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Abstract

We develop a new technique for proving lower bounds in property testing, by showing a strong
connection between testing and communication complexity. We give a simple scheme for reducing com-
munication problems to testing problems, thus allowing us to use known lower bounds in communication
complexity to prove lower bounds in testing. This scheme is general and implies a number of new testing
bounds, as well as simpler proofs of several known bounds.

For the problem of testing whether a boolean function is k-linear (a parity function on k variables), we
achieve a lower bound of Ω(k) queries, even for adaptive algorithms with two-sided error, thus confirming
a conjecture of Goldreich [25]. The same argument behind this lower bound also implies a new proof
of known lower bounds for testing related classes such as k-juntas. For some classes, such as the class
of monotone functions and the class of s-sparse GF(2) polynomials, we significantly strengthen the best
known bounds.
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1 Introduction

The field of property testing seeks to formalize the question: what can we determine about a large object,
with limited access to the object itself? In general the large object may by anything—for instance a graph
on n nodes, or a function on n variables. In a typical property testing setup, a tester who has unbounded
computational power is given query access to the large object. The tester’s goal is to accept the object if it
has some property P, and reject it if it is “far” from having property P.

In this paper we will primarily concern ourselves with the case when the large object is a boolean function
f on n bits. In this case, the tester’s goal is to accept f with probability at least 2/3 if f has property P,
and reject with probability at least 2/3 if f must be modified on an ε fraction of the 2n possible inputs in
order to have property P. The query complexity (i.e. the number of times the testing algorithm must query
f) should hopefully be a small function of ε and n.

The notion of testing boolean functions in this framework goes back to the seminal work of Rubinfeld
and Sudan [38], and has several connections to complexity theory (in particular PCPs and hardness of
approximation), as well as computational learning theory [36]. Over the last two decades, researchers have
exerted a considerable amount of effort in testing various properties of a function f , such as whether f is a
linear function [8], whether f is isomorphic to a given function [7, 15, 1], whether f is a k-junta [22, 4, 5], a
monotone function [26, 23], a dictator [35], a halfspace [30], an s-sparse polynomial, a size-s decision tree,
etc. [18] (see, e.g., the survey of [37]).

Over the course of this effort, a variety of techniques have been developed for designing property testing
algorithms, thus proving testing upper bounds. However, as is often the case in theoretical computer science,
lower bounds are harder to come by. Although several lower bounds for specific problems are known, few
general techniques are known beyond the use of Yao’s minimax lemma.

Communication complexity is one technique that has proven effective for proving lower bounds in other
areas of computer science. In a typical setup, two parties, Alice and Bob, each have an input and they would
like to decide something about their joint input. Their computational power is unbounded, but they would
like to compute the answer with as little communication as possible.

The communication complexity framework has been well-studied, and in particular several problems
are known to require a large amount of communication. These include set-disjointness, index, inner-
product, and gap-hamming-distance. The hardness of these and related problems has been used to
obtain lower bounds in many areas such as streaming algorithms, circuit complexity, data structures, and
proof complexity [29, 28, 31].

Property testing and communication complexity have striking similarities. Both involve parties with
unbounded computational power (in one case, the tester, and in the other case, the communicating players),
and both involve algorithms which are restricted by the parties’ limited access to their input. Despite these
similarities, no previous connection between these fields has been made.

In this work we show that in fact there is a strong connection between testing and communication
complexity. In particular, we show how to reduce certain communication problems to testing problems, thus
showing that communication lower bounds imply lower bounds for property testing.

This represents a new approach to proving testing lower bounds. For a particular testing problem P
that we would like to bound, instead of starting from “scratch” by studying the structure of P, we seek a
connection between P and a hard communication problem. If we can find such a connection, then we can
reduce the work involved. As we will show, this approach turns out to be quite fruitful, both for proving
new bounds, and for giving simpler proofs of known bounds.

1.1 Our Results

Testing k-linear functions. The boolean function f : {0, 1}n → {0, 1} is linear, i.e. a parity function,
when there is a set S = {i1, . . . , is} ⊆ [n] such that for every x ∈ {0, 1}n, f(x) = xi1 ⊕ · · · ⊕ xis . When
|S| = k, we say that f is a k-linear function.

The problem of testing k-linear functions was first studied by Fischer et al. [22]. The best lower bound
is due to Goldreich [25], who showed that Ω(

√
k) queries are required to test k-linear functions. He also

showed that non-adaptive testers require Ω(k) queries to test the same property, and conjectured that this
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Class of functions Our bound Previous lower bounds Upper bounds

k-linear Ω(k)
Ω(
√

k) [25] O(k log k) [15]
Ω(k) (n.a.) [25] O(n) (trivial)

k-juntas Ω(k) Ω(k) [16] O(k log k) [5]

Fourier degree ≤ d Ω(d) Ω(d) [15] 2O(d) [18, 15]

s-sparse GF(2)-polynomials Ω(s) Ω(
√

s) [14] Õ(s) [14]

monotone f : {0, 1}n → R Ω(min{n, |R|2})
Ω(log n) (n.a.) [23]

O(n log |R|) [19]
Ω(n) (n.a., 1-s.) [9]

submodular f : {0, 1}n → R Ω(n)
Ω(log n) (n.a.) [23, 39]

2O(
√

n log n) [39]
Ω(n) (n.a., 1-s.) [9, 39]

size-s branching programs,
Ω(log s) sΩ(1) [14] Õ(s) [14]

size-s boolean formulas

s-term DNF formulas Ω(log s) Ω(log s) [14] Õ(s) [14]

size-s decision trees Ω(s) (1-s.) Ω(log s) [14] Õ(s) [14]

signed k-majority
Ω(k/ log k) (1-s.) Ω(k1/12)(n.a.) 3

[7, 30]
O(
√

n)
[30]

for k ≤ γn, γ ∈ (0, 1) for k ≤ 3
4
n for k = n

Table 1: Our results. Bold font indicates an improvement over the previous bounds. Bounds labeled with
(n.a.) apply only to non-adaptive testers; bounds marked with (1-s.) only apply to testers with one-sided
error. All other bounds apply to adaptive testers with two-sided error.

stronger lower bound holds for all testers (adaptive or not).1

We confirm Goldreich’s conjecture. As a result, we also obtain lower bounds on the query complexity
for testing juntas, testing functions of low Fourier degree, and testing sparse polynomials:

Theorem 1.1. Fix 1 < k < n− 1. Then Ω(min{k, n− k}) queries are required to test

(i) k-linear functions,
(ii) k-juntas,
(iii) functions of Fourier degree at most k, and
(iv) functions with k-sparse polynomial representation in F2.

We define these properties formally and prove Theorem 1.1 in Section 3.

