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Abstract

Property testing is concerned with deciding whether an object (e.g. a graph or a function)
has a certain property or is “far” (for a prespecified distance measure) from every object with
that property. In this work we consider the property of being computable by a read-once width-2
Ordered Binary Decision Diagram (OBDD), also known as a branching program, in two settings.
In the first setting the order of the variables is fixed and given to the algorithm, while in the
second setting it is not fixed. That is, while in the first setting we should accept a function f if
it is computable by a width-2 OBDD with a given order of the variables, in the second setting
we should accept a function f if there exists an order of the variables according to which a
width-2 OBDD can compute f .

Width-2 OBDDs generalize two classes of functions that have been studied in the context
of property testing - linear functions (over GF (2)n) and monomials. In both these cases mem-
bership can be tested by performing a number of queries that is independent of the number of
variables, n (and is linear in 1/ǫ, where ǫ is the distance parameter). In contrast, we show
that testing computability by width-2 OBDDs when the order of variables is fixed and known
requires a number of queries that grows logarithmically with n (for a constant ǫ), and we provide
an algorithm that performs Õ(logn/ǫ) queries. For the case where the order is not fixed, we
show that there is no testing algorithm that performs a number of queries that is sublinear in
n.

1 Introduction

Property testing [28, 14] is concerned with deciding whether an object (e.g. a graph or a function)
has a certain property or is “far” (with respect to a prespecified distance measure) from every
object with that property. Typical property testing algorithms are randomized, and perform queries
regarding local properties of the object (e.g., the value of a function f on the input x), returning a
correct answer with high probability. That is, the algorithm is given as input a distance parameter
ǫ and is required to accept with high probability objects that have the property and to reject
with high probability objects that are ǫ-far from having the property. The goal is to design such
algorithms whose query complexity and running time are sublinear in the size of the object and
where the dependence on 1/ǫ is as small as possible.

Property testing has been applied in a variety of contexts, with a particular emphasis on testing
properties of graphs and on testing properties of functions (for surveys see e.g., [12, 9, 24, 25]).

∗Part of the work presented in this paper appeared as an extended abstract in [26] .
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This work belongs to the latter context. Roughly speaking, previous work on testing properties of
functions mostly came in two “flavors”: testing algebraic properties (e.g., linearity [4]), and testing
logical properties (e.g., monomials [21]). Here we consider two (closely related) properties that are
characterized by the complexity class to which the functions belong. While logical properties can
also be viewed in this manner, there is an aspect in which our results can be viewed as a “new
flavor” of results.

1.1 Our Results

In this paper we give upper and lower bounds for testing functions for the property of being
computable by a read-once width-2 Ordered Binary Decision Diagram (OBDD), also known as a
read-once Oblivious Branching Program of width 2, in two settings. In the first setting we are
given an order of the variables x1, . . . , xn and oracle access to a function f . Here we must accept
if there exists a width-2 OBDD with the given order of the variables that computes f , and must
reject (with high probability) if f is far from every function computable by a width-2 OBDD with
the given order of variables. In the second setting the order of the variables is not fixed. That is,
the algorithm must accept (with high probability) the function f if there exists a width-2 OBDD
with some order of variables that computes f , and it must reject f (with high probability) if every
width-2 OBDD, regardless of order of variables, computes a function that is far from f . The query
complexity of our algorithm for the first setting is Õ(log(n)/ǫ).1 For the second setting we give a
lower bound that precludes the existence of algorithms whose query complexity is sublinear2 in n.

Width-2 OBDDs generalize two classes of functions that have been studied in the context of
property testing – linear functions (over GF (2)n) [28] and monomials [21]. In both these cases
membership can be tested by performing a number of queries that is linear in 1/ǫ. Interestingly,
unlike either of these classes, in which the query complexity of the testing algorithm does not
depend on the number of variables in the tested function, we show that testing for computability
by width-2 OBDDs requires Ω(log(n)) queries in the first setting and that Ω(n) queries are required
in the second.

As noted above, the algorithm we present for testing computability by width-2 OBDDs with
a fixed given order performs Õ(log(n)/ǫ) queries, which almost matches the lower bound in terms
of the dependence on n. Observe that the logarithmic dependence on n is still much lower than
the linear dependence that is necessary for learning this family of functions (under the uniform
distribution and with queries), as the family of functions computable by width-2 OBDDs (over any
fixed order) contains all linear functions.

Function classes for which property testing algorithms have been designed are usually charac-
terized as either algebraic (e.g. [4, 28, 1, 16, 15]) or non-algebraic (e.g., [21, 10, 7]), though some
results can be viewed as belonging to both categories. We view the family of functions we study as
falling naturally into the second category, since it is described by a type of computational device
and not by a type of algebraic formula. As opposed to many algorithms for algebraic families,
algorithms for non-algebraic families generally rely on the fact that the functions in the family

1The notation Õ(g(n)) represents an upper bound that is linear in g(n) up to a polylogarithmic factor.
2It is possible to get an almost linear dependence on n (i.e., query complexity of Õ(n/ǫ)), by an “Occam’s razor”

type argument. Namely, the algorithm tries to find a width-2 OBDD (with some order over the variables) that is
consistent with a sample of uniformly selected inputs. If the function is ǫ-far from any width-2 OBDD, then with
high probability there will be no consistent width-2 OBDD.
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are close to juntas, that is, functions that depend on a small number of variables. This is true,
by definition, for singletons [21] and juntas [10], but also for monomials, monotone DNF with a
bounded number of terms [21], general DNF, decision lists and many other function classes, studied
in [7]. In contrast, our algorithms test for membership in classes of functions in which the function
may depend (significantly) on many variables.

1.2 Techniques

Variables in functions that are computable by width-2 OBDDs can be divided into two groups.
Variables that the function is “linear” in, which we refer to as “xor” variables, and other, “nonlin-
ear” variables, which we refer to as “and” and “or” variables. For reasons that will later become
apparent we refer to the “nonlinear” variables also as blocking variables. This distinction is made
more precise in Section 2. A simple but important observation is that if a width-2 OBDD has more
than log(1/ǫ) blocking variables, then the variables preceding them can essentially be ignored, since
they have very little influence on the function. Another basic observation is that once we find the
last t non-linear variables (for some number t < log(1/ǫ)), we can continue the search for preceding
nonlinear variables, by restricting some of the variables to a particular value.

1.2.1 The Upper Bound

The algorithm (that works for the fixed and known order case) relies on the known order of the
variables. Say this order is x1, . . . , xn. The algorithm has a subroutine for determining whether
the last blocking variable belongs to {x1, . . . , xn/2} or to {xn/2+1, . . . , xn} (or possibly detects that
the function is linear or that it cannot be computed by an width-2 OBDD with the given order
of variables). This process is used to perform a binary search for the last blocking variable. Once
such a variable is detected, the algorithm restricts the function to a particular assignment for this
variable and all the variables following it, and continues the search for a new (earlier) blocking
variable. Since the algorithm in the fixed order case rejects only when it finds evidence that the
tested function is not computable by a width-2 OBDD (over the given order), it immediately
follows that it always accepts functions in this family. The core of the proof is in showing that
if the function is ǫ-far from the family, then the algorithm rejects with high constant probability.
More precisely, we prove the contrapositive statement. Since the algorithm works by verifying that
various restrictions of the tested function are close to having certain properties, the difficulty is in
proving that we can “glue” together these restrictions and obtain a single width-2 OBDD.

1.2.2 The Lower Bounds

We present (two-sided error) lower bounds both for the fixed order case and for the non-fixed order
case. The lower bound for the fixed order case builds on two families of functions, one consisting
of functions that are computable by width-2 OBDDs (over the given fixed order) and the other
consisting of functions that are Ω(1)-far from all those computable by width-2 OBDDs (with the
given order). We show that any non-adaptive algorithm must perform Ω(n) queries to distinguish
between members of these families, and an Ω(log(n)) lower bound follows for general (adaptive)
algorithms. The lower bound for the case where the order is not fixed uses a reduction from a
communication complexity problem, namely Set-Disjointness. This type of reduction was recently
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introduced by Blais et al. [3], and was used by Brody et al. [5] to prove bounds for the query
complexity of testing computability by several types of OBDDs.

1.3 Additional related work

As noted previously, width-2 OBDDs generalize two classes of functions that have been studied
in the context of property testing - linear functions (over GF (2)n) [28] and monomials [21]. In
both these cases membership can be tested by performing a number of queries that is linear in 1/ǫ.
Observe that in both cases the functions can be computed by width-2 OBDDs for any order of the
variables.

We next note that the type of question we ask differs from that studied by Newman [20].
Newman shows that a property testing algorithm exists for any property decidable by a constant
width branching program. That is, in [20] the property is defined with respect to a particular
branching program, and the algorithm tests membership in a language decidable by that program.
In contrast, in our result, the language we test for membership in is one where every word is the
truth table of a width-2 branching program.

