
Efficiently Coding for Interactive Communication

Ankur Moitra ∗

MIT
moitra@mit.edu

Abstract

In 1992, Schulman [11] proved a coding theorem for interactive communication and demonstrated that
interactive communication protocols can be made robust to noise with only a constant slow-down (for a
sufficiently small error rate) through a black-box reduction. However, this scheme is not computationally
efficient: the running time to construct a good distance tree code (and perform encoding and decoding),
which is the basis for the simulation, requires time exponential in the length of the protocol. Here, we
give the first computationally efficient simulation that achieves constant slow-down, and is robust to
noise. In fact, our protocol is deterministic and is in part based on recent progress on constructive proofs
of the general Lovász Local Lemma. Prior to this work, the only known efficient simulation was the naive
one based on retransmitting each bit in order to achieve reliability. Our approach is based on a new type
of code, which we call a local tree code. These codes can be regarded as an embedding of a tree code into
a high-girth expander, so that locally these codes resemble tree codes, but are concisely represented and
admit efficient encoding and decoding schemes (that succeed with high probability when communicating
over a noisy channel).

∗This research was supported in part by a Fannie and John Hertz Foundation Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 42 (2011)

1 Introduction

1.1 Background

In a landmark paper in 1948, Shannon initiated the study of error correcting codes [14]. Shannon
demonstrated that a packet of k bits can be encoded into an O(k) bit message so that even if each
bit in this message is corrupted with some independent probability, the original k bit message can be
recovered (and this procedure fails with exponentially small probability). The improvement over the naive
protocol is dramatic - in order to achieve exponentially small error probability, the naive retransmission
protocol needs to send k2 bits. However, Shannon’s proof did not yield an error correcting code that is
computationally efficient (for which both encoding and decoding run in time polynomial in k). Today, a
variety of efficiently encodable and decodable error correcting codes are known.

In 1992, Schulman [11] proved a coding theorem for interactive communication - in this setting, two
parties – processor A and processor B receive pieces of the input (x and y respectively), and the goal is
to compute some function of the pair of inputs (x, y). For an introduction to communication complexity
see [9] or [17]. The naive protocol in this context is to send x from processor A to processor B (or
vice-versa), but in many contexts the number of bits of communication can be substantially reduced.
Schulman demonstrated that interactive communication protocols can be made robust to noise. Schulman
did this through a blackbox reduction. We measure the cost of a protocol as the maximum number of
bits needed to run the protocol on any pair of inputs, and we will denote this quantity by |π|. Given any
protocol π, Schulman gave a method to simulate this protocol with only constant slow-down, while still
guaranteeing a correct output (with exponentially small failure probability) – provided that the error
probability η is sufficiently small. In fact, Schulman’s simulation works in a more general, adversarial
context. This result has been recently improved by Braverman and Rao who improve the tolerable rate
of error from 1

240 to 1
8 − ε (for binary codes) [3].

However, the difficulty is that this coding scheme is not efficient, in the sense that the running time
is exponential in the length |π| of the noiseless protocol. This difficulty arises not only in the task of
encoding or decoding, but even in fully specifying the simulation strategy (which is based on a tree code)
that Schulman used in this coding theorem. In fact, currently the best known efficient simulation for a
protocol π is the naive simulation that retransmits each bit to achieve reliability.

The challenge in efficiently coding for interactive communication is that we can regard the bits that
one processor sends to the other processor over the duration of the protocol as a message (which is
generated on-line) that needs to be encoded. In fact, if we could non-deterministically guess the path
taken in the protocol π, then verifying that this path is indeed taken is exactly the setting considered by
Shannon. A more subtle challenge is that, unlike the setting considered by Shannon in which a random
code is almost surely a good code, a random tree code is almost surely not a good tree code (and hence
does not have good error correction properties).

