorithms. Kamp et al. [KRVZ11] succeeded in doing so for small-space samplers with
streaming/one-way access to the random input bits.

However, at the time this paper was written, it was an open problem to construct an un-
conditional deterministic extractor for sources samplable by polynomial-size constant-depth cir-
cuits with unbounded fan-in gates. A basic obstacle is that this requires that input-output pairs
of the extractor cannot be sampled by such circuits, and it was not even known how to con-
struct an explicit function with the latter property. For example, although the parity function
is known not to have subexponential-size constant-depth circuits [Yao85, H̊as86], input-output
pairs can be sampled very efficiently: Just take uniformly random bits x1, . . . , xn and output
x1, x1 ⊕x2, x2⊕x3, . . . , xn−1 ⊕xn, xn. In independent and concurrent work, Viola [Vio11] has con-
structed unconditional deterministic extractors for sources samplable by polynomial-size constant-
depth circuits with unbounded fan-in gates, which in particular yields an explicit function whose
input-output pairs cannot be sampled by such circuits (see Section 1.3).

Our goal in this paper is to expand the frontier of unconditional deterministic randomness
extraction for sources with low-complexity samplers. We succeed in constructing extractors for
sources samplable by small-depth circuits with bounded fan-in gates (which corresponds to the
class NC0 when the depth is constant). This is equivalent to requiring that each output bit of
the sampler only depends on a small number of input bits. We call such sources locally samplable.
Even constructing extractors for sources where each output bit depends on at most one input bit
is nontrivial, as such sources are a natural generalization of bit-fixing sources.

As pointed out above, a necessary condition for a function to be an extractor for sources
sampled by a class of algorithms is that input-output pairs of the function cannot be sampled by
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such algorithms. Finding explicit functions with the latter property is tougher than finding explicit
functions that are hard to compute, because if a function is easy to compute, then input-output pairs
can be obtained by just sampling a random input and then computing the corresponding output.
Viola [Vio10] initiated the study of finding explicit boolean functions whose input-output pairs are
hard to sample for low-complexity samplers (specifically, local samplers). Another contribution of
our paper is an application of our extractor result to obtain an improvement of Viola’s result.

1.1 Results

We first give the formal definitions of extractors and locally samplable sources.
A distribution on a finite set S is said to have min-entropy at least k if each element of S occurs

with probability at most 2−k. The statistical distance between two distributions D1 and D2 on a
finite set S is defined to be ‖D1 − D2‖ = maxT⊆S

∣∣PrD1 [T ] − PrD2 [T ]
∣∣. If ‖D1 − D2‖ ≤ ǫ then

we also say D1 and D2 are ǫ-close. If f : S → S′ and D is a distribution on S, then we let f(D)
denote the distribution on S′ obtained by drawing a sample from D and applying f to it. When we
mention a distribution multiple times in an expression, all instantiations refer to a single sample
from the distribution; for example,

(
D, f(D)

)
denotes the distribution obtained by sampling w ∼ D

and outputting the pair
(
w, f(w)

)
. We use Un to denote the uniform distribution on {0, 1}n. If

C is a class of distributions on {0, 1}n, then a function Ext : {0, 1}n → {0, 1}m is called a (k, ǫ)-
extractor for C if for every distribution D ∈ C with min-entropy at least k,

∥∥Ext(D) − Um

∥∥ ≤
ǫ. Informally, when we say an extractor is explicit we mean that a uniform polynomial-time
deterministic algorithm with the desired behavior is exhibited.

We define a d-local sampler to be a function f : {0, 1}r → {0, 1}n such that each output bit
depends on at most d input bits. In other words, for every j ∈ {1, . . . , n} there exists a subset
Ij ⊆ {1, . . . , r} with |Ij | ≤ d and a function fj : {0, 1}|Ij | → {0, 1} such that the jth output bit
of f is obtained by evaluating fj on the input bits indexed by Ij . The output distribution of the
sampler is f(Ur). We say a distribution D on {0, 1}n is a d-local source if there exists a d-local
sampler (with any input length r) whose output distribution is D.

We have three main theorems. Our first main theorem gives an extractor for locally samplable
sources.

Theorem 1. For every constant γ > 0 there exists a constant β > 0 such that there exists an
explicit (k, ǫ)-extractor for the class of d-local sources with output length m = k2/8nd and error

ǫ = 2−nβ
, provided k ≥ n2/3+γ and d ≤ β log n.

Our second main theorem gives an extractor for 1-local sources (which generalize bit-fixing
sources), achieving better min-entropy requirement and better output length than Theorem 1.

Theorem 2. For every constant γ > 0 there exists a constant β > 0 such that there exists an
explicit (k, ǫ)-extractor for the class of 1-local sources with output length m = k − o(k) and error

ǫ = 2−nβ
, provided k ≥ n1/2+γ.

Our third main theorem concerns the problem of finding explicit functions whose input-output
pairs are hard to sample, as discussed in the paragraph right before Section 1.1.

Theorem 3. There exists a universal constant β > 0 and an explicit function F : {0, 1}n → {0, 1}

such that for every d-local source D on {0, 1}n+1 with d ≤ β log n,
∥∥D−

(
Un, F (Un)

)∥∥ ≥ 1/2−2−nβ
.
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1.2 Techniques

We now discuss the techniques we use to prove these three theorems. The proof of Theorem 1 has
three steps.

The first step is to construct a certain extractor for 1-local sources (which in particular yields
Theorem 2). To do this, we observe that extractors for so-called low-weight affine sources also work
for 1-local sources. Rao [Rao09b] constructed an extractor for low-weight affine sources. Using Rao’s
extractor off-the-shelf would lead to a weaker version of Theorem 1 with min-entropy requirement
k ≥ n1−γ for some constant γ > 0. To improve the min-entropy requirement, we construct an
improved extractor for low-weight affine sources by building on [Rao09b]. While Rao’s extractor
handles affine sources of min-entropy at least k and weight at most kγ for some constant γ > 0, our
improvement handles sources with weight at most k1−γ for any constant γ > 0. The key ingredient
in our improvement is the strong condenser of Guruswami, Umans, and Vadhan [GUV09]. We
present this step in Section 3 and Section 7.

The second step is to show that extractors for 1-local sources also work for o(log n)-local sources.
To do this, we relate the problem to a concept we call superindependent matchings in bipartite
graphs, and we prove a combinatorial lemma about the existence of such matchings. We present
this step in Section 4.

The third step is to increase the output length of the extractor using the technique of “obtaining
an independent seed” introduced by Gabizon et al. [GRS06] (see also [Sha08]). Combining step 1
and step 2 yields an extractor with output length Ω(k2/nd32d). To increase the output length to
Ω(k2/nd), we adapt the technique from [GRS06]. A key ingredient in our argument is a lemma due
to Vadhan [Vad04], which is a strengthened version of a classic lemma due to Nisan and Zuckerman
[NZ96]. While the result of [GRS06] achieves output length k−o(k) for bit-fixing sources, we lose a
factor of Ω(k/n) in the output length due to the way we use Vadhan’s lemma, and we lose another
factor of Ω(1/d) since conditioning on p bits of the output of a d-local sampler could cause a loss
of pd bits of min-entropy. We present this step in Section 5.

