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Abstract

Let f ∈ Fq[x] be a polynomial of degree d ≤ q/2. It is well-known that f can be uniquely recovered from its
values at some 2d points even after some small fraction of the values are corrupted. In this paper we establish
a similar result for sparse polynomials. We show that a k-sparse polynomial f ∈ Fq[x] of degree d ≤ q/2
can be recovered from its values at O(k) randomly chosen points, even if a small fraction of the values of f are
adversarially corrupted.

Our proof relies on an iterative technique for analyzing the rank of a random minor of a matrix. We use the
same technique to establish a collection of other results. Specifically,

• We show that restricting any linear [n, k, δn]q code to a randomly chosen set of O(k) coordinates with high
probability yields an asymptotically good code.

• We improve the state of the art in locally decodable codes, showing that similarly to Reed Muller codes
matching vector codes require only a constant increase in query complexity in order to tolerate a constant
fraction of errors. This result yields a moderate reduction in the query complexity of the currently best
known codes.

• We improve the state of the art in constructions of explicit rigid matrices. For any prime power q and
integers n and d we construct an explicit matrix M with exp(d) · n rows and n columns such that the rank
of M stays above n/2 even if every row of M is arbitrarily altered in up to d coordinates. Earlier, such
constructions were available only for q = O(1) or q = Ω(n).

1 Introduction

Sparse polynomial interpolation over finite fields when input data are exact has numerous applications and has
been studied by many authors [7, 12, 22, 19, 31]. There is also a broad literature addressing the problem of noisy
(non-sparse) polynomial interpolation. In fact, much of the research in algebraic coding theory can be seen as
dealing with precisely this problem, e.g., [2, 14].

The intersection of the two problems above, i.e., the problem of noisy interpolation of sparse polynomials
has also attracted some attention in recent years, e.g., [26, 27] give a probabilistic polynomial time algorithm to
recover a k-sparse univariate polynomial f ∈ Fp[x] with a known set of monomial degrees and total degree below
(roughly) O(p/ log p) from the noisy values at poly(k, log p) randomly chosen points, where the noise is bounded
in the Lee metric. A multiplicative analog of the above problem over the integers has been addressed in [30]. Yet,
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some very basic questions about noisy interpolation of sparse polynomials have remained open. In this paper we
deal with one of such questions.

Let L be the collection of all k-sparse polynomials (with some fixed set of monomial degrees) in Fq[x]. Assume
that the maximal degree is below (1 − δ)q. We say that a set S ⊆ Fq is an α-noisy interpolating set for L, if any
polynomial in L can be uniquely recovered from its values on the set S, even after at most α|S| of these values
have been corrupted arbitrarily.

We study the size of the smallest noisy interpolating set for k-sparse polynomials. The simple lower bound for
this quantity is Ω(k); the simple upper bound (following from the Chernoff bound) is Oδ,α(k log q). We show that
the lower bound is essentially tight, i.e., that a random subset of Fq of size Oδ(k) suffices for δ/16-noisy sparse
interpolation. The key feature of our result is that the bound we get is independent of the field size.

Our proof uses an iterative argument to analyze the rank of a random minor of a matrix. The argument general-
izes to show that a random restriction of any [n, k, δn]q linear code to a set of O(k) coordinates is asymptotically
good with high probability. Our results find applications to locally decodable codes and our technique gives
improved constructions of explicit rigid matrices. We elaborate on these applications below.

1.1 Locally decodable codes

Locally Decodable Codes (LDCs) are error-correcting codes that admit highly efficient sub-linear time decoding
algorithms. An r-query locally decodable code C encodes k-symbol messages x to N -symbol codewords C(x)
in such a way that one can probabilistically recover any symbol x(i) of the message by querying only r � k
symbols of the (possibly corrupted) codeword. Ideally, one would like to have codes where both the codeword
length N(k) and the query complexity r(k) are as low as possible. It turns out however that one cannot minimize
both of these parameters simultaneously. There is a trade-off. Understanding the true shape of the trade-off, and
constructing optimal codes are the key goals of the LDC related research [33].

Early constructions of LDCs [3] are based on the classical Reed Muller (RM) codes. The code consists of
complete evaluations of polynomials of total degree up to d in Fq[z1, . . . , zn]. The simplest decoder recovers the
value of the unknown polynomial f at a point w by shooting a line L in a random direction through w, querying
some d+ 1 points on L, and using polynomial interpolation to recover the restriction of f to L. This construction
yields (d+ 1)-query codes of length exp

(
k1/d

)
tolerating some O(1/d) fraction of errors.