Here, we give the first efficient simulation for interactive communication on a lossy channel which
achieves a constant slowdown. Our protocol is even deterministic. Our contribution is that we introduce
a novel type of tree-like code – which we call a local tree code – based on a high-girth expander. These
graphs appear to be locally tree-like. Moreover, in Schulman’s original protocol only a polynomial sized
region of a tree code is actually explored during a simulation. We do not know this region in advance, but
we are able to embed this explored region into a size O(|π|) high-girth expander. Also, our proof that
good local tree codes exist is based on the general Lovász Local Lemma. This connection helps explain
why a random tree code (or similarly a random local tree code) almost surely has zero distance, yet good
tree codes and good local tree codes exist. We are then able to use the recent constructive proof of the
general Lovász Local Lemma due to Moser and Tardos [10] (and improvements due to [5]) to efficiently

construct good local tree codes.
We note that our results apply only to the noisy channel setting, and do not apply to the adversarial

channel setting. Relatedly, our results hold only with high probability (not with exponentially small
probability as in previous results [11], [12], [13], [3]). Also, we note that girth is an integral part
of our argument (and simulation). Girth of the Tanner graph [15] also plays a fundamental role in
asymptotically achieving the Shannon capacity of a channel through low-density parity check (LDPC)
codes. We believe that there may be interesting connections between our work, and more classical uses
of girth in the information theory community.

1.2 Our Results

Here we state our main result:

Theorem 1. There is an alphabet Σ of size O(1) and a transformation L(π) – where π is a binary com-
munication protocol – so that |L(π)| = O(|π|), and for a channel noise rate η smaller than some universal
constant, both parties can determine π(x, y) by running L(π) with high probability. This communication
protocol runs in time polynomial in |π|.

In fact, this simulation can be made deterministic, and still runs in time polynomial in |π|. In our
proof, we will introduce the notion of a local tree code, prove that good local tree codes exist and can be
efficiently computed (deterministically). We believe that these codes are of general interest, independent
of the applications to efficiently coding for interactive communication. Understanding the limits of good
local tree codes remains an interesting open question.

2 Notation

2.1 Model

A binary communication protocol π is a rooted tree where each internal vertex has four children,
and the outgoing links to these children are mapped one-to-one to the set ”00”, ”01”, ”10”, and ”11”.
Each internal node u is labelled by a pair of functions fuA and fuB, each from the respective domains of
processor A and processor B to the set {0, 1}. When the communication protocol reaches node u, the
protocol traverses the outgoing link specified by fuA(x)× fuB(y). We will denote π(x, y) as the output of
the communication protocol when x and y are the inputs to processor A and processor B respectively.
Additionally, we will denote by |π| the maximum length of the protocol on any pair of inputs.

Throughout this paper, we will focus on the noisy channel model, in which each message (a symbol
from Σ) will be corrupted with probability η, and will remain intact with the remaining probability 1−η.
Our results are independent of how a corrupted symbol is corrupted - i.e. is it resampled uniformly at
random from Σ, or is it adversarially specified as some other symbol in Σ by an adversary. All we will
require is that the probability of each individual message being corrupted is p, which will preclude certain
types of error patterns during a (transformed) communication protocol. Also, we will let ∆(s, t) be the
Hamming distance between two strings s and t of the same length.

2.2 Tree Codes

The notion of a tree code, as we present it, was introduced by Schulman in [13]:

Definition 1. A d-ary tree code of depth n on an alphabet Σ is a tree of depth n whose internal nodes
have d children, and each outgoing link from an internal node u is labeled by a (distinct) element of Σ

The notion of the distance of a tree code captures the error-correcting properties of this structure.
Given an internal node u, let W (u) ∈ Σdepth(u) denote the labels of edges traversed in the unique path
from the root to u.

Definition 2. A tree code has distance α if for all pairs of nodes u and v (suppose depth(u) ≤ depth(v)),
∆(W (u)1,...depth(u),W (v)1,...depth(u)) ≤ α(depth(u) − depth(w)) where w is the least common ancestor of
u and v.

