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Abstract. A theorem of Green, Tao, and Ziegler can be stated as fol-
lows: if R is a pseudorandom distribution, and D is a dense distribution of
R, then D can be modeled as a distribution M which is dense in uniform
distribution such that D and M are indistinguishable. The reduction in-
volved in the proof has exponential loss in the distinguishing probability.
Reingold et al give a new proof of the theorem with polynomial loss in
the distinguishing probability. In this paper, we are focus on query com-
plexity for showing dense model, and then give a optimal bound of the
query complexity. We also follow the connection between Impagliazzo’s
Hardcore Theorem and Tao’s Regularity lemma, and obtain a proof of
L2-norm version Hardcore Theorem via Regularity lemma.
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1 Introduction

Green and Tao[GT ] have proved that the primes contains arbitrarily long arith-
metic progression. To prove this theorem, a key result is the following Dense
Model Theorem,

Theorem 1 (informal). Let R be a pseudorandom set of integers and D be a
subset of R with constant density in R. Then there is a set M that has constant
density in the integers and is indistinguishable from D.

Tao and Ziegler[TZ] have proved such a result in board generality. It not only
consider the pseudorandom set of integers, but also consider other domains, like
{0, 1}n. Roughly speaking, they indicates that if R is a pseudorandom distribu-
tion on X, then every δ-dense distribution D in R is indistinguishable from some
distribution which is δ/2-dense in the uniform distribution on X, where X is an
arbitrary finite universal. This result seems applicable for both complexity the-
ory and cryptography. However, the reduction implicit in their has exponential
loss in the distinguishing probability, making it inapplicable.

Reingold, Trevisan, Tulsiani and Vadhan[RTTV ] have introduced the Dense
Model Theorem into complexity-theoretic. Means in that paper, a quantitatively
improved characterization was obtained using an argument based on Nisan’s
proof of the Impagliazzo’s Hardcore Theorem[Imp], i.e., in their proof, the re-
duction has polynomial loss in the distinguishing probability.

It seems that Dense Model Theorem is dual with Hardcore Theorem which
indicates that if f is a δ-hard function, then it is extreme hard in a δ-dense
measure. Trevisan, Tulsiani and Vadhan[TTV ] give a decomposition theorem
that show strong connections between Hardcore Theorem, Dense Model Theorem
and Weak Graph Regularity lemma of Frieze and Kannan[FK].

Similar as Hardcore Theorem, we will consider the query complexity of the
reduction which showing dense model. In this paper, we will provide a differ-
ent reduction to prove Dense Model Theorem, in which has query complex-
ity better than [RTTV ], [TTV ]. Our reduction is inspired by [BHK]’s proof
of Hardcore Theorem. And in further, we will prove that, the query complex-
ity of our reduction has touched the optimal bound with constant factor(in
black-box reduction). The optimal bound is same as the optimal bound in query
complexity of hard-core set constructions[BHK], [KS], [LTW ], and also is same
as the optimal bound in query complexity of reductions which showing hard-
ness amplification[SV ], [Imp]. We also interesting in the connections between
Tao’s[Tao1] arithmetic version of regularity lemma and Hardcore Theorem, and
give a proof for a L2-norm version of Hardcore Theorem.

Tao[Tao1, Tao2, Tao3] has developed series of regularity lemmas. All of them
are structure theorems in different perspectives, i.e, arithmetic-theoretic perspec-
tive, information-theoretic perspective, graph-theoretic perspective, and so on.
In tuition, all of this theorems are relative, and in this viewpoint, both Hardcore
Theorem and Dense Model Theorem are special perspectives of the structure
theorems.



1.1 Dense Model Theorem

Let us first recall some definitions in complexity theory. We have a finite universal
X, for example {0, 1}s, then we will always consider the distributions, measures
on X.

A measure on the set X is a function M : X → [0, 1]. We let |M | =∑
x∈XM(x) denote the absolute size of M and µ(M) = |M |/|X| denote its den-

sity(relative size). The distribution DM induced by M is defined by DM (x) =
M(x)/|M |.

Let S be a subset of X, we always treat it as a measure on X, i.e., S(x)
is equal to 1 when x ∈ S, and equal to 0 otherwise. We use DS to denote
the uniform distribution over S. In particular, we use DX to denote uniform
distribution over X.

We say that a measure M(or a set S) is δ-dense if µ(M) ≥ δ(or µ(S) ≥ δ,
respectively). And we say that a distribution D is δ-dense in a distribution R
if Pr[D = x] ≤ 1

δ Pr[R = x], for all x ∈ X. In particular, D is δ-dense in the
uniform distribution if and only if D is induced by some δ-dense measure.

Let F = {g1, g2, · · · , gk} be a finite collection of bounded functions gi : X →
[0, 1]. Let I = {i1, · · · , iq} be a subset of [k], let gI denote the function such that
gI(x) = (gi1(x), · · · , giq (x)).

We say that a distribution R on X is ε-pseudorandom for F if for every
function f ∈ F we have that∣∣E[f(DX)]− E[f(R)]

∣∣ ≤ ε,
i.e., F can’t distinguish R from uniform distribution.

In the paper, we will always consider the parameters, i.e., ε, δ, q and so on,
are functions of |X|, and we use f = O(g) to denote the quantity bounded by
c · g, where c is a constant.

Definition 1. Let X be a finite universal. We say that a distribution D on X
has (δ, ε,F)-model if for some distribution D1 that is δ-dense in the uniform
distribution, it has ∣∣E[f(D1)]− E[f(D)]

∣∣ ≤ ε,
for all f ∈ F .