OBDDs and, in particular, bounded width OBDDs have been studied in the machine learning
context rather extensively. It has been shown that width-2 OBDDs are PAC-learnable, while width-
3 and wider OBDDs are as hard to learn as DNF formulas [8]. These results were strengthened in
[6, 2]. When membership queries are allowed and the underlying distribution is uniform, width-2
branching programs with a single 0 sink are efficiently learnable [2]. When both membership and
equivalence queries are allowed then there are several positive results for other restricted types of
branching programs [22, 11, 18, 19, 2].

Lower bounds for testing computability by various sub-families of OBDDs have recently been
studied by Goldreich [13] and Brody et al. [5]. In particular, Goldreich shows that testing for
computability by width-4 OBDDs requires Ω(

√
n) queries, in addition to giving lower bounds on

testing computability by subclasses of linear functions over GF (3)n and GF (2)n (which can be
computed by width-3 and width-2 OBDDs, respectively). Brody et al. strengthen the first result of
Goldreich and prove that for any fixed w ≥ 4, testing computability by width-w OBDDs requires
Ω(n) queries. Following our Ω(log(n)) lower bound for testing computability by width-2 OBDDs
in the case where the order is fixed, Brody et al. give a similar bound using different techniques.
They also give an Ω(log(n)) lower bound for testing computability by width-2 OBDDs in the case
where the order is not fixed, which we strengthen to an Ω(n) lower bound.

Errata

In the conference papers on which this work is based there were two errors. In our work on testing
computability by width-2 OBDDs where the order of variables is fixed [26] there was an error in
the proof of the lower bound (for one-sided error algorithms). The lower bound itself holds and
here we prove a similar lower bound that holds also for two-sided error algorithms. In our work
on testing computability by width-2 OBDDs where the order of variables is not fixed [27] there
was an error in the proof of the upper bound. In this paper we give a lower bound that shows the
impossibility of such a result.
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1.4 Organization

In Section 2 we provide some basic definitions and present general claims regarding OBDDs and
width-2 OBDDs in particular. In Section 3 we first give some basic definitions and claims that will
only serve for the case where the order of variables is given to us and then introduce a one-sided
error testing algorithm for that case. Finally, in Section 4 we first give a lower bound for testing
of computability by width-2 OBDDs where the order of variables is fixed, and then give a lower
bound for the case where the order of variables is not fixed.

2 Preliminaries

2.1 Basic Definitions and Notations

Definition 2.1 The distance between a function f and a function g over the same range X, denoted
d(f, g), is defined as Prx[f(x) 6= g(x)] where x is drawn uniformly at random from X. When
d(f, g) > ǫ we say that f is ǫ-far from g, otherwise it is ǫ-close. For a family of functions G we let
d(f,G) = ming∈G{d(f, g)}. If d(f,G) > ǫ, then we say that f is ǫ-far from G.

Definition 2.2 A property testing algorithm T for membership in a function class F is given oracle
access to a function f and a distance parameter 0 < ǫ < 1.

1. If f ∈ F , then T accepts with probability at least 2/3 (over its internal coin tosses);

2. If f is ǫ-far from F , then T rejects with probability at least 2/3 (over its internal coin tosses).

A property testing algorithm is said to have one-sided error if it accepts every f ∈ F with probability
1.

Of course, if we wish to increase the success probability from 2/3 to 1− δ for some given confi-
dence parameter δ, then we can repeat the application of a property testing algorithm Θ(log(1/δ))
times and take a majority vote. Later in this work we will routinely “amplify” the probability of
success as required.

A property testing algorithm that we use as a basic building block in our algorithms is the
linearity tester, proposed by Blum, Luby and Rubinfeld [4]. In [4] it is assumed that for a linear
function f it holds that f(0n) = 0. For our purposes, linearity allows for a “free” coefficient, and
the BLR algorithm is easily adapted to such a case.

Definition 2.3 We say that f : {0, 1}n → {0, 1} is a linear function if there exist coefficients
b0, b1, . . . , bn ∈ {0, 1} such that for x = x1, . . . , xn ∈ {0, 1}n, f(x) = b0 + Σn

i=1bixi.

Theorem 2.1 ([4]) There exists a one-sided error testing algorithm for linearity. Its query com-
plexity is O(1/ǫ).

We now turn to defining (O)BDDs.
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XOR XOR XOR AND AND AND OR OR XOR XOR

0 states

1 states

x3x10 x8x7 x2 x5x1x6x4x11

Figure 1: An example of a width-2-OBDD. The dashed lines represent 0 transitions and the solid
lines represent 1 transitions. The type of each variable (see Definition 2.6) appears at the bottom
of the figure.

Definition 2.4 A Binary Decision Diagram (BDD), also known as a branching program, is an
acyclic directed graph with a single source, where sinks are labeled 0 or 1, and each other node is
labeled by a Boolean variable from X = {x1, ....xn}. Every non-sink node has two outgoing edges
(potentially multi-edges), labeled 0 and 1, respectively. The Boolean function associated with a BDD
is computed on a particular input y = y1, . . . , yn ∈ {0, 1}n by returning the label of the sink reached
when this input is used to trace a route through the graph by leaving each node labeled xi along the
edge labeled yi.

There are different definitions in the literature for Ordered Binary Decision Diagrams. Our
results hold for the definition of a strict fixed width binary decision diagram (for an illustration,
see Figure 1):

Definition 2.5 An Ordered Binary Decision Diagram (OBDD) is a BDD that consists of n+1 levels,
according to the distance of the nodes from the source node. The source node is in the first level,
the sink nodes are in the last level, and for each level i but the last, the nodes in level i are labeled
by the same variable, where no two levels correspond to the same variable. The width of an OBDD
is the maximum number of nodes in any level.

Branching programs can, of course, compute functions from other, non-binary, finite domains
and to other finite ranges. We also note that other definitions of OBDDs (which we do not use)
allow sinks on any level, or sinks labeled 0 on any level and only one sink labeled 1.

2.2 Properties of OBDDs

In this subsection we provide several definitions and claims that set the ground for our algorithm
and that are used in the analysis. Since most of the definitions are self-explanatory, and most of the
claims are fairly simple, one may choose to continue directly to the description of our algorithm,
and refer to this subsection only when needed.

Our first claim follows directly from the definition of OBDDs.

Claim 2.1 A function f : {0, 1}n → {0, 1} is computable by a width-2 OBDD with an order of
the variables z1, . . . , zn if and only if there exist functions gn and fn−1 such that f(z1, . . . , zn) =
gn(fn−1(z1, . . . , zn−1), zn), where fn−1 is a function computable by a width-2 OBDD (over 0 vari-
ables if n = 1) and gn is a function from {0, 1} × {0, 1} to {0, 1}.
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Proof: We prove this by induction on the number of variables. In the base case we have a function
of 1 variable and the claim is trivial. The induction step in each direction is simple too - if we have
a function f on n− 1 variables computable by a width-2 OBDD and a function g that accepts f ’s
output and the n’th variable, we can simulate it by placing the correct edges in a width-2 OBDD
with n variables. Likewise, if we have an OBDD of length n and width 2, the state on the n− 1’th
level is computable by a width-2 OBDD, and the final state of the OBDD is only a function of the
state before last and of the n’th bit.

In this work we will often find it convenient to discuss a partial traversal of an OBDD and not
the full computation performed by it. We will routinely relate to one of the (at most) two vertices
in a layer of the width-2 OBDD as 0 and to the other as 1, as done in Claim 2.1. We denote by
fi : {0, 1}i → {0, 1} the function that is given the string y1, . . . , yi and returns the value of the node
in the (i+ 1)’th level reached from the source by traversing the OBDD according to them.

Definition 2.6 For a fixed order of the variables z1, . . . , zn, and a fixed denotation of different
states in an OBDD M as being 0 states or 1 states, we say that the variable zi is an and variable

if fi+1(z1, . . . , zi) = fi(z1, . . . , zi−1) ∧ ℓi, where ℓi is either zi or zi (and f0 is either 0 or 1). or

variables and xor variables are defined in a similar manner. We call this description the type of a
variable - thus, the type of a variable is either and, or or xor.

We will refer to and variables and or variables as blocking variables for an OBDD M .

Note that the first variable in an ordering can be considered, according to this definition, as
any one of the three types of variables. We generally consider it to be the same type of variable as
the one just following it. In the case where there is only a single variable with influence in f we
consider it a xor variable.

Claim 2.2 Let f be a function computable by a width-2 OBDD with the order of variables
z1, . . . , zn. Let zk, . . . , zk+ℓ be a set of xor variables. It holds that fk+ℓ+1(z1, . . . , zk+ℓ) is a linear
function of fk(z1, . . . , zk−1) and of zk, . . . , zk+ℓ.

