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Abstract

We develop a new technique for proving lower bounds in property testing, by showing a strong
connection between testing and communication complexity. We give a simple scheme for reducing com-
munication problems to testing problems, thus allowing us to use known lower bounds in communication
complexity to prove lower bounds in testing. This scheme is general and implies a number of new testing
bounds, as well as simpler proofs of several known bounds.

For the problem of testing whether a boolean function is k-linear (a parity function on k variables), we
achieve a lower bound of Ω(k) queries, even for adaptive algorithms with two-sided error, thus confirming
a conjecture of Goldreich (2010b). The same argument behind this lower bound also implies a new proof
of known lower bounds for testing related classes such as k-juntas. For some classes, such as the class
of monotone functions and the class of s-sparse GF(2) polynomials, we significantly strengthen the best
known bounds.

1 Introduction

The field of property testing seeks to formalize the question: what can we determine about a large object,
with limited access to the object itself? In general the large object may be anything—for instance a graph
on n nodes, or a function on n variables. In a typical property testing setup, a tester who has unbounded
computational power is given query access to the large object. The tester’s goal is to accept the object if it
has some property P, and reject it if it is “far” from having property P.

In this paper we will primarily concern ourselves with the case when the large object is a boolean function
f on n bits. In this case, the tester’s goal is to accept f with probability at least 2/3 if f has property P,
and reject with probability at least 2/3 if f must be modified on an ε fraction of the 2n possible inputs in
order to have property P. The query complexity (i.e. the number of times the testing algorithm must query
f) should hopefully be a small function of ε and n.

The notion of testing boolean functions in this framework goes back to the seminal work of Rubinfeld
and Sudan (1996) and has several connections to complexity theory (in particular PCPs and hardness of
approximation), as well as computational learning theory (Ron, 2008). Over the last two decades, researchers
have exerted a considerable amount of effort to determine the query complexity for testing properties of a
function f , such as whether f is a linear function (Blum et al., 1993), whether f is isomorphic to a given
function (Blais and O’Donnell, 2010; Chakraborty et al., 2011a; Alon and Blais, 2010), whether f is a k-junta
(Fischer et al., 2004; Blais, 2008, 2009), a monotone function (Goldreich et al., 2000; Fischer et al., 2002),
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a dictator (Parnas et al., 2002), a halfspace (Matulef et al., 2009), an s-sparse polynomial, a size-s decision
tree, etc. (Diakonikolas et al., 2007). Starting with the ground-breaking work of Goldreich et al. (1998),
there has also been much effort directed at determining the query complexity for testing properties of graphs
and, more generally, of combinatorial objects. (See, e.g., Ron 2009; Goldreich 2010a.)

Over the course of this effort, a variety of techniques have been developed for designing property testing
algorithms, thus proving testing upper bounds. However, as is often the case in theoretical computer science,
lower bounds are harder to come by. Although several lower bounds for specific problems are known, few
general techniques are known beyond the use of Yao’s minimax lemma.

Communication complexity is an area which has collected many effective techniques for proving lower
bounds in other areas of computer science. In a typical setup, two parties, Alice and Bob, each have an input
and they would like to decide something about their joint input. Their computational power is unbounded,
but they would like to compute the answer with as little communication as possible.

The communication complexity framework has been extensively studied; in particular, several problems
are known to require a large amount of communication. These include set-disjointness, index, inner-
product, and gap-hamming-distance. The hardness of these and related problems has been used to
obtain lower bounds in many areas such as streaming algorithms, circuit complexity, data structures, and
proof complexity (Kushilevitz and Nisan 1997; Indyk and Woodruff 2003; Miltersen et al. 1995).

Property testing and communication complexity have striking similarities. Both involve parties with
unbounded computational power (in one case, the tester, and in the other case, the communicating players),
and both involve algorithms which are restricted by the parties’ limited access to their input. Despite these
similarities, no previous connection between these fields has been made.

In this work we show that there is indeed a strong connection between testing and communication
complexity. More specifically, we show how to reduce certain communication problems to property testing
problems. This reduction method represents a new approach to proving testing lower bounds. This approach
turns out to be quite fruitful, both for proving new bounds and for giving simpler proofs of known bounds
in property testing.

1.1 Our Results

Testing k-linear functions. The function f : {0, 1}n → {0, 1} is linear, i.e. a parity function, when there
exists a set S = {i1, . . . , is} ⊆ [n] such that for every x ∈ {0, 1}n, f(x) = xi1 ⊕ · · · ⊕ xis . When |S| = k, we
say that f is a k-linear function. The problem of testing k-linear functions was first studied by Fischer et al.
(2004). The best lower bound is due to Goldreich (2010b), who showed that Ω(

√
k) queries are required

to test k-linear functions. He also showed that non-adaptive testers require Ω(k) queries to test the same
property, and conjectured that this stronger lower bound holds for all testers (adaptive or not).1

We confirm Goldreich’s conjecture. Using the same construction, we also obtain lower bounds on the
query complexity for testing juntas,2 testing functions of low Fourier degree, and testing sparse polynomials.

Theorem 1.1. Fix 1 < k < n− 1. At least Ω(min{k, n− k}) queries are required to test

(i) k-linear functions,

(ii) k-juntas,

(iii) functions of Fourier degree at most k, and

(iv) functions with k-sparse polynomial representation in GF(2).

Remark. In parallel work, Blais and Kane (2012) simultaneously obtained a different proof of Goldreich’s
conjecture using Fourier-analytic methods.