Roughly speaking, D has a (δ, ε,F)-model means that D looks like a δ-dense
distribution in the uniform distribution.

Definition 2. Let X be a finite universal. A black-box (q, ε, δ, a)-reduction show-
ing dense model for F is an oracle algorithm Dec(·)(·, ·) : X × {0, 1}a → {0, 1}.
It is required that

(i) black-box: there is a function C such that C(x, gI(x), α) = DecF,I(x, α) for
each I ⊆ [|F|] with |I| = q and α ∈ {0, 1}a;



(ii) showing dense model: for every distribution D on X which doesn’t have
(δ, ε,F)-model, there exists a string α ∈ {0, 1}a and a subset I ⊆ [F ] with
|I| = q such that for every distribution R with D δ-dense in R, the function
f(x) = DecF,I(x, α) distinguishes R and DX , i.e.,∣∣E[f(DX)]− E[f(R)]

∣∣ ≥ cεδ,
where c is a universal constant, for example 0.01.

We call q the query complexity of the reduction.

Remark 1. One may has another definition for the reduction Dec where the non-
uniform advices I and α may depend on R, i.e. they define the reduction Dec
that showing dense model with non-uniform on D and R. In our definition, the
reductions have non-uniform advices which only depend on D.

Dense Model Theorem mainly indicates that the reduction Dec exists. Notice
that the distinguishing probability cεδ can not be much better, i.e., with constant
factor. For example, let S1 ⊆ S2 ⊆ X with |S1| = δ(1− ε)|X|, |S2| = δ|X|, and
let g be the character function for S1. Then DS1

doesn’t have (δ, ε, {g})-model,
and there is no function can distinguish R = δDS1 + (1 − δ)DX\S2

from DX

better than εδ.
In [RTTV ]’s proof for Dense Model Theorem, they provided a reduction Dec

with query complexity q = O(log( 1
εδ ) 1

ε2 ), i.e., a (O(log( 1
εδ ) 1

ε2 ), ε, δ, poly(1/ε, 1/δ))-
reduction which showing dense model for arbitrary finite F .

Inspired by [BHK], we provide a (O(log( 1
δ ) 1
ε2 ), ε, δ, O(log( 1

δ ) 1
ε2 ))-reduction

which showing dense model for arbitrary finite F , and in further, we will prove
that q = O(log( 1

δ ) 1
ε2 ) is optimal, and it’s the same as Hardcore Lemma.

1.2 Tao’s regularity lemma, and a L2-norm version of Hardcore
Theorem

In Tao’s arithmetic perspective of regularity lemma[Tao1], it is studying lies in
some real finite-dimension Hilbert space. Let H be a real Hilbert space, S ⊆ H is
a finite collection of ˝basic structured˝vectors with bounded length, i.e., ‖v‖ ≤ 1
for all v ∈ S.

Then, given f ∈ H, we say that f is (M,K)-structured for some M,K > 0
if it has a decomposition

f =
∑

1≤i≤M

civi

with vi ∈ S and ci ∈ [−K,K] for all 1 ≤ i ≤M . We say that f is ε-pseudorandom
for some ε > 0 if for all v ∈ S, we have |〈f, v〉| ≤ ε.

Remark 2. In (M,K)-structured, we notice that S is correspond to F in Dense
Model Theorem, and M,K are corresponding to query complexity and the non-
uniform advise α respectively.



Tao’s regularity lemma shows that it often has a dichotomy between structure
and pseudorandomness.

Theorem 2. [Tao1] Let H,S be as above. Let f ∈ H be such that ‖f‖ ≤ 1, and
let 0 < ε ≤ 1. Then there exists a decomposition

f = fstr + fpsd

such that fstr is (1/ε2, 1/ε)-structured, fpsd is ε-pseudorandom.

On the other hand, in Hardcore Theorem, it’s always considering the hardness
of functions. In this paper, we consider Boolean Circuits which output 1
or −1. Let f : X → {−1, 1} be a function, and C is a Boolean circuit, the
advantage of C on computing f is defined as

AdvC(f) := E[C(DX)f(DX)] =
∑
x

C(x)f(x)/|X|,

i.e., if C(x) = f(x), it will contribute 1/|X|, and will contribute −1/|X| other-
wise. And we say that Advs(f) ≤ ε if AdvC(f) ≤ ε for every circuit C with size
s.

Let M be a measure on X, we define AdvMC (f) := E[C(DM )f(DM )]. We
call f ε-hard-core on M for size s, if AdvMs (f) ≤ ε. Hardcore Theorem mainly
indicates that, every mildly hard function f has a ε-hard-core. Formally,

Theorem 3 (Hardcore Theorem). [Imp], [BHK], [KS] Let 0 < δ, ε < 1 be
parameters, and let f : X → {−1, 1} be a function with Advs(f) ≤ 1 − 2δ.
Then there is a measure M with µ(M) ≥ cδ so that AdvMs′ (f) ≤ ε, where s′ =
O(sε2/ log(1/δ)) and c is an universal constant.

In our result, we will give a proof for L2-version of Hardcore Theorem via
regularity lemma.