Viola [Vio10] proved a version of Theorem 3 where the statistical distance lower bound is only
1/2 − O(1/ log n), and the d-local sampler is restricted to use at most n + n1−δ random bits for
any constant δ > 0. His function F is what he calls “majority mod p”. Using a different function
F (namely, any bit of the extractor underlying Theorem 1), we simultaneously improve the lower

bound to 1/2 − 2−nΩ(1)
and eliminate the restriction on the number of random bits. Our proof

of Theorem 3 uses ideas similar to Viola’s, but is actually somewhat simpler given the extraction
property of F . In [Vio10], Viola also showed that for symmetric functions F , one cannot hope to
get such a strong lower bound for samplers that are polynomial-size constant-depth circuits. Our
extractor function F is not symmetric. We present the proof of Theorem 3 in Section 6.1

1.3 Concurrent Work

In independent and concurrent work, Viola [Vio11] obtained extractors for d-local sources with
d ≤ no(1) and for sources sampled by polynomial-size constant-depth circuits. The high level idea
behind the extractor is the same as in our work: Show that the given source is close to a convex

1We also mention in passing that Lovett and Viola [LV11] exhibited an explicit distribution on {0, 1}n that cannot
be sampled within statistical distance 1 − 1/nΩ(1) by polynomial-size constant-depth circuits, namely the uniform
distribution over the codewords of any asymptotically good error-correcting code. However, this distribution is not
of the same form as sampling input-output pairs.
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combination of 1-local sources, and use the extractor in [Rao09b]. However, the proofs in [Vio11]
are much more involved than in this paper. For d-local sources with d ≤ no(1), Viola requires min-
entropy k ≥ n3/4+γ (for any constant γ > 0) and achieves output length m = Ω̃(k3/n2d3) and error

ǫ = 2−nΩ(1)
(though the output length can be improved to Ω(k2/nd) using the technique we present

in Section 5 based on [GRS06]). When d ≤ o(log n) he obtains a result similar to our Theorem 1
but with worse output length: He requires min-entropy k ≥ n2/3+γ and achieves output length
m = Ω(k2/nd22d) and error ǫ = 2−nΩ(1)

. For sources sampled by polynomial-size constant-depth
circuits, he requires min-entropy k ≥ n2/3+γ and achieves output length m = Ω(k2/n1+Ω(1)) and
error ǫ = n−ω(1).

1.4 Previous Work on the Power of Locally Computable Functions

There has been a substantial amount of work on whether various cryptographic and complexity-
theoretic objects can be computed locally. Several works [DM04, Lu04, Vad04, AIK08, Zim10,
DT09] have studied the problem of constructing locally computable seeded extractors (that is, the
extractor itself is locally computable, as opposed to our setting where the sampler for the source is
locally computable). A variety of works [CM01, MST06, AIK06, AIK08, IKOS08, App11, ABR11]
have given positive and negative results on the existence of locally computable pseudorandom gener-
ators. Several works [H̊as87, Gol11, AIK06, CEMT09, BQ09] have studied the possibility of locally
computable one-way functions. Goldwasser et al. [GGH+07] gave positive and negative results on
interactive proof systems with locally computable verifiers. Arora et al. [ASW09] show that the ad-
jacency list of certain logarithmic-degree expander graphs can be computed with constant locality,
and they ask whether the same holds for constant-degree expander graphs.

2 Preliminaries

In this paper we work with bipartite graphs G = (L,R,E), where L,R are disjoint finite sets (the
left and right nodes) and E is a set of unordered pairs where one element comes from L and the
other from R. The distance between two nodes is the number of edges on a shortest path between
them.

To every function f : {0, 1}r → {0, 1}n we associate a bipartite graph G = (L,R,E) where
L = {1, . . . , r} × {in}, R = {1, . . . , n} × {out}, and

{
(i, in), (j, out)

}
∈ E if and only if the jth

output bit of f depends on the ith input bit of f (that is, for some setting of all input bits except
the ith, the jth output bit equals the ith input bit or its complement). Note that we include no
unnecessary edges, and the graph is unique. We use Ij × {in} to denote the set of neighbors of
(j, out) and Ji×{out} to denote the set of neighbors of (i, in). Observe that if f(Ur) has min-entropy
at least k, then there are at least k non-isolated nodes in L, and in particular r ≥ k.

We say f is a d-local sampler if each node in R has degree at most d, and we say a distribution
on {0, 1}n is a d-local source if it equals f(Ur) for some d-local sampler f (with any input length
r). We say f is a (d, c)-local sampler if each node in R has degree at most d and each node in L
has degree at most c, and we say a distribution on {0, 1}n is a (d, c)-local source if it equals f(Ur)
for some (d, c)-local sampler f (with any input length r).

Suppose Y is a finite set of indices, (py)y∈Y is a distribution on Y , and for each y ∈ Y , Dy

is a distribution on a finite set S. Then the convex combination
∑

y∈Y pyDy is defined to be the
distribution on S obtained by sampling y according to (py)y∈Y , then outputting a sample from Dy.
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Lemma 1. Suppose Ext : {0, 1}n → {0, 1}m is any function and D =
∑

y∈Y pyDy is a distribution
on {0, 1}n. Then for every ǫ ≥ 0,

∥∥Ext(D)− Um

∥∥ ≤ ǫ+ Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]
.

Proof. First, observe that Ext(D) =
∑

y∈Y py Ext(Dy). Now for every T ⊆ {0, 1}n we have

∣∣PrExt(D)[T ]− PrUm [T ]
∣∣

=
∣∣∣
∑

y∈Y py
(
PrExt(Dy)[T ]− PrUm[T ]

)∣∣∣

≤
∑

y∈Y py
∣∣PrExt(Dy)[T ]− PrUm[T ]

∣∣

≤ ǫ · Pry∼(py)y∈Y

[∣∣PrExt(Dy)[T ]− PrUm[T ]
∣∣ ≤ ǫ

]
+ 1 · Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]

≤ ǫ+ Pry∼(py)y∈Y

[∥∥Ext(Dy)− Um

∥∥ > ǫ
]

which gives the desired bound on
∥∥Ext(D)− Um

∥∥.

Corollary 1. Suppose every distribution in C with min-entropy at least k can be written as a convex
combination

∑
y∈Y pyDy where Pry∼(py)y∈Y

[
Dy is in C′ and has min-entropy at least k′

]
≥ 1 − δ.

Then every (k′, ǫ′)-extractor for C′ is also a (k, ǫ)-extractor for C where ǫ = ǫ′ + δ.

Corollary 2. Suppose every distribution in C with min-entropy at least k is a convex combination
of distributions in C′ with min-entropy at least k′. Then every (k′, ǫ)-extractor for C′ is also a
(k, ǫ)-extractor for C.

Lemma 2. Every d-local source with min-entropy at least k is a convex combination of (d, c)-local
sources with min-entropy at least k − nd/c.

Proof. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n whose output distribution has
min-entropy at least k, and let G = (L,R,E) be the associated bipartite graph. Since |E| ≤ nd,
there are at most nd/c nodes in L with degree greater than c; without loss of generality these nodes
are {r − ℓ+ 1, . . . , r} × {in} for some ℓ ≤ nd/c. For each string y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ →
{0, 1}n as fy(x) = f(x, y) (hardwiring the last ℓ bits to y). Then f(Ur) =

∑
y∈{0,1}ℓ

1
2ℓ
fy(Ur−ℓ).