1The conjecture and results of Goldreich (2010b) are stated in terms of testing ≤k-linear functions (the class of functions
that are parities on at most k bits) but the proofs of Goldreich (2010b) give identical lower bounds for testing k-linearity.
Similarly, the technique in our lower bounds for testing k-linearity gives identical bounds for testing ≤k-linearity.

2Informally, a function is a k-junta if it has at most k relevant variables. For a complete definition of the properties stated
in Theorem 1.1, see Section 3. Similarly, the properties introduced in the rest of the introduction are defined formally in the
sections containing the proofs of the corresponding theorems.
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Class of functions Our bound Previous lower bounds Upper bounds

k-linear Ω(k)
Ω(
√
k) a O(k log k) b

Ω(k) (n.a.) a O(n) c

k-juntas Ω(k) Ω(k) d O(k log k) e

Fourier degree ≤ d Ω(d) Ω(d) b 2O(d) b,f

s-sparse GF(2)-polynomials Ω(s) Ω(
√
s) g Õ(s) g

monotone f : {0, 1}n → R Ω(min{n, |R|2})
Ω(logn) (n.a.) h

O(n log |R|) j

Ω(n) (n.a., 1-s.) i

submodular f : {0, 1}n → R Ω(n)
Ω(logn) (n.a.) h,k

2O(
√
n log n) k

Ω(n) (n.a., 1-s.) i,k

size-s branching programs,
Ω(log s) sΩ(1) g Õ(s) g

size-s boolean formulas

s-term DNF formulas Ω(log s) Ω(log s) g Õ(s) g

size-s decision trees Ω(s) (1-s.) Ω(log s) g Õ(s) g

signed k-majority
Ω(k/ log k) (1-s.) Ω(k1/12)(n.a.) l,m O(

√
n) m

for k ≤ γn, γ ∈ (0, 1) for k ≤ 3
4
n for k = n

Table 1: Summary of our results. Bold font indicates an improvement over the previous bounds.
Bounds labeled with (n.a.) apply only to non-adaptive testers; bounds marked with (1-s.) only
apply to testers with one-sided error. All other bounds apply to adaptive testers with two-sided
error.

a Goldreich (2010b).
b Chakraborty, Soriano, and Matsliah (2011a).
c Folklore.
d Chockler and Gutfreund (2004).
e Blais (2009).
f Diakonikolas, Lee, Matulef, Onak, Rubinfeld, Servedio, and Wan (2007).
g Chakraborty, Soriano, and Matsliah (2011b).
h Fischer, Lehman, Newman, Raskhodnikova, Rubinfeld, and Samorodnitsky (2002).
i Briët, Chakraborty, Soriano, and Matsliah (2010).
j Dodis, Goldreich, Lehman, Raskhodnikova, Ron, and Samorodnitsky (1999).
k Seshadhri and Vondrák (2011).
l Blais and O’Donnell (2010). The lower bound stated in the table is not found explicitly in (Blais

and O’Donnell, 2010), but it can be obtained using the arguments from that paper. See Section 6
for more details.

m Matulef, O’Donnell, Rubinfeld, and Servedio (2009).
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Theorem 1.1 has implications for the problem of isomorphism testing, or testing whether an unknown
function f is equivalent, up to permutation of variables, to a fixed function g : {0, 1}n → {0, 1}. Alon and
Blais (2010) showed that for most functions g, testing g-isomorphism non-adaptively requires Ω(n) queries.
Similarly, Chakraborty et al. (2011a) showed that for every k ≤ n, there exists a k-junta g such that testing
g-isomorphism requires Ω(k) queries. Both of these results are non-constructive, and they raise the question
of whether we can identify an explicit function for which the same lower bounds apply. Theorem 1.1 shows
that for every k ≤ n

2 , the lower bound applies to the function g : x 7→ x1⊕· · ·⊕xk since testing isomorphism
to this function is equivalent to testing k-linearity.

Testing and OBDDs. Fix some finite sets X and Y . An ordered binary decision diagram (OBDD) is
a directed acyclic graph with a single root and at most n + 1 levels of nodes. The sink nodes in the last
level are each associated with some element from Y . All other levels are associated with an index from
{1, . . . , n}. The nodes in these levels have out-degree |X|, with one edge associated with each element of X.
For x = (x1, . . . , xn) ∈ Xn, define f(x) to be the value of the sink node that we reach when we start at the
source, then at each level we follow the edge associated with xi, where i is the index associated with the
current level. The resulting function f : Xn → Y is the function computed by the OBDD. The width of an
OBDD is the maximum number of nodes at any level.

Ron and Tsur (2009) first studied the problems of determining the query complexity for testing whether
a function is computable by small-width OBDDs. Goldreich (2010b) continued this line of research and
also asked whether we can establish stronger lower bounds for the query complexity of testing properties
that include a subset of the functions computable by small-width OBDDs. In particular, he showed that
there is a property consisting of functions computable by width-2 OBDDs that requires Θ(n) queries to test.
Theorem 1.1 gives a different proof of the same result, since n

2 -linear functions are computable by width-2
OBDDs.

Goldreich (2010b) conjectured in that an identical lower bound also held for testing an explicit subclass of
functions computable by width-3 OBDDs and for testing functions computable by width-4 OBDDs. Recently,
he observed (private communication) that the method of the proof of Theorem 1.1 can also be used to prove
these conjectures:

Theorem 1.2. Testing the class of linear functions from GF(3)n to GF(3) that have only 0-1 coefficients
requires Θ(n) queries.