2 Black-Box Construction of Dense Model Distribution
via Bregman Projections

In this section, we will prove the following Dense Model Theorem,

Theorem 4 (Dense Model Theorem). Let X be a finite universe, F a col-
lection of bounded functions f : X → [0, 1]. Let 0 < ε, δ < 1 be parameters, D
a distribution over X. Suppose for every distribution Dδ that is δ-dense in DX

there is a function g ∈ F such that∣∣E[g(Dδ)]− E[g(D)]
∣∣ ≥ ε,

i.e., D doesn’t have (δ, ε,F)-model. Then there are functions g1, . . . , gT ∈ F ,
and parameters a1, · · · , aT ∈ {−1,+1} with T = O((1/ε2) · log(1/δ)), and t0 ∈
[−T, T ] ∩ Z such that if we define h : X → {0, 1} by

h(x) = 1⇔
∑
i

aigi(x) ≥ t0,



then for every distribution R with D δ-dense in R,∣∣E[h(DX)]− E[h(R)]
∣∣ ≥ Ω(εδ).

Remark 3. There are two parts of non-uniform advises and one part of oracle
advices above, i.e., the parameters (ai)i∈[T ] and the threshold t0 are the non-
uniform advises, and (gi)i∈[T ] are the oracle advices respectively.

We can encode the non-uniform advice by a string α ∈ {0, 1}2T , thus we
have a (O(log( 1

δ ) 1
ε2 ), ε, δ, O(log( 1

δ ) 1
ε2 ))-reduction which showing dense model for

arbitrary F .

2.1 Preparations

In [BHK], they provided an algorithm based on the technology as Freund and
Schapire’s[FS] well known AdaBoost algorithm. And our algorithm is similar as
[BHK]’s algorithm.

Let X be a finite set, M and N are measures on X. The Kullback-Leibler
divergence between M and N is defined as

D(M‖N) =
∑
x∈X

M(x) log

(
M(x)

N(x)

)
+N(x)−M(x).

In further, let Γ ⊆ R|X| be a non-empty closed convex set of measures. Then
the Bregman projection of N onto Γ is defined as the measure PΓN ∈ Γ such
that

D(PΓN‖N) ≤ D(M‖N)

for all M ∈ Γ, i.e., with minimized distance.
The definition above is well-defined, since one can show that for every N , the

minimized PΓN exists and is unique via the following theorem.[CZ]

Theorem 5 (Bregman). Let N,M be measures such that M ∈ Γ. Then,

D(M‖PΓN) +D(PΓN‖N) ≤ D(M‖N).

Let Γδ := {M |µ(M) ≥ δ}, i.e., Γδ are the δ-dense measures. We will denote the
Bregman projection onto the set Γδ by Pδ. One can show that, for every measure
N with support at least δ|X| and µ(N) < δ, then µ(PδN) = δ.

Lemma 1. [BHK] Let N be a measure with support at least δ|X| and let c ≥ 1
be the smallest constant such that the measure M∗ = min(1, c · N) has density
δ. Then, PδN = M∗.

Then we will consider the standard model of online algorithm. Let penalty
be the vectors m = (mx)x∈X with mx ∈ [0, 1] for each x ∈ X. Let M be a
measure on X, we set the loss function L(M,m) =

∑
x∈XM(x)mx. Similar as

[BHK], we have the following lemma, and the proof is omitted here.



Lemma 2. Let Γ be a closed convex set of measures. Let M (1) ∈ Γ be an
arbitrary initial measure, and let m(t), t ∈ [T ] be arbitrary penalties. We de-

fine N (t+1) be the measure with that N (t+1)(x) = (1 − ε/4)m
(t)
x M (t)(x), and let

M (t+1) := PΓN
(t+1). Then for every measure M ∈ Γ, we have

T∑
t=1

L(M (t),m(t)) ≤
(

1 +
ε

4

) T∑
t=1

L(M,m(t)) + 4 · D(M‖M (1))

ε
.

2.2 Proof of the Dense Model Theorem

In this section, we will prove the Dense Model Theorem via the On-line Learning
algorithm.

Proof. To prove the theorem, we will iterate the following processes for T =
16
ε2 log 1

δ rounds, and in each round, we make sure that M (t) with support at

least δ|X| and µ(M (t)) = δ.

• Step 0. Let t = 1, and let M (1) be the initial measure that is δ at every
point. Note that µ(M (1)) = δ.

• Step 1. Since M (t) ∈ Γδ, DM(t) = M (t)/|M (t)| is a δ-dense distribution in
DX , then by the assumption of D, we have a function gt ∈ F such that∣∣E[gt(DM(t))]− E[gt(D)]

∣∣ ≥ ε.
• Step 2. There are possible cases in this step.

Case 1. E[gt(DM(t))]− E[gt(D)] ≥ ε, then set at = 1, and define m(t)

by putting m
(t)
x := gt(x);

Case 2. E[gt(DM(t))]− E[gt(D)] ≤ −ε, then set at = −1, and define m(t)

by putting m
(t)
x := 1− gt(x).

• Step 3. Define N (t+1) by setting N (t+1)(x) := (1− ε/4)m
(t)
x M (t)(x), and let

M (t+1) := PδN
(t+1).

• Step 4. Set t := t+ 1, and return to Step 1.

Define k(x) :=
∑T
t=1 atgt(x), one may hope that k learns D well, i.e., k distin-

guishes every δ-dense subset S from D,

Claim. Let S be an arbitrary subset of X with |S| = δ|X|. Then,(
1 +

ε

4

)
E[k(DS)] ≥ E[k(D)] +

ε

2
T.

Proof. By the construction of gt and at, we have that

T∑
t=1

E[atgt(DM(t))]−
T∑
t=1

E[atgt(D)] ≥ εT (1)



Also, apply Lemma 2 with M = US , it has

T∑
t=1

∑
x∈X

M (t)(x)m(t)(x) ≤
(

1 +
ε

4

) T∑
t=1

∑
x∈X

S(x)m(t)(x) + 4 · D(US‖M (1))

ε
.