Moreover, each fy(Ur−ℓ) is a (d, c)-local source with min-entropy at least k − nd/c, since if some
z ∈ {0, 1}n and y∗ ∈ {0, 1}ℓ satisfied Prx∼Ur−ℓ

[
fy∗(x) = z

]
> 1/2k−nd/c then we would have

Prx∼Ur−ℓ,y∼Uℓ

[
f(x, y) = z

]
≥ Pry∼Uℓ

[y = y∗] · Prx∼Ur−ℓ

[
f(x, y∗) = z

]
> 1

2ℓ
· 1
2k−nd/c ≥ 1/2k

contradicting that f(Ur) has min-entropy at least k.

In this paper we also make use of seeded extractors. A function Ext : {0, 1}n×{0, 1}t → {0, 1}m

is called a seeded (k, ǫ)-extractor if for every distribution D on {0, 1}n with min-entropy at least k,∥∥Ext(D,Ut)−Um

∥∥ ≤ ǫ where Ut is independent of D. We say Ext is a strong seeded (k, ǫ)-extractor
if for every distribution D on {0, 1}n with min-entropy at least k,2

Pry∼Ut

[∥∥Ext(D, y)− Um

∥∥ ≤ ǫ
]

≥ 1− ǫ.

2According to this definition, every strong seeded (k, ǫ)-extractor is also a seeded (k, 2ǫ)-extractor.
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We say Ext is linear if for every seed y ∈ {0, 1}t, the function Ext(·, y) : {0, 1}n → {0, 1}m is linear
over F2, where Fq denotes the finite field of size q.

If z ∈ {0, 1}n and J ⊆ {1, . . . , n}, then we let z|J ∈ {0, 1}|J | denote the substring of z indexed
by the coordinates in J . If D is a distribution on {0, 1}n and J ⊆ {1, . . . , n}, then we let D|J
denote the marginal distribution on the coordinates in J .

Finally, all logarithms in this paper are base 2.

3 1-Local Sources

An affine source is a distribution on {0, 1}n which is uniform over an affine subspace (where {0, 1}n

is viewed as a vector space over F2). If the subspace has dimension k then it has size 2k and hence
the source has min-entropy k. The distribution can be sampled by picking x1, . . . , xk ∈ {0, 1}
uniformly at random and outputting z0 + x1z1 + · · ·+ xkzk where z0 ∈ {0, 1}n is a shift vector and
z1, . . . , zk ∈ {0, 1}n are a basis of the associated linear subspace. The source is said to be a weight-c
affine source if there exist basis vectors z1, . . . , zk each of which has Hamming weight at most c.

Observation 1. Every (1, c)-local source is also a weight-c affine source.

Proof. Consider an arbitrary (1, c)-local sampler f : {0, 1}k → {0, 1}n and assume without loss
of generality that there are no isolated nodes on the left side of the associated bipartite graph.
For each i ∈ {1, . . . , k}, let Ji × {out} be the set of neighbors of (i, in), and let 1Ji ∈ {0, 1}n be
the characteristic vector of this set. For each i ∈ {1, . . . , k} we have |Ji| ≤ c and hence 1Ji has
Hamming weight at most c (since f is a (1, c)-local sampler). It is straightforward to verify that
the output distribution of f is sampled by picking x1, . . . , xk ∈ {0, 1} uniformly at random and
outputting f(0k) + x11J1 + · · ·+ xk1Jk . Moreover, the vectors 1Ji are linearly independent.

Rao [Rao09b] (building on [Rao09a]) constructed extractors for low-weight affine sources.

Theorem 4 ([Rao09b]). There exist universal constants C, γ > 0 such that for all k ≥ logC n

there exists an explicit (k, 2−kΩ(1)
)-extractor with output length m = k−o(k) for the class of weight-

kγ affine (and in particular, (1, kγ)-local) sources.

We improve Rao’s result to obtain the following theorem, which we prove in Section 7.

Theorem 5. There exists a universal constant C > 0 such that for every constant γ > 0 and all
k ≥ logC/γ n there exists an explicit (k, 2−kΩ(1)

)-extractor with output length m = k − o(k) for the
class of weight-k1−γ affine (and in particular, (1, k1−γ)-local) sources.

We now explain how Theorem 2 follows from Theorem 5, Lemma 2, and Corollary 2. We first
note the following immediate corollary of Theorem 5.

Corollary 3. For every constant γ > 0 there exists a constant β > 0 such that for all k ≥ n1/2+γ

there exists an explicit (k, 2−nβ
)-extractor with output length m = k − o(k) for the class of weight-

n1/2 affine (and in particular, (1, n1/2)-local) sources.

Lemma 2 implies that every 1-local source with min-entropy at least k ≥ n1/2+γ is a convex
combination of (1, n1/2)-local sources with min-entropy at least k − n1/2 ≥ k − o(k). Theorem 2
then follows from Corollary 2 and Corollary 3.
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Bourgain [Bou07], Yehudayoff [Yeh11], and Li [Li11b] constructed extractors for linear min-
entropy affine sources (of arbitrary weight), achieving better error but worse output length than
Theorem 5.

Theorem 6 ([Bou07]). For every constant δ > 0 there exists an explicit (δn, 2−Ω(n))-extractor
with output length m = Ω(n) for the class of affine (and in particular, 1-local) sources.

Theorem 6 can be used to improve the error in Theorem 1 and Theorem 2 when k ≥ Ω(n) and
d ≤ O(1). We omit the details, so as to avoid having a laundry list of results.

4 d-Local Sources

The following theorem shows that to get extractors for d-local sources, it suffices to construct
extractors for 1-local sources.

Theorem 7. Every (k′, ǫ′)-extractor for (1, 2nd/k)-local sources is also a (k, ǫ)-extractor for d-local
sources, where k′ = k2/4nd32d and ǫ = ǫ′ + e−k′/4.

Assuming k ≥ n2/3+γ (for constant γ > 0) and d ≤ β log n (for small enough constant β > 0)
in Theorem 7, we find that it suffices to have a (k′, ǫ′)-extractor for (1, c)-local sources where
k′ ≥ n1/3+γ and c = 2nd/k ≤ n1/3 ≤ (k′)1−γ . Such an extractor is given by Theorem 5, with error

ǫ′ = 2−nΩ(1)
(and thus ǫ = ǫ′ + e−k′/4 ≤ 2−nΩ(1)

). This already yields a version of Theorem 1 with
output length k′ − o(k′) = Ω(k2/nd32d).

As a corollary to Theorem 7, we also find that if we could construct an explicit extractor for 1-
local sources with min-entropy at least nγ for arbitrarily small constants γ > 0 (with output length
m ≥ 1 and error ǫ ≤ 1/2, say) then we would get explicit extractors for o(log n)-local sources with
min-entropy at least n1/2+γ for arbitrarily small constants γ > 0. This n1/2 min-entropy barrier is
common in extractor constructions.

4.1 Superindependent Matchings

We first prove a combinatorial lemma that is needed for the proof of Theorem 7.

Definition 1. Given a bipartite graph G = (L,R,E), we say a set of edges M ⊆ E is a superinde-
pendent matching if there is no path of length at most two in G from an endpoint of an edge in M
to an endpoint of a different edge in M .