Remark 1. In parallel work, Daniel Kane and the first author simultaneously obtained a different proof of
Goldreich’s conjecture via Fourier-analytic methods [6].

Theorem 1.1 has implications for the problem of isomorphism testing, or testing whether an unknown
function f is equivalent, up to permutation of variables, to a fixed function g : {0, 1}n → {0, 1}. Alon
and Blais showed that for most functions g, testing g-isomorphism non-adaptively requires Ω(n) queries
[1]. Similarly, Chakraborty et al. showed that for every k ≤ n, there exists a k-junta g such that testing
g-isomorphism requires Ω(k) queries [15]. Both of these results are non-constructive, and they raise the
question of whether we can identify an explicit class of functions for which the same lower bounds apply.
Theorem 1.1 shows that the class of k-linear functions satisfies this requirement.

Theorem 1.1 also has implications for the problem of testing computability by small width OBDDs.
Indeed, this was Goldreich’s original motivation for studying k-linear functions [25]. The lower bound for
testing n

2 -linear functions gives a natural subclass of functions computable by width-2 OBDDs that requires
Ω(n) queries to test. Goldreich conjectured in [25] that an identical lower bound also held for testing

1We note that Goldreich’s conjecture and the results in [25] are stated in terms of testing ≤k-linear functions (the class of
functions that are parities on at most k bits), but it is easy to see that the proofs in [25] give identical lower bounds for testing
k-linearity. It is also easy to see that our lower bounds for testing k-linearity give identical bounds for testing ≤k-linearity.
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an explicit sub-class of width-3 OBDDs and for testing width-4 OBDDs. Recently, he observed (private
communication) that the method of the proof of Theorem 1.1 can also be used to prove these conjectures:

Theorem 1.2. Testing the class of linear functions from GF(3)n to GF(3) that have only 0-1 coefficients
requires Θ(n) queries.

Theorem 1.3. Testing the class of functions that are computable by width-4 OBDDs requires Θ(n) queries.

We include Goldreich’s proof of Theorem 1.2 in Section 3. For the proof of Theorem 1.3, we refer the
reader to [11], where this result was independently obtained.

Testing monotonicity. Fix R ⊆ R. The function f : {0, 1}n → R is monotone if for any two inputs
x, y ∈ {0, 1}n where x1 ≤ y1, . . . , xn ≤ yn, we have that f(x) ≤ f(y). The problem of testing monotonicity
was first studied by Goldreich et al. [26], who introduced a natural tester: sample random edges from the
hypercube and verify that the function is monotone on those edges. For ranges of size |R|, this algorithm
requires O(n log |R|) queries [19]; an important open problem in property testing is to determine whether
there exist more efficient monotonicity testers.

Despite much attention to monotonicity testing [2, 20, 26, 19, 23, 3, 9], lower bounds for the query
complexity of this problem have been elusive. Previously, the best bound for non-adaptive testers was only
Ω(log n) [23] – this translates to a Ω(log log n) lower bound for general (adaptive) testers.2 We provide a
significant improvement to this lower bound for functions with large ranges:

Theorem 1.4. Testing f : {0, 1}n → R for monotonicity requires Ω(min{n, |R|2}) queries.

Notably, Theorem 1.4 gives the first progress on the natural-monotonicity-tester problem mentioned
above: it shows that for

√
n ≤ |R| ≤ poly(n), no monotonicity tester can improve on the query complexity

of the natural tester by more than a logarithmic factor. We note, however, that this problem is still open in
the important special case when R = {0, 1}.

By a recent result of Seshadhri and Vondrak [39], Theorem 1.4 also gives a new lower bound for the
query complexity of testing submodularity; see Section 4 for details.

Testing concise representations. Parnas, Ron, and Samorodnitsky [35] showed that testing whether a
function can be represented by a monotone DNF with at most s terms can be done with a number of queries
that depends only on s. This result was generalized by Diakonikolas et al. [18], who introduced the method
of testing by implicit learning and showed that this method can be used to test whether a function can be
represented by a DNF with few terms, by a small decision tree, by a small boolean formula, etc.

Our technique gives lower bounds on the query complexity for a number of these properties:

Theorem 1.5. At least Ω(log s) queries are required to test

(i) size-s decision trees,
(ii) size-s branching programs,
(iii) s-term DNFs, and
(iv) size-s boolean formulas.

Remark. In simultaneous and independent work, Chakraborty et al. prove matching Ω(log s) bounds for
s-term DNFs and size-s decision trees, and stronger poly(s) lower bounds for size-s boolean formulas and
size-s branching programs [14].

The proof of Theorem 1.5 can also be extended to answer a question of Fischer et al. [22]: they asked
if the query complexity of testing k-juntas can be reduced if the tester is only required to reject functions
that are far from (k + t)-juntas for some t > 0. We show that the answer to this question is “no” for any
t ≤ O(

√
k):

Theorem 1.6. Fix k ≤ 3
4n and t > 0. Any algorithm that accepts k-juntas and rejects functions 1

4 -far from
(k + t)-juntas with high probability must make Ω

(
min{(k

t )2, k} − log k
)

queries.

2Stronger bounds have been established for testers with one-sided error – see [23, 9] for details.
3The lower bound stated here is not found explicitly in [7], but can be obtained using the arguments in that paper.
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We prove Theorems 1.5 and 1.6 in Section 5.

Testers with one-sided error. The technique we introduce for proving new lower bounds can also be
used to prove lower bounds for testers with one-sided error (that is, testers which accept functions with
probability 1 if they have property P, and reject them with probability at least 2/3 if they are far from
having property P). As a first application, we get a much stronger lower bound for the query complexity of
testing decision trees with one-sided error:

Theorem 1.7. At least Ω(s) queries are required to test size-s decision trees with one-sided error.

We also obtain a lower bound on the query complexity of one-sided testers for a subclass of halfspaces,
the class of “signed” majority functions on k variables.

Theorem 1.8. Fix any constant γ ∈ (0, 1). For k ≤ γn, at least Ω(k/ log k) queries are required to test
signed k-majorities with one-sided error.

See Section 6 for more information about the history of these problems and the proofs of Theorems 1.7
and 1.8.

1.2 Techniques

The main idea behind all of our bounds is to set up a communication game, where Alice has a function f ,
Bob has a function g, and they want to determine whether a joint function h, which is some combination of
f and g (usually the xor), has a particular property. We can then relate the number of queries required to
test whether h has this property to the number of bits Alice and Bob need to communicate.

This technique is best illustrated by example. In fact, we can give a very simple sketch of Theorem 1.1,
by showing how to reduce a version of the well-known set-disjointness problem to testing k-linearity.
Suppose Alice and Bob both have sets of size k from a universe of size n. Suppose further that their sets
are guaranteed to either intersect in one place, or not at all, and they want to decide which is the case. It
is well-known that the communication complexity of this problem is Ω(k) [27].