Claim 2.2 follows directly from Definition 2.6.

Let y(i) be the string y with the i’th bit flipped. Recall that the bit influence of the i’th bit in
the function f , which we denote by Ii(f) or by Ixi

(f), is Pr[f(y) 6= f(y(i))] when y is drawn from
the uniform distribution.

Claim 2.3 Let M be a width-2 OBDD, where the order of the variables is z1 . . . zn and let zi be an
and variable or an or variable inM . For a variable zj where j < i it holds that Izj

(fi) ≤ 1
2Izj

(fi−1).

Proof: Consider, without loss of generality, a width-2 OBDD M where the variable zi is an and

variable. For j < i we have:

Ij(fi) = Pr[fi(z) 6= fi(z
(j))] (1)

=
1

2
Pr[fi(z) 6= fi(z

(j)) | zi = 0] +
1

2
Pr[fi(z) 6= fi(z

(j)) | zi = 1] (2)

=
1

2
Pr[fi(z) 6= fi(z

(j)) | zi = 1] ≤ 1

2
Ij(fi−1) (3)

and the proof is completed.

The next claim follows from the structure of width-2 OBDDs.
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Claim 2.4 For a function f computable by a width-2 OBDD M , the influence of z1, . . . , zi−1 in fi
is no greater than their influence in fi−1.

Claim 2.5 Let f be a function of the form

f(x1, . . . , xn) = f ′(g(x1, . . . , xn−m), xn−m+1, . . . , xn)

where f ′ is computable by a width-2 OBDD M over the order of the variables z1, . . . , zm+1, where
z2 = xn−m+1, . . . , zm+1 = xn . If M has at least k blocking variables, then f is 2−k-close to the
function f ′(0, xn−m+1, . . . , xn), that is computable by a width-2 OBDD.

Proof: By Claim 2.3 the influence of the first bit of f ′ is at most 2−k. The claim follows.

3 A Testing Algorithm for the Fixed Ordered Case

In this section we assume, unless stated otherwise, that the OBDDs discussed are with the order
of the variables x1, . . . , xn and that this order is known to us.

3.1 Preliminaries

We will use the following notation for restricting several consecutive variables. Let f : {0, 1}n →
{0, 1} be a function and let w ∈ {0, 1}m be a string. We define fi,j,w, where j = i+m−1, to be the
function f with the variables xi, . . . , xj assigned the values w1, . . . , wm, respectively. This means
that

fi,j,w(x1, . . . , xn) ≡ f(x1, . . . , xi−1, w1, . . . , wm, xj+1, . . . , xn).

Since the assignment to the variables xi, . . . , xj is fixed, we either view fi,j,w as a function of n
variables (where the variables xi, . . . , xj have no influence), or as a function of n−m variables.

Definition 3.1 For a given order of the variables x1, . . . , xn and an index i ∈ [n], a set S is said
to be an i-Prefix Equivalence Class (or just an i-equivalence class) for a function f : {0, 1}n → {0, 1}
(where i ≤ n) when S is a maximal subset of {0, 1}i such that for all y1, y2 ∈ S and for all
w ∈ {0, 1}n−i it holds that f(y1w) = f(y2w).

As a corollary of Claim 2.1 we have:

Corollary 3.1 A function f : {0, 1}n → {0, 1} is computable by a width-2 OBDD with the order
of the variables x1, . . . , xn if and only if ∀i ∈ [n] there are at most 2 distinct i-prefix equivalence
classes for f .

Proof: If a function is computable by a width-2 OBDD, then it has, for all i ∈ [n], at most two
nodes on its i’th level (denoted arbitrarily 0 and 1 if two such nodes exist, otherwise denoted as
0). Thus, each prefix x1, . . . , xi either belongs to the equivalence class of all prefixes reaching the
node 0, or to that of all prefixes reaching the node 1.

In the other direction, let f be a function of n variables where ∀i ∈ [n] there are at most two
distinct i-prefix equivalence classes for f . we prove by induction on n that f is computable by a

8



width-2 OBDD. The base case is where f is a function of 0 variables, which can clearly be computed
by a width-2 OBDD. For the induction step, we consider fn−1, the function telling us to which
equivalence class in f each prefix of length n − 1 belongs. As f is a function of fn−1 (which is
computable by a width-2 OBDD by the induction hypothesis) and of xn, we have from Claim 2.1
that fn is computable by a width-2 OBDD.

Definition 3.2 Let S1, S2 be two i-prefix equivalence classes for a function f . A string w ∈
{0, 1}n−i is a distinguishing assignment for S1 and S2 if for every y1 ∈ S1, y2 ∈ S2 it holds that
f(y1w) 6= f(y2w).

3.2 The Testing Algorithm

To gain some intuition for the way the testing algorithm works, we first consider the following
scenarios.

Imagine that we are given query access to a function f where we have a promise that f is
either computable by a width-2 OBDD that has no blocking variables, or f is far from any function
computable by a width-2 OBDD. We could check which of the above is the case using BLR’s
linearity test on f , as a function computable by a width-2 OBDD that has no blocking variables is
a linear function.

Now, imagine we are promised that f is either far from any function computable by a width-2
OBDD or that it is computable by a width-2 OBDD that has exactly one blocking variable in the
i’th level, where i is known. We could check to see which of the cases above holds by going through
the following procedure. First we would like to see if f has at most two i-equivalence classes. We
cannot know this exactly, but we are able to tell if f is close to a function with 1, 2, or more
i-equivalence classes using an algorithm we will describe below. If we only find one i-equivalence
class for f it remains to check if f is a linear function of xi+1, . . . , xn. If it is, then f is computable
by a width-2 OBDD with one blocking variable, xi (and we can accept). If f has more than two
i-equivalence classes then it is clearly not computable by a width-2 OBDD (of any kind), and we
can reject. Finally, if f has exactly two i-equivalence classes, then we must check that the function
fi−1 (the function that maps the variables x1, . . . , xi−1 to (i− 1)-equivalence classes) is linear, and
that the function which maps the i-equivalence class and the variables xi+1, . . . , xn to f(x1, . . . , xn)
is linear, as well.

As a final hypothetical scenario, consider the following promise: f is either far from every
function computable by a width-2 OBDD, or it can be computed using a width-2 OBDD with a
single unknown blocking variable. If we could locate the blocking level, then we could tell which of
the two cases holds, as done in the previous paragraph. We note that as a consequence of Claim 2.3,
any function that is computable by a width-2 OBDD with a single blocking variable, is far from
linear, so we would like to check f and see what parts of it are linear. We can do this by performing
a binary search for a linear section. Begin by restricting the first n/2 variables to 0, and checking
if the function computed on all the rest of the variables is (close to) linear. If it is, repeat the
process with fewer variables restricted. If it isn’t, repeat the process with more variables restricted.
If we are, indeed, given a function that is computable by a width-2 OBDD that has only a single
blocking variable, this process will allow us to detect the blocking variable with high probability.

The property testing algorithm we suggest for computability by a width-2 OBDD is based on
the observations made above and on those made in the previous sections. In particular, we note
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that, as a consequence of Claim 2.5, any function f computable by a width-2 OBDD is ǫ-close to
a function g computable by a width-2 OBDD that has O(log(1/ǫ)) blocking variables, where the
blocking variables of g are all blocking levels of f . When our algorithm is given as input a function
computable by a width-2 OBDD, it will (with high probability) locate the last O(log(1/ǫ)) blocking
variables (if such blocking variables exist, of course). Locating these variables will be done using
a binary search technique reminiscent of the one suggested above. We will restrict the function on
some of its bits (x1, . . . , xj) and test whether the restricted function is linear, using a version of
the BLR linearity test. For any function f computable by a width-2 OBDD our algorithm will find
the structure of a function g that is close to it, and for every function that passes our test, we will
show that it is likely to be close to a function computable by a width-2 OBDD.

A notion that is used repeatedly is that of a function f that can be computed by a width-2
OBDD that accepts as input the value of a function g(x1, . . . , xt) and the bits xt+1, . . . , xn (in that
order) and outputs the value f(x1, . . . , xn). We define this formally:

Definition 3.3 A function f : {0, 1}n → {0, 1} is said to be a W2-function of g : {0, 1}t → {0, 1}
and of xt+1, . . . , xn if there exists a width-2 OBDD that accepts as input the value g(x1, . . . , xt) and
the bits xt+1, . . . , xn (in that order) and outputs the value f(x1, . . . , xn).

In Figure 2 we present the testing algorithm for computability by a width-2 OBDD when the
order of variables is fixed and known. In the algorithm we use a parameter ǫ′, which intuitively
stands for the amount of error we are willing to accumulate during each round of the algorithm.
We set ǫ′ = ǫ/(4 log(1/ǫ)). The algorithm uses two sub-procedures, Get-linear-level and Count-
equiv-classes, both described after the algorithm.