Lemma 3. Suppose G = (L,R,E) is a bipartite graph with no isolated nodes and such that each
node in L has degree at most c and each node in R has degree at most d. Then G has a superinde-
pendent matching of size at least |L|/d2c.

Proof. Let M be a largest superindependent matching in G, and suppose for contradiction that
|M | < |L|/d2c. Note that for each node in R, the number of nodes in L within distance three in
G is at most d

(
1 + (c− 1)(d − 1)

)
≤ d2c. Thus the number of nodes in L within distance three of

the right endpoints of edges in M is at most |M | · d2c < |L|. Hence there exists a node u ∈ L at
distance greater than three from the right endpoint of every edge in M . Since G has no isolated
nodes, there exists a node v ∈ R such that {u, v} ∈ E. Note that there is no path of length at most
two from either u or v to an endpoint of an edge in M , since otherwise a simple case analysis would
show that u is within distance three of the right endpoint of an edge in M . Thus M ∪ {{u, v}} is
a superindependent matching, contradicting the maximality of M .
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4.2 Proof of Theorem 7

Suppose Ext : {0, 1}n → {0, 1}m is a (k′, ǫ′)-extractor for (1, 2nd/k)-local sources. By Corollary 2
and Lemma 2 it suffices to show that Ext is a (k/2, ǫ)-extractor for (d, c)-local sources where
c = 2nd/k. The plan is to show that every (d, c)-local source with min-entropy at least k/2 is a
convex combination of (1, c)-local sources most of which have min-entropy at least k′, and then
apply Corollary 1.

So consider an arbitrary (d, c)-local sampler f : {0, 1}r → {0, 1}n whose output distribution
has min-entropy at least k/2, and let G = (L,R,E) be the associated bipartite graph. If we
obtain G̃ from G by removing any isolated nodes, then G̃ still has at least k/2 nodes on its left
side. Applying Lemma 3 to G̃ tells us that G has a superindependent matching M of size at least
k/(2d2c). Let ℓ = |M |, and without loss of generality assume that the left endpoints of M are
L′ = {1, . . . , ℓ} × {in}. We write inputs to f as (x, y) where x ∈ {0, 1}ℓ and y ∈ {0, 1}r−ℓ. Since
M is superindependent, each node in R is adjacent to at most one node in L′. Thus if we define
fy : {0, 1}ℓ → {0, 1}n as fy(x) = f(x, y) (hardwiring the last r− ℓ input bits to y) then for each y,
fy is a (1, c)-local sampler. Observe that f(Ur) =

∑
y∈{0,1}r−ℓ

1
2r−ℓ fy(Uℓ).

Let Gy = (L′, R,Ey) denote the bipartite graph associated with fy. As implied by the proof of
Observation 1, the min-entropy of fy(Uℓ) is the number of nodes in L′ that are non-isolated in Gy.
Although each node in L′ is non-isolated in G (since M ⊆ E), edges incident to L′ may disappear
when we hardwire y. We claim that with high probability over y, plenty of nodes in L′ are still
non-isolated in Gy and hence fy(Uℓ) has high min-entropy. For i ∈ {1, . . . , ℓ} let (ji, out) ∈ R be
the neighbor of (i, in) in M , and let Iji × {in} be the set of neighbors of (ji, out) in G. Since the
jthi output bit of f depends on the ith input bit, there exists a string wi ∈ {0, 1}|Iji |−1 such that
hardwiring the input bits corresponding to Iji\{i} to wi leaves the edge

{
(i, in), (ji, out)

}
in place,

and in particular ensures that (i, in) is non-isolated. Since M is superindependent, the sets Iji for
i ∈ {1, . . . , ℓ} are pairwise disjoint and in particular, each Iji\{i} ⊆ {ℓ + 1, . . . , r}. We assume
the bits of y are indexed starting at ℓ + 1, so for example y|{ℓ+1} is the first bit of y. By the
disjointness, we find that the events y|Iji\{i} = wi (for i ∈ {1, . . . , ℓ}) are fully independent over

y ∼ Ur−ℓ. Moreover, each of these events occurs with probability at least 1/2d−1 since |wi| ≤ d− 1.
Thus we have

Pry∼Ur−ℓ

[
fy(Uℓ) does not have min-entropy at least k′

]

= Pry∼Ur−ℓ

[∣∣{i ∈ {1, . . . , ℓ} : (i, in) is non-isolated in Gy

}∣∣ < k′
]

≤ Pry∼Ur−ℓ

[∣∣{i ∈ {1, . . . , ℓ} : y|Iji\{i} = wi

}∣∣ < k′
]

≤ e−k/8d2c2d

by a standard Chernoff bound.
To summarize, we have shown that every (d, c)-local source with min-entropy at least k/2 is

a uniform convex combination of (1, c)-local sources, at most e−k/8d2c2d fraction of which do not
have min-entropy at least k′. It now follows from Corollary 1 that Ext is a (k/2, ǫ)-extractor for
(d, c)-local sources. This finishes the proof of Theorem 7.
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5 Increasing the Output Length

Combining the results from Section 3 and Section 4 yields an extractor for d-local sources with
output length Ω(k2/nd32d), provided d ≤ o(log n) and the min-entropy k is at least n2/3+γ . In this
section we show how to improve the output length to Ω(k2/nd), which is a significant improvement
when k ≥ Ω(n) and d is large. We present the general method in Section 5.1, and then we apply
the general method to obtain Theorem 1 in Section 5.2.

5.1 The General Method

We now present our general theorem on increasing the output length of extractors for d-local sources
(Theorem 8 below), which uses the technique of “obtaining an independent seed”. As in [GRS06],
the strategy is to take the output of a deterministic extractor and use part of it to sample a set of
coordinates of the source, which are then plugged into a seeded extractor, using the other part of
the deterministic extractor’s output as the seed. The key property of d-local sources that enables
us to adapt the technique from [GRS06] is that conditioning on any p bits of the source gives a
convex combination of d-local sources that lose at most pd in the min-entropy.

A key ingredient (which was not used in [GRS06]) is a fundamental lemma of Nisan and Zuck-
erman [NZ96], which roughly says that if we sample the coordinates appropriately, then the min-
entropy rate of the marginal distribution on those coordinates is almost as high as the min-entropy
rate of the whole source.3 However, the original Nisan-Zuckerman lemma loses a logarithmic factor
in the min-entropy rate. We use a strengthened version of the lemma, due to Vadhan [Vad04],
which only loses a constant factor.

We use
({1,...,n}

p

)
to denote the set of subsets of {1, . . . , n} of size p.

Definition 2. We say Samp : {0, 1}s →
({1,...,n}

p

)
is a (µ, η)-sampler if for every g : {1, . . . , n} →

[0, 1] with 1
n

∑n
j=1 g(j) ≥ µ it holds that Prσ∼Us

[
1
p

∑
j∈Samp(σ) g(j) < µ/2

]
≤ η.

Lemma 4 ([Vad04]). There exists a universal constant α > 0 such that the following holds.
Suppose Samp : {0, 1}s →

({1,...,n}
p

)
is a

(
k/2n log(4n/k), η

)
-sampler and D is a distribution on

{0, 1}n with min-entropy at least k. Then with probability at least 1 −
√

η + 2−αk over σ ∼ Us it
holds that D|Samp(σ) is

√
η + 2−αk-close to a distribution with min-entropy at least pk/4n.