Then by definitions, E[atgt(DM(t))] =
∑
x atgt(x)M (t)(x)/|M |, thus

T∑
t=1

E[atgt(DM(t))] ≤
(

1 +
ε

4

) T∑
t=1

E[atgt(DS)] +
ε

4
T + 4 · D(US‖M (1))

εδ|X|
. (2)

Also,

D(US‖M (1)) =
∑
x∈S

log(1/M (1)(x)) + |M (1)| − |US | = δ|X| log(1/δ).

Combined with Eqs. (1) and (2),

εT ≤
(

1 +
ε

4

) T∑
t=1

E[atgt(DS)] +
ε

4
T + 4 · 1

ε
log

1

δ
−

T∑
t=1

E[atgt(D)].

The claim then follows since T = 16
ε2 log 1

δ . ut

Note that
∣∣E[k(DS)]

∣∣ ≤ T, thus we have

E[k(DS)] ≥ E[k(D)] +
ε

4
T.

We then show that D and DS can be distinguished via a Boolean function, i.e.,
find the threshold t0.

Lemma 3. [RTTV ]Let F : X → [0, 2T ] be a bounded function, let DZ and DW

be distributions such that E[F (DZ)] ≥ E[F (DW )] + (ε/4)T. Then there exists
t ∈ [0, 2T ] such that

Pr[F (DW ) ≥ t− ε

16
T ] +

ε

16
≤ Pr[F (DZ) ≥ t].

Applying this lemma with F = k + T , we have that, for each S ⊆ X with
|S| = δ|X|, there is a tS ∈ [−T, T ] such that

Pr[k(D) ≥ tS −
ε

16
T ] +

ε

16
≤ Pr[k(DS) ≥ tS ].

Let S be the set consisting of δ|X| elements of X with the smallest value of
k(x), and let t0 be a integer with t0 ∈ [tS−(ε/16)T, tS ],(t0 exists since T > 16/ε).
Thus,

Pr[k(D) ≥ t0] +
ε

16
≤ Pr[k(DS) ≥ t0].



Denote r := Pr[k(DS) ≥ t0]. Since ε > 0, we have that r > 0, i.e. there is a
x ∈ S such that k(x) ≥ t0, then by the definition of S, we have that

Pr[k(DX) ≥ t0] = 1− δ(1− r).

On the other hand, let R be a distribution on X with D δ-dense in R, then
we have

Pr[k(R) < t0] ≥ δ Pr[k(D) < t0] ≥ δ(1 +
ε

16
− r),

then,

Pr[k(R) ≥ t0] ≤ 1− δ(1− r)− δ ε
16
.

Thus if we define h : X → {0, 1} by

h(x) = 1⇔ k(x) ≥ t0,

the theorem then follows. ut

3 Lower Bound on the Query Complexity in Black-Box
Constructions

In this section, we will give a lower bound on the query complexity of the re-
ductions which showing dense model. Our proof is inspired by [LTW ]. W.l.o.g,
we will assume the finite universal X = {0, 1}s. Formally, we will prove the
following theorem.

Theorem 6. Suppose 2−c∗·s ≤ δ, ε ≤ c∗ with ε = δO(1), a ≤ 2c∗·s and q =
o( 1
ε2 log( 1

δ )). Then for every ω( 1
ε2 log( 1

δ )) ≤ k ≤ 22
c∗·s

, there exists a collection
of boolean functions F : {0, 1}s → {0, 1} with |F| = k such that, there doesn’t
exist (q, 0.25ε, δ, a)-reduction which showing dense model for F .

The constant c∗ here is a small universal constant, for example, c∗ = 0.0001.

Remark 4. The assumption a ≤ 2c∗·s is reasonable. For example, if a = 2s,
we can encode arbitrary boolean function C : {0, 1}s → {0, 1} by an advice
α ∈ {0, 1}a, and then the reductions will be trivial.

Remark 5. The error parameter e = 0.25ε above is not critical. Our proof is also
applicable in the case e = ε, we set e = 0.25ε just for easier notations.

3.1 Preparations

We prove this theorem by probability method. We will consider the following
probability space.
Probability space. The probability space will consists of independent identi-
cally distributed random variables (V (x))x∈{0,1}s and (Pi(x))i∈[k],x∈{0,1}s , where
for each x ∈ {0, 1}s, V (x) = 1 with probability δ/2, V (x) = 0 with probabil-
ity 1 − δ/2, and for each i ∈ [k], x ∈ {0, 1}s, Pi(x) = 1 with probability 1−ε

2 ,



Pi(x) = 0 with probability 1+ε
2 . We define a random measure W (x) = V (x) and

k random functions gi(x) = V (x)⊕ Pi(x), for each i ∈ [k].
First, we will need the following bound on binomial distribution. Let Z1, · · · , Zn

be i.i.d. binary random variables, with successful probability p, i.e. E[Zi] = p
for i ∈ [n]. Define Z :=

∑
i∈[n] Zi, and let

F (k;n, p) := Pr(Z ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i,

be the cumulative distribution function. Then,

Lemma 4. Suppose parameters ε, δ ≤ 0.01, q = o( 1
ε2 log( 1

δ )), t = O(1) and
c1 > 0 with c1 = Ω(1), then the following holds:

F (k; q,
1 + ε

2
) + c1δ

t ≥ δF (k; q,
1− ε

2
),

for all 0 ≤ k ≤ q − 1.