Theorem 3.2 Algorithm Test-width-2 is a one-sided error testing algorithm for the property
of being computable by a width-2 OBDD for a fixed given order of the variables. The algorithm
performs Õ(log(n)/ǫ) queries.

3.3 Building Blocks

We now proceed to discuss the probabilistic procedures used in Test-width-2 . We later return
to proving Theorem 3.2. We have already mentioned the BLR linearity test, one procedure that
we will use as an internal building block in our own sub-procedures. We now turn to describe an
additional building block - a procedure that is given access to a function f and a number i, and
attempts to check whether f has 1, 2 or more i-equivalence classes. Despite the fact it only counts
up to 2, or perhaps up to “many”, we dub this sub-procedure Count-equiv-classes. A precise
description of the algorithm appears in Figure 3. The straightforward approach to performing this
task may be to take a set of prefixes of length i and compare each two (or all of them) on a set
of suffixes, trying to find prefixes that belong to different equivalence classes. A simple analysis
implies a procedure that performs Θ(1/ǫ2) queries. The approach we take is slightly different. We
start with the arbitrary string 0i, which belongs to some equivalence class. To identify a second
equivalence class we simply test the equality of f(x1, . . . , xn) with f1,i,0i(xi+1, . . . , xn). If a second
equivalence class is detected then we use a similar technique to try and find a third equivalence
class (with a small adjustment). This approach leads to a Θ(1/ǫ) algorithm.
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Test-width-2
Input: Oracle access to a function f ; Precision parameter ǫ.

1. Let f0 = f . Let r = 1 and t0 = n.
Here t will be the number of variables of f that we haven’t restricted, and r will be the number of the

current round. The indexes on t and f will indicate the round r and help us keep track of different values

for the analysis.

2. While tr−1 6= 1 and r ≤ log(1/ǫ) + 2

(a) Locate linear section: Run Get-linear-level(f r−1, ǫ′/3, 1
6(log(1/ǫ)+2)).

This locates the last index j such that fr−1 is (ǫ′/3)-close to a linear function of fr−1

j+1,tr−1,w
(x1, . . . , xj)

and of xj+1, . . . , xtr−1 for a distinguishing sequence w.

(b) If Get-linear-level indicated the existence of more than 2 different i-equivalence classes on
some level i, reject.

(c) Otherwise, let j be the level returned by Get-linear-level and let w be the distinguishing
sequence returned by it.

(d) Let gr = f r−1
j+1,tr−1,w and let t̃r = j.

(e) If j 6= 1

i. Run Count-equiv-classes(gr, t̃r − 1, ǫ′/3, 1
12 log(1/2ǫ) ).

This tells us whether the number of (t̃r
−1)-equivalence classes in gr is 1, 2 or more with precision

ǫ′/3.

ii. If a single equivalence class is found, accept.

iii. If more than 2 equivalence classes are found, reject.

iv. Let w′ denote the distinguishing assignment (of size 1) between the 2 equivalence classes
found (returned by Count-equiv-classes). Let f r = gr

j,j,w′ and let tr = j − 1.

(f) Else, let f r = gr and let tr = t̃r.

(g) r = r + 1.

3. return accept.

Figure 2: Algorithm Test-width-2 (fixed order case).

Claim 3.1 The algorithm Count-equiv-classes, given oracle access to a function f acts as fol-
lows:

1. If f is ǫ-far from every function with one i-equivalence class, then with probability at least
1 − δ Count-equiv-classes will return representatives of at least two equivalence classes.

2. If f is ǫ-far from every function with at most two i-equivalence classes, then with probability
at least 1 − δ Count-equiv-classes will return representatives of three equivalence classes.

3. In any case Count-equiv-classes does not indicate the existence of more than the number
of i-equivalence classes of f .

4. Conditioned on Count-equiv-classes(f) returning the representatives of 2 different i-
equivalence classes and a distinguishing assignment, with probability at least 1 − δ it holds
that f is ǫ-close to a function of fi+1,n,w(x1, . . . , xi) (where w is the distinguishing assign-
ment) and of the variables xi+1, . . . , xn.

11



Count-equiv-classes
Input: Oracle access to a function f ; Integer value 0 < i ≤ n; Precision parameter ǫ; Confidence
parameter δ.

1. Select m = Θ(log(1/δ)/ǫ) strings x1, . . . , xm from {0, 1}n.

2. If f(xj) = f1,i,0i(x
j
i+1, . . . , x

j
n) for all xj ∈ {x1, . . . , xm}, then output that 1 equivalence

class was found. Otherwise, let y ∈ {0, 1}i, w ∈ {0, 1}n−i be such that f(yw) 6= f(0iw).

3. Select m = Θ(log(1/δ)/ǫ) new strings z1, . . . , zm from {0, 1}n.

4. Define g(zj) as 0 if f(0i, w) = f(zj1, . . . , z
j
i , w), and as 1 otherwise. Compute g(zj) for all

j.

5. For each j, if g(zj) = 0 and f(zj) 6= f(0i, zji+1, . . . , z
j
n), then output representatives of

3 different i-equivalence classes (0i, y and zj1, . . . , z
j
i ) and distinguishing assignments for

them (w and zji+1, . . . , z
j
n). Do the same if g(zj) = 1 and f(zj) 6= f(y, zji+1, z

j
n).

6. Output the representatives of 2 equivalence classes (0i and y) and a distinguishing assign-
ment for them (w).

Figure 3: Algorithm Count-equiv-classes.

The algorithm performs O
(

log(1/δ)
ǫ

)

queries.

Proof: If f is ǫ-far from any function with one i-equivalence class, then it is, in particular, ǫ-far from
f1,i,0i(xi+1, . . . , xn). We will therefore encounter a string xj such that f(xj) 6= f1,i,0i(x

j
i+1, . . . , x

j
n)

with probability at least 1−(δ/2) if we set m appropriately, and will thus return the representatives
of at least two i-equivalence classes. Likewise, if f is ǫ-far from any function with at most two i-
equivalence classes, it is in particular ǫ-far from the function that it is compared to in Step 5.
Namely, this is the function that takes the value f1,i,0i for all z such that g(z) = 0, and takes
the value f1,i,y for all z such that g(z) = 1. Hence, with probability at least 1 − (δ/2) we will

obtain a string zj such that g(zj) = 0 and f(zj) 6= f(0i, zji+1, z
j
n) or such that g(zj) = 1 and

f(zj) 6= f(y, zji+1, z
j
n). As a consequence, we shall output the representatives of 2 different i-

equivalence classes. Under no circumstances does the algorithm indicate the existence of equivalence
classes for which no witness was found.

It remains to prove the last item. To this end we define the function hw(x) as follows: If g(x) = 0
then hw(x) = f(0i, xi+1, . . . , xn), and otherwise hw(x) = f(y1, . . . , yi, xi+1, . . . , xn). For the string
w determined in Step 2 it holds that if f is ǫ-far from hw then we reject with probability at least
1 − δ in Step 5 (which can be seen as testing identity between f and hw). As hw is a function of
fi+1,n,w(x1, . . . , xi) and of the variables xi+1, . . . , xn the conclusion follows.

The query complexity is linear in m, which is O(log(1/δ)/ǫ).

Before describing the algorithm Get-linear-level (in Figure 5) and proving its correctness, we
describe the algorithm Test-level-linearity (see Figure 4) that it uses as a building block.

Claim 3.2 When given oracle access to a function f and a value i, Test-level-linearity acts as
follows:

12



Test-level-linearity
Input: Oracle access to a function f ; Integer value 0 < i ≤ n; Precision parameter ǫ; Confidence
parameter δ.

1. Run Count-equiv-classes(i, ǫ′ = ǫ/4, δ′ = δ/4).

2. If Count-equiv-classes returns representatives of 3 different i-equivalence classes, output
reject.

3. If Count-equiv-classes returns 1 equivalence class, run the BLR linearity test on f1,i,0i

with precision parameter ǫ′ = ǫ/3 and with confidence δ′ = δ/4. If the test accepts -
output accept and 0i as a distinguishing assignment, otherwise, output reject.

4. If Count-equiv-classes returns representatives of 2 different i-equivalence classes, x and
y, and a distinguishing assignment w, do the following:

(a) Run the BLR linearity test on f1,i,x and on f1,i,y with precision ǫ′ = ǫ/4 and with
confidence δ′ = δ/4. If either test rejects, reject.

(b) Select m = Θ(log(1/δ)/ǫ) strings in {0, 1}n−i, denoted w1, . . . , wm.

(c) If f1,i,x(w
j) = f1,i,y(w

j) for all j, or f1,i,x(w
j) 6= f1,i,y(w

j) for all j, output accept and
the distinguishing assignment w. Otherwise output reject.