We also need the following lemma from [GRS06], which we state in a slightly nonstandard way
for convenience when we apply the lemma.

Lemma 5 ([GRS06]). Consider any distribution on {0, 1}s1×{0, 1}s2×{0, 1}s3 which is ǫ′-close to
uniform, and suppose σ is in the support of the marginal distribution on the second coordinate. Then
the marginal distribution on the first and third coordinates, conditioned on the second coordinate
being σ, is (ǫ′2s2+1)-close to uniform.

We now present the general theorem on increasing the output length.

Theorem 8. Consider the construction in Figure 1, and let α be as in Lemma 4. Suppose Ext′ is
a (k′, ǫ′)-extractor for d-local sources, Samp is a

(
k/2n log(4n/k), η

)
-sampler, and SExt is a seeded

(pk/4n, ǫ′′)-extractor. Then Ext is a (k, ǫ)-extractor for d-local sources, where k = k′ + pd and
ǫ = ǫ′(2s+1 + 1) + 2

√
η + 2−αk + ǫ′′.

3Min-entropy rate just means the min-entropy divided by the length of the source.
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Ingredients:
Ext′ : {0, 1}n → {0, 1}m

′

Ext′1 : {0, 1}
n → {0, 1}s is the first s bits of Ext′

Ext′2 : {0, 1}
n → {0, 1}m

′−s is the last m′ − s bits of Ext′

Samp : {0, 1}s →
({1,...,n}

p

)

SExt : {0, 1}p × {0, 1}m
′−s → {0, 1}m

Result:
Ext : {0, 1}n → {0, 1}m defined as Ext(z) = SExt

(
z|Samp(Ext′1(z))

,Ext′2(z)
)

Figure 1: Increasing the output length of an extractor for d-local sources

Proof. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n whose output distribution has
min-entropy at least k, and let G = (L,R,E) be the associated bipartite graph. Our goal is to
show that

∥∥Ext
(
f(Ur)

)
− Um

∥∥ ≤ ǫ.

Let us call σ ∈ {0, 1}s good if f(Ur)|Samp(σ) is
√
η + 2−αk-close to a distribution with min-

entropy at least pk/4n, and bad otherwise. For each σ we let U
(σ)
r be the uniform distribution over

w ∈ {0, 1}r such that Ext′1
(
f(w)

)
= σ.4

Claim 1. For each good σ,
∥∥Ext

(
f(U

(σ)
r )

)
− Um

∥∥ ≤ ǫ′2s+1 +
√

η + 2−αk + ǫ′′.

Assuming Claim 1, we can prove the theorem as follows. Observe that

f(Ur) =
∑

σ∈{0,1}s Prw∼Ur

[
Ext′1

(
f(w)

)
= σ

]
f(U

(σ)
r ).

Then using the shorthand ǫ′′′ = ǫ′2s+1 +
√

η + 2−αk + ǫ′′ we have

∥∥Ext
(
f(Ur)

)
− Um

∥∥ ≤ ǫ′′′ + Prw∼Ur

[∥∥Ext
(
f(U

(σ)
r )

)
− Um

∥∥ > ǫ′′′ where σ = Ext′1
(
f(w)

)]

≤ ǫ′′′ + Prw∼Ur

[
Ext′1

(
f(w)

)
is bad

]

≤ ǫ′′′ + ǫ′ + Prσ∼Us [σ is bad]

≤ ǫ′′′ + ǫ′ +
√

η + 2−αk

= ǫ

where the first line follows by Lemma 1, the second line follows by Claim 1, the third line follows
by

∥∥Ext′1
(
f(Ur)

)
−Us

∥∥ ≤ ǫ′ (since f(Ur) is a d-local source with min-entropy at least k ≥ k′), and
the fourth line follows by Lemma 4.

It remains to prove Claim 1. Consider an arbitrary fixed good σ ∈ {0, 1}s, and without loss of
generality assume the nodes in L adjacent to Samp(σ)×{out} are {r− ℓ+1, . . . , r}×{in} for some
ℓ ≤ pd. For each string y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ → {0, 1}n as fy(x) = f(x, y) (hardwiring
the last ℓ bits to y). Then each fy(Ur−ℓ) is a d-local source with min-entropy at least k−ℓ ≥ k′ (see
the proof of Lemma 2), and this is the key point that enables us to use the technique of [GRS06].
Thus,

∥∥Ext′
(
fy(Ur−ℓ)

)
− Um′

∥∥ ≤ ǫ′. Now consider the joint distribution

(
Ur|{r−ℓ+1,...,r},Ext

′
1

(
f(Ur)

)
,Ext′2

(
f(Ur)

))
.

4Formally, we only consider σ’s in the support of Ext′1
(

f(Ur)
)

.

11



That is, sample (x, y) ∼ Ur and output y along with both parts of Ext′
(
f(x, y)

)
. We have just

argued that conditioned on the first coordinate of this distribution being any particular y ∈ {0, 1}ℓ,
the marginal distribution of the other two coordinates is ǫ′-close to uniform. Thus the entire
distribution is ǫ′-close to uniform. By Lemma 5 (with s1 = ℓ, s2 = s, and s3 = m′ − s), the joint
distribution (

U
(σ)
r |{r−ℓ+1,...,r},Ext

′
2

(
f(U

(σ)
r )

))

is (ǫ′2s+1)-close to the uniform distribution
(
Uℓ, Um′−s

)
where Uℓ and Um′−s are independent. Let us

define f (σ) : {0, 1}ℓ → {0, 1}p by f (σ)(y) = f(x, y)|Samp(σ) for any x ∈ {0, 1}r−ℓ (this value does not
depend on x since nodes in Samp(σ)×{out} are only adjacent to nodes in {r− ℓ+1, . . . , r}×{in}).
Then we have

Ext
(
f(U

(σ)
r )

)
= SExt

(
f (σ)

(
U

(σ)
r |{r−ℓ+1,...,r}

)
,Ext′2

(
f(U

(σ)
r )

))

and thus ∥∥Ext
(
f(U

(σ)
r )

)
− SExt

(
f (σ)(Uℓ), Um′−s

)∥∥ ≤ ǫ′2s+1. (1)

Letting D denote a distribution on {0, 1}p with min-entropy at least pk/4n that f(Ur)|Samp(σ) =

f (σ)(Uℓ) is
√
η + 2−αk-close to (such a D exists since σ is good), we have

∥∥SExt
(
f (σ)(Uℓ), Um′−s

)
− SExt

(
D,Um′−s

)∥∥ ≤
√

η + 2−αk. (2)

Since SExt is a seeded (pk/4n, ǫ′′)-extractor, we have
∥∥SExt

(
D,Um′−s

)
− Um

∥∥ ≤ ǫ′′. (3)

Combining Inequality (1), Inequality (2), and Inequality (3) yields Claim 1. This finishes the proof
of Theorem 8.

5.2 Applying Theorem 8

In order to apply Theorem 8, we need explicit constructions of Ext′, Samp, and SExt. An appro-
priate construction of Samp is given by the following lemma.