Proof. We will represent F (k;n, p) in terms of the regularized incomplete beta
function[PTV F ] as follows:

F (k;n, p) = Pr(Z ≤ k) =

k∑
i=0

(
n

i

)
pi(1− p)n−i

= I1−p(n− k, k + 1) = (n− k)

(
n

k

)∫ 1−p

0

tn−k−1(1− t)kdt.

Thus, we only need to prove

(q−k)

(
q

k

)∫ 1−ε
2

0

tq−k−1(1− t)kdt+ c1δ
t ≥ δ(q−k)

(
q

k

)∫ 1+ε
2

0

tq−k−1(1− t)kdt, .

We will only consider the case that k ≤ 1−ε
2 q, since the other case is similar.

Let k = 1−rε
2 q, r ∈ [1,+∞). Suppose, for the sake of contradiction, the inequality

is failed. Then,

(1− δ)
∫ 1−ε

2

1−3ε
2

tq−k−1(1− t)kdt ≤ δ
∫ 1+ε

2

1−ε
2

tq−k−1(1− t)kdt.

By derivative, tq−k−1(1− t)k is monotonically increasing in t ∈ [0, 1+rε2 ], thus

(1− δ)ε
(

1− 3ε

2

)q−k−1(
1 + 3ε

2

)k
≤ (1− δ)

∫ 1−ε
2

1−3ε
2

tq−k−1(1− t)kdt

≤ δ
∫ 1+ε

2

1−ε
2

tq−k−1(1− t)kdt

≤ δε
(

1 + ε

2

)q−k−1(
1− ε

2

)k
,



i.e., we obtain that(
1− 4ε

1 + ε

)q−k−1
·
(

1 +
4ε

1− ε

)k
≤ δ

1− δ
.

By the fact that (1 + 1
n )n ≤ e ≤ (1 + 1

n )n+1 and (1− 1
n )n ≤ 1

e ≤ (1− 1
n )n−1, it

follows

exp(−ctε2rq) = exp(−ctε(q − 2k)) ≤ δ

1− δ
, (3)

for some ct = O(1). Thus r = ω(1), since q = o( 1
ε2 log( 1

δ )).
Similarly, it has that(

1 + sε

1 + (s− 1)ε

)q−k−1(
1− sε

1− (s− 1)ε

)k
≥ exp(ε2q(r − s)),

for all 0 ≤ s ≤ r. Applying repeatedly for s = 2, · · · , r − 2 yields(
1 + (r − 2)ε

1 + ε

)q−k−1(
1− (r − 2)ε

1− ε

)k
≥ exp(

r2 − r
2

ε2q). (4)

Combining Eqs. (3), (4) and the fact that tq−k−1(1 − t)k is monotonically in-
creasing in t ∈ [0, 1+rε2 ], we get that∫ 1+ε

2

1−ε
2

tq−k−1(1− t)kdt

≤ ε
(

1 + ε

2

)q−k−1(
1− ε

2

)k
≤ ε

(
1 + rε

2
− ε
)q−k−1(

1− rε
2

+ ε

)k
· exp(−r

2 − r
2

ε2q)

≤ δcur
∫ 1+rε

2

1+rε
2 −ε

tq−k−1(1− t)kdt,

for some cu = Ω(1).On the other hand, by the property of regularized incomplete
beta function,

(q − k)

(
q

k

)∫ 1+rε
2

0

tq−k−1(1− t)kdt = F (k; q,
1− rε

2
) ≤ 1,

thus

(q − k)

(
q

k

)∫ 1+ε
2

1−ε
2

tq−k−1(1− t)kdt

≤ δcur(q − k)

(
q

k

)∫ 1+rε
2

1+rε
2 −ε

tq−k−1(1− t)kdt

≤ δcur ≤ cδt,



where the last inequality comes from that r = ω(1). Thus we have derived a
contradiction, the claim then follows. ut

3.2 Proof of Lower Bound

Let Dec(·)(·, ·) be a oracle algorithm. To show that Dec is not a (q, ε, δ, a)-
reduction which showing dense model, we need the following lemmas.

Lemma 5. Suppose k := |F| = ω( 1
ε2 log( 1

δ )). Then,

Pr
V,P

[DW has a (δ, 0.25ε,F)-model] = o(1).

Proof. Let W := {W ⊆ {0, 1}s :
∣∣|W | − 0.5δ2s

∣∣ ≤ 0.001εδ2s}, then by a simple
application of Chernoff bound, we have that

Pr
V

[W 6∈ W] = 2−Ω(ε2δ22s) = o(1),

thus, by the conditional probability, it suffice to prove that for every W ′ ∈ W,

Pr
V,P

[DW has a (δ, 0.25ε,F)-model|W = W ′] = o(1).

For easier notations, we write it as

Pr
P

[DW has a (δ, 0.25ε,F)-model] = o(1). (5)

Let S = {S ⊆ {0, 1}s : δ2s ≤ |S| ≤ (1 + 0.001ε)δ2s}. Similar as [Imp], we will
first prove the following claim.

Claim. Let W ∈ W, and let M be a measure with |M | ≥ δ2s such that
maxg∈F (

∣∣E[g(DM )]− E[g(DW )]
∣∣) ≤ 0.25ε, then there is a S ∈ S such that

max
g∈F

(
∣∣E[g(DS)]− E[g(DW )]

∣∣) ≤ 0.4ε.