Note that this class of functions can be trivially computed by a width-3 OBDD by maintaining a partial
sum of the inputs.

Theorem 1.3. Testing the class of functions that are computable by width-4 OBDDs requires Θ(n) queries.

Remark. Theorem 1.3 was proved independently by Brody et al. (2011).

Testing monotonicity. Fix R ⊆ R. The function f : {0, 1}n → R is monotone if for any two inputs
x, y ∈ {0, 1}n where x1 ≤ y1, . . . , xn ≤ yn, we have that f(x) ≤ f(y). The problem of testing monotonicity
was first studied by Goldreich et al. (2000), who introduced a natural tester: sample random edges from
the hypercube and verify that the function is monotone on those edges. This algorithm makes O(n log |R|)
queries (Dodis et al., 1999). An important open problem in property testing is to determine whether there
exist more efficient monotonicity testers.

Despite much attention to monotonicity testing (Batu et al., 1999; Ergun et al., 2000; Goldreich et al.,
2000; Dodis et al., 1999; Fischer et al., 2002; Bhattacharyya et al., 2009; Briët et al., 2010), lower bounds
for the query complexity of this problem have been elusive. Previously, the best bound for non-adaptive
testers, due to Fischer et al. (2002), was only Ω(log n). This translates to a Ω(log log n) lower bound for
general (adaptive) testers.3 We provide a significant improvement to this lower bound for functions with
large ranges:

3Stronger bounds have been established for testers with one-sided error. See (Fischer et al., 2002; Briët et al., 2010) for
details.
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Theorem 1.4. Testing f : {0, 1}n → R for monotonicity requires Ω(min{n, |R|2}) queries.

Notably, Theorem 1.4 gives the first progress on the natural-monotonicity-tester problem mentioned
above: it shows that for

√
n ≤ |R| ≤ poly(n), no monotonicity tester can improve on the query complexity

of the natural tester by more than a logarithmic factor. We note, however, that this problem is still open in
the important special case when R = {0, 1}.

By a recent result of Seshadhri and Vondrák (2011), Theorem 1.4 also gives a new lower bound for the
query complexity of testing submodularity.

Corollary 1.5. Testing f : {0, 1}n → R for submodularity requires Ω(n) queries.

Testing concise representations. Parnas, Ron, and Samorodnitsky (2002) showed that testing whether
a function can be represented by a monotone DNF with at most s terms can be done with a number of
queries that depends only on s. This result was generalized by Diakonikolas et al. (2007), who introduced
the method of testing by implicit learning and showed that this method can be used to test whether a function
can be represented by a DNF with few terms, by a small decision tree, by a small branching program, etc.
Our technique gives lower bounds on the query complexity for testing two of these properties.

Theorem 1.6. At least Ω(min{s, n− s}) queries are required to test

(i) size-2s decision trees, and

(ii) size-s branching programs.

Testing juntas. The proof of Theorem 1.6 can also be extended to answer a question of Fischer et al.
(2004): they asked if the query complexity of testing k-juntas can be reduced if the tester is only required to
reject functions that are far from (k+ t−2)-juntas for some t > 0. We show that the answer to this question
is “no” for any t ≤ O(

√
k).

Theorem 1.7. Fix k ≤ n
2 and t > 0. Any algorithm that accepts k-juntas and rejects functions 1

4 -far from

(k + t− 2)-juntas with high probability must make Ω
(

min{(kt )2, k}
)

queries.

Remark. Subsequently, the result of Theorem 1.7 was essentially strengthened by Ron and Tsur (2011),
who showed that for any constants ε and γ, a nearly linear lower bound of Ω(k/ log k) queries holds even if
we are only required to accept k-juntas and reject functions that are ε-far from (1 + γ)k-juntas.

Testers with one-sided error. The technique we introduce for proving new lower bounds can also be
used to prove lower bounds for testers with one-sided error (that is, testers which accept functions with
probability 1 if they have property P, and reject them with probability at least 2/3 if they are far from
having property P). As a first application, we get a much stronger lower bound for the query complexity of
testing decision trees with one-sided error.

Theorem 1.8. At least Ω(s) queries are required to test size-s decision trees with one-sided error.

We also obtain a lower bound on the query complexity of one-sided testers for a subclass of halfspaces,
the class of “signed” majority functions on k variables.

Theorem 1.9. Fix any constant γ ∈ (0, 1). For k ≤ γn, at least Ω(k/ log k) queries are required to test
signed k-majorities with one-sided error.
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1.2 Techniques

The main idea behind all of our lower bounds is to show that the query complexity for testing a property P
is bounded below by the randomized communication complexity of some well-studied communication game
G. To do so, we introduce a P-testing game. The definition of this game varies according to the situation,
but typically looks like this: Alice receives a boolean function f , Bob receives a boolean function g, and they
must test whether the joint function h = f⊕g has the property P. We can then relate the number of queries
required to test whether h has this property to the number of bits Alice and Bob need to communicate.
Finally, we show that the P-testing game requires large communication by using it to solve G.