Figure 4: Algorithm Test-level-linearity.

1. If f is a linear function of the output of a Boolean function g(x1, . . . , xi) and of the variables
xi+1, . . . , xn, then Test-level-linearity accepts, and outputs a sequence w such that fi+1,n,w

equals g.

2. If f is ǫ-far from any linear function of any function g(x1, . . . , xi) and of the variables
xi+1, . . . , xn, then with probability at least 1− δ Test-level-linearity rejects, possibly identi-
fying 3 different equivalence classes.

The algorithm performs Θ(log(1/δ)/ǫ) queries.

Proof: We start with Item 1. Test-level-linearity rejects in only 4 cases, none of which happen
if f is a linear function of a function g(x1, . . . , xi) and of the variables xi+1, . . . , xn:

1. The algorithm encounters 3 different i-equivalence classes. This is clearly impossible as
g(x1, . . . , xi) can only take (at most) 2 different values.

2. The algorithm encounters a single equivalence class, and restricted to that class, f is not a
linear function. As any restriction on the Boolean variables of a linear function gives a linear
function, if f ′ is linear, so is, e.g., f ′1,1,0.

3. The algorithm encounters two equivalence classes, and restricted to one of them f is not a
linear function. Again, as any restriction on the Boolean variables of a linear function gives
a linear function, if f ′ is linear, so is, e.g., f ′1,1,0.

13



4. We have two strings x, y such that f1,i,x(w
j) = f1,i,y(w

j) on some assignment wj , and
f1,i,x(w

k) 6= f1,i,y(w
k) on some assignment wk. This clearly doesn’t happen in a linear func-

tion f ′(g(x1, . . . , xi), xi+1, . . . , xn) where the bit g(x1, . . . , xi) has influence 1, and likewise
doesn’t happen in a linear function f ′(g(x1, . . . , xi), xi+1, . . . , xn) where the bit g(x1, . . . , xi)
has no influence. As every bit in a linear function has either influence 1 or 0, it holds that f ′

is not a linear function.

We show the correctness of Item 2 as follows. We assume none of the sub-procedures used by
Test-level-linearity fails, e.g., when a call is made to the BLR linearity test it accepts only if the
function it is invoked upon is indeed (ǫ/4)-close to linear, and (despite this not being an explicit
sub-procedure) we assume that in Step 4c of Test-level-linearity we accepted a function f where
f1,i,x(w

j) = f1,i,y(w
j) on all but ǫ/4 of the values or that f1,i,x(w

j) 6= f1,i,y(w
j) on all but ǫ/4 of

the values. The cumulative probability of one of these sub-procedures failing is at most δ, and thus
the conclusion will follow once we show that such success and f passing the test implies that f is
(ǫ)-close to a linear function of some function g(x1, . . . , xi) and of the variables xi+1, . . . , xn.

Assuming all sub-procedures succeed as described above, if f is accepted in Step 3, then on all
but at most ǫ/4 of the inputs, f is close to a function that does not depend on the variables x1, . . . , xi
(by the correctness of Count-equiv-classes), and on all but at most ǫ/3 of the inputs it equals a linear
function of xi+1, . . . , xn. It follows that f is ǫ-close to a linear function of the variables xi+1, . . . , xn
and of a constant function (of the variables x1, . . . , xi). If f is accepted in Step 4, then (by the
correctness of Count-equiv-classes) it is (ǫ/3)-close to a function of the variables xi+1, . . . , xn and
of fi+1,n,w(x1, . . . , xi) where w is the distinguishing assignment returned by Count-equiv-classes.
Step 4a ensures that f is (ǫ/4)-close to a linear function when fi+1,n,w(x1, . . . , xi) = 0, and Steps 4b
and 4c ensure that when fi+1,n,w(x1, . . . , xi) = 0 and when fi+1,n,w(x1, . . . , xi) = 1 the function f is
either close to being the same linear function of xi+1, . . . , xn (making f close to a linear function of
xi+1, . . . , xn that disregards the values x1, . . . , xi) or is close to being an opposite function (making
f close to a linear function of xi+1, . . . , xn and of fi+1,n,w(x1, . . . , xi)), as required.

Claim 3.3 When Get-linear-level is given oracle access to a function f (of n variables), a pre-
cision parameter ǫ and a confidence parameter δ it acts as follows. Get-linear-level rejects only
if more than 2 different i-equivalence classes were located for some i. Otherwise, with probability
greater or equal to 1 − δ it returns a value 1 ≤ i ≤ n and a string w so that the following hold:

1. The function f is ǫ-close to a linear function of fj+1,n,w(x1, . . . , xj) and of the variables
xj+1, . . . , xn.

2. If j 6= 1, then the function f is not a linear function of fj,n,w(x1, . . . , xj−1) and of the variables
xj , . . . , xn for any3 w.

The algorithm performs O
(

log(n) log(log(n)/δ)
ǫ

)

queries.

Proof: We prove that both items hold conditioned on Test-level-linearity never failing (i.e.,
never accepting when in fact f is far from every linear function of some g(x1, . . . , xi) and of the

3Note that this is true with probability 1 due to the one-sided rejection criteria of Test-level-linearity, but the
claim as is suffices
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Get-linear-level
Input: Oracle access to a function f ; Precision parameter ǫ; Confidence parameter δ.

1. Let min = 1 and max = n.

2. Let w be the empty string.

3. While min < max

(a) Let mid = ⌊(max+min)/2⌋
(b) Run Test-level-linearity(f , mid, ǫ, δ′ = δ/ log(n)). If Test-level-linearity finds 3

different mid-equivalence classes, reject.

(c) If Test-level-linearity returns accept set max = mid and set w to be the distin-
guishing sequence.

(d) Otherwise, set min = mid+ 1

4. return mid and w.

Figure 5: Algorithm Get-linear-level.

variables xi+1, . . . , xn). The probability of such a failure on each round is at most δ/ log(n), which
cumulatively never exceeds δ in the (at most) log(n) rounds that the algorithm performs.

The correctness of Item 1 when i 6= n follows from the correctness of Test-level-linearity
according to Claim 3.2 - f passed the subroutine Test-level-linearity on the value i and is thus
ǫ-close to a linear function of fi+1,n,w(x1, . . . , xi) and of the variables xi+1, . . . , xn. When i = n the
result is trivial as the linear function is of one variable: f(x1, . . . , xn).

The correctness of Item 2 again follows from the correctness of Test-level-linearity. Unless
j = 1 the function Test-level-linearity rejected when invoked on the j − 1’th level of f (by
the structure of binary search), and thus f is not a linear function of fi,n,w and of the variables
xi, . . . , xn for any string w.

The query complexity follows directly from the query complexity of Test-level-linearity, which
is invoked at most log(n) times with the parameters ǫ and δ′ = δ/ log(n).

3.4 Wrapping it all up

Before proving Theorem 3.2 we prove a small claim that will assist us in the proof. In both the
claim and the proof of the claim we describe a situation where none of the (probabilistic) sub-
procedures used by Test-width-2 fail. By “Procedures not failing” we mean, e.g., that if the BLR
test accepts, then the function is indeed ǫ-close to a linear function.

Claim 3.4 Assuming none of the sub-procedures used by it fail, at the end of the r’th round of
Test-width-2 , the function f r−1 is ǫ′-close to a W2 function of f r(x1, . . . , xtr ) and the variables
xtr+1, . . . , xtr−1 .

The relationship between f r−1 and f r is demonstrated in Figure 6.
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Proof: By Claim 3.3 we have that at the end of Step 2d of Test-width-2 in the r’th round,
the function f r−1 is (ǫ′/3)-close to a W2 function of gr(x1, . . . , xj) and the variables xj+1, . . . , xt̃r .
When j = 1 this suffices (as we set f r = gr). When j > 1 we have by Claim 3.1 that at Step 2(e)iv
f r is set to a function ǫ′/3-close to a W2 function of gr and of the variable xt̃r . This function
is surely a W2 function and thus f r−1 is 2ǫ′/3-close to a W2 function of f r(x1, . . . , xtr) and the
variables xtr+1, . . . , xtr−1 , as required.

Proof of Theorem 3.2: We prove Theorem 3.2 in three stages. We first show the correctness
of the algorithm assuming that none of the probabilistic procedures it performed erred in any way.
We follow this by bounding the probability of error for the different probabilistic procedures, and
finally, we analyze the query complexity, concluding the proof.

Correctness assuming the success of sub-tests involves proving the following:

1. Completeness: Test-width-2 , given oracle access to a function computable by a width-2
OBDD, accepts.

2. Soundness: Test-width-2 , given oracle access to a function ǫ-far from any function com-
putable by a width-2 OBDD, rejects with probability at least 2/3.