Proof. We will assume that |M | = δ2s, and otherwise, we can set M ′(x) =
δ2sM(x)/|M |. Define R(x) := δ2sW (x)/|W |, it has that R(x) ≤ 2.5 since W ∈
W. Let g ∈ F , and pick S by placing x ∈ S with probability M(x). By the
assumptions, ∣∣∑

x

g(x)(M(x)−R(x))
∣∣ ≤ 0.25ε|M | = 0.25εδ2s,

thus ∣∣ES [
∑
x

g(x)(S(x)−R(x))]
∣∣ ≤ 0.25εδ2s,



Note that
∑
x g(x)(S(x)−R(x)) is the sum of 2s independent random variables

that are in [−2.5, 1]. Hence by Hoeffding’s inequality[Hoe],

Pr
S

(
∣∣∑
x

g(x)(S(x)−R(x))
∣∣ ≥ 0.3εδ2s) ≤ 2−cε

2δ22s ,

for some small constant c, for example c = 0.01. Thus, the probability that there
is such a g ∈ F at most |F|2−cε2δ22s ≤ 1

4 since |F| = k ≤ 22
c∗s

and ε, δ ≥ 2−c∗·s.
On the other hand, it has that PrS [S ∈ S] ≥ 1/3 since ES [|S|] = δ2s. Then,

we have a S ∈ S with
∣∣∑

x g(x)(S(x)−R(x))
∣∣ ≤ 0.3εδ2s for all g ∈ F . Thus

max
g∈F

(
∣∣E[g(DS)]− E[g(DW )]

∣∣)
= max

g∈F

∣∣∑
x

g(x)

(
S(x)

|S|
− R(x)

|R|

) ∣∣
≤ 0.4ε,

the claim then follows. ut

Thus, it remains to prove that

Pr
P

(∃S ∈ S,max
g∈F

(
∣∣E[g(DS)]− E[g(DW )]

∣∣) ≤ 0.4ε) = o(1),

for each W ∈ W.
Let S ∈ S, W = W, and assume that S ∪ W = {x1, · · · , xr}. Notice

that r ≤ 2δ2s. Let (Zi,j)i∈[k],j∈[r] be the random variables such that Zi,j =

δ2sgi(xj)(
W (xj)
|W | −

S(xj)
|S| ). Clearly, Zi,j are i.i.d with Zi,j ∈ [−1, 2.1], and in fur-

ther, by the fact that gi(xj) = W (xj)⊕ Pi(xj), it has E[
∑
j Zi,j ] ≥ 0.45εδ2s for

each i ∈ [k]. Then by Hoeffding’s inequality,

Pr
P

(∑
i,j

Zi,j ≤ 0.4εδk2s) = 2−Ω(kε2δ2s).

We first note that, conditioned on
∑
i,j Zi,j > 0.4εδk2s, there is a i0 ∈ [k] such

that
∑
j Zi0,j > 0.4εδ2s. Means∣∣E[gi0(DW )]− E[gi0(DS)]

∣∣ > 0.4ε.

Hence,

Pr
P

(max
g∈F

(
∣∣E[g(DUS )]− E[g(DW )]

∣∣) ≤ 0.4ε) = 2−Ω(kε2δ2s).

On the other hand, by Stirling’s formula, |S| =
∑
l

(
2s

l

)
= 2O(log ( 1

δ )δ2
s), then by

union bound,

Pr
P

(∃S ∈ S,max
g∈F

(
∣∣E[g(DS)]− E[g(DW )]

∣∣) ≤ 0.4ε) = o(1),

since k = ω(log ( 1
δ ) 1
ε2 ). The claim then follows. ut



Let S ′ = {S ⊆ {0, 1}s : µ(S) = δ}. Next, we show that a black-box algorithm
Dec is unlikely to approximate W well. Formally, we have the following lemma.

Lemma 6. Let c be a constant, k := |F|. Consider the probability space, let E
be the event that, there exist non-uniform advice α ∈ {0, 1}a and I ⊆ [k] with
|I| = q, such that for all S ∈ S ′, it has∣∣E[DecF,I(DW , α)]− E[DecF,I(DS , α)]

∣∣ > cε.

Then for q = o( 1
ε2 log( 1

δ )), PrV,P [E] = o(1).

Proof. We first notice soma basic facts. Suppose there are S1, S2 ∈ S ′ with

E[DecF,I(DW , α)]− E[DecF,I(DS1 , α)] > cε,

E[DecF,I(DW , α)]− E[DecF,I(DS2
, α)] < −cε,

then there is a subset S3 ∈ S ′ such that S3 ⊆ S1 ∪ S2 and∣∣E[DecF,I(DW , α)]− E[DecF,I(DS3 , α)]
∣∣ ≤ cε.

Thus, let E1 := {∃I, α,∀S ∈ S ′,E[DecF,I(DS , α)] − E[DecF,I(DW , α)] > cε}
and E2 := {∃I, α,∀S ∈ S ′,E[DecF,I(DS , α)]−E[DecF,I(DW , α)] < −cε}, it has

E = E1 ∪ E2.

Thus, it suffice to prove that PrV,P [E1] = o(1) and PrV,P [E2] = o(1). We will
only show PrV,P [E1] = o(1) since the analyses of E1 and E2 are similar.

Consider any subset I ⊆ [k] with |I| = q and α ∈ {0, 1}a. Let C : {0, 1}s ×
{0, 1}q → {0, 1} be the function such that C(x, gI(x)) = DecF,I(x, α). Note that
C is well defined since F are boolean functions and Dec is black-box.