This technique is best illustrated by example. In fact, we can give a very simple sketch of the proof of
Theorem 1.1 (i), by showing how to reduce a version of the well-known set-disjointness problem to testing
k-linearity. Suppose Alice and Bob each have sets of size k from a universe of size n. Suppose further that
their sets are guaranteed to either intersect in exactly one place, or not at all, and they want to decide which
is the case. We let k-disj denote this particular setting for set-disjointness. It is well-known that the
communication complexity of k-disj is Ω(k) (Kalyanasundaram and Schnitger, 1992; H̊astad and Wigderson,
2007).

One way Alice and Bob can solve k-disj is by forming linear functions based on their two sets. For a
set S ⊆ [n], define ParityS to be the linear function on the bits indexed from S; i.e., ParityS(x) :=

⊕
i∈S xi.

Given input sets A and B, Alice forms the function f = ParityA and Bob forms the function g = ParityB .
The joint function h = f ⊕ g is 2k-linear if the sets do not intersect, and (2k−2)-linear if they do. Note that
every 2k-linear function is 1

2 -far from being (2k − 2)-linear (see Fact 3.4). Therefore, they can determine
if their sets intersect by emulating a testing algorithm for (2k − 2)-linearity on h. The testing algorithm
requires oracle access to h, which neither Alice nor Bob have. However, they do know f and g, so Alice and
Bob can simulate oracle access to h by exchanging f(x) and g(x), at a cost of two bits of communication
per query. The total number of bits communicated is then twice the number of queries of the tester. Since
we can lower bound the number of bits communicated by Ω(k), this implies that testing (2k − 2)-linearity
also requires Ω(k) queries. By scaling k, we achieve the first part of Theorem 1.1.

To summarize, our lower bound for testing k-linearity follows from three inequalities. Letting Ck-linear⊕
denote the communication game where Alice and Bob get f and g as input and wish to determine if f ⊕ g is
k-linear or far from k-linear, and using Q(P) to denote the query complexity of testing for P and R(G) to
denote the randomized communication complexity of a communication game G, we achieve a lower bound
on testing k-linearity via the following chain of inequalities:

2Q(k-linear) ≥ R(Ck-linear⊕ ) ≥ R(k-disj) = Ω(k) . (1)

All of the testing lower bounds in this paper follow the above structure. A crucial aspect of this proof
technique is that emulating the property testing algorithm must be done in a communication efficient manner.
In the example above, the joint function h was just the xor of Alice’s and Bob’s functions, so simulating each
query required only two bits of communication. For other lower bounds, we require more complicated ways
to build a joint functions. However, as long as each query h(x) can be simulated with low communication,
a similar lower bound will hold. We formalize this statement in Lemma 2.4.

Note that in most situations, it is possible to use problems such as k-disj whose communication com-
plexity is well understood, and therefore we get the equality in (1) essentially for free. The reduction in the
first inequality is captured by Lemma 2.4, so for most proofs, the bulk of the actual work is in proving a
so-called “distance lemma”—that yes instances for the communication problem map to instances where the
combined function has property P, and that no instances will map to functions that are far from having P.
In most cases, as in Fact 3.4, these are simple to prove.

1.3 Organization

In Section 2, we introduce the communication complexity and property testing definitions, the Main Re-
duction Lemma (Lemma 2.4), and the communication complexity lower bounds that we use in the later
sections.
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The proofs of Theorems 1.1–1.3, as well as the formal definitions of the properties defined in those the-
orems, are presented in Section 3. The lower bound in Theorem 1.4 for testing monotonicity and the lower
bound in Corollary 1.5 for testing submodularity are presented in Section 4. We complete the proof of Theo-
rem 1.6 regarding the query complexity for testing functions computable by small decision trees or by small
branching programs in Section 5. In the same section, we also complete the proof of Theorem 1.7. Finally,
we present the lower bounds on the query complexity of one-sided testers for decision trees (Theorem 1.8)
and for signed k-majority functions (Theorem 1.9) in Section 6.

2 From Communication Complexity to Property Testing

2.1 Property Testing Definitions

Recall that for a fixed range R ⊆ R, a property of the functions {0, 1}n → R is a subset of those functions. The
distance between two functions f, g : {0, 1}n → R is the fraction of inputs x ∈ {0, 1}n for which f(x) 6= g(x).
The distance between f and a property P is the minimum distance between f and any function g in P.
When the distance from f to P is at least ε, we say that f is ε-far from P.

Definition 2.1 (Tester). An (ε, q)-tester for the property P of functions {0, 1}n → R is a randomized
algorithm that queries a function f : {0, 1}n → R on at most q inputs from {0, 1}n and

1. Accepts with probability at least 2
3 when f is in P; and

2. Rejects with probability at least 2
3 when f is ε-far from P.

A tester is said to be non-adaptive if it selects its q queries before observing the value of f on any of
those queries; otherwise it is adaptive. A tester that always accepts functions in P has one-sided error ; a
tester that accepts functions in P with probability p for some 2

3 ≤ p < 1 has two-sided error.
For any 0 < ε < 1, the query complexity of the property P at distance ε, denoted Qε(P), is the minimum

value of q for which P has an (ε, q)-tester. Similarly, Q1
ε(P) and Qna

ε (P) denote the minimum number of
queries required to ε-test P with one-sided error and non-adaptive testers, respectively. Throughout this
work, we will assume that ε is a small fixed constant—say, ε = 0.01 for concreteness—and for simplicity we
state all query complexity bounds only in terms of the other parameters and will omit ε from the notation.

2.2 Communication Complexity Definitions

In this subsection, we review the basic communication complexity setup and highlight some of the terms and
concepts particularly relevant to this article. For more details, we refer the interested reader to the standard
textbook by Kushilevitz and Nisan (1997).