Proof of the completeness condition is straightforward: Rejection by Test-width-2 occurs
only when 3 different i-equivalence classes are detected. By Corollary 3.1 this never happens in a
function computable by a width-2 OBDD. As Test-width-2 always terminates either by accepting
a function or rejecting it, the completeness condition holds.

We prove the soundness condition by proving the contrapositive - any function that passes the
tester with probability greater than 1/3 is ǫ-close to a function computable by a width-2 OBDD.
To this end we assume that all the sub-procedures performed by Test-width-2 succeed and show
that in such a case any function passing the test is, indeed, ǫ-close to a function computable by a
width-2 OBDD. We later prove that the cumulative probability of the “sub-procedures” failing is at
most 1/3, thus ensuring that Test-width-2 is indeed a one-sided error property testing algorithm.

We define the function α0 to be f . We next construct for every round r of the algorithm a
function αr that has the following properties:

1. The function αr is close to the function αr−1. In particular d(αr, αr−1) ≤ ǫ′ = ǫ/(4 log(1/ǫ)).

2. The function αr is a W2 function of f r(x1, . . . , xtr ) and of xtr+1, . . . , xn, and has at least
r − 1 blocking variables. The W2 function that accepts as input the values f r(x1, . . . , xtr )
and xtr+1, . . . , xn is denoted βr.

We construct αr based on αr−1 as follows: By Claim 3.4, at the end of the r’th round the
function f r−1 is ǫ′-close to a W2 function, which we denote ψr, of f r(x1, . . . , xtr ) and the variables
xtr+1, . . . , xtr−1 . Let

αr = βr−1(ψr(f r(x1, . . . , xtr ), xtr+1, . . . , xtr−1), xtr−1+1, . . . , xn) .

As we wish to view αr as equivalent to βr(f r(x1, . . . , xtr ), xtr+1), we define βr accordingly
(see Figure 6). We have that d(αr , αr−1) ≤ ǫ′, since αr and αr−1 can only differ when
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Figure 6: An illustration for the construction of αr and βr

ψr(f r(x1, . . . , xtr ), xtr+1, . . . , xtr−1) 6= f r−1(x1, . . . , xtr−1). We note that βr is computable by a
width-2 OBDD by a straightforward construction, and that unless j = 1 on the r’th round, the
new width-2 OBDD constructed by this procedure (that computes βr) has one more blocking
variable than the one on the r − 1’th round.

Denoting the last round of Test-width-2 as s we now note that αs is (ǫ/4)-close to a function
computable by a width-2 OBDD (assuming f passed the test). There are three ways the test can
terminate successfully:

1. The test reaches the (log(1/ǫ)+2)’th round. In such a case αs is a W2 function (that accepts
f s(x1, . . . , xts) and xts+1, . . . , xn as input) with log(1/ǫ) + 2 blocking variables in the OBDD
computing it, and by Claim 2.5 is (ǫ/4)-close to a function computable by a width-2 OBDD.

2. The test terminates because ts = 1. In such a case, by Claim 3.4, at the end of the s’th
round the function f s is a function of 0 variables (a constant function), surely computable by
a width-2 OBDD.

3. The test terminates because a single equivalence class was found in Step 2e. In such a case
f s is (ǫ′/3)-close to a constant function, as above.

Let h be a function computable by a width-2 OBDD that’s (ǫ/2)-close to αs, and let W2 be
the set of functions computable by width 2 OBDDs. We have

d(f,W2) ≤ d(f, h) (4)

≤ d(f, α1) + d(α1, α2) + · · · + d(αs−1, αs) + ǫ/2 (5)

≤ ǫ/2 + (log(1/ǫ) + 2)(ǫ/(4 log(1/ǫ))) (6)

≤ ǫ (7)

as required.

The probability of any sub-test failing. The cumulative probability of any sub-procedure
used by Test-width-2 of failing during Test-width-2’s execution is at most 1/3. This is due
to the fact that in each of at most log(1/ǫ) + 2 rounds the algorithm performs two probabilistic
sub-procedures, each with a probability of failure of at most 1

6(log(1/ǫ)+2) . Using a simple union

bound we get a total probability of failure of at most 2(log(1/ǫ) + 2) · 1
6(log(1/ǫ)+2) = 1/3.
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The query complexity. It remains to analyze the query complexity of the algorithm. The
tester repeats the outer loop at most log(1/ǫ) + 2 times, and performs queries in two Steps
- 2a and 2e, where the number of queries in Step 2a is by far the larger and sums up to
Θ(log(n)(log(log(n)/δ′)/ǫ′′)) where ǫ′′ = ǫ/(12 log(1/ǫ)) and δ′ = 1

6(log(1/ǫ)+2) , giving us a total
number of queries of

Θ

(

log(n) log(log(n) log(1/ǫ)) log(1/ǫ)

ǫ

)

and the proof is complete.

4 Lower Bounds

In this section we give two lower bounds. An Ω(log(n)) lower bound on the query complexity in
the fixed order case (where ǫ is a constant) and an Ω(n) lower bound in the case where the order of
variables is not fixed. Both lower bounds hold for general, two-sided-error adaptive testers, where
the first lower bound follows from an Ω(n) lower bound for non-adaptive testers (when the order
is fixed). A lower bound for the fixed order case, which is based on the same construction as ours
but is proved using a different technique, was recently given by Brody et.al. [5].

4.1 A Lower Bound For the Fixed Order Case

Theorem 4.1 Any two-sided error non-adaptive tester for computability by a width-2 OBDDs with
the order of variables x1, . . . , xn must perform Ω(n) queries.

As a corollary we get:

Corollary 4.2 Any two-sided error (possibly adaptive) tester for computability by a width-2 OBDD
with the order of variables x1, . . . , xn must perform Ω(log n) queries.

In order to prove Theorem 4.1 we define two families of functions, F1 and F2. Each function in
F1 can be computed by a width-2 OBDD, while each function in F2 is Ω(1)-far from any function
computable by a width-2 OBDD. However, it is not possible to distinguish with constant success
probability between a uniformly selected function in F1 (which should be accepted with probability
at least 2/3) and a uniformly selected function in F2 (which should be rejected with probability at
least 2/3) by performing o(n) non-adaptive queries.

In both families each function is defined by the choice of a coordinate i∗ such that 1 ≤ i∗ ≤ n−3
and i∗ = 1 (mod 3) (which we refer to as the special coordinate), and by a subset of coordinates

I ⊆ {i∗ + 3, . . . , n}. Given a choice of i∗ and I, in one family the corresponding function f i
∗,I

1 is

f i
∗,I

1 (x) = (xi∗+1 ∧ xi∗+2) +
∑

i∈I

xi , (8)

where summation is in GF (2), and in the second family the corresponding function is

f i
∗,I

2 (x) = xi∗ + (xi∗+1 ∧ xi∗+2) +
∑

i∈I

xi . (9)

Clearly, each function f i
∗,I

1 (x) is computable by a width-2 OBDD. We next show that each function

f i
∗,I

2 (x) is far from every width-2 OBDD.
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Claim 4.1 For every 1 ≤ i∗ ≤ n− 3 such that i∗ = 1 (mod 3) and for every I∗ ⊆ {i∗ + 3, . . . , n},
the function f i

∗,I
2 (x) is Ω(1)-far from every function that is computable by a width-2 OBDD with

the order of variables x1, . . . , xn.

We prove this claim using the fact that xi∗ has influence 1 in f i
∗,I

2 , and that all the variables
have influence greater than or equal to 1/2 (all the variables have influence 1 except xi∗+1 and
xi∗+2, that have influence 1/2).

Proof: Consider towards a contradiction a function f that is computable by a width-2 OBDD
with the order of variables x1, . . . , xn such that there exist i∗ and I where d(f, f i

∗,I
2 ) ≤ 1/4. We

consider several cases:

1. If the influence of xi∗ in f is less than 1, then, since f is computed by a width-2 OBDD, we
get by Claim 2.3 and Claim 2.4 that the influence of xi∗ in f must be at most 1/2. This is
the case because non-blocking variables do not reduce influence, and other variables reduce
influence by at least half. If the influence of xi∗ is indeed less than 1/2, then f is at least

1/4-far from f i
∗,I

2 and we reach a contradiction.

2. Otherwise, as the influence of xi∗ is 1, by Claim 2.3 and Claim 2.4, all of the variables in an
OBDD computing f are non-blocking (recall that x1, . . . , xi∗−1 have no influence in f), and

thus f is a linear function. Again, f must be at least 1/4-far from f i
∗,I

2 , because the influence

of xi∗+1 in f is 1 and in f i
∗,I

2 it is 1/2.

Thus, a contradiction is reached and the proof is complete.