For every x ∈ {0, 1}s, let p1(x) := PrV,P [C(x, gI(x)) = 0|W (x) = 0] and
p2(x) := PrV,P [C(x, gI(x)) = 1|W (x) = 1]. We first prove that

(1− 0.5cε)p1(x)

δ
+ (1− 0.5cε)p2(x) ≥ 1− cε. (6)

Define C−1x (0) := {y ∈ {0, 1}q : C(x, y) = 0}, and let rx := |C−1x (0)|. It suffice
to consider in the case that rx =

∑
i≤k
(
q
i

)
for some 0 ≤ k ≤ q(the other case is

straightforward in our proof). Since W (x) = V (x) and gi(x) = V (x)⊕ Pi(x), it
has

p1(x) = Pr
V,P

(C(x, gI(x)) = 0|W (x) = 0) = Pr
P

(C(x, PI(x)) = 0)

=
∑

y∈C−1
x (0)

Pr
P

(PI = y)

≥
∑
i≤k

(
q

i

)(
1 + ε

2

)i(
1− ε

2

)q−i
= F (k; q,

1 + ε

2
).



Similarly, we can prove that

p2(x) ≥
∑
i>k

(
q

i

)(
1− ε

2

)i(
1 + ε

2

)q−i
= 1− F (k, q,

1− ε
2

)

Thus,

(1− 0.5cε)p1(x)

δ
+ (1− 0.5cε)p2(x)

≥ 1− 0.5cε

δ

(
F (k; q,

1 + ε

2
)− δF (k; q,

1− ε
2

)

)
+ 1− 0.5cε

≥ 1− cε,

where the last inequality holds since ε = δO(1) and with applying Lemma 4.
Let Zx be a random variable with that

Zx := 1− C(x, gI(x)) +W (x)C(x, gI(x))−W (x)(1− C(x, gI(x))).

then,

E[Zx] = p1(x) + δp2(x)− δ

2
(p1(x) + p2(x)).

Since p1(x) + δp2(x) ≥ δ 1−cε
1−0.5cε , it can be shown that

E[Zx] ≥ δ 1− cε
1− 0.5cε

− δ

2

by cases analysis, i.e. p1(x) + p2(x) ≥ 1 or p1(x) + p2(x) < 1.
Thus,

Pr
V,P

[
∑

Zx ≤
(
(1− cε)(1 + 0.3cε)δ − δ

2

)
2s] = 2−Ω(c2ε2δ22s),

by Hoeffding’s inequality.
Also, let W ′ := {W ⊆ {0, 1}s :

∣∣|W | − 0.5δ2s
∣∣ ≤ 0.01cεδ2s}, we have that

Pr
V

[W 6∈ W ′] = 2−Ω(c2ε2δ22s).

Let A1 := {x : C(x, gI(x)) = 0}, A2 := {x : W (x) = 1 ∧ C(x, gI(x)) = 1},
A3 := {x : W (x) = 1 ∧ C(x, gI(x)) = 0} be random sets.

It can be shown that conditioned on
∑
Zx ≥

(
(1− cε)(1+0.3cε)δ− δ

2

)
2s and

W ∈ W ′, we have

|A1|+ 2|A2| ≥ (1− cε)(1 + 0.2cε)δ2s,

then let S ∈ S ′ with µ(S) = δ such that A1 ⊆ S (S ⊆ A1 when µ(A1) ≥ δ), it
has that

E[DecF,I(DS , α)]− E[DecF,I(DW , α)]

= E[C(DS , gI(DS))]− E[C(DW , gI(DW ))]

=
|S| − |A1|
|S|

− |A2|
|W |

≤ cε.



Thus,

Pr
V,P

[∀S ∈ S ′,E[DecF,I(DS , α)]− E[DecF,I(DW , α)] > cε] = 2−Ω(c2ε2δ22s),

then by union bound,

Pr
V,P

[E1] = 2akq2−Ω(c2ε2δ22s) = o(1),

since ε, δ ≥ 2−c∗s, a ≤ 2c∗s and k ≤ 22
c∗s

. The claim then follows. ut

Combined Lemma 5 and Lemma 6, there exist W and F such that

• DW doesn’t have (δ, 0.25ε,F)-model;
• for every α ∈ {0, 1}a and I ⊆ [k] with |I| = q, there is a SI,α ∈ S ′ such that∣∣E[DecF,I(DW , α)]− E[DecF,I(DSI,α , α)]

∣∣ > cε.

Let RI,α := δDW+(1−δ)DX\SI,α , then it shows that Dec can’t be (q, 0.25ε, δ, a)-
reduction which showing dense model for F .

4 Hardcore via regularity lemma

In this section, we will pay special attention that H = {f : X → R} be a Hilbert
space with inner product 〈f, g〉 := E(f(DX) · g(DX)) =

∑
x f(x)g(x)/|X|, i.e.,

‖f‖ := ‖f‖L2 .
Let sgn : H → H be a map by putting

sgn(f)(x) =


f(x) if |f(x)| ≤ 1

1 if f(x) > 1

−1 if f(x) < −1.

Let S ⊂ H be the structured vectors such that ‖v‖ = 1 for all v ∈ S. We define
S1 := {c · f : |c| ≤ 1, f ∈ S}, and recursively define

Sk := {sgn(f1 + cf2) : f1 ∈ Sk−1, |c| ≤ 1, f2 ∈ S},

we say the vectors f ∈ Sk has complexity k. Then similar as [Tao1], we have the
following lemma.