Schulman proved that tree codes with constant distance exist (for constant sized alphabets – good tree
codes are easier to construct on larger alphabets). Note here that the probabilistic method cannot be
naively applied, because simply choosing the symbols on each edge uniformly at random will not suffice.
Consider two leaf nodes u and v for which parent(u) = parent(v) = w. The edges (w, u) and (w, v) must
use different symbols. Yet if we were to choose symbols randomly for each edge in a tree code of depth n,
there is a constant chance that this edge would be bad (and result in a tree code of distance 0) because
the symbol on these edges is the same.

Schulman constructed these codes iteratively, from smaller and smaller depth tree codes. We will face
a similar problem in constructing good distance (local variants) of tree codes, but to circumvent this
problem we will apply the (general) Lovász Local Lemma – and we will appeal to the results of Moser
and Tardos [10] to construct good distance (local) tree codes.

Since the introduction of tree codes in [13], no efficient tree codes have been given – i.e. there are
no known tree codes of constant distance (and constant alphabet) that have efficient (polynomial in the
depth) encoding and decoding schemes. The obstacle is that to even specify the tree code in this form
requires specifying each symbol on each of the exponentially many in n edges.

The history of error correcting codes encountered, and overcame a similar problem: Shannon proved
that good rate, good distance codes exist by choosing a random dictionary. This encoding scheme
(mapping an input word to an element in this dictionary) as constructed by Shannon, was highly non-
linear. To even specify this dictionary required writing down an exponential amount of information. The
solution to this problem was to show that even random linear codes have good rate and good distance,
and this at least allowed to encoding step to be performed efficiently – and gave hope that decoding
could also be performed efficiently for well-structured linear codes.

2.3 Local Tree Codes

Our development of efficient coding schemes for interactive communication will follow a similar agenda
as was used to obtain efficiently encodable and decodable codes in the context of a single sender and a
single receiver. Our first step will be to develop a more concise representation of a good distance tree
code.

Roughly, the approach is to embed a tree code into a high-girth expander. Locally, a high-girth
expander is tree-like. We will associate a communication protocol with a path through this graph. And
in fact, our protocol will never stray too far (when faced with a noisy channel) from the true path – the
protocol will never stray so far from the path that it can traverse a full cycle and re-join the true protocol
(and we would be none-the-wiser).

Definition 3. A d-ary local tree code of girth g on alphabet Σ is a d + 1-regular graph G = (V,E) of
girth at least g, and additionally each edge is labeled with a symbol from Σ

We will define an analogous notion of the distance of a d-ary local tree code. Given a path p1 starting
at a node u ∈ V , let W (u) ∈ Σ|p1| denote the set of symbols on edges traversed by p1.

Definition 4. A d-ary local tree code of girth g has distance α if for all nodes u ∈ V , and all simple
paths p1, p2 of length |p1| = |p2| = p < g

2 starting from node u (that do not exit on the same outgoing
edge), ∆(W (p1),W (p2)) ≥ αp

Note that because the graph G = (V,E) has girth g, and p1 and p2 are simple and are restricted to
have length < g

2 , the paths p1 and p2 must be node disjoint, except at the common starting node u.
We first need to demonstrate that good d-ary local tree codes of girth g ≥ c log n exist, and in this task

we will face a similar obstacle to that which Schulman overcame (to show that good distance, constant
sized alphabet tree codes exist). Namely, if we were to choose some high-girth, d+ 1-regular graph and
we chose symbols for each edge uniformly at random from Σ, then for any node w and neighbors u and
v, the edges (w, u) and (w, v) must have different symbols. Yet there is a constant failure probability, so
we cannot naively use the probabilistic method.

As an alternative to Schulman’s approach (based on constructing tree codes for larger and larger depth
inductively), we will use the general Lovász Local Lemma to prove that good local tree codes exist. This
can then be made constructive by appealing to the recent work of Moser and Tardos [10].