Lemma 6 ([NZ96]). There exists an explicit (µ, η)-sampler Samp : {0, 1}s →
({1,...,n}

p

)
with s =

4 log n · log 1
η , provided µp ≥ 64 log 1

η and η < 1/16.

The interesting thing about samplers as defined in Definition 2 is that they produce a set of
fixed size. (Typically, samplers produce either a multiset of fixed size or a set of random size,
and the latter is sufficient for the argument in [GRS06].) Nisan and Zuckerman [NZ96] proved
Lemma 6 by partitioning the n coordinates into p blocks, picking one coordinate from each block in
an O(log 1

η )-wise independent way, and using the concentration bounds of [SSS95, BR94].5 Vadhan
[Vad04] also constructed a sampler that produces a set of fixed size, and with better seed length for
a certain range of parameters. However, his seed length is actually not good enough for our range
of parameters.

As for the seeded extractor SExt, plenty of known constructions are good enough for our
purpose. For example, we can use the following construction, due to Raz, Reingold, and Vadhan.

5Actually, Nisan and Zuckerman proved a version with slightly different constants and where the sampler only
needs to work for boolean functions g, but the proof goes through to yield Lemma 6.
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Theorem 9 ([RRV99]). There exists an explicit seeded (k, ǫ)-extractor SExt : {0, 1}n×{0, 1}t →
{0, 1}m with t = O

(
(log2 n+ log 1

ǫ ) · log k
)
and m = k.

At last, we can prove Theorem 1.

Proof of Theorem 1. Assume k ≥ n2/3+γ and d ≤ β log n for small enough constant β > 0. Then
for some constant β′ > 0 to be specified shortly, define the following parameters.

• ǫ′ = 2−nβ′

• k′ = k/2

• m′ = (k′)2/8nd32d

• p = k/2d

• µ = k/2n log(4n/k)

• η = 2−nβ′/2

• s = 4 log n · log 1
η

• ǫ′′ = 2−n1/4

• m = pk/4n

• t = m′ − s

As shown in the discussion after the statement of Theorem 7, combining Theorem 7 with Theorem 5
yields an explicit (k′, ǫ′)-extractor Ext′ : {0, 1}n → {0, 1}m

′
for d-local sources, provided β′ is small

enough. By Lemma 6 there exists an explicit (µ, η)-sampler Samp : {0, 1}s →
({1,...,n}

p

)
. Since

t ≥ ω
(
(log2 p + log 1

ǫ′′ ) · logm
)
, by Theorem 9 there exists an explicit seeded (m, ǫ′′)-extractor

SExt : {0, 1}p ×{0, 1}t → {0, 1}m. Thus by Theorem 8, Ext is a (k, ǫ)-extractor for d-local sources,

where ǫ = ǫ′(2s+1 + 1) + 2
√

η + 2−αk + ǫ′′ ≤ 2−nβ
provided β is small enough.

6 Improved Lower Bounds for Sampling Input-Output Pairs

For this section, we define a (d, c, k)-local sampler to be a (d, c)-local sampler with at least k non-
isolated nodes on the left side of its associated bipartite graph (that is, it makes nontrivial use of
at least k random bits). We say a distribution on {0, 1}n is a (d, c, k)-local source if it equals f(Ur)
for some (d, c, k)-local sampler f (with any input length r). Note that a (d, c, k)-local source might
not have min-entropy at least k.

Theorem 10. Suppose Ext : {0, 1}n → {0, 1} is a (0, ǫ)-extractor for (d, 8d, n/4)-local sources,
where d < n/8. Then for every d-local source D on {0, 1}n+1 we have

∥∥D −
(
Un,Ext(Un)

)∥∥ ≥

1/2 − ǫ− 2−n/2.
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It might seem suspicious that we are assuming Ext is a (0, ǫ)-extractor. We are not, in fact,
extracting from sources with 0 min-entropy — it is possible to derive a lower bound on the min-
entropy of any (d, 8d, n/4)-local source.6 The point is that for Theorem 10, we do not care about
the min-entropy, only the number of non-isolated input nodes. Before proving Theorem 10, we
show how it implies Theorem 3.

Proof of Theorem 3. In the proof of Theorem 7, we implicitly showed that for all n, k, d, c, ǫ′, every
(k′, ǫ′)-extractor for (1, c)-local sources is also a (k, ǫ)-extractor for (d, c)-local sources where k′ =
k/d2c2d and ǫ = ǫ′ + e−k′/4 (by replacing k/2 with k in the proof). The only property of having
min-entropy at least k we used in that proof was that the sampler must make nontrivial use of at
least k random bits; thus we can conclude that the extractor is a (0, ǫ)-extractor for (d, c, k)-local
sources.

Assume d ≤ β log n for some small enough constant β > 0. Set c = 8d and k = n/4 and
k′ = k/d2c2d = n/32d32d ≥ n1/2. Using γ = 1/2 in Theorem 5, there exists an explicit (k′, ǫ′)-

extractor for (1, c)-local sources with output length 1, where ǫ′ = 2−nΩ(1)
(since k′ ≥ logω(1) n and

(k′)1/2 ≥ c and k′ − o(k′) ≥ 1). By the observation in the previous paragraph, this function is a

(0, ǫ)-extractor for (d, 8d, n/4)-local sources with error ǫ = 2−nΩ(1)
. Theorem 3 follows immediately

from this and Theorem 10.

Proof of Theorem 10. Consider an arbitrary d-local sampler f : {0, 1}r → {0, 1}n+1, and let G =
(L,R,E) be the associated bipartite graph. Since |E| ≤ (n+1)d, there are at most (n+1)/8 nodes
in L with degree greater than 8d. Also, at most d ≤ (n−1)/8 nodes in L are adjacent to (n+1, out).
Without loss of generality, the nodes in L that either have degree greater than 8d or are adjacent
to (n + 1, out) are {r − ℓ + 1, . . . , r} × {in} for some ℓ ≤ (n + 1)/8 + (n − 1)/8 = n/4. For each
string y ∈ {0, 1}ℓ, define fy : {0, 1}r−ℓ → {0, 1}n+1 as fy(x) = f(x, y) (hardwiring the last ℓ bits
to y) and let Gy = (L′, R,Ey) be the associated bipartite graph, where L′ = {1, . . . , r − ℓ} × {in}.
Observe that f(Ur) =

∑
y∈{0,1}ℓ

1
2ℓ
fy(Ur−ℓ). We define the tests

T1 =
{
z ∈ {0, 1}n+1 : ∃x ∈ {0, 1}r−ℓ, y ∈ {0, 1}ℓ such that f(x, y) = z and∣∣{i ∈ {1, . . . , r − ℓ} : (i, in) is non-isolated in Gy

}∣∣ < n/4
}

and
T2 =

{
z ∈ {0, 1}n+1 : Ext(z|{1,...,n}) 6= z|{n+1}

}

(in other words, the support of
(
Un,Ext(Un)

)
is the complement of T2). Finally, we define the test

T = T1 ∪ T2.

Claim 2. Prf(Ur)[T ] ≥ 1/2− ǫ.

Claim 3. Pr(Un,Ext(Un))[T ] ≤ 2−n/2.