One way Alice and Bob can solve this set intersection problem is by forming linear functions based on
their two sets. Alice forms the function f = χA and Bob forms the function g = χB , where χA and χB

are both k-linear functions. It is easy to see that the joint function h = f ⊕ g is 2k-linear if the sets don’t
intersect, and (2k − 2)-linear if they do. Note that every (2k − 2)-linear function is 1/2-far from being 2k-
linear (see Fact 3.1). Therefore, they can determine if their sets intersect by each running a testing algorithm
for 2k-linearity on h. Whenever Alice’s tester queries h(x), she asks Bob for g(x), and whenever Bob’s tester
queries h(x), he asks Alice for f(x) (we assume Alice and Bob use shared, public randomness to determine
which queries to make, so exchanging x is unnecessary). The total number of bits communicated is then
twice the number of queries of the tester. Since we can lower bound the number of bits communicated by
Ω(k), this implies that testing 2k-linearity also requires Ω(k) queries. By scaling k, we achieve the first part
of Theorem 1.1.

2 From Communication Complexity to Property Testing

In this section, we formalize the notions of query complexity for property testers, and of communication
complexity.

Property Testing. The query complexity Q(P) of property P is the minimum cost of an adaptive tester
for P with two-sided error. Q1(P) is the cost of the best algorithm that tests P with one-sided error. Qna(P)
is the query complexity of non-adaptive testers for P.4

Communication Complexity. We are primarily interested in (public coin) randomized protocols with
one-sided and two-sided error. Let Rε(f) denote the minimum cost of a randomized protocol that computes
f with probability ≥ 1− ε. For z ∈ {0, 1}, Rz

ε (f) denotes the cost of the best protocol that correctly outputs
4Typically, the query complexity of a testing algorithm depends on the distance parameter ε. Throughout this work, we will

assume ε is any small, fixed constant (say ε = 0.01), and for simplicity we will state all query complexity bounds only in terms
of the other parameters involved.
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f whenever f(x, y) 6= z and outputs f(x, y) with probability ≥ 1− ε whenever f(x, y) = z. Similarly, we let
R→ε (f) and R→,z

ε (f) denote the randomized communication complexity of one-way protocols (with one-sided
error). Unless otherwise specified, we fix ε := 1/3 and drop the subscript.

It might seem counterintuitive to define Rz(f) as the cost of the best protocol that is always correct
when f(x, y) 6= z; it is defined in this way because of its connection to nondeterministic communication
complexity. Specifically, let Cz(f) denote the minimum number of monochromatic rectangles needed to
cover the z-inputs of f , and define Nz(f) := log Cz(f). Then, we have

Fact 2.1 ([29] Proposition 3.7). For all constant 0 < ε < 1, Nz(f) ≤ Rz
ε (f) + O(log n).

For more details, see the standard text by Kushilevitz and Nisan [29].5 It is worth noting that in [29],
the definitions for the different notions of communication complexity are defined in terms of total functions
f , whereas we are primarily concerned with partial functions. However, the definitions generalize, and it is
easy to verify that Fact 2.1 also applies to partial functions.

Given a property P, functions f, g, and a “combining function” h = h(f, g), we define the following
communication game Ch,P : Alice and Bob receive f and g respectively, and they want to decide if h has
property P or is ε-far from all functions that have P. For most of our applications, f and g will be boolean
functions, and we will define h := f⊕g; however, this need not always be the case. When we use more exotic
definitions of h, we note so explicitly. The following lemma formalizes the connection between property
testing and communication complexity.

Lemma 2.2. For any function h and any property P for h,

1. R(Ch,P) ≤ 2 Q(P),
2. R1(Ch,P) ≤ 2 Q1(P), and
3. R→(Ch,P) ≤ Qna(P).

Remark. Lemma 2.2 assumes that f and g have boolean range. In the more general case where the range
of f and g has cardinality r, the bounds on the right-hand side must be multiplied by an extra factor of
log r.

Proof. Given a t-query general testing algorithm for P, we create a protocol for Ch,P in the following
manner. Alice and Bob use public randomness to adaptively generate queries. For each query x, Alice
and Bob exchange f(x) and g(x), enabling each player to compute h(x). After t queries (and 2t bits of
communication), both players use the testing algorithm to determine if h has P.

The proof connecting one-sided property testing to protocols with one-sided error is analogous. In the
non-adaptive case, we construct the following one-way protocol: Alice and Bob generate queries x1, . . . , xt in
advance. Alice sends Bob a single t-bit message, consisting of {f(xi) : i ∈ [t]}. Bob then computes {h(xi)}
and outputs 1 if and only if the tester accepts h.

2.1 Communication Complexity Problems

We achieve all of our testing lower bounds via Lemma 2.2. To prove lower bounds for Ch,P , we reduce from
one of several standard communication complexity problems. However, we often require special flavors of
these problems—either we need protocols with one-sided error, or we require the input to be restricted in
some balanced way. Let n ∈ N, t := t(n), and x, y ∈ {0, 1}n. We are interested in the following functions:

Set-Disjointness. Alice and Bob are given x and y and compute

disj(x, y) :=
n∨

i=1

xi ∧ yi .

It is well-known that R(disj) = Ω(n). We use k-disj, a balanced version of disj with the promise that
|x| = |y| = k and that xi ∧ yi = 1 for at most one i. It is known that R(k-disj) = Ω(k) [27].

5The relation between randomized and nondeterministic communication complexity is actually for private coin protocols;
however by Newman’s Theorem [32], the public-coin and private-coin complexities essentially differ by at most a O(log n) term.
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Gap-Equality. Alice and Bob are given n-bit strings x and y respectively and wish to compute

geqn,t(x, y) :=


1 if x = y ,

0 if ∆(x, y) = t ,

∗ otherwise.

We drop the subscripts when n is clear from context and t = n/8. We are interested in Rz(geq). The
standard public-coin equality protocol gives R0(geq) = O(1). For protocols that only err when geq(x, y) =
1, the complexity is drastically different.

Buhrman, Cleve, and Wigderson [12] proved an Ω(n) lower bound on the deterministic communication
complexity of geqn,n/2; their result extends to other gap sizes and to randomized protocols with one-sided
error.

Lemma 2.3 ([12]). R1(geqn,t) = Ω(n) for all even t = Θ(n).6

We include a proof for completeness. The proof of this lemma uses the following celebrated result of
Frankl and Rödl.

Fact 2.4 ([24], Theorem 1.10). For all constant 0 < ρ < 1/2, there exists δρ = δ(ρ) such that for all even
d ∈ [ρn, (1− ρ)n], if S ⊆ {0, 1}n and ∆(x, y) 6= d for all x, y ∈ S, then |S| ≤ 2n(1−δρ).