3 Local Tree Codes

3.1 Existence

Here we state the general version of the Lovász Local Lemma:
Let A = {A1, A2, ...Ar} be a finite collection of events in a probability space Ω. Then we will be

interested in showing that there is some outcome in the space Ω for which none of these events occurs.
The general Lovász Local Lemma gives a sufficient condition. Also let Γ(A) be a set of events in A so
that A is independent of A− Γ(A)− {A}.

Lemma 1 (Lovász Local Lemma). Suppose there exists an assignment of reals x : A → (0, 1) such that
for all A ∈ A:

Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B))

Then the probability that no event in A occurs is non-zero:

Pr[Ā1 ∧ Ā2... ∧ Ār] ≥
∏
A∈A

(1− x(A))

Note that this probability can be exponentially small, so even if there is an outcome in Ω for which
no event in A occurs, randomly sampling from Ω is not (necessarily) sufficient to find such an outcome
with high probability.

Suppose we are given a d + 1-regular graph G = (V,E) with girth g – we will want the girth to
be Θ(log n). Our goal will be to construct a good distance local tree code on G using a constant
sized alphabet. The ”bad” events will be when two simple paths p1, p2 of the same length p that start
at the same node u (and exit u using different outgoing edges) violate the distance condition - i.e.
∆(W (p1),W (p2)) < αp.

Note that the number of events is polynomially bounded. In fact, we will associate to each pair of
paths p1, p2 as above an event Ai, and we will break the set A of all events up into sets A1,A2, ...Ag/2 –
where Ai is the set of all such pairs of paths that have length i. Let |V | = n.

Claim 1. |Ai| ≤ n(d+ 1)di−1

This bound is nO(1) for g = Θ(log n). Note that for some event A ∈ A, A is mutually independent of
all other events B ∈ A in which the pair of paths in event A does not share any edge with the pair of
paths in event B. Hence,

Claim 2. Γ(A) contains at most id2j elements from Aj for A ∈ Ai.

We will choose x(A) = (2d)−2i for A ∈ Ai. We first verify that this choice of x : A → < satisfies the
conditions in the Lovász Local Lemma. For an event A ∈ Ai, we can compute that

x(A)
∏

B∈Γ(A)

(1− x(B)) ≥ (2d)−2iexp{−i
g/2∑
j=1

2−2j} ≥ (2d)−3i

And applying the Chernoff Bound for an alphabet of size |Σ|, we can upper bound the probability that
A occurs for A ∈ Ai (for α = 2η)

Pr[A] ≤ exp{−η2|Σ|i}

So we can choose |Σ| = 3
η2 log d

, and the conditions for the general Lovász Local Lemma will hold.

Theorem 2. For every d, n, there exist d-ary local tree codes of girth at least c log n of distance α = 2η,
on an alphabet of size 3

η2 log d
.

3.2 Construction

In fact, we can construct local tree codes efficiently using the results of Moser and Tardos [10]:

Theorem 3 (Moser, Tardos). Suppose there exists an assignment of reals x : A → < such that for all
A ∈ A:

Pr[A] ≤ x(A)
∏

B∈Γ(A)

(1− x(B))

Then there is an algorithm that computes an outcome ω ∈ Ω for which on event in A occurs, and the
expected running time of this algorithm is bounded by∑

A∈A

x(A)

1− x(A)

We can apply this theorem directly to the proof in the previous section, and since |A| ≤ n(d + 1)3g,
we obtain:

Theorem 4. For every d, n, there is an algorithm to construct a d-ary local tree codes of girth at
least g = c log n of distance α = 2η, on an alphabet of size 3

η2 log d
and the expected running time of this

algorithm is at most O(n(d+ 1)3g) which is nO(1) for any constant degree d.

We can apply the results of [4] and [5] to make this construction deterministic. The running time of
this deterministic construction is still polynomial in n for g = c log n and d = O(1).