In a typical communication game, there are two parties—Alice, who receives an input x, and Bob, who
receives some input y. Alice and Bob wish to jointly compute some function f(x, y) of their inputs. Neither
player sees all the information needed to compute f , so they must communicate together to solve the problem.
Communication complexity is the study of how much communication is necessary to compute f , for various
functions f .

A protocol is a distributed algorithm that Alice and Bob use to compute f(x, y); in particular, it specifies
what messages Alice and Bob send to each other. In a deterministic protocol, Alice’s messages are a function
only of her input x and the previous communication in the protocol. Similarly, Bob’s messages are a function
of y and the previous communication. The cost of a protocol is the maximum (over all inputs) number of bits
sent by Alice and Bob. The deterministic communication complexity of f , denoted D(f), is the minimum
cost of a deterministic protocol computing f .

In a randomized protocol, Alice and Bob have shared access to a (public coin) random string r ∈ {0, 1}∗.
We say that P is a δ-error protocol for f if for any input pair x, y, P computes f(x, y) with probability at
least 1− δ, where the probability is taken over the random string r. We use Rδ(f) to denote the minimum
cost of a δ-error protocol for f and define R(f) := R1/3(f). When f is a binary function, we say that a
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protocol computes f with one-sided error if there exists z ∈ {0, 1} such that P computes f with certainty
whenever f(x, y) 6= z, and with probability at least 1 − δ when f(x, y) = z. When considering randomized
protocols with one-sided error, it is important to note which “side” the error guarantee is on. We use Rzδ(f)
to denote the minimum cost of a randomized protocol for f that correctly computes f whenever f(x, y) 6= z
and computes f with probability at least 1− δ whenever f(x, y) = z. We define Rz(f) := Rz1/3(f).

A protocol is one-way if the communication consists of a single message from Alice to Bob, who then
outputs an answer. We use R→δ (f) to denote the minimum communication cost of a randomized, δ-error,
one-way protocol for f . Finally, we use R→,zδ (f) to denote the minimum communication cost of randomized
one-way protocols for f with with one-sided error δ, and we define R→,z(f) := R→,z1/3 (f).

2.3 The Main Reduction

Below we define a class of property testing communication games and show how communication lower bounds
for these games yield query complexity lower bounds for property testers. Our communication games are
based on what we call combining operators.

Definition 2.2 (Combining operator). A combining operator is an operator ψ that takes as input two
functions f, g : {0, 1}n → Z and returns a function h : {0, 1}n → R.

We refer to the inputs f and g as the base functions of ψ. By convention, we use h to refer to the output
of ψ. Given a combining operator ψ and a property P, we define CPψ to be the following property testing
communication game. Alice receives f . Bob receives a function g. They need to compute

CPψ (f, g) :=

{
1 if ψ(f, g) ∈ P
0 if ψ(f, g) is ε-far from P.

We prove all of our testing lower bounds by reducing from an associated communication game CPψ .

As mentioned in Section 1.2, this reduction is simple—Alice and Bob solve CPψ by emulating a P-testing
algorithm on h := ψ(f, g). Note that neither Alice nor Bob have enough information to evaluate a query
h(x), because h depends on both f and g. Instead, they must communicate to jointly compute h(x). For
this reduction to give a strong query complexity lower bound for the property testing problem, it is essential
that the joint computation of h(x) occurs in a communication-efficient manner.

The following definition gives a sufficient condition on combining operators that yield strong reductions
to testing problems.

Definition 2.3 (Simple combining operator). A combining operator ψ is simple if for all f, g, and for all x,
the query h(x) can be computed given only x and the queries f(x) and g(x).

For example, when the base functions are boolean, the combining operator defined by ψ(f, g) := f ⊕ g is
clearly simple—each h(x) = f(x)⊕ g(x) can trivially be computed from f(x) and g(x). On the other hand,
the combining operator ψ that returns the function defined by h(x) :=

⊕
y∈T [f(y) · g(y)] is not simple when

T is a large set of strings (say a Hamming ball centered at x), since computing h(x) requires knowledge of
f(y) and g(y) for several y.

All of the property testing communication games we use in this paper are based on simple combining
operators and give us a tight connection between property testing and communication complexity via the
following lemma.

Lemma 2.4 (Main Reduction Lemma). Fix Z to be a finite set. For any simple combining operator ψ with
base functions f, g : {0, 1}n → Z and any property P, we have

(i) R(CPψ ) ≤ 2Q(P) · dlog |Z|e,

(ii) R0(CPψ ) ≤ 2Q1(P) · dlog |Z|e,

(iii) R→(CPψ ) ≤ Qna(P) · dlog |Z|e, and
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(iv) R→,0(CPψ ) ≤ Qna,1(P) · dlog |Z|e.

Proof. We begin by proving (iii). Let A be a q-query non-adaptive tester for P. We create a one-way protocol
P for CPψ in the following manner. Alice and Bob use public randomness to generate queries x(1), . . . , x(q).

Then, Alice computes f(x(1)), . . . , f(x(q)) and sends them to Bob in a single (q · dlog |Z|e)-bit message. For
each i, Bob computes g(x(i)) and combines it with f(x(i)) to compute h(x(i)). Finally, Bob emulates A using
the responses h(x(1)), . . . , h(x(q)) and outputs 1 if and only if A accepts h.