Combining the two claims, we have
∣∣Prf(Ur)[T ] − Pr(Un,Ext(Un))[T ]

∣∣ ≥ 1/2 − ǫ − 2−n/2, thus

witnessing that
∥∥f(Ur)−

(
Un,Ext(Un)

)∥∥ ≥ 1/2 − ǫ− 2−n/2.

6Specifically, a combinatorial argument shows that the source must have many bits that are fully independent of
each other and that each have probability ≥ 1/2d for both outcomes 0 and 1. A lower bound on the min-entropy can
be derived from this fact.
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Proof of Claim 2. It suffices to show that for each y ∈ {0, 1}ℓ, Prfy(Ur−ℓ)[T ] ≥ 1/2 − ǫ. If y is such

that
∣∣{i ∈ {1, . . . , r − ℓ} : (i, in) is non-isolated in Gy

}∣∣ < n/4 then of course Prfy(Ur−ℓ)[T1] = 1.

Otherwise, fy(Ur−ℓ) is a (d, 8d, n/4)-source on {0, 1}n+1. Note that (n + 1, out) is isolated in
Gy; we define by ∈ {0, 1} to be the fixed value of the (n + 1)st output bit of fy, and we define
f ′
y : {0, 1}r−ℓ → {0, 1}n to be the first n output bits of fy. Since f

′
y(Ur−ℓ) is a (d, 8d, n/4)-source on

{0, 1}n, we have
∥∥Ext

(
f ′
y(Ur−ℓ)

)
− U1

∥∥ ≤ ǫ and thus Prb∼Ext(f ′
y(Ur−ℓ))[b 6= by] ≥ 1/2 − ǫ. In other

words, Prfy(Ur−ℓ)[T2] ≥ 1/2 − ǫ. This finishes the proof of Claim 2.

Proof of Claim 3. By definition, Pr(Un,Ext(Un))[T2] = 0. Note that |T1| ≤ 2n/2 since each string in
T1 can be described by a string of length at most ℓ + n/4 ≤ n/2, namely an appropriate value of
y along with the bits of x such that the corresponding nodes in L′ are non-isolated in Gy. Since(
Un,Ext(Un)

)
is uniform over a set of size 2n, we get Pr(Un,Ext(Un))[T1] ≤ 2n/2/2n = 2−n/2. This

finishes the proof of Claim 3.

This finishes the proof of Theorem 10.

7 Improved Extractors for Low-Weight Affine Sources

We now describe the proof of Theorem 5. To do this, we need a construction of linear strong seeded
extractors with good seed length, which we present in Section 7.1. Then in Section 7.2 we derive
Theorem 5.

7.1 A Linear Strong Seeded Extractor with Seed Length log n+O(log k)

Our goal in this section is to prove the following theorem.7

Theorem 11. There exists a constant c such that for all k ≥ c log2 n there exists an explicit
linear strong seeded (k, 1/4)-extractor Ext : {0, 1}n × {0, 1}t → {0, 1}m with t = log n+ c log k and
m = k1/4.

It is very important to us that the seed length here has log n and not O(log n). If instead we
use an extractor with c log n in the seed length, then in Theorem 5 we would only be able to get
an extractor for the class of weight-k(1/c)−γ affine sources as opposed to weight-k1−γ affine sources.

We also note that without the linearity property, such an extractor is explicitly constructed and
stated in [GUV09, Theorem 5.12]. We construct such an extractor with the linearity property by
using a construction from [GUV09] and then bootstrapping it with another known construction.
To do this, we first define and construct objects called linear strong condensers.

Definition 3. We say C : {0, 1}n × {0, 1}t → {0, 1}m is a strong k →ǫ k
′ condenser if for every

distribution D on {0, 1}n with min-entropy at least k,

Pry∼Ut

[
C(D, y) is ǫ-close to a distribution with min-entropy at least k′

]
≥ 1− ǫ.

7We note that Theorem 11 can be generalized by setting the parameters appropriately in our argument. For
general error ǫ, we can get seed length log n+ O(log(k/ǫ)), and the output length can be improved to k1−α for any
constant α > 0 at the expense of increasing the lower bound on k. However, we only prove the version we need for
Theorem 5.
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Recall that we say C is linear if for every y ∈ {0, 1}t, the function C(·, y) : {0, 1}n → {0, 1}m is
linear over F2.

Our construction of a linear strong condenser is the same as one of the constructions in [GUV09],
which in turn is based on an idea from [GR08b]. However, we need to argue about its linearity as
well as the parameters, so we state the construction and result of [GUV09] here. Consider a finite
field Fq for some q = 2t. Let ζ be a generator of the multiplicative group F

∗
q. Then the function

C : Fn′

q × Fq → F
m′

q is as follows.

Given f = (f0, . . . , fn′−1) ∈ F
n′

q , we interpret it as a polynomial f : Fq → Fq such that

f : y 7→
∑

0≤i<n′ fiy
i. We now describe C as C : (f, y) 7→

(
f(y), f(ζy), . . . , f(ζm

′−1y)
)
.

Observation 2. For all y ∈ Fq, the function C(·, y) : f 7→ C(f, y) is Fq-linear.

Observation 3. For q = 2t, there is an isomorphism between (Fq,+) and (Ft
2,⊕). Further, this

isomorphism is computable in time polynomial in t.

Thus we can interpret C as a function C : {0, 1}n × {0, 1}t → {0, 1}m where n = n′ · t and
m = m′ · t. Further, C is F2-linear, and it is polynomial time computable since a generator of F∗

q

can be computed in time polynomial in t [Sho88]. The fact that C is a strong condenser follows
from [GUV09, Theorem 7.2].

Theorem 12 ([GUV09]). For every ℓ ≤ n such that 2ℓ is an integer, and for every α, ǫ > 0, the
function C : {0, 1}n × {0, 1}t → {0, 1}m as defined above is a

strong (1 + 1/α)ℓd + log(1/ǫ) →√
3ǫ ℓd− 2 condenser

with t ≤ (1 + 1/α)d and m ≤ (1 + 1/α)ℓd where d =
⌈
α log(4nℓ/ǫ)

⌉
, provided ℓd ≥ log(1/ǫ).

The following important corollary follows by setting parameters correctly in the result. Assume
k ≥ c log2 n for some large constant c > 0, and set the parameters as follows.

• ǫ = 1/28

• α = (log k)/(28 · log n)

• ℓ = k/(28 · log n)

This implies the following.

• d =
⌈
(log k)(logn+log k−log logn+O(1))

28·logn

⌉
= (log k)(logn+log k−log logn)(1+o(1))

28·logn

• t ≤
(
log n+ log k − log log n

)(
1 + (2 log k/ log n)

)
≤ log n+ 5 log k

• m ≤ k
28·logn · (log n+ 5 log k) ≤ k

• ℓd ≥ (k log k)/(216 · log n) ≥ k1/2 + 2

• k ≥ (1 + 1/α)ℓd + log(1/ǫ)

Hence, we now get the following corollary.
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Corollary 4. There exists a constant c such that for all k ≥ c log2 n there exists an explicit linear
strong k →1/8 k1/2 condenser C : {0, 1}n × {0, 1}t → {0, 1}m with t = log n+ 5 log k and m = k.

We now recall that the strong seeded extractors in [Tre01, RRV02] are also linear.