Lemma 7. Let H,S as above. Let f ∈ H with ‖f‖ ≤ 1, such that f is not
ε‖f‖-pseudorandom for some 0 < ε ≤ 1. Then there exists v ∈ S and c ∈ [−1, 1]
such that |〈f, v〉| ≥ ε‖f‖ and ‖f − cv‖2 ≤ ‖f‖2(1− ε2).

Proof. By the definitions, we can find v ∈ S such that |〈f, v〉| ≥ ε‖f‖, and
then set c := 〈f, v〉/‖v‖2(i.e. cv is the orthogonal projection of f to v). By the
Cauchy-Schwarz, we have

|〈f, v〉|/‖v‖2 ≤ ‖f‖‖v‖/‖v‖2 ≤ 1/‖v‖ = 1,



thus c ∈ [−1, 1].
Also, by Pythagoras’ theorem, we will have

‖f − cv‖2 = ‖f‖2 − (|〈f, v〉|/‖v‖)2 ≤ ‖f‖2(1− ε2),

we obtain the claim. ut

Then, we can prove another version of regularity lemma, and prove a l2-norm
version of Hardcore Theorem.

Theorem 7. Let H,S as above, 0 < δ, ε < 1 be parameters, and let t =
2 log( 1

2δ )/ε2. Suppose f ∈ H such that:
(i)|f(x)| ≤ 1 for all x ∈ X;
(ii)for all g ∈ St such that ‖g‖ ≥ (1−δ/2)‖f‖, it has |〈f, g〉| ≤ (1−δ)‖g‖‖f‖.

there exists a decomposition f = fstr + fpsd such that fstr ∈ St and fpsd is
ε‖fpsd‖-pseudorandom with ‖fpsd‖ ≥ δ‖f‖/2.

Proof. To prove this theorem, we will repeat the following processes.

• Step 0. Initialise f0,str := 0, and f0,psd := f.
• Step 1. If fi,psd is ε‖fi,psd‖-pseudorandom then STOP, and set fstr = fi,str,
fpsd = fi,psd. Otherwise, by the Lemma 7, it has v ∈ S and c ∈ [−1, 1] such
that ‖fi,psd − cv‖2 ≤ (1− ε2)‖fi,psd‖2.
• Step 2. Let fi+1,str = sgn(fi,str + cv), fi+1,psd = f − fi+1,str. And back to

Step 1 with fi+1,str and fi+1,psd.

We will first prove that ‖fi,psd‖ ≥ δ‖f‖/2, for every i < t. For the sake of
contradiction, we assume ‖fi,psd‖ < δ‖f‖/2. Notice that f = fi,str + fi,psd, then
by triangle inequality, it has

‖fi,str‖ > (1− δ/2)‖f‖,

thus

〈f, fi,str〉 = 〈fi,str, fi,str〉+ 〈fi,psd, fi,str〉
≥ ‖fi,str‖2 − ‖fi,str‖‖fi,psd‖
> (1− δ)‖fi,str‖‖f‖.

On the other hand, by the assumptions, we have 〈f, fi,str〉 ≤ (1− δ)‖fi,str‖‖f‖
since fi,str ∈ St, which is a contradiction.

Then we prove that the process will halt before t steps, it suffice to prove that
ft−1,str < δ‖f‖/2. By the construction, we have fi,psd = f − sgn(fi−1,str + cv),
i.e.,

fi,psd(x) =


f(x)− fi−1,str(x)− cv(x) if |fi−1,str(x) + cv(x)| ≤ 1

f(x)− 1 if fi−1,str(x) + cv(x) > 1

f(x) + 1 if fi−1,str(x) + cv(x) < −1



In each of the case, we have |fi,psd(x)| ≤ |f(x) − fi−1,str(x) − cv(x)| since
|f(x)| ≤ 1. Then

‖fi,psd‖ ≤ ‖f − fi−1,str − cv‖ = ‖fi−1,psd − cv‖ ≤ (1− ε2)‖fi−1,psd‖.

Applying repeatedly for i = 1, · · · , t− 1 yields

‖ft−1,psd‖2 ≤ ‖f0,psd‖2(1− ε2)t−1 = ‖f‖2(1− ε2)t−1 < δ‖f‖/2.

The claim then follows. ut

Set the structured set S ⊆ {g : X → {−1, 1}} be the functions which can be
computed by some circuits with size s′, it has the following corollary, and the
proof is omitted here.

Corollary 1. Let 0 < ε, δ < 1 be parameters, and f : X → {−1, 1} be a function
with Advs(f) ≤ 1 − δ. Then there is a measure M with ‖M‖ ≥ cδ such that

AdvMs′ (f) ≤ ε ‖M‖µ(M) , where s′ = O(sε2/ log(1/δ)) and c is an universal constant.

Remark 6. In fact, we have M(x) = fpsd(x) · f(x) ≥ 0 since |fstr(x)| ≤ 1 =
|f(x)|. And we have decomposed f = fpsd + fstr, informally,one part is easy to
compute, and the other one is hard.

Remark 7. In our result, we get a hardcore measure M with size ‖M‖ ≥ cδ and(
δ ‖M‖µ(M)

)
-hardness. In fact, we have that µ(M) = ‖M‖L1 ≤ ‖M‖L2 = ‖M‖, thus

our result is weaker than the classic one. There is an open problem here, is there
a essential gap between L1-norm and L2-norm. Based on [GLR] and [Kas], we
conjecture that there are no huge gaps between them in general case.
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