Note that in the solution above as the number of queries increases, the codeword length becomes smaller as a
function of k, but at the price of a reduction in the error-rate that the code could handle. This weakness however is
easy to overcome [4, 18, 28]. All we need to do is make the decoder issue (say) 2d queries instead of (d+ 1), and
use noisy polynomial interpolation instead of ordinary polynomial interpolation. Altogether this yields 2d-query
codes of the same length tolerating a fixed constant fraction of errors independent of d.

Recently, in a sequence of works [32, 24, 10, 15, 23] a new family of locally decodable codes called Matching
Vector (MV) codes has been developed. Codes in this family have dramatically better parameters than Reed Muller
based LDCs. Specifically for every integer t ≥ 2, [10, 15, 23] construct r = O(2t)-query codes that encode k-long
messages to exp exp

(
(log k)1/t(log log k)1−1/t

)
-long codewords and tolerate some O(1/r) fraction of errors.

Again, we see the issue similar to the one we discussed above arise: as the number of queries increases, the
codeword length becomes smaller but the error-rate that the code can handle suffers. This issue has been addressed
in [9, 5] where it was shown that increasing the query complexity from O

(
2t
)

to tO(t) allows one to handle an
error rate independent of t, and later in [6] where it was shown that just O

(
t · 2t

)
queries suffice. In this paper we

bring this line of work to an end showing that similarly to Reed Muller codes matching vector codes require only
a constant multiplicative increase in the query complexity in order to tolerate a fixed constant fraction of errors.1

1We elaborate a little more on the relation between our results and those of [6]. Our results apply to standard non-binary matching
vector codes as given in [10, 9, 5]. The results of [6] however apply to a different (though closely related) family of binary codes. Our



The proof heavily relies on the polynomial view of matching vector codes developed in [9], and on our result on
noisy interpolation of sparse polynomials.

1.2 Matrix rigidity

The notion of matrix rigidity was introduced by Leslie Valiant in 1977 [29]. Valiant called an m× n matrix A
defined over a field (r, d)-rigid, if it is not possible to reduce the rank of A below r by arbitrarily altering each row
of A in up to d coordinates. Valiant showed that if a matrix A ∈ Fm×n is (Ω(n), nε)-rigid and m = O(n); then
the linear transformation from Fn to Fm induced by A cannot be computed by a linear circuit that simultaneously
has size O(n) and depth O(log n). Valiant’s work has naturally led to the challenge of constructing explicit rigid
matrices, since any such matrix yields an explicit linear map, for which we get a circuit lower bound. After more
than three decades of efforts, however, this challenge remains elusive [21].

None of the existing techniques for constructing rigid matrices surpasses the basic untouched minor argument
of [25] that amounts to taking a matrix where every minor has full rank, and using the bound from the unbalanced
Zarankiewicz problem [16, p. 29] to show that after up to d arbitrary changes per row there remains a somewhat
large minor that has not been touched. Note that the untouched minor argument requires q = Ω(n) in order to
have an explicit matrix with full rank minors.

The definition of an n-column rigid matrix involves three parameters. The number or rows m, the remaining
rank r, and the number of allowed changes in a single row d. The trade-off between r and d (for m = n) has been
addressed in [11, 17, 20, 25]. In particular Friedman [11] designed a family of explicit matrices over constant
sized fields that meets the parameters coming from the untouched minor argument.2

The trade-off between m and d (for r = n/2) has been addressed in [1, 8]. In particular Alon et al. [1] designed
explicit (n/2, d)-rigid matrices over constant sized fields with m = exp(d) · n meeting the parameters that can be
derived over Fq, q = Ω(n) via the untouched minor technique.

Thus prior to our work, constructions of (n/2, d)-rigid matrices with m = exp(d) ·n were available over fields
Fq for q = O(1) and q = Ω(n). In this paper we close the gap and obtain such constructions for all values of q.
Our proof largely follows that of [1], with one important new ingredient. Specifically we show that for any linear
space L ⊆ Fnq , dimL ≤ (1− ε)n there exists a point x ∈ {0, 1}n such that x is Ω(n)-far from L.