If A has two-sided error, then by the correctness of A, P computes CPψ with probability at least 2/3.

Hence, R→(CPψ ) ≤ q · dlog |Z|e. In particular, if A is an optimal non-adaptive tester with two-sided error,
then q = Qna(P), and part (iii) of the lemma is proved.

If A has one-sided error, then whenever h ∈ P, the protocol P correctly outputs 1, and when h is ε-far
from P, the protocol correctly outputs 0 with probability at least 2/3. Therefore, R→,0(CPψ ) ≤ q · dlog |Z|e.
In particular, when A is an optimal non-adaptive tester with one-sided error, R→,0(CPψ ) ≤ Q1(P) · dlog |Z|e.

Now, suppose A is a q-query adaptive tester for P. Again, Alice and Bob use public randomness to
generate queries x(1), . . . , x(q). However, since A is adaptive, the distribution of the ith query x(i) depends
on h(x(j)) for all j < i. Instead of generating all queries in advance, Alice and Bob generate queries one at
a time. Each time a query x(i) is generated, Alice and Bob exchange f(x(i)) and g(x(i)). Since ψ is a simple
combining operator, this is enough information for Alice and Bob to individually compute h(x(i)), which in
turn gives them enough information to generate the next query with the appropriate distribution. When
h(x(1)), . . . , h(x(q)) have all been computed, Bob outputs 1 if and only if A accepts h. This protocol costs
2q · dlog |Z|e bits of communication, and if A is an optimal adaptive tester, then R(CPψ ) ≤ 2Q(P) · dlog |Z|e.
Similarly, if A is an optimal adaptive tester with one-sided error, then R0(CPψ ) ≤ 2Q1(P) · dlog |Z|e.

2.4 Communication Complexity Problems

We achieve all of our testing lower bounds via Lemma 2.4. To prove lower bounds for CPψ , we reduce from
one of several standard communication complexity problems. However, we often require special flavors of
these problems—either we need protocols with one-sided error, or we require the input to be restricted in
some balanced way. We describe the variants that we will need for our reductions in this section.

Let n ∈ N, t := t(n), and x, y ∈ {0, 1}n. We use ◦ to denote string concatenation and 0k (1k) to denote
the string of k consecutive zeros (ones). Let x⊕y denote the bitwise exclusive-or of x and y. We use 1−x to
denote the bitwise complement of x. The Hamming weight of a string x, denoted |x|, is the number of i such
that xi = 1. The Hamming distance between strings x and y, denoted ∆(x, y), is the number of coordinates
i such that xi 6= yi. Note that ∆(x, y) = |x⊕ y|.

We are interested in the following functions:

Set-Disjointness. Alice and Bob are given n-bit strings x and y respectively and wish to compute

disjn(x, y) :=

n∨
i=1

xi ∧ yi .

Equivalently, Alice and Bob’s inputs can be viewed as sets A,B ⊆ [n]. In this case, disj(A,B) = 1 if and
only if their sets intersect.

When n is clear from context, we drop the subscript. A celebrated result of Kalyanasundaram and
Schnitger (1992), later simplified by Razborov (1990) and Bar-Yossef et al. (2002), showed that R(disjn) =
Ω(n), even under the promise that A and B intersect in at most one element.

Theorem 2.5 (Kalyanasundaram and Schnitger 1992).

R(disjn) = Ω(n).

We use a balanced version of disjointness called k-bal-disj. In this version, Alice receives a set A ⊆ [n]
of size |A| = bk/2c+ 1, Bob receives a set B ⊆ [n] of size dk/2e+ 1, and there is a promise that |A∩B| ≤ 1.
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Lemma 2.6. For all 0 ≤ k ≤ n− 2, we have R(k-bal-disj) = Ω (min{k, n− k}).

Proof. If n − k = O(1), there is nothing to prove. Otherwise, let m := min{bk/2c + 1, n − k − 2}. We
reduce from disjm. Partition the elements of [n] \ [m] into sets I := {m + 1, . . . ,m + 1 + bk/2c} and
J := {m+ 2 + bk/2c, . . . , n}. Note that |I| = bk/2c+ 1. Furthermore, we have |J | ≥ dk/2e+ 1, since

|J | = n− (m+ 2 + bk/2c) + 1

= n− 1−m− bk/2c
= n− 1−m+ dk/2e − k
= dk/2e+ 1 + n− 2−m− k
≥ dk/2e+ 1 ,

where the penultimate equality holds because k = bk/2c + dk/2e, and the inequality comes from the fact
that m ≤ n− k − 2.

Let A′ and B′ be the sets received by Alice and Bob respectively as inputs to disjm. Alice pads her input
with elements from I until she gets a set of size bk/2c+ 1. Bob similarly pads his input with elements from
J . Let a := bk/2c+ 1− |A′| and b := dk/2e+ 1− |B′|. Specifically, Alice sets A = A′ ∪ {m+ 1, . . . ,m+ a}
and Bob sets B = B′ ∪ {n, n− 1, . . . , n− b+ 1}.

Note that |A| = bk/2c+1, |B| = dk/2e+1, and A∩B = A′∩B′. Therefore, a solution to k-bal-disj(A,B)
gives a solution to disjm(A′, B′), hence

R(k-bal-disj) ≥ R(disjm) = Ω(m) = Ω(min{k, n− k}) .