Proof of Lemma 2.3. Fix a 1-monochromatic rectangle R for geqn,t. Let TR := {x : (x, x) ∈ R}, and
consider any x, y ∈ TR. Since R is a rectangle, (x, y) ∈ R; as R is monochromatic, it follows that ∆(x, y) 6= t
for all x, y ∈ TR. By Fact 2.4, |TR| ≤ 2n(1−δρ). Trivially, there are 2n (x, y) pairs such that x = y; each
1-monochromatic rectangle contains at most 2n(1−δρ) such pairs. Therefore, we have C1(geqn,t) ≥ 2nδρ =
2Ω(n). The rest of the proof follows from Fact 2.1.

Gap-Hamming-Distance. Alice and Bob are given n-bit strings x and y respectively and wish to compute

ghdn,t(x, y) :=


1 if ∆(x, y) ≥ n/2 + t ,

0 if ∆(x, y) ≤ n/2− t ,

∗ otherwise.

The standard gap size for ghd is t = Θ(
√

n); in this case, we drop the subscripts and use just ghd. A tight
lower bound of R(ghd) = Ω(n) is known, due to Chakrabarti and Regev [13]. An easy padding argument
(implicit in [10]) shows that R(ghdn,t) = Ω((n/t)2) for all t = Ω(

√
n).

We consider an extended version of ghd. In eghdn,k,t, Alice and Bob’s inputs x, y are n-bit strings,
with the promise that |x| = |y| = k/2, and they wish to distinguish ∆(x, y) ≥ k/2+ t from ∆(x, y) ≤ k/2− t.

Lemma 2.5. For all t and all k ≤ n,

R(eghdn,k,t) = Ω(min{(k/t)2, k} − log k).

In particular, when k = n, we show that ghdn,t remains hard even when |x| = |y| = n/2.
In the proof of the lemma, let cost(P ) denote the maximum number of bits sent in a protocol P . We

use ◦ to denote string concatenation and 0k (1k) to denote the string of k consecutive zeros (ones).

Proof. First, we prove the lemma for the case k = n by reduction from ghd. Let P be the best protocol
for eghdn,k,t. Fix m := n/4, and let x, y denote two arbitrary inputs to ghdm,t. Alice and Bob construct
4m-bit inputs x̂, ŷ such that |x̂| = |ŷ| = 2m and that ghdm,t(x, y) = eghdn,k,t(x̂, ŷ). Then, the protocol
outputs P (x̂, ŷ). Next we describe how to construct x̂ and ŷ. Let z be the absolute value of (|x| − |y|), and
consider the following 2m-bit strings.

x′ := x ◦ 1m−|x| ◦ 0|x|,

y′ := y ◦ 1m−|y| ◦ 0|y| .

6Curiously, the parity of t turns out to be necessary. Since ∆(x, y) = |x|+ |y| − 2|x∩ y|, Alice and Bob can deterministically
distinguish x = y from ∆(x, y) being odd in O(log n) bits by exchanging |x| and |y| and checking the parity of |x| + |y|. This
does not affect our property testing lower bounds.
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Note that |x′| = |y′| = m and that
|∆(x′, y′)− (m/2 + z)| ≥ t.

These strings are balanced, but in general, the Hamming distance is not centered around 2m ± t. To get
balanced strings whose Hamming distance is centered, Alice and Bob again append their inputs, this time
creating 4m-bit strings x̂ and ŷ such that

x̂ := x′ ◦ 1m ◦ 0m,

ŷ := y′ ◦ 1(m+2z)/4 ◦ 0m ◦ 1(3m−2z)/4 .

It’s easy to see that x̂ and ŷ are 4m-bit strings with Hamming weight 2m. Their Hamming distance increases
by (3m− 2z)/2, so |∆(x̂, ŷ)− 2m| ≥ t.

In our protocol Q for ghdm,t, Alice and Bob exchange |x| and |y|, construct x̂, ŷ, and output P (x̂, ŷ). By
construction, it’s easy to see that ghdm,t(x, y) = eghdn,k,t(x̂, ŷ), hence Q is correct whenever P is correct.
The cost of Q equals cost(P ) + 2 log m. Therefore, we have

cost(P ) = cost(Q)− 2 log m.

Hence, when t = O(
√

n) then
cost(P ) = Ω(m)− 2 log m = Ω(n),

and when t = Ω(
√

n) then

cost(P ) = Ω((m/t)2)− 2 log m = Ω((n/t)2 − 2 log n).

Proving the general case occurs by a simple padding argument. Specifically, take inputs to eghdk,k,t

and extend them to n bit strings by appending with 0n−k.

3 Testing k-Linearity and Related Properties

In this section we prove Theorem 1.1. Recall that a k-linear function is a function of the form f(x) =
∑

i∈S xi

(mod 2) for some set S ⊆ [n] where |S| = k. The definitions of the other properties in the statement of
Theorem 1.1 are as follows:

Definition (Junta). The function f : {0, 1}n → {0, 1} is a k-junta if there is a set J ⊆ [n] of size |J | ≤ k
such that for every x, y ∈ {0, 1}n where xi = yi for each i ∈ J , f(x) = f(y).

Definition (Low Fourier degree). For convenience when discussing Fourier degree we will represent boolean
functions using range {−1, 1} instead of {0, 1}. It is well known that every boolean function f : {0, 1}n →
{−1, 1} has a unique representation of the form f(x) =

∑
S⊆[n] f̂(S)χS(x), where χS = (−1)

P
i∈S xi and

f̂(S) ∈ R. The terms f̂(S) are the Fourier coefficients of f , and the Fourier degree of f is the maximum
value of k ≥ 0 such that f̂(S) 6= 0 for some set S of size |S| = k.7

Definition (Sparse polynomials). Every boolean function f : {0, 1}n → {0, 1} also has a unique represen-
tation as a polynomial over F2. We say that f is a k-sparse polynomial if its representation over F2 has at
most k terms.

The following facts about k-linear functions will be used in the proof of Theorem 1.1:

Fact 3.1. A (k+2)-linear function is 1
2 -far from (i) k-linear functions, from (ii) k-juntas, from (iii) functions

of Fourier degree at most k, and 1
20 -far from (iv) k-sparse polynomials.

Proof. We first prove part (iii). Parts (i) and (ii) will follow immediately from the observation that k-juntas
and k-linear functions are subclasses of functions with Fourier degree at most k.