4 Simulation

4.1 Schulman’s Protocol

Here were describe Schulman’s Protocol. Let π be the noiseless channel protocol. Processor A receives
input x and processor B receives input y. The history of π is described by a path (starting at the root)
of a 4-ary tree T . Each outgoing edge from an internal node (to a child) is marked by a ”00”, ”01”, ”10”
or ”11” representing the bit sent by processor A and the bit sent by processor B in this round in the
protocol.

We will let π(x, ∅) denote the first bit sent by processor A, and similarly for processor B. And we let
π(∅) denote the concatenation of these two bits. In this notation the second bit sent by processor A is
π(x, π(∅)), and similarly for processor B.

Schulman’s Protocol (for simulating π on a noisy channel) is based on a total information approach.
We will denote this protocol by S(π). At each round in the simulation, each processor will maintain
some pebble in the tree T corresponding to the noiseless protocol. Ideally, we would like the pebble for
processor A and the pebble for processor B to coincide - i.e. the two processor agree on where we are in
the noiseless protocol.

Since communication is subject to noise, we will expect that these two pebbles diverge. When these
pebbles diverge, if we can detect this error condition, then the natural approach is to try to move these
pebbles back to where the divergence occurred. Schulman’s protocol is based on (often) detecting this
condition, and making progress towards moving pebbles back to a ”safe” location so that the simulation
can continue.

For example, if the pebble for processor A, sA, is a strict ancestor of the pebble for processor B, sB,
then we would like to move the pebble for processor B back to the pebble for processor A. If in fact
neither pebble is a strict ancestor of the other, but still the pebbles disagree, we would like to move both
pebbles back (closer to the root of the tree T for the noiseless protocol).

The tree code (and Schulman’s simulation S(π)) attempts to keep track of all of the moves of each of
these pebbles – not just the current location in T , but the entire history. From the history of moves for
each pebble – i.e. did the pebble move forward, backward, or hold – we can reconstruct the location of
the pebble in T . Due to communication errors in the protocol, we will sometimes not be able to recover
the other processor’s pebble location. Yet Schulman demonstrates that the fraction of rounds in which
each processor does indeed know the location of the other processors pebble accounts for a majority of
the rounds. This, as it turns out, is enough to ensure that simulation will return the correct output
π(x, y).

To this end, Schulman defines a notion of progress - which is the depth of the least common ancestor
u (in T) of sA and sB, minus the difference max(depth(sA), depth(sB))− depth(u) (again each depth is
computed in T). The critical insight is that in a round in which both processors successfully determine
the pebble location of the other processor, this potential function will increase. And in rounds in which
this is not the case – i.e. a ”bad” round – this potential function will not decrease by too much (more
than an additive constant). Hence, if a large enough fraction of the rounds are ”good”, this potential
function will increase to |π| and the simulation S(π) will terminate successfully.

Schulman uses the tree code to blame any bad round on some interval of errors (that contains the
current round) that has too large a fraction of errors. Note that this tree code is over a different tree
Y - which keeps track of the total information - i.e. what step each processor makes during each round.
Naively there are six possible steps for each processor in a round - the processor can hold the pebble
position, move back, or move forward in T on one of the four outgoing links. Additionally, we let each
processor transmit the symbol that π would transmit at the location of the pebble (after either holding,

moving back or moving down). So for each processor, there are twelve actions possible in each round.

4.2 Bounded Exploration

Schulman’s approach is based on blaming a ”bad” round on some interval of errors. We can fix the
set rounds in which there is a transmission error in advance - by sampling these entries at random, and
hiding this information from our protocol. Let ~e be the indicator vector of what rounds encounter a
communication error. This will be a useful thought experiment in adapting Schulman’s Protocol to work
in the context of a local tree code.

Suppose a tree code has distance α. Then given a sequence of received symbols from processor B, we
can compute the path in Y that is closest in Hamming distance to the sequence of received symbols. Let
u be the end node of this path (i.e. u is a node in Y of depth t if we are currently in the tth round of
the simulation), and let v be the true node corresponding to processor B. Let w be the least common
ancestor in Y of u and v, and let Wu,Wv be the sequence of symbols in Y leading from w to u and w to
v respectively.