Gap-Equality. Alice and Bob are given n-bit strings x and y respectively and wish to compute

geqn,t(x, y) :=


1 if x = y ,

0 if ∆(x, y) = t ,

∗ otherwise.

We drop the subscripts when n is clear from context and t = n/8. When geq(x, y) = ∗, we allow the protocol
to output 0 or 1. We are interested in Rz(geq); recall that Rz(geq) is the minimum communication cost
of a protocol for geq that only makes mistakes when geq(x, y) = z. The standard public-coin equality
protocol gives R0(geq) = O(1). For protocols that only err when geq(x, y) = 1, the complexity is drastically
different.

Buhrman et al. (1998) proved an Ω(n) lower bound on the deterministic communication complexity of
geqn,n/2; their result extends to other gap sizes and to randomized protocols with one-sided error.

Lemma 2.7 (Buhrman et al. 1998). For all even t = Θ(n), we have R1(geqn,t) = Ω(n).4

Gap-Hamming-Distance. Alice and Bob are given n-bit strings x and y respectively and wish to compute

ghdn,t(x, y) :=


1 if ∆(x, y) ≥ n/2 + t ,

0 if ∆(x, y) ≤ n/2− t ,
∗ otherwise.

As in the definition of set-disjointness, it will occasionally be useful to view inputs to ghd as sets
A,B ⊆ [n] and to express ghd in terms of the size of the symmetric difference |A∆B| rather than Hamming
distance ∆(x, y). The standard gap size for ghd is t =

√
n. In this case, we drop the subscripts and use just

ghd. A tight lower bound of R(ghd) = Ω(n) is known, due to Chakrabarti and Regev (2011).

4Curiously, the parity of t turns out to be necessary. Since ∆(x, y) = |x|+ |y| − 2|x∧ y|, Alice and Bob can deterministically
distinguish x = y from ∆(x, y) being odd with a single bit of communication—Alice sends Bob the parity of |x|, and Bob
computes the parity of |x|+ |y|. This does not affect our property testing lower bounds.
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Theorem 2.8 (Chakrabarti and Regev 2011). R(ghd) = Ω(n).

For larger gap sizes, a padding argument5 implicit in Brody et al. (2010), together with the aforementioned
Ω(n) bound for ghd, shows that R(ghdn,t) = Ω((n/t)2) for all t = Ω(

√
n).

When we require one-sided error, the situation changes.

Lemma 2.9. For all z ∈ {0, 1} and all constant 0 < δ < 1/2, Rz(ghdn,δn) = Ω(n).

Proof. First, we prove a lower bound for R0(ghdn,δn). Let d be the least integer greater than or equal
to δn, and let m := n/2 + d. We reduce from geqm,2d. Specifically, let P be a protocol for ghdn,δn
that only makes errors when ghdn,δn(x, y) = 0. We use it to construct a protocol Q for geqm,2d that
makes mistakes only when x = y. Given inputs x, y ∈ {0, 1}m, Alice constructs x̂ := x ◦ 0n−m, and
Bob builds ŷ := y ◦ 1n−m. Then, they run protocol P and output Q(x, y) := 1 − P (x̂, ŷ). Note that
if x = y, then ∆(x̂, ŷ) = n/2− d ≤ n/2− δn, hence ghd(x̂, ŷ) = 0. Similarly, when ∆(x, y) = 2d, we
have ∆(x̂, ŷ) = n/2 + d ≥ n/2 + δn, and ghd(x̂, ŷ) = 1. In either case, the new protocol correctly out-
puts geqm,2d(x, y) whenever P correctly computes ghdn,δn(x̂, ŷ). Since P only makes mistakes when
ghdn,δn(x̂, ŷ) = 0, it follows that Q only makes mistakes when geqm,2d(x, y) = 1. Therefore, R0(ghdn,δn) ≥
R1(geqm,2d) = Ω(m) = Ω(n).

Next, we prove a lower bound for R1(ghdn,δn). Observe that ghdn,δn(x, y) = 1 − ghdn,δn(x, 1 − y).
Therefore, Alice and Bob can build a protocol for ghdn,δn which errs only when ghdn,δn(x, y) = 0 from one
which errs only when ghdn,δn(x, y) = 1 by computing ghdn,δn(x, 1− y) and inverting the output. It follows
that R1(ghdn,δn) ≥ R0(ghdn,δn) = Ω(n).

In this way, we get a lower bound for Rz(ghdn,δn) by embedding an instance of geq into either side of
the ghd problem.

We also consider an extended version of ghd. In eghdn,k,t, Alice and Bob’s inputs x, y are n-bit strings,
with the promise that |x| = |y| = k, and they wish to distinguish ∆(x, y) ≥ k + t from ∆(x, y) ≤ k − t.
Lemma 2.10. For all k, t ≤ n/2, we have

R(eghdn,k,t) = Ω(min{(k/t)2, k}) .

In particular, we show that ghdn,t remains hard even under the promise that |x| = |y| = n/2.

Proof. First, we prove the lemma for the case k = n/2 by reduction from ghdn/2,t/2. Let P be a protocol

for eghdn,n/2,t. Given inputs x̂, ŷ ∈ {0, 1}n/2 to ghdn/2,t/2, Alice and Bob create n-bit strings x, y by
mapping each bit 0 → 01 and each bit 1 → 10.6 Then, they run protocol P on input (x, y) and output the
result. Note that |x| = |y| = n/2. Furthermore, ∆(x, y) = 2∆(x̂, ŷ). Therefore, if ∆(x̂, ŷ) ≥ n/4 + t/2 then
∆(x, y) ≥ n/2 + t, and similarly if ∆(x̂, ŷ) ≤ n/4 − t/2 then ∆(x, y) ≤ n/2 − t. It follows that a correct
answer for eghdn.n/2,t gives a correct answer to ghdn/2,t/2, hence

R(eghdn,n/2,t) ≥ R(ghdn/2,t/2)

= Ω
(
min

{
(n/t)2, n

})
= Ω

(
min

{
(k/t)2, k

})
.