Let f be a (k + 2)-linear function over the variables of some set T ⊆ [n] where |T | = k + 2, and let g
be any function of Fourier degree at most k. For convenience, we will represent f and g as functions from

7For more details on the Fourier representation of boolean functions see, e.g., [17, 33].
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{0, 1}n to {−1, 1}. Since f is a linear function over the variables in T , we know that f̂(T ) = 1, and f̂(S) = 0
for all S 6= T . Moreover, since g has Fourier degree k and |T | > k, we know by definition that ĝ(T ) = 0.
Thus by Parseval’s theorem

E
x
[f(x)g(x)] =

∑
S⊆[n]

f̂(S)ĝ(S) = 0

which implies Prx[f(x) 6= g(x)] = 1/2.
Finally, part (iv) is a special case of a more general theorem of Diakonikolas et al. [18, Thm. 36]. For

convenience, we provide a self-contained proof as Lemma A.1 in Appendix A.

Theorem 1.1 (Restated). Fix 1 < k < n − 1. Then Ω(min{k, n − k}) queries are required to test (i)
k-juntas, (ii) k-linear functions, (iii) functions of Fourier degree at most k, and (iv) functions with k-sparse
polynomial representation in F2.

Proof. We will first prove the theorem for k in the range k ∈ (1, n/4], then discuss how to handle other
values of k.

Let k be even and define k′ = k
2 + 1. We will show a reduction from the k′-disj problem. An instance

of this problem is a pair of sets A,B ⊆ [n] such that |A| = |B| = k′ and |A ∩ B| ∈ {0, 1}. Alice and
Bob each receive one of the sets and they must determine whether |A ∩ B| = 0. As we saw in Section 2.1,
R(k′-disj) ≥ Ω(k).

Here is a protocol to solve the k′-disj problem: Alice and Bob start by building the boolean functions
ParityA,ParityB : {0, 1}n → {0, 1} that return the parity of the bits in A and B, respectively. They then
communicate to determine if h := ParityA⊕ParityB is a k-linear function or a (k +2)-linear function. Since
ParityA ⊕ ParityB = ParityA4B , h is a k-linear function iff |A ∩B| = 1.

Define Ch,P to be the communication game where Alice and Bob each receive a function – call these
functions f and g – with the promise that f ⊕ g is a linear function on exactly k or k + 2 bits and they must
accept iff f ⊕ g is a k-linear function. The above reduction shows that R(Ch,P) ≥ R(k-disj) ≥ Ω(k). By
Lemma 2.2, any testing algorithm that distinguishes k-linear and (k + 2)-linear functions with probability
at least 2/3 must make at least Ω(k) queries. The theorem then follows from the observation that k-linear
functions satisfy properties (i)–(iv) while Fact 3.1 shows that (k+2)-linear functions are far from those same
properties.

To handle k in the range k ∈ [3n/4, n − 1), note that the query complexity of distinguishing whether
a function is k-linear versus (k + 2)-linear is equivalent to the query complexity of distinguishing whether
a function is (n − k)-linear versus (n − k − 2)-linear. This is because we can replace the function h being
tested by h⊕ χn. Thus for k ∈ [3n/4, n− 1), the complexity of testing any of these properties is Ω(n− k).

For k in the range (n/4, 3n/4), we can show Ω(n) queries are required via a simple padding argument.
We can reduce the k = 3n/4 case to the case of smaller k (say k = cn where c ∈ (1/4, 3/4)) by using the
function h constructed by Alice and Bob to construct a padded h′ over a larger space- i.e. h′ has the form
h′ : {0, 1}n′ → {0, 1} where n′ = 3n/4c and h′ just applies h to the first n variables. Thus a distinguisher for
whether h′ is cn′-linear versus (cn′ + 2)-linear would yield a distinguisher for whether h is 3n

4 -linear versus
( 3n

4 + 2)-linear.

Testing linear functions with 0-1 coefficients. With Oded Goldreich’s kind permission, we present
his proof of Theorem 1.2:

Theorem 1.2 (Restated). Testing the class of linear functions from GF(3)n to GF(3) that have only 0-1
coefficients requires Θ(n) queries.

Proof. The upper bound in the theorem follows from the query complexity of learning subclasses of linear
functions over GF(3)n. See [25] for the details.

For the lower bound, we do a reduction from the set-disjointness problem. Suppose Alice and Bob
start with the strings a ∈ {0, 1}n and b ∈ {0, 1}n. They both form linear functions based on their sets. In
particular, Alice forms the function f(x) =

∑n
i=1 aixi (mod 3) and Bob forms the function g(x) =

∑n
i=1 bixi

(mod 3). They then test whether the function h = f + g (mod 3) has the required property. If Alice’s and
Bob’s sets don’t intersect, h will be a linear function with {0, 1}-coefficients; otherwise h will be a linear
function with at least one coefficient vi = 2. In the latter case, we can apply the Schwartz-Zippel Lemma to
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show that h is 2
3 -far from any linear function ` with only {0, 1}-coefficients. Thus, Lemma 2.2 and the lower

bound of Ω(n) for set-disjointness imply a lower bound of Ω(n) for testing this class.

4 Testing Monotonicity and Submodularity

Theorem 1.4 (Restated). Testing f : {0, 1}n → R for monotonicity requires Ω(min{n, |R|2}) queries.

Proof. We prove the theorem in three steps. First, we give an Ω(n) lower bound for the case when R = Z.
Secondly, we handle the case where |R| =

√
n by a standard range reduction argument. Finally, we give an

Ω(|R|2) bound for small |R| by reducing from the |R| =
√

n case.
Suppose R = Z. Then, we apply a reduction from the disj problem. Let A,B ⊆ [n] be the subsets

received by Alice and Bob, respectively. Alice and Bob can determine whether A and B are disjoint with
the following protocol: Alice builds the function χA : {0, 1}n → {−1, 1} defined by χA(x) = (−1)

P
i∈A xi .

Similarly, Bob constructs the function χB : {0, 1}n → {−1, 1}. They then communicate to test whether the
function h : {0, 1}n → R defined by h(x) = 2 · |x|+ χA(x) + χB(x) is monotone or whether it is 1/8-far from
monotone.

To establish the correctness of the protocol, we need to establish two facts: (1) when A and B are
disjoint, the function h is monotone, and (2) when A and B are not disjoint, h is 1/8-far from monotone.

Fix i ∈ [n]. For x ∈ {0, 1}n, let x0, x1 ∈ {0, 1}n be the vectors obtained by fixing the ith coordinate of
x to 0 and to 1, respectively. For any set S ⊆ [n],

χS(x1) = (−1)1[i∈S] · χS(x0).

Therefore, when i /∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| = 2 > 0;

when i ∈ A and i /∈ B,
h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2 χA(x0) ≥ 0;

and similarly when i /∈ A and i ∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2 χB(x0) ≥ 0.

So when i 6∈ A∩B, the function h is monotone on each edge (x0, x1) in the ith direction. As a result, when
A and B are disjoint the function h is monotone. This completes the proof of fact (1).