If this sequence has length r (which corresponds to an additive r difference in the depth of w compared
to the depth of u and v), then at least αr transmission errors occurred in the last r transmissions – using
the properties (specifically the distance) of the tree code. If α ≥ 2η, the chance of this occurring is
exponentially small in r.

Using this observation, we can conclude that only a polynomial sized subgraph of the tree code is
explored. There are only n2 intervals, and the chance that an interval of length c log n has twice the
static error rate is an inverse polynomial in n. Hence, with high probability there is no interval of length
at least c log n that has at least an 2η fraction of errors.

So we could operate under the hypothesis that there is no bad interval of errors of length more than
c log n, and this would mean that we could never deviate more than c log n distance from the true path
through Y, if Y is a d-ary tree code. So there are only dc logn = nO(1) possibilities for the true location
of processor B in Y.

The intuition here is that if we never deviate more than c log n, and we have a local tree code of girth
at least c log n, then this code locally looks like a tree code (because locally a high-girth graph looks like
a tree, if we require paths in G to be simple).

We will formalize this argument, but for now we define the conditions on ~e that we require for our
protocol to succeed, and a standard Chernoff Bound demonstrates that these conditions occur with high
probability.

Let g = c log n be a lower bound on the girth of a local tree code.

Definition 5. The count of ~e is defined as the number of intervals of length at most g
2 for which the

fraction of errors exceeds 2η.

Note that the expected count of ~e is approximately O(η
1−ηn) for a length n error vector ~e.

Definition 6. An error vector ~e is typical if the count is O(η
1−ηn), and no interval of length larger than

g
2 has an error rate that is larger than 2η.

Claim 3. For g = c log n (and η sufficiently small), ~e is typical with high probability

5 Local Simulation

5.1 A Protocol

Here we give a simulation protocol, that for a typical error vector, will successfully simulate the
protocol π in O(|π|) rounds of communication, for sufficiently small error rate η.

Let G = (V,E) be a 13-regular graph of girth at least g = c log n. Such graphs can be constructed via
the probabilistic method – see Alon and Spencer [2] (or see [4]). Additionally, we designate one vertex
s ∈ V the start vertex, and for each vertex in V , we number the outgoing edges from the set {1, 2, ...13}.
Edges need not be consistently number - i.e. an edge (u, v) can be number 7 for u, and 3 for v. We will
call these ”numbers” to distinguish from the ”labels” on edges from the alphabet Σ.

Using Theorem 4, we can construct a local tree code of distance α = 4η, and using an alphabet of
constant size (for any fixed, but sufficiently small error rate η). We will describe the local simulation
protocol from the perspective of processor A, but an analogous protocol will hold for processor B.

Processor A will maintain two state markers tA and tB in the graph G, and a set of live paths
(representing alternatives for the total path through G taken by processor B). Let P be the set of live
paths. Additionally, at the end of each round, processor A will move the pebble (maintained in T , the
tree corresponding to the noiseless protocol) and will transmit a bit (corresponding to the bit that would
be transmitted by processor A during the noiseless protocol, specified by the node in T at which processor
A’s pebble resides). This output corresponds to a choice of a number in the set {1, 2,12}. We will
use this choice to move the state marker for processor A, but since we require the path we traverse in
G to be simple, one of the thirteen outgoing edges cannot be traversed. So deleting this number from
the set {1, 2, ...13}, if processor A’s action corresponds to i ∈ {1, 2, ...12}, we will choose the ith smallest
number in the set {1, 2, ..., 13} excluding the number of the edge that cannot be traversed. We will use
this number of choose the corresponding outgoing edge for the node at which marker tA is currently
placed. For ease of exposition, we will call this move the numbered edge corresponding to processor A’s
action. Note that this depends on which edge was traversed by tA in the previous round.