1.3 Organization

In Section 3 we establish our main result, showing that with high probability a random restriction of an arbitrary
low rate q-ary linear code of good distance is asymptotically good. This entails our result on noisy interpolation
of sparse polynomials. In Section 4 we obtain our results on locally decodable codes, and in Section 5 we obtain
our results on matrix rigidity.

2 Notation

We use the following standard mathematical notation:

• d(x,y) denotes the Hamming distance between vectors x,y;

• For a vector y ∈ Fnq , and a set L ⊆ Fnq , d(L,y) denotes minx∈L d(x,y);

codes have better query complexity and tolerate a fixed fraction of errors. Codes of [6] however have a moderately larger query complexity
but tolerate the optimal, i.e., the largest possible fraction of errors (in the list-decoding model).

2Interestingly, Friedman’s paper [11] actually predates the work of Shokrollahi et al. [25].



• Let L ⊆ Fnq be a linear space, and S ⊆ [n] be a multi-set; then L|S ⊆ F|S|q denotes the restriction of L to
coordinates in S;

• Similarly, let G ∈ Fk×nq be a matrix, and S ⊆ [n] a multi-set; then G|S ∈ Fk×|S|q denotes the restriction of
G to columns whose indices belong to S;

• Finally, a linear [n, k, d]q code is a k-dimensional linear subspace of Fnq , where the minimal Hamming
weight of any nonzero vector in the subspace is at least d.

3 Random restrictions of linear codes with good distance are asymptotically good

In this section we establish our main result (Theorem 3). We start with the following lemmas.

Lemma 1 Let q be a prime power, n and k be integers and δ be positive. Let G ∈ Fk×nq be a generator matrix of
a linear [n, k, δn]q code. Suppose a multi-set S ⊆ [n] is such that rk (G|S) < k; then

Pri∈[n]

[
rk
(
G|S∪{i}

)
> rk (G|S)

]
≥ δ. (1)

Proof: Let K ⊆ Fkq be the kernel of G|S . Clearly, dim(K) ≥ 1. We now show that with probability at least δ,
Ker

(
G|S∪{i}

)
⊂ Ker (G|S) , which immediately implies (1).

Let x be any nonzero element in Ker (G|S) . The code generated byG has distance δ, therefore at least δ fraction
of the coordinates of xG must be nonzero. Thus with probability at least δ, a randomly chosen index i will be
such that (xG)i 6= 0. If so, then clearly x will not be in the kernel of G|S∪{i}.

Lemma 2 Let q be a prime power, s, k ≤ n be integers, and δ be positive. Let G be a generator matrix of a linear
[n, k, δn]q code; then for a random choice of a multi-set S we have

PrS⊆[n] | |S|=s [rk (G|S) < k] ≤
(

s
k− 1

)
(1− δ)s−k+1.

Proof: We sample a multi-set S = {i1, . . . , is} uniformly at random. We say that an index j ∈ [s] is good if
either

rk
(

G|{i1,...,ij−1}

)
= k or rk

(
G|{i1,...,ij−1}

)
< rk

(
G|{i1,...,ij}

)
.

Observe that rk (G|S) < k only if at most k − 1 indices j ∈ [s] are good. Combining the union bound over the
choice of these indices with Lemma 1 completes the proof.

Theorem 3 Let δ > 8δ′ > 0 be reals. There exists a constant cδ such that for all integers k ≤ s ≤ n where
s ≥ cδk, for all prime powers q and all [n, k, δn]q linear codes C, for a random choice of a multi-set S we have

PrS⊆[n] | |S|=s [C|S is a [s, k, δ′s]q code] ≥ 1− expδ(−k).

Proof: We sample a multi-set S = {i1, . . . , is} uniformly at random. We assume s has the shape ckd1/δe, where
ck is an integer. If not, then we omit some up to d1/δe − 1 elements of S, and observe that such an omission has
a negligible effect on the distance of the restriction. We arrange the set S into ck blocks of size d1/δe,

S =
ck⊔
l=1

Bl.



Set ε = 1/8. Observe that C|S is not an [s, k, δ′s]q code only if there exists a vector x ∈ Fkq such that xG|S has
weight below δ′s. Thus there exist some δ′ckd1/δe ≤ 2εck blocks that contain all non-zero coordinates of xG|S .
Let B be the union of these blocks. We necessarily have

rk
(
G|S\B

)
< k.