Consider now the case where A ∩B 6= ∅. When i ∈ A ∩B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2 χA(x0)− 2 χB(x1).

This implies that for each x where χA(x0) = χB(x0) = 1, h(x1) < h(x0). Partition {0, 1}n into 2n−1

pairs that form the endpoints to all the edges in the ith direction. Exactly 1
4 of these pairs will satisfy the

condition χA(x0) = χB(x0) = 1, and for each of these pairs, either h(x0) or h(x1) must be modified to make
h monotone. Therefore, when A and B are not disjoint, then h is 1

8 -far from monotone and this completes
the proof of fact (2).

To complete the proof in the case of R = Z, define Ch,Mon to be the communication game where Alice
and Bob receive two functions f and g, and they must test whether the function h defined by h(x) =
2 · |x| + f(x) + g(x) is monotone or whether it is 1/8-far from monotone. The argument above shows that
R(Ch,Mon) ≥ R(disj) ≥ Ω(n). The lower bound thus follows from Lemma 2.2.

To handle the case where |R| =
√

n, we sketch the proof of a standard range reduction argument (see,
e.g., [9].) Specifically, we can assume without loss of generality that R = {−

√
n

2 , . . . ,
√

n
2 } and we modify the

construction of the function h to create h′

h′(x) =


−
√

n
2 when |x| − n

2 < −
√

n
2 + 1,

√
n

2 when |x| − n
2 >

√
n

2 − 1,

|x| − n
2 + χA(x)+χB(x)

2 when
∣∣ |x| − n

2

∣∣ ≤ √
n

2 − 1.
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It is easy to see that h′ is identical to h/2, except when
∣∣ |x| − n

2

∣∣ ≥ √
n

2 , which only occurs for a constant
fraction of x’s. Using the same reasoning as before, h′ is monotone when A and B are disjoint, and a constant
distance from monotone when A and B intersect. We leave the details to the reader.

Finally, suppose that |R| = o(
√

n), and let m := |R|2. We’ll use a q-query testing algorithm for f to
create a q-query testing algorithm for functions g : {0, 1}m → {0, 1}.

Specifically, given g, create h : {0, 1}n → R by defining h(x, y) := g(x) for x ∈ {0, 1}m and y ∈ {0, 1}n−m.
Clearly, if g is monotone then so is h. We now want to argue that if g is ε-far from monotone, then so is
h. We do so by proving the contrapositive. Suppose that h is not ε-far from monotone. Let h̃ be the
monotone function closest to h; thus, Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε. By an averaging argument, there exists
y such that Prx[h(x, y) 6= h̃(x, y)] ≤ ε. Define g̃ : {0, 1}m → R as g̃(x) := h̃(x, y). It’s easy to see that
Prx[g(x) 6= g̃(x)] = Prx,y[h(x, y) 6= h̃(x, y)] ≤ ε. Therefore, g is not ε-far from monotone.

Our testing algorithm for g is simple: test h and return the result. By the above claim, a correct answer
for testing h gives a correct answer for testing g. Since testing g for monotonicity requires Ω(m) = Ω(|R|2)
queries, the same bound holds for testing h.

Testing submodularity. The real-valued function f : {0, 1}n → R is submodular if for every x, y ∈
{0, 1}n, f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), where (x ∨ y)i = max{xi, yi} and (x ∧ y)i = min{xi, yi}.

Testing submodularity was first studied by Parnas, Ron, and Rubinfeld [34] for functions in low dimen-
sions. Recently, Seshadhri and Vondrak [39] initiated the study of submodularity testing for functions over
the boolean hypercube. They show that testing submodularity is at least as difficult as testing monotonicity
(see Lemma 51 of [39]), and thus the monotonicity lower bound of Fischer et al. [23] implies a weak lower
bound of Ω(log log n) for testing submodularity. Applying our Theorem 1.4 instead, we get a much stronger
lower bound:

Corollary 4.1. Testing f : {0, 1}n → R for submodularity requires Ω(n) queries.

5 Testing Concise Representations

The following lemma regarding juntas is an important ingredient of the proof of Theorem 1.5:

Lemma 5.1 (Diakonikolas et al. [18]). Let P be the class of all size-s decision trees, size-s branching
programs, s-term DNFs, or size-s boolean formulas. Then every (log s)-junta is in P, while a random
(log s + log log s)-junta is 0.001-far from P with probability 1− o(1).

Theorem 1.5 (Restated). At least Ω(log s) queries are required to test (i) size-s decision trees, (ii) size-s
branching programs, (iii) s-term DNFs, and (iv) size-s boolean formulas.

Proof. Fix P to be the property consisting of all size-s decision trees, size-s branching programs, s-term
DNFs, or size-s boolean formulas. Define k := log s.

We prove that Ω(k) queries are required to test P with a reduction from the eghdn,4k/3,2 log k problem.
We can formulate the problem as follows: Alice and Bob receive A,B ⊆ [n], respectively. Both sets have
size |A| = |B| = 2

3k. Alice and Bob must distinguish between the case where |A4B| ≥ 2
3k + 2 log k and the

case where |A4B| ≤ 2
3k − 2 log k. As we saw in Section 2.1, R(eghdn,4k/3,2 log k) ≥ Ω(k) = Ω(log s).

Alice and Bob can solve the eghd problem with the following protocol: Alice generates a random 2
3k-

junta f : {0, 1}n → {0, 1} whose relevant variables are identified by A. Similarly, Bob generates a random
2
3k-junta g : {0, 1}n → {0, 1} whose relevant variables are identified by B. Alice and Bob then test whether
the function f ⊕ g is in P or is far from P.

To see why the protocol correctly solves the eghdn,4k/3,2 log k problem, we observe that the function
h = f ⊕ g is a random junta on the set A ∪ B of variables. Since |A| = |B| = 2

3k, then |B \ A| = 1
2 |A4B|

and |A ∪ B| = |A| + |B \ A| = 2
3k + 1

2 |A4B|. So when |A4B| < 2
3k − 2 log k, then h is a k-junta.8 And

when |A4B| > 2
3k + 2 log k, then h is a random (k + log k)-junta. The correctness of the protocol follows

from Lemma 5.1.
8In fact, h is a (k − log k)-junta, but it is sufficient for our purposes to note that h is a k-junta.
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We now complete the proof of the lower bound as we did in Theorems 1.1 and 1.4: define Ch,Jun to be the
communication game where Alice and Bob receive the functions f, g : {0, 1}n → {0, 1} and must test whether
f ⊕ g is in P or far from P. The protocol above shows that R(Ch,Jun) ≥ R(eghdn,4k/3,2 log k) ≥ Ω(log s).
The Theorem follows from Lemma 2.2.