We next show that for every (non-adaptive) choice of at most q = n/c queries (for some
sufficiently large constant c) the statistical difference between the distributions on answers that are
induced by the two distributions on functions (uniform over F1 and uniform over F2, respectively),
is a small constant. The claim will actually be a bit stronger: for every choice of q queries we
have that for all but at most q settings of the index i∗, once we fix i∗ and select I uniformly at
random, the distribution on answers is identical for both families. This implies that for every choice
of q = n/c queries, the statistical difference between the two distributions on answers is at most
q/(n/3) = 3/c.

We shall make use of the following definition.

Definition 4.1 Given a set Y of q queries, Y = {y1, . . . , yq} where yj ∈ {0, 1}n, we say that a
coordinate 1 ≤ i∗ ≤ n − 3 is suspicious with respect to Y , if the following holds. There exists a
subset Y ′ of the queries such that when we take the sum of all queries in Y ′ (mod 2), then the
resulting vector v =

⊕

j∈Y y
j satisfies: (1) vi = 0 for every i ≥ i∗ + 3; and (2) vi 6= 0 for at least

one i ∈ {i∗, i∗ + 1, i∗ + 2}.

Claim 4.2 For any choice Y of q queries, the number of coordinates that are suspicious with respect
to Y is at most q.

Proof: For each i∗ that is suspicious with respect to Y , let zi
∗

be the vector that results from
summing the subset Y ′ of queries that give evidence to the fact that i∗ is suspicious (if there is
more than one such subset, then we take one arbitrarily). Thus zi

∗
consists of some arbitrary prefix

of i∗ − 1 coordinates, it is then non-0 in one of the following 3 coordinates, and then it is all 0.
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The main observation is that the different zi
∗
’s (for the suspicious i∗’s) are linearly independent

(recall that i∗ = 1 (mod 3)). However, each is a linear combination of some subset of the q queries,
and the dimension of the subspace spanned by any q queries is at most q. Therefore the number
of such zi

∗
’s cannot be more than q, implying the same upper bound on the number of suspicious

coordinates.

Having upper-bounded the number of suspicious coordinates, we turn to the non-suspicious
ones. The next notation will be useful. Let Y ′ = {y1, . . . , yt} be a fixed set of queries and let
L′ = ℓ1, . . . , ℓt be a corresponding vector of answers. For any query yt+1 and a given choice of i∗,
let p1(Y

′, L′, yt+1, i∗), be the probability that the answer to yt+1 is 1 if we select f i
∗,I

1 uniformly
among all functions in F1 that are consistent with L′ = ℓ1, . . . , ℓt on Y ′ and in which i∗ is their
special coordinate. Define p2(Y

′, L′, yt+1, i∗) analogously, that is, when the function is drawn from
F2.

Claim 4.3 Let Y = {y1, . . . , yq} be a fixed set of queries and, let i∗ be a fixed coordinate that is not
suspicious with respect to Y . For any subset Y ′ = {y1, . . . , yt}, t < q, and any setting of answers
to the queries in Y ′, denoted L = ℓ1, . . . , ℓt we have that p1(Y

′, L′, yt+1, i∗) = p2(Y
′, L′, yt+1, i∗).

Proof: Each query yi, 1 ≤ i ≤ t+1 is of the form xiaibicivi, where xi ∈ {0, 1}i∗−1, ai, bi, ci ∈ {0, 1}
and vi ∈ {0, 1}n−(i∗+2). We consider two cases: if vt+1 is not linearly dependent on v1, . . . , vt then,
since in both distributions the subset I is selected uniformly, the new answer is equally probable to
be 0 or 1. That is, in this case p1(Y

′, L′, yt+1, i∗) = p2(Y
′, L′, yt+1, i∗) = 1/2. On the other hand,

if vt+1 is linearly dependent on the previous vi’s, then we’ll show that in both distributions the
answer to yt+1 is determined by the previous queries and answers to be the same value (that is,
either p1(Y

′, L′, yt+1, i∗) = p2(Y
′, L′, yt+1, i∗) = 1 or p1(Y

′, L′, yt+1, i∗) = p2(Y
′, L′, yt+1, i∗) = 0).

For the sake of notational simplicity, assume that vt+1 =
∑t

i=1 v
i (though it can be the sum of

any subset of the vi’s). Since i∗ is not not suspicious, we know that it also holds that at+1 =
∑t

i=1 a
i

(an analogous statement holds for bt+1 and ct+1, but we won’t need to use it). By definition of
the two function classes, we know that for every 1 ≤ i ≤ t, ℓi = (bi ∧ ci) + w1vi for some vector
w1 ∈ {0, 1}n−(i∗+2), and that ℓi also equals ai+(bi∧ci)+w2vi (for some vector w2 ∈ {0, 1}n−(i∗+2)).
Since vt+1 =

∑t
i=1 v

i, we get that for the first family, ℓt+1 should be

(bt+1 ∧ ct+1) + w1
t

∑

i=1

vi = (bt+1 ∧ ct+1) +

t
∑

i=1

w1vi (10)

= (bt+1 ∧ ct+1) +

t
∑

i=1

(ℓi − (bi ∧ ci)) . (11)

For the second family it should be

at+1 + (bt+1 ∧ ct+1) + w1
t

∑

i=1

vi = at+1 + (bt+1 ∧ ct+1) +

t
∑

i=1

w1vi (12)

= at+1 + (bt+1 ∧ ct+1) +

t
∑

i=1

(ℓi − ((bi ∧ ci) + ai)) (13)

=
t

∑

i=1

ai + (bt+1 ∧ ct+1) +
t

∑

i=1

((ℓi − ((bi ∧ ci) + ai)) , (14)
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and we get the same value (recall that we are working over GF (2) so that + and − are the same).

The proof of Theorem 4.1 follows by combining Claims 4.1–4.3.

4.2 A Lower Bound for the Non-Fixed Order Case

In this subsection we prove the following theorem.

Theorem 4.3 Any two-sided error (possibly adaptive) tester for computability by a width-2 OBDDs
when the order of the variables is not fixed must perform Ω(n) queries.

We begin by establishing several facts about width-2 OBDDs when the order of variables is not
fixed.

Definition 4.2 For a given order of the variables z1, . . . , zn, a set of consecutive variables zi, . . . , zj
is said to be a series of variables if they are all of the same type.

We now give an alternative definition of a blocking variable, a definition that relates to a function
f and not to a particular OBDD computing it. We show this definition is equivalent to our original
one, and relate it to the notion of series. We denote by fxi=σ the function f with the variable xi
restricted to the value σ. In a similar manner, when restricting a set of variables S to a value σ we
will use the notation fS=σ.

Definition 4.3 A variable xi is blocking a variable xj with respect to a function f if xj has no
influence in fxi=σ (for some σ ∈ {0, 1}), but has influence in f . A variable xi that blocks some xj
will be called a blocking variable.

Note that the property of being a blocking variable relates to the function f and not to a specific
representation of this function (e.g., as a width-2 OBDD). However, blocking variables with respect
to a function f are and variables or or variables in any width-2 OBDD that computes f . The
next claim follows from the definition of blocking variables (as well as and and or variables).

Claim 4.4 If xi is an and variable or an or variable in a width-2 OBDD that computes a function
f , then xi is a blocking variable with respect to f and blocks all variables in series preceding it, as
well as the variables in the same series it belongs to.

The other direction holds as well.

Claim 4.5 Let xi be a variable blocking xj in f . In any width-2 OBDD computing f it holds that
xi is either an and variable or an or variable. Furthermore, xi either appears in the same series
as xj or in a series following it.

Proof: We first show that xi either appears in the same series as xj or in a series following it: Let
xj appear as the m’th variable in an OBDD computing f . Assume towards a contradiction that xi
precedes xj in the variable order. There are two cases:
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XOR XOR XOR AND AND AND OR OR XOR XOR

0 states

1 states

x3x10 x8x7 x2 x5x1x6x4x11

Figure 7: An example of a width-2-OBDD and its partition into series and sections. The dashed
lines represent 0 transitions and the solid lines represent 1 transitions.

1. If xj is a xor variable it will clearly have influence in fm+1 for any assignment xi = σ, and
is hence not blocked by xi.

2. Otherwise, let the section that xj belongs to begin with the variable zℓ. Let f ′ = fℓ and
note that if f ′xi=σ(z1, . . . , zℓ−1) is not constant (for some σ ∈ {0, 1}), then xi cannot block
xj . Thus, there can be no xor variables separating the series containing xi and xj. Assume
without loss of generality that xj is an and variable. This means that the series immediately
preceding xj’s is an or section. If xi is not in the or section immediately preceding xj than,
when a literal in that section is true, xj can certainly have influence and thus xi cannot block
it. If xi is in the series preceding the one containing xj , it’s easy to see that xj can have
influence whether xi is restricted to a true or false value.

Thus, xi cannot precede xj. It remains to note that given that xi blocks xj , it cannot be a xor

variable in the same series as xj or following it.