Combining Lemma 2 with the union bound over the possible choices for B we conclude that

PrS⊆[n] | |S|=s [C|S is not a [s, k, δ′s]q code] ≤(
ck

2εck

)
·
(

(1− 2ε)ckd1/δe
k

)
· (1− δ)(1−2ε)ckd1/δe−k ≤

( e
2ε

)2εck
· ((1− 2ε)cd1/δe)k ·

(
1

1− δ

)k
· e−(1−2ε)ck.

It is not hard to verify that for large enough c the expression above decays exponentially fast with k.

Theorem 3 should be compared with an argument based on the Chernoff bound, that can be used to show that a
random restriction to Oδ(k log q) coordinates with high probability yields a code with linearly growing distance.
That argument is much simpler and applies to both linear and non-linear codes. In contrast, Theorem 3 crucially
uses linearity and gives a much better bound independent of q. It is possible to show that one cannot get a bound
independent of q for general non-linear codes.

3.1 Noisy interpolation of sparse polynomials

We now turn to interpolation of k-sparse polynomials. We assume that the collection of monomial degrees is
known and that all of them are below q − 1. We observe that in order to perform (non-noisy) interpolation it is
sufficient to evaluate the unknown polynomial at (say) the first k powers of the generator of the multiplicative
group F∗q , and then solve the resulting Vandermonde system of linear equations. In what follows we show that
performing noisy sparse interpolation requires only a constant (independent of q) multiplicative increase in the
number of evaluation points. Our result is entailed by Theorem 3.

Definition 4 Let q be a prime power, α > 0 be a real, and L be some collection of polynomials in Fq[x]. We say
that a set S ⊆ Fq is an α-noisy interpolating set for L, if any polynomial in L can be uniquely recovered from its
values on the set S, even after at most α|S| of these values have been corrupted arbitrarily.

Theorem 5 Let q be a prime power. Let D ⊆ {0, 1, . . . , (1 − δ)q} be an arbitrary set of size k, and L ⊆ Fq[x]
be the set of polynomials whose monomial degrees belong to D; then for a random choice of a multi-set S ⊆ Fq,
|S| = Ωα(k) we have

PrS [S is a δ/16-noisy interpol. set for L] ≥ 1− expδ(−k).

Proof: Let C ⊆ Fqq be the linear space of evaluations of all polynomials in L. Clearly, C is an [q, k, δq]q code.
An application of Theorem 3 concludes the proof.

4 Locally decodable codes

Our results in this section follow by combining the polynomial view of matching vector codes developed in [9]
with Theorem 3. We start with a brief introduction to matching vector codes.



Definition 6 A q-ary code C : Fkq → FNq is said to be (r, δ, ε)-locally decodable if there exists a randomized
decoding algorithm A such that

1. For all x ∈ Fkq , i ∈ [k] and y ∈ FNq such that d(C(x),y) ≤ δN : Pr[Ay(i) = x(i)] ≥ 1 − ε, where the
probability is taken over the random coin tosses of the algorithm A.

2. A makes at most r queries to y.

Definition 7 Let S ⊆ Zm \ {0}. We say that families U = {u1, . . . ,uk} and V = {v1, . . . ,vk} of vectors in Znm
form an S-matching family if the following two conditions are satisfied:

• For all i ∈ [k], (ui,vi) = 0;

• For all i, j ∈ [k] such that i 6= j, (uj ,vi) ∈ S.

We now show how one can obtain an MV code out of a matching family. We start with some notation.

• We assume that q is a prime power, m divides q − 1, and denote a subgroup of F∗q of order m by Cm;

• We fix some generator g of Cm;

• For w ∈ Znm, we define gw ∈ Cn
m by

(
gw(1), . . . , gw(n)

)
;

• For w,v ∈ Znm we define the multiplicative line Mw,v through w in direction v to be the multi-set

Mw,v =
{
gw+λv | λ ∈ Zm

}
; (2)

• For u ∈ Znm, we define the monomial monu ∈ Fq[z1, . . . , zn] by

monu(z1, . . . , zn) =
∏
`∈[n]

zu(`)
` . (3)

4.1 Encoding/decoding framework for matching vector codes

Observe that for any w,u,v ∈ Znm and λ ∈ Zm we have

monu

(
gw+λv

)
= g(u,w)

(
gλ
)(u,v)

. (4)

The formula above implies that the Mw,v-evaluation of a monomial monu is a Cm-evaluation of a (univariate)
monomial

g(u,w)y(u,v) ∈ Fq[y]. (5)

This observation is the foundation of all local decoders for matching vector codes. We now sketch encoding and
decoding procedures. Let U ,V be an S-matching family in Znm.