Testing juntas. Fischer et al. [22] asked if it is easier to test k-juntas if we are only required to reject
functions that are far from (k + t)-juntas for some t > 0. The lower bound of Chockler and Gutfreund [16]
gives a lower bound of Ω(k/t) queries for this task. (See also [18, App. E].) This bound is not sufficiently
strong to answer Fischer et al.’s question for any t ≥ ω(1).

Our proof of Theorem 1.5, on the other hand, can easily be extended to show that for any t ≤ O(
√

k),
the task of distinguishing k-juntas from functions that are far from (k + t)-juntas requires (asymptotically)
as many queries as the standard k-junta testing problem:

Theorem 1.6 (Restated). Fix k ≤ 3
4n and t > 0. Any algorithm that accepts k-juntas and rejects functions

1
4 -far from (k + t)-juntas with high probability must make Ω

(
min{(k

t )2, k} − log k
)

queries.

Proof. We again define a reduction from the eghdn,4k/3,t problem. As in the proof of Theorem 1.5, Alice
and Bob can solve their instance of the problem by building random juntas f, g : {0, 1}n → {0, 1} on the
sets A,B ⊆ [n] of size |A| = |B| = 2

3k that they received. When |A4B| ≤ 2
3k − t, then f ⊕ g is a k-junta,

and when |A4B| ≥ 2
3k + t then f ⊕ g is a random (k + t)-junta. A random (k + t)-junta is 1

4 -far from
(k + t− 1)-juntas with probability 1− o(1), so this reduction and Lemma 2.2 show that the relaxed version
of junta testing is at least as hard as eghdn,4k/3,t.

6 Testers with One-Sided Error

Testing decision trees. We saw in Theorem 1.5 that Ω(log s) queries are required to test whether a
function can be represented as a boolean decision tree with at most s nodes; for testers with one-sided error,
we get an exponentially larger bound:

Theorem 1.7 (Restated). At least Ω(s) queries are required to test size-s decision trees with one-sided error.

Proof. We do a reduction from the gap-equality problem. Assume that s = 2n−1. Alice receives the string
a ∈ {0, 1}s and Bob receives b ∈ {0, 1}s. They must determine if a = b or whether ∆(a, b) = s

8 .
Alice and Bob can solve their instance of the geq problem with the following protocol. Let the set of

vectors x ∈ {0, 1}n with even parity Parity(x) = x1 ⊕ · · · ⊕ xn = 0 define an indexing of the bits of a. (I.e.,
fix a bijection between those strings and [s].) Alice and Bob build the functions f, g : {0, 1}n → {0, 1} by
setting

f(x) =

{
ax when Parity(x) = 0,

0 when Parity(x) = 1,

and

g(x) =

{
bx when Parity(x) = 0,

1 when Parity(x) = 1.

Alice and Bob then test whether f ⊕ g can be represented with a decision tree of size at most 15
162n; when it

can, they answer ∆(a, b) = s
8 .

Let us verify the correctness of this protocol. For any x ∈ {0, 1}n where Parity(x) = 0, we have that
(f ⊕ g)(x) = ax ⊕ bx. Furthermore, for each x where Parity(x) = 1, we get (f ⊕ g)(x) = 1. So when a = b,
then f ⊕ g is the Parity function. This function requires a tree of size 2n − 1 to compute exactly, and is
1
16 -far from every decision tree of size at most 15

162n. When ∆(a, b) = s
8 , consider the (complete) tree that

computes f ⊕ g by querying xi in every node at level i. This tree has 2n − 1 nodes, but for every input x
where ax 6= bx, we have that the corresponding leaf has the same value as its sibling. So for each such input,
we can eliminate one node in the nth level of the tree. Therefore, we can compute f ⊕ g with a decision tree
of size at most 2n − 1− 2n−1/8 < 15

162n.
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To complete the proof, we introduce the communication game C⊕,DT where Alice and Bob each receive
a boolean function and they must determine if the sum of their functions can be represented with a decision
tree of size 15

162n = 15
32s. The above reduction shows that R1(C⊕,DT) ≥ R1(geq) ≥ Ω(s). Lemma 2.2 then

implies the lower bound for testing size-s decision trees with one-sided error.

Testing signed k-majorities. Our next bound is for testing whether a function f : {−1, 1}n → {−1, 1}
is a signed k-majority (for convenience, in this section we will switch notation and represent boolean values
with ±1 notation). A signed majority is a majority function with some variables negated, i.e. it is a halfspace
of the form f(x) = sgn(w ·x), where w ∈ {−1, 1}n. If w ∈ {−1, 0, 1}n and exactly k of the wi’s are non-zero,
we say it is a signed k-majority.

Signed majorities were previously studied by Matulef et. al. [30], where they were referred to as {−1, 1}-
weight halfspaces. In that work, they show a non-adaptive lower bound of Ω(log n) queries to test whether
a function is a signed majority on all n variables. In [7], Blais and O’Donnell study the related problem of
testing whether a function is a (non-signed) majority on exactly k out of n variables. When k ≤ 3

4n, they
show a lower bound of Ω(k1/12) queries for non-adaptive algorithms with two-sided error.

We show that Ω(k/ log k) queries are required to test whether f is a signed k-majority with one-sided
error. The argument in [7] can be adapted to show a non-adaptive, two-sided lower bound of Ω(k1/12) queries
for this problem as well. Our bound is incomparable; it is asymptotically stronger and applies to adaptive
algorithms, but only ones with one-sided error.

Theorem 6.1. Fix any constant γ ∈ (0, 1). For k ≤ γn, at least Ω(k/ log k) queries are required to test
signed k-majorities with one-sided error.

Proof. We will show a reduction from the gap-equality problem.
For a fixed k, define k′ = k/γ and note k′ ≤ n. Suppose Alice and Bob each have strings of length k′

denoted sA and sB , which are promised to either be equal, or have Hamming distance n−k. For convenience,
we will think of these strings as vectors over {−1, 1}k′ .

Alice and Bob will each generate functions that are linear forms. Alice generates f : {−1, 1}n → R
by defining f(x) = x · sA, and Bob generates g : {−1, 1}n → R by taking g(x) = x · sB . (For example, if
sA = 〈−1,−1, 1〉 Alice generates the function f(x) = −x1 − x2 + x3). They then analyze the joint function
h : {−1, 1}n → {−1, 1} defined as h(x) = sgn( f(x)+g(x)

2 ). It is easy to see that h is a signed k′-majority if
sA = sB , and a signed k-majority if sA and sB have Hamming distance n−k. In Lemma 6.3 below, we show
that a signed k′-majority is a constant distance from any signed k-majority. Thus, Alice and Bob can solve
geqk′ by testing whether h is a signed k-majority.