1. Initialize P to be the single path (no edges) starting at node s, place both state markers tA and tB
at s

2. Given the just received symbol from processor B, augment each path in P by each possible outgoing
edge that could be traversed in the next move (such that the path is still simple)

3. Trim: Delete each path in P for which there is an interval of length larger than g
2 which has an

error rate (compared to the received symbols during that interval) larger than 2η

4. Decode: Choose the path p ∈ P that is closest in Hamming distance to the received set of symbols
(so far). This path encodes (a hypothesis for) the location of marker tB

5. Let sA, sB be the pebble location (in T) for processorA and for processorB (based on the hypothesis
tB).

If sA is a strict ancestor of sB, hold the pebble location

If sB is a strict ancestor of sA, move the pebble back

If sA = sB, decode the just received symbol from processor B, and move down T according
to the bit sent in the previous round by processor A and the hypothesis for the received bit from
processor B

6. Traverse the numbered edge corresponding to processor A’s action, and transmit the symbol on
this edge

5.2 Analysis

Here we prove that the local protocol given in the previous subsection does simulate π correctly for a
typical error vector ~e, and furthermore that this local simulation protocol L(π) runs in time polynomial
in |π|.

Definition 7. We will call a round i ”bad” if the state location sB decoded in this round is not correct

We will bound the number of ”bad” rounds by the count of ~e, provided that ~e does not contain any
subsequence of length larger than g

2 with an error rate larger than 2η = α
2 . In order to accomplish this

goal, we will first analyze properties of the set of live paths P. Let pB be the true path of the state
marker for processor B, and let p ∈ P be any live path in the course of the simulation L(π).

Lemma 2. If ~e is typical, either p = pB or p agrees with pB until the last r moves and during the last
r moves, p is node disjoint from pB for r < g

2

Proof: Note that both p and pB are simple walks, in a girth g graph. So if p first disagrees with pB at
round j, then p cannot agree with pB until at least round j + g

2 . Let p1 and p2 be the subpaths of p and
pB respectively, starting at round j and continuing until round j+ g

2 . Using the properties of a local tree
code, the fractional Hamming distance between the sequence of symbols on these paths is at least α, so
if the received set of symbols during the interval from j to j + g

2 does not result in deleting p from P,
then the fraction of errors during this interval is larger than 2η, and hence ~e is not typical because this
interval is length g

2 . Hence p can only be currently live (at round i) if p agrees with pB until the last r
moves and during the last r moves for some r < g

2 , and so p and pB must be node disjoint on these last
r moves because G has girth at least g.

Corollary 1. At any point in the local simulation, |P| ≤ (d+ 1)
g
2 , and this is nO(1) for g = c log n and

d is constant.

Lemma 3. The number of ”bad” rounds is bounded by the count of ~e, if ~e does not contain any
subsequence of length larger than g

2 with an error rate larger than 2η.

Proof: Suppose, in some round j, the path ”decoded” p is different from the true path pB. Using
Lemma 2, p agrees with pB until the last r moves and during the last r moves, p is node disjoint from
pB for r < g

2 . Hence, the last r symbols received must be closer in Hamming distance to the sequence
corresponding to the last r moves in p (call this path p1) than to the last r moves in pB (call this path
p2). This implies that there are more than a 2η fraction of errors in this length r interval. Hence we can
”blame” this decoding error on this interval of rounds j − r + 1 to j. Note that this interval is never
”blamed” more than once, because an interval can only be ”blamed” by a ”bad” round corresponding to
the end of the interval.

Analogously to Schulman’s protocol, we can define a potential function, which we call the rank,
as the the depth of the least common ancestor u (in T) of sA and sB, minus the difference
max(depth(sA), depth(sB)) − depth(u) (again each depth is computed in T). Note that in this po-
tential function, sA and tA represent the true locations of the pebble for processor A and the pebble for
processor B respectively.

Claim 4. In a ”good” round, the rank increases by at least one and in a ”bad” round the rank can
increase by at most three.