Encoding: We encode a message (x(1), . . . ,x(k)) ∈ Fkq by the Cn
m-evaluation of the polynomial

F (z1, . . . , zn) =
k∑
j=1

x(j) ·monuj(z1, . . . , zn). (6)

Decoding: The input to the decoder is a (corrupted) Cn
m-evaluation of F and an index i ∈ [k].



1. The decoder picks w ∈ Znm uniformly at random;

2. The decoder recovers the noiseless restriction of F to Mw,vi . To accomplish this the decoder queries the
(corrupted) Mw,vi-evaluation of F at a certain number of locations.

To see that noiseless Mw,vi-evaluation of F uniquely determines x(i) note that by formulas (4), (5) and (6) the
Mw,vi-evaluation of F is a Cm-evaluation of a polynomial

f(y) =
k∑
j=1

x(j) · g(uj ,w)y(uj ,vi) ∈ Fq[y]. (7)

Further observe that the properties of the S-matching family U ,V and (7) yield

f(y) = x(i) · g(ui,w) +
∑
s∈S

 ∑
j : (uj ,vi)=s

x(j) · g(uj ,w)

 ys. (8)

It is evident from the above formula that the restriction of F to a multiplicative line Mw,vi yields a univariate
polynomial f(y) such that the set of monomial degrees of f is in S ∪ {0} and

x(i) = f(0)/g(ui,w). (9)

4.2 Improved decoder for matching vector codes

We are now ready to state our main result for locally decodable codes.

Theorem 8 There exists δ > 0, such that for all integers t ≥ 2 and k ≥ 2t there exists a prime power q ≤
exp

(
tO(t)

)
, and a q-ary linear code encoding k-symbol messages to

N = exp exp
(

(log k)1/t(log log k)1−1/tt ln t
)

-symbol codewords that is
(
O
(
2t
)
, δ, 0.1

)
-locally decodable.

Proof: Our proof starts closely modeling the proof of [9, lemma 18]. We fix t distinct primes close to t ln t.
We set m = tO(t) to be the product of these primes. We consider the Grolmusz family of matching vectors [13]
mod m in Znm for an appropriate choice of the dimension n. We normalize the family to get an S-matching family
where |S| = 2t, and the largest element in S is below m/ ln t. We then follow the strategy outlined in Section 4.1
to define the encoding procedure for the matching vector code.

At this point we depart from [9, lemma 18]. To recover the i-th message symbol, the local decoder in [9] relies
only on the low degree of the restriction of the polynomial F to a random multiplicative line Mw,vi . The decoder
queries all m = tO(t) points on the line and performs noisy polynomial interpolation. Instead, we rely not only on
low-degree but also on sparsity of the restriction of F to Mw,vi . Specifically, we use the discussion in the end of
Section 4.1 to conclude that possible restrictions of F to Mw,vi fall into a κ = 2t-dimensional linear code in Fmq
that has good distance. By Theorem 3 the restriction of this code to a random subset of O(κ) coordinates is also
likely to have a good distance.

Thus to decode for x(i) we pick a random multiplicative line Mw,vi , query a randomly chosen set of its O(2t)
points, recover the univariate polynomial f(y) that is the most likely one given the observed values, and then obtain
our candidate value of x(i) using formula (9). It is not hard to verify that by setting the value of δ appropriately
small we can make the success probability of the decoder be arbitrary close to 1.

Note that in the theorem above it would be insufficient to use the naive result (about a restriction to κ log q
coordinates) following from the Chernoff bound, since in the setting above log q = tO(t) � 2t = κ.



5 Matrix rigidity

We start with a formal definition of a rigid matrix.

Definition 9 Let q be a prime power and m,n, and d be integers. Let A be an m× n matrix over Fq. We say that
A is (r, d)-rigid if for all matrices A′ ∈ Fm×nq such that for all i ∈ [m], d(Ai, A′i) ≤ d we have rk(A′) > r.

It is not hard to verify that a matrix A ∈ Fm×nq is (r, d)-rigid if and only if for every linear space L ⊆ Fnq ,
dimL = r one of the rows of A is more than d-far from L.