Note that each time their tester queries h(x), in order to compute h they need to send Θ(log k) bits
to each other, since the range of f and g is of size Θ(k′). Thus, similar to Lemma 2.2, the communication
complexity of this problem is bounded by O(log k′) times the query complexity of testing. By Lemma 2.3, we
know that the communication complexity of geqk′ with one-sided error is Ω(k′). Thus, the query complexity
of the tester must be Ω(k′/ log k′) = Ω(k/ log k).

We complete the section by showing that when k′ is much larger than k, signed k′-majorities are far
from signed k-majorities. To prove this statement, we will use the Berry-Esseen theorem, a version of the
Central Limit Theorem with error bounds (see e.g. [21]):

Theorem 6.2 (Berry-Esseen). Let `(x) = c1x1 + · · · + cnxn be a linear form over the random ±1 bits xi.
Assume |ci| ≤ τ for all i and write σ =

√∑
c2
i . Write F for the c.d.f. of `(x)/σ; i.e., F (t) = Pr[`(x)/σ ≤ t].

Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1
1 + |t|3

,

where Φ denotes the c.d.f. of X, a standard Gaussian random variable. In particular, if A ⊆ R is any
interval then |Pr[`(x)/σ ∈ A]− Pr[X ∈ A]| ≤ C1(τ/σ), where C1 is an absolute constant.

Lemma 6.3. Fix a constant α. Then there exist absolute constants k0 ∈ N and ε > 0 (which only depend
on α) such that for any k ≥ k0 and k′ = (1+α)k, all signed k′-majorities are ε-far from signed k-majorities.
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Proof. Let f be a signed k-majority, and g be a signed k′-majority. It is easy to see that f and g have
minimum distance when they have the same sign pattern on their common variables. So without loss of
generality, assume f(x) = sgn(x1 + · · ·+ xk) and g(x) = sgn(x1 + · · ·+ xk′) (in other words, f is a majority
function on the first k′ variables, and g is a majority function on the first k′ variables). To simplify, we will
write S(x) =

∑k
i=1 xi and T (x) =

∑k′

i=k+1 xi. Thus, f(x) = sgn(S(x)) and g(x) = sgn(S(x) + T (x)).
For any positive real number t, we have

Pr
x

[f(x) 6= g(x)] ≥ Pr
x

[S(x) ∈ [0, t) and T (x) < −t]

= Pr
x

[S(x) ∈ [0, t)] · Pr
x

[T (x) < −t]

where the equality follows from the fact that S and T are functions on disjoint sets of variables.
Note that S is a linear form on k variables, so we can use the Berry-Esseen theorem on S with σ =

√
k

to get

Pr
x

[S(x) ∈ [0, t)] ≥ (Φ(t/
√

k)− Φ(0))− C1/
√

k

≥ (Φ(t/
√

k)− 1/2)− C1/
√

k (1)

where C1 is the constant from the Berry-Esseen theorem.
Similarly, T is a linear form on αk variables, so we can use the Berry-Esseen theorem on T with σ =

√
αk

to get

Pr
x

[T (x) < −t] ≥ Φ(−t/
√

αk)− C1/
√

αk (2)

Setting t to be, say,
√

k, and then choosing k large enough insures that the quantities in both (1) and (2)
are positive, and bigger than a constant which only depends on α.
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A Distance from sparse polynomials

In this section we provide a self-contained proof that (k+2)-linear functions are far from k-sparse polynomials.
We note that this is a special case of Theorem 36 in [18]. We include it here merely for the reader’s
convenience.

Lemma A.1 (Diakonikolas et al. [18]). Every (k + 2)-linear function is 1
20 -far from a k-sparse polynomial

over F2.
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Proof. Let f be a (k + 2)-linear function, and without loss of generality assume f is a linear function on the
first k +2 variables, i.e. f(x) = x1⊕ · · ·⊕xk+2. Let g be a k-sparse polynomial, i.e. g = T1⊕ · · ·⊕Tk where
each Ti is a monomial. We want to show that f and g are far. We can assume without loss of generality
that g doesn’t contain any length-1 terms, since if it did we could just subtract those terms off of both f
and g to create f ′ and g′, which have the same distance from each other. We could then prove the theorem
for f ′, g′, and a smaller value of k.

Define the influence of a variable xi in f , denoted Infi(f), in the standard way- i.e. Infi(f) = Prx[f(x) 6=
f(x⊕i)] where x⊕i denotes x with the ith bit flipped. Define the total influence of f to be

∑
i Infi(f).

For any f and g, it is straightforward to show that if for some i the difference |Infi(f) − Infi(g)| is at
least δ, then f and g must have distance at least δ/2. When f is the (k + 2)-linear function defined above,
each variable x1 through xx+2 has influence 1. Thus, to complete the proof, we will show that in g one of
these variables must have influence at most 0.9.

If the total influence of x1 through xk+2 in g is less than 0.9(k+2), then we are done, since the pigeonhole
principle implies the existence of a variable xi with influence at most 0.9. Thus, in what follows, we assume

k+2∑
i

Infi(g) ≥ 0.9(k + 2) (3)

We can bound the total influence of x1 through xt in g as follows. First, we write g = g2 ⊕ g3 where g2

is the collection of terms in g that have length 2, and g3 is the collection of terms in g that have length at
least 3. Now note:

• Each variable xi that appears in g2 has Infi(g2) = 1/2. The reason is because since every term of g2

has length 2, xi is influential exactly when the other variables it appears with have parity 1, which
happens exactly half the time.

• For each term in g3, the total contribution of that term to the influences of all the variables is at most
3/4. To see why, suppose the term has length m, then on a random assignment the probability that a
variable is relevant to that term is 1

2m−1 , so the total effect the term can have on all the influences is
at most m · 1

2m−1 . If m ≥ 3, this is at most 3/4.

Let R2 be the number of terms of g2, and R3 be the number of terms in g3. By hypothesis, R2 +R3 ≤ k.
Since each term of g2 contributes at most 1 to the total influence of g, and each term of g3 contributes at
most 3/4 to the total influence of g, we have that

k+2∑
i

Infi(g) ≤ R2 + (3/4)R3 (4)

Combining equations 3 and 4 we get that R2 + (3/4)R3 ≥ (9/10)k. Using the fact that R2 + R3 ≤ k,
this implies that R3 ≤ (4/10)k, in other words there cannot be too many terms of length 3 or more in g.
Now we can bound the influence of variables x1 through xt in g:

k+2∑
i

Infi(g) ≤
k+2∑

i

[Infi(g2) + Infi(g≥3)]

≤
k+2∑

i

Infi(g2) +
n∑
i

Infi(g≥3)

≤ 1
2
(k + 2) +

3
4
·R3

≤ 1
2
(k + 2) +

3
4
· 4
10

· k

< 0.9(k + 2)

By the pigeonhole principle, there must exist a variable xi with influence at most 0.9 in g.
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