Theorem 13 ([Tre01]). There exists an explicit linear strong seeded (n1/2, 1/8)-extractor Ext :
{0, 1}n × {0, 1}t → {0, 1}m with t = O(log n) and m = n1/4.

Theorem 11 follows from Corollary 4 and Theorem 13.

7.2 Proof of Theorem 5

In this section we prove Theorem 5. As we have said before, Rao [Rao09b] proves the same kind of
theorem except it is weaker in the upper bound on the weight allowed for the affine sources. Our
extractor construction uses the same steps as [Rao09b], except the components used in our con-
struction are tailor-made for our purposes thus helping us achieve better parameters. Throughout
this section, all references to particular theorems in [Rao09b] actually refer to the ECCC version
of the paper (technical report TR08-015). Also, throughout this section we let c be the constant
from Theorem 11.

In order to describe the better extractors, we first recall the following linear error-correcting
code construction (BCH code) [Sud].

Theorem 14. For every d < n there exists an explicit parity check function P : Fn
2 → F

m
2 for a

linear code with distance greater than d, such that m = O(d log n).

We now recall the following claim from [Rao09b, Lemma 6.1].

Claim 4. Let P : Fn
2 → F

m
2 be a parity check function for a linear code with distance greater than

d. Let D be any weight-w affine source with min-entropy at least d/w. Then P (D) is an affine
source with min-entropy at least d/w.

Combining Theorem 14 and Claim 4 (using d = k1−γ/2), we get the following.

Lemma 7. For every constant γ > 0 and all k there exists an explicit linear function P : Fn
2 → F

m
2

with m = O(k1−γ/2 · log n) such that if D is a weight-k1−γ affine source with min-entropy at least
k, then P (D) is an affine source with min-entropy at least kγ/2.

Now let γ and k be as in Theorem 5. Let m0 = O(k1−γ/2 · log n) be the output length from
Lemma 7. Let Ext1 : {0, 1}m0 × {0, 1}t1 → {0, 1}m1 be the linear strong seeded extractor from
Theorem 11 set up to work for min-entropy kγ/4c (which is less than kγ/2 and is at least c log2 m0

assuming k ≥ log10c/γ n). Thus we have t1 = logm0 + (γ/4) log k and m1 = kγ/16c. In Figure 2 we
present the routine Low-Convert from [Rao09b]. The following lemma was proven in [Rao09b,
Lemma 6.3]. We note that for this, the error of Ext1 only needs to be < 1/2.

Definition 4. A distribution D on {0, 1}ℓ×ℓ′ is said to be an affine somewhere random source if
D is an affine source and for some 1 ≤ i ≤ ℓ, the ith row of D is uniformly random.

Lemma 8. For every constant γ > 0, if D is a weight-k1−γ affine source with min-entropy at least
k ≥ log10c/γ n, then LC(D) is an affine somewhere random source of size 2t1 ×m1.
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Low-Convert(D)

Input: x ∈ {0, 1}n

Output: z ∈ {0, 1}2
t1×m1

Subroutines used: P : {0, 1}n → {0, 1}m0 from Lemma 7, and Ext1 : {0, 1}m0 × {0, 1}t1 → {0, 1}m1

from Theorem 11. Here m0 = O(k1−γ/2 · logn), t1 = logm0 + (γ/4) log k, and m1 = kγ/16c.

For 1 ≤ i ≤ 2t1 , the ith row of the output is defined by LC(x)i = Ext1
(
P (x), i

)
.

Figure 2: Low-Convert

Note that the number of rows in the output of LC is 2t1 = m0 ·k
γ/4 = O(k1−γ/4 ·log n) ≤ k1−γ/8.

At this stage, we also point out how Theorem 11’s optimized dependence of the seed length on the
length of the source is crucial for the construction. For the rest of the argument to go through, we
require the number of rows in LC(x) (namely 2t1) to be smaller than k. If we used a linear strong
seeded extractor for which t1 ≥ c′ logm0 then this would force m0 < k1/c

′
. However, our use of

Theorem 14 and Claim 4 requires m0 > w, which would imply that we need w < k1/c
′
. Instead,

using our optimized extractor from Theorem 11, we are able to handle any weight w ≤ k1−γ .
In order to define the next routine, we recall an extractor construction from [RRV02] for a

particular setting of parameters.

Theorem 15 ([RRV02]). There is an explicit linear strong seeded (k, ǫ)-extractor Ext2 : {0, 1}
n×

{0, 1}t → {0, 1}m with t = O(log3(n/ǫ)) and m = k −O(log3(n/ǫ)).

We set up Ext2 to work for min-entropy k − 2t1 · m1 ≥ k − k1−γ/8+γ/16c = k − o(k) and seed

length t2 = m1 and thus we get output length m2 = k − o(k) with error 2−kΩ(1)
. In Figure 3 we

present the routine Affine-Convert from [Rao09b]. The following lemma was proven in [Rao09b,
Theorem 6.5].

Lemma 9. For every constant γ > 0, if D is a weight-k1−γ affine source with min-entropy at least
k ≥ log10c/γ n, then AC(D) is 2−kΩ(1)

-close to a convex combination of affine somewhere random
sources of size 2t1 ×m2.

Lemma 9 says that the output of AC(D) is close to a convex combination of affine somewhere
random sources. Since the length of each row is m2 and the number of rows is 2t1 ≤ k1−γ/8 ≤

m
1−γ/9
2 ≪ m2, we can apply the routine Affine-SRExt from [Rao09b]. The following lemma was

proven in [Rao09b, Theorem 5.1].8

Lemma 10. For every constant α > 0 there exists an explicit function A : {0, 1}k
1−α×k → {0, 1}m

such that if D is an affine somewhere random source of size k1−α×k, then
∥∥A(D)−Um

∥∥ ≤ 2−kΩ(1)

where m = k − o(k).

Theorem 5 follows from Lemma 9 and Lemma 10.
8We note that [Rao09b, Theorem 5.1] discusses affine somewhere random sources of size k0.7 × k. However, it is

straightforward to see that the result just requires the number of rows in the affine somewhere random source to be
polynomially smaller than the length of each row.
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Affine-Convert(D)

Input: x ∈ {0, 1}n

Output: z ∈ {0, 1}2
t1×m2

Subroutines used: LC : {0, 1}n → {0, 1}2
t1×m1 from Lemma 8, and Ext2 : {0, 1}n × {0, 1}t2 →

{0, 1}m2 from Theorem 15. Here t2 = m1 and m2 = k − o(k).

For 1 ≤ i ≤ 2t1 , the ith row of the output is defined by AC(x)i = Ext2
(
x, LC(x)i

)
.

Figure 3: Affine-Convert

8 Open Problems

One open problem is to quantitatively improve our results and those of Viola [Vio11]. This may
require more sophisticated tools for understanding the min-entropy of the output distribution of a
local sampler.

The key new technique introduced in this paper is to show that certain sources are close to
convex combinations of low-weight affine sources, and then apply the extractor of [Rao09b]. This
technique is very powerful; Viola [Vio11] has shown that it already encompasses sources samplable
by polynomial-size constant-depth circuits. What other classes of sources can this technique handle?

In this paper, we have considered samplers where each output bit only depends on a small
number of input bits. What about samplers where each input bit only influences a small number
of output bits?
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