It is well-known that for any linear space L, dimL ≤ (1−ε)n there exists a point in Fnq that is Ω(n)-far from L.
In fact, this statement can be shown via a simple greedy argument that uses only the cardinality of the set L. In the
following two lemmas we show a similar statement for a point with {0, 1} coordinates. That argument however
crucially relies on the fact that L is a linear space.

Lemma 10 Let q be a prime power and L ⊆ Fnq be a linear subspace, dimL = k; then

Prx∈{0,1}n [x ∈ L] ≤ 1
2n−k

. (10)

Proof: Let [n] = I t J be a disjoint partition of [n], where I is a set of information coordinates of L, i.e.,
L|I = Fkq . Observe that a vector xI ◦ xJ ∈ L is uniquely determined by xI . Thus for a random choice of a vector
xI ◦ xJ ∈ {0, 1}n, there is at most 1/2n−k chance that xI ◦ xJ belongs to L.

Lemma 11 For every ε > 0 there exists a δ > 0, such that for all integers n, prime powers q, and linear spaces
L ⊆ Fnq , dimL ≤ (1− ε)n there exists a point x ∈ {0, 1}n such that d(L,x) ≥ δn.

Proof: Fix a linear space L. We now argue that a random point x ∈ {0, 1}n is far from L. Note that

Prx∈{0,1}n [x is δ-close to L] =
Prx∈{0,1}n [∃S ⊆ [n], |S| = (1− δ)n such that x|S ∈ L|S] .

We take a union bound over all
(
n
δn

)
choices of the set S and note that by Lemma 10 for any S ⊆ [n], |S| =

(1− δ)n,
Prx∈{0,1}n [x|S ∈ L|S] ≤ 1

2(1−δ)n−dimL|S
≤ 1

2(ε−δ)n .

Thus the probability that a randomly chosen x ∈ {0, 1}n is δ-close toL is at most
(
n
δn

)
/2(ε−δ)n which is negligible

when δ is sufficiently smaller than ε.

We now proceed to our construction of explicit rigid matrices.

Theorem 12 Let q be a prime power. For every 0 ≤ d ≤ O(n) there exists an (n/2, d)-rigid explicit matrix
A ∈ Fm×nq , with m = 2O(d)n/d.

Proof: Following our observation in the beginning of this section it suffices to construct an explicit set A in Fnq
such that |A| = m, and for any linear space L ⊆ Fnq , dimL = n/2 one of the points of A is more than d-far
from L.

By Lemma 11, there exists a constant δ > 0 such that for any linear space L ⊆ Fnq of dimension n/2 there is a
point in {0, 1}n that is more than δn-far from L.



To obtain the set A, split the coordinates into n/dd1/δe sets of size dd1/δe each, and in each set take all binary
vectors with support on this set. A consists of all these vectors. Note that every vector in {0, 1}n is a sum of at
most δn/d vectors of our set A, whose size is 2O(d)n/d.

Now suppose that L ⊆ Fnq is a linear space of dimension n/2 and every vector in A is at most d-far from L.
Then any vector of A is a linear combination of a vector of L and at most d unit vectors. Hence any vector in
{0, 1}n is a linear combination of a vector of L and at most d(δn/d) unit vectors, contradicting the fact that in
{0, 1}n there exists a vector that is more than δn-far from L.

6 Conclusions

In this paper we introduced an iterative technique for analyzing the rank of a random minor of a matrix. We
used this technique to establish a collection of results in coding theory and complexity theory. Below we comment
on some problems that are left open by our work.

• Our results assert the existence of O(k)-sized noisy interpolating sets for k-sparse polynomials over finite
fields. It would be very interesting to find such sets explicitly. Note that, as we have mentioned earlier, there
are explicit k-sized sets for non-noisy sparse polynomial interpolation.

• Our results for locally decodable codes close the question regarding the size of the multiplicative increase
in the query complexity of matching vector codes that is required to tolerate a constant fraction of errors.
We show that (just as in the case with Reed Muller codes) a constant increase suffices. Further progress on
matching vector codes requires better constructions of matching families of vectors modulo composites.

• In matrix rigidity it is a major challenge to improve upon the untouched minor argument at least for some
range of parameters. One specific goal here could be to find an explicit n × n matrix A whose rank stays
above 0.99n under at most one alteration in every row. Note that a random matrix would tolerate up to Ω(n)
alterations per row.
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