Finally, note that the least common ancestor of sA and sB (where these are the true pebble locations)
must always be on the path of π(x, y) in T , because a processor moves its own pebble according to the
bit that it attempted to send, so both pebbles cannot exit the path of π(x, y) on the same edge in T . So
this implies that when the rank reaches |π|, the local simulation L(π) has computed the correct output
π(x, y).

Using Lemma 3, and the definition of a typical error vector ~e, it follows that the rank of the local
simulation (at termination) is at least |π|, and this proves correctness. And we can also apply Corollary 1,
which implies that the protocol L(π) can be implemented in time polynomial in |π|. This implies our
main theorem.

6 Open Questions

Open Question 1. Can local tree codes be used to give efficient coding (for interactive communication)
for worst-case channels?

The crux of this question is that if an adversary is allowed to distribute errors in bursts, then the naive
searching procedure for finding the correct path will run in exponential time. Local tree coding can still
be a useful construct in this more general setting if decoding the correct path can be implemented more
cleverly (perhaps using a nice, explicit construction of a high-girth expander as opposed to a randomly
chosen one). Since local tree codes have good distance when comparing paths that do not share internal
nodes, we can extend this distance bound to paths that do cross and so local tree codes still remain an
exponentially more concise way to represent the necessary properties of a tree code – however, now only
decoding (in the worst-case channel model) is the computational bottleneck.

In fact, an easier open question is:

Open Question 2. Can we efficiently code for interactive communication in noisy, but more general
models than the binary symmetric channel?

For example, answering this question in the context of bursty channels or in the context of channels
represented by a Markov chain may already require interesting new ideas for decoding. Another intriguing
open question is whether local tree codes can be used to reach the channel capacity in an interactive
setting. The core of the argument is based on high-girth graphs, and in the context of error correcting
codes, the girth of the Tanner graph plays a fundamental role in efficiently reaching the coding capacity
of a channel. So we could ask if girth plays a similar role in the context of coding for interactive
communication.

Acknowledgements

I would like to thank Mark Braverman for introducing me to these questions, and Boaz Barak for
helpful discussions.

References

[1] N. Alon, S. Hoory, and N. Linial. The moore bound for irregular graphs. Graphs Combin, pages
53–57, 2002.

[2] N. Alon and J. Spencer. The Probabilistic Method. Wiley Interscience Series, 2000.

[3] M. Braverman and A. Rao. Towards coding for maximum errors in interactive communication.
STOC, 2011, to appear.

[4] S. Chandran. High girth graph construction. SIAM Journal on Discrete Math, pages 366–370, 2003.

[5] K. Chandrasekaran, N. Goyal, and B. Haeupler. Deterministic algorithms for the lovasz local lemma.
SODA, pages 992–1004, 2010.

[6] T. Cover and J. Thomas. Elements of Information Theory. Wiley Interscience Series, 1991.

[7] P. Erdos and L. Lovasz. Problems and results on 3-chromatic hypergraphs and some related question.
Infinite and Finite Sets, pages 609–627, 1975.

[8] R. Gallager. Finding parity in a simple broadcast network. IEEE Transactions on Information
Theory, pages 176–180, 1988.

[9] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

[10] R. Moser and G. Tardos. A constructive proof of the general lovasz local lemma. JACM, pages
1–15, 2010.

[11] L. Schulman. Communication on noisy channels: a coding theorem for computation. FOCS, pages
724–733, 1992.

[12] L. Schulman. Deterministic coding for interactive communication. STOC, pages 747–756, 1993.

[13] L. Schulman. Coding for interactive communication. IEEE Transactions on Information Theory,
pages 1745–1756, 1996.

[14] C. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, pages
623–656, 1948.

[15] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information
Theory, pages 533–547, 1981.

[16] J. Wozencraft. Sequential decoding for reliable communications. MIT Technical Report, 1957.

[17] A. Yao. Some complexity questions related to distributive computing. STOC, pages 209–213, 1979.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