To prove Theorem 4.3 we use a reduction from a communication complexity problem.4 This
approach for proving property testing lower bounds was pioneered by Blais et al. [3]. They show
how communication complexity problems can be reduced to property testing problems, implying
that the number of bits that two parties must communicate in order to solve certain communication
complexity problems gives a lower bound on the number of queries required to solve corresponding
testing problems.

Our reduction actually combines several reductions. Specifically, we give a reduction from the
Set-Disjointness communication complexity problem, which we define shortly, to the problem of
deciding whether two linear functions share some of their influential variables. This reduction is
inspired by a similar reduction introduced by Blais et al. [3]. Having done this we show that
the problem of deciding whether two linear functions share any influential variables is essentially
equivalent to deciding whether the influential variables in one linear function are a subset of those in
another5. Finally, we show that a property testing algorithm that distinguishes between functions
computable by width-2 OBDDs (for some order of the variables) and functions far from all functions
in this family, can be used to decide whether the influential variables in one linear function are a
subset of those in another.

We start with a few definitions.

4Here we give only the definitions necessary for our purposes. For an excellent textbook, see [17].
5In fact we only show this in one direction, which we require. The other direction follows similar lines.
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Definition 4.4 For a linear function f we denote the set of variables that have influence of 1 in
f by S(f).

Definition 4.5 Two linear functions f and g are said to intersect if |S(f) ∩ S(g)| 6= 0. Deciding
whether two linear functions intersect is referred to as the Linear Intersection problem.

Definition 4.6 A linear function g is said to contain a linear function f if S(f) ⊆ S(g). We
denote this by f ⊆ g. Deciding whether one linear function contains another is referred to as the
Linear Containment problem.

Definition 4.7 For x ∈ {0, 1}n we define the linear function χx : {0, 1}n → {0, 1} as: χx(y) =
⊕n

i=1(xi ∧ yi).

Claim 4.6 Let T be an algorithm that receives oracle access to two linear functions f, g, performs
q(n) queries, and solves the Linear Containment problem with probability of success at least 2/3.
There exists an algorithm that solves the Linear Intersection problem and performs O(q(n)) queries.

Proof: Consider the variables S(f ⊕ g). These variables are exactly those that are either in S(f)
or in S(g) but not in both. Thus, to determine whether |S(f)∩S(g)| 6= 0 we can emulate T on the
functions f and f ⊕ g, returning true where T returns false and vice versa. This is correct because
f ⊆ f ⊕ g, if and only if S(f) and S(g) do not intersect.

Definition 4.8 Let Alice and Bob be two parties where Alice is given an input x = x1, . . . , xn and
Bob is given an input y = y1, . . . , yn. Both parties have unlimited computation time, and each party
may access a shared string of random bits. They are interested in computing some function h(x, y),
and to this end they may send each other messages (possibly in several rounds). The (randomized)
communication complexity of computing h is the minimum number of bits that Alice and Bob need
to communicate so as to ensure that for every x, y, they compute h(x, y) with probability at least
2/3.

In the Set Disjointness problem Alice and Bob should compute h(x, y)
def
=

∨n
i=1(xi ∧ yi). That is,

they should determine (with success probability at least 2/3) whether there exists an index i such
that both xi = 1 and yi = 1.

Theorem 4.4 ([23]) The randomized communication complexity of the Set Disjointness problem
is Ω(n).

Claim 4.7 Any algorithm that receives oracle access to two linear functions f and g, and solves
the Linear Intersection problem with success probability at least 2/3 must perform Ω(n) queries.

Proof: Let T be an algorithm for the Linear Intersection problem. We show that T can be
emulated by two communicating parties to solve the Set Disjointness problem, where the number
of bits communicated is equal to the number of queries performed by T . for a similar problem. Alice
is given the input x and Bob is given the input y. They emulate T on the input (χx, χy) (with coin
tosses determined according to the shared random string), where the results of queries to χx are
calculated by Alice and communicated to Bob, and results of queries to χy are calculated by Bob and
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communicated to Alice. This returns the correct result with probability 2/3 as |S(χx)∩S(χy)| > 0
only if

∨n
i=1(xi ∧ yi) = 1. The number of bits communicated is the same as the number of queries

performed, as a bit is sent to communicate the result of each query and no other bits are sent. The
claim follows.

We now describe two families of functions, F and G, such that functions in F are far from all
functions computable by width-2 OBDDs, and functions in G are computable by width-2 OBDDs.
We shall use the following notation: for a set of variables U , we let

⊕

U be a shorthand for
⊕

xi∈U
xi. The family F is composed of functions that are computed as follows. Every function

f ∈ F has three disjoint and non-empty sets of variables, U, V,W where x1 /∈ U ∪ V ∪W . We
compute f as follows: If x1 = 0 then f =

⊕

U ⊕⊕

V . Otherwise, f =
⊕

U ⊕⊕

W . For g ∈ G we
have only two (disjoint, non-empty) sets of variables, U and V . If x1 = 1 then g =

⊕

U ⊕ ⊕

V .
Otherwise, g =

⊕

U .

Claim 4.8 Every function g ∈ G can be computed by a width-2 OBDD.

Proof: The OBDD that computes g is constructed as follows. We first have a xor-series containing
the variables in V , followed by x1 as an and variable. Finally, we have a xor-series with the
variables in U . Verifying this computes g is straightforward.

Claim 4.9 Every f ∈ F is 1/8-far from every function computable by a width-2 OBDD, regardless
of the order of variables.

Proof: Let us fix a function f ∈ F and consider a particular width-2 OBDD M . We show that
the function computed by M , which we denote fM , is 1/8-far from f . To do this we first consider
the influence of different variables in f :

1. All the variables u ∈ U have influence 1.

2. All the variables v ∈ V and w ∈W have influence 1/2, as they have influence 1 in fx1=σ and
influence 0 in fx1=σ̄ (where the identity of σ depends on whether we are discussing v or w).

3. The variable x1 has influence 1/2, as it effects the value of the function on those inputs where
⊕

V 6= ⊕

W .

Now consider toward a contradiction a function fM computable by a width-2 OBDD M that
is 1/8-close to f . We first establish several facts about the variables and their order in M :

1. No variable blocks the variable x1. Otherwise, for such a variable v there would be an
assignment v = σ where x1 has no influence. But in f we have an influence of 1/2 for x1

for any assignment v = σ, and this would mean fM would be more than 1/8-far from f . It
follows that x1 appears in M after all blocking variables (aside, perhaps, of itself).

2. The variable x1 is not a xor variable in M . Otherwise, as it is not blocked by any other
variable (which we know by Fact 1), it has influence 1 in FM . But in f we have an influence
of 1/2 for x1, and this would mean fM would be more than 1/8-far from f . It follows (by
Claim 4.4) that x1 is a blocking variable.
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3. For the order of variables in M all the variables u ∈ U are in the last xor series. If this were
not the case, by Fact 1 there would exist u ∈ U with influence at most 1/2 (because it would
come before x1), and fM would be more than 1/8-far from f .

4. The variables v ∈ V appear before x1 in the OBDD M . If this were not the case, as no
variable blocks x1, by Claim 4.5 they would be xor variables that are not blocked by any
variable, and would have influence 1. As they have influence 1/2 in f this would mean fM

would be more than 1/8-far from f . The same holds for variables w ∈W .

Given the facts above it remains to consider the case where the variables in V and W all come
before the variable x1 in M ’s order of variables. As x1 is a blocking variable in M , it has a blocking
value σ. It follows that in fMx1=σ all the variables u ∈ U and w ∈W have influence 0. However, by
the definition of f , either v ∈ V or w ∈W have an influence of 1 in fx1=σ, and thus a contradiction
is reached and the claim holds.

We now give a reductionR that maps pairs of linear functions (f, g) of n variables, to a function h
as follows. Each pair is mapped to a function h : {0, 1}n+1 → {0, 1}, such that h(0, x2, . . . , xn+1) =
f(x2, . . . , xn+1) and h(1, x2, . . . , xn+1) = g(x2, . . . , xn+1). Note that if the variables in f are a
subset of the variables in g, then h ∈ G. Otherwise, h ∈ F .

Proof of Theorem 4.3: Theorem 4.3 follows from Claims 4.6, 4.7, 4.8 and 4.9, as well as
Theorem 4.4. In particular, let T be a property testing algorithm for computability by width-2
OBDDs where the order of the variables is not fixed. By Claim 4.6 it holds that χx ⊆ χx ⊕ χy
if and only if χx and χy intersect. Thus, by Claims 4.8 and 4.9 the function R(χx, χx ⊕ χy) is
computable by a width-2 OBDD if χx and χy intersect, and far from every function computable by
a width-2 OBDD otherwise. Running T on R(χx, χx ⊕ χy) solves the Linear Intersection problem
for any χx, χy, and thus by Claim 4.7 it holds that T must perform Ω(n) queries.
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