Proving the general case follows from a simple padding argument. Specifically, we reduce eghd2k,k,t to
eghdn,k,t. Given 2k-bit strings x̂ and ŷ, Alice and Bob construct n-bit strings x and y by setting x := x̂◦0n−2k
and y := ŷ ◦ 0n−2k. It is easy to see that |x| = |y| = k and that ∆(x, y) = ∆(x̂, ŷ). Therefore, an answer to
eghdn,k,t(x, y) gives an answer to eghd2k,k,t(x̂, ŷ), hence

R(eghdn,k,t) ≥ R(eghd2k,k,t) = Ω
(
min{(k/t)2, k}

)
.

5This padding argument reduces ghdn,
√
n to ghdn,t for any

√
n < t ≤ O(n). Choose n̂ such that n = (n̂/t(n̂))2, and let

m := n̂/n. Then, given inputs x, y ∈ {0, 1}n, Alice and Bob can compute ghdn,
√

n by repeating each string m times. The

resulting strings x̂ and ŷ have length n̂, and ghdn̂,t(n̂)(x̂, ŷ) = ghdn,
√
n(x, y), hence a protocol for the former can be used to

solve the latter. It follows that R(ghdn̂,t(n̂)) ≥ R(ghdn,
√
n) = Ω(n) = Ω((n̂/t(n̂))2).

6Formally, Alice creates an n-bit string x by setting x2i−1 := x̂i and x2i := 1− x̂i for all 1 ≤ i ≤ n/2. Similarly, Bob defines
y by setting y2i−1 := ŷi and y2i := 1− ŷi.
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3 Testing k-Linearity and Related Properties

In this section we prove Theorem 1.1. Recall that a k-linear function is a function of the form f(x) =
∑
i∈S xi

(mod 2) for some set S ⊆ [n] of size |S| = k. We use k-linear to denote the property that a function is
k-linear. The definitions of the other properties in the statement of Theorem 1.1 are as follows:

Definition 3.1 (Junta). The function f : {0, 1}n → {0, 1} is a k-junta if there is a set J ⊆ [n] of size |J | ≤ k
such that for every x, y ∈ {0, 1}n that satisfy xi = yi for each i ∈ J , we have f(x) = f(y). We use k-junta
to denote the property that a function is a k-junta.

Definition 3.2 (Low Fourier degree). For convenience when discussing Fourier degree we will repre-
sent boolean functions using range {−1, 1} instead of {0, 1}. It is well known that every boolean func-

tion f : {0, 1}n → {−1, 1} has a unique representation of the form f(x) =
∑
S⊆[n] f̂(S)χS(x), where

χS = (−1)
∑

i∈S xi and f̂(S) ∈ R. The terms f̂(S) are the Fourier coefficients of f , and the Fourier degree

of f is the maximum value of k ≥ 0 such that f̂(S) 6= 0 for some set S of size |S| = k.7 We use degree-k
to denote the property that the Fourier degree of a function is at most k.

Definition 3.3 (Sparse polynomials). Every boolean function f : {0, 1}n → {0, 1} also has a unique repre-
sentation as a polynomial over GF(2). We say that f is a k-sparse polynomial if its representation over GF(2)
has at most k terms. Let k-sparse denote the property that a function has a k-sparse GF(2) representation.

The following facts about k-linear functions will be used in the proof of Theorem 1.1:

Proposition 3.4. Fix n > 2 and 1 ≤ k ≤ n− 2. If f : {0, 1}n → {0, 1} is (k + 2)-linear, then f is

(i) 1
2 -far from k-linear functions,

(ii) 1
2 -far from k-juntas,

(iii) 1
2 -far from functions of Fourier degree at most k, and

(iv) 1
20 -far from k-sparse polynomials.

Proof. We first prove part (iii). Parts (i) and (ii) will follow immediately from part (iii) and the observation
that k-juntas and k-linear functions have Fourier degree at most k.

Let f be a (k + 2)-linear function over the variables of some set T ⊆ [n] of size |T | = k + 2, and let g
be any function of Fourier degree at most k. For convenience, we will represent f and g as functions from
{0, 1}n to {−1, 1}. Since f is a linear function over the variables in T , we know that f̂(T ) = 1, and f̂(S) = 0
for all S 6= T . Moreover, since g has Fourier degree k and |T | > k, we know by definition that ĝ(T ) = 0.
Thus by Parseval’s theorem

E
x

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S) = 0 ,

which implies Prx[f(x) 6= g(x)] = 1/2.
Finally, part (iv) is a special case of a more general theorem of Diakonikolas et al. (2007, Thm. 36). For

convenience, we provide a self-contained proof as Lemma A.1 in Section A.

Theorem 1.1 (Restated). Fix 1 < k < n−1. Then, at least Ω(min{k, n−k}) queries are required to test (i)
k-linear functions, (ii) k-juntas, (iii) functions of Fourier degree at most k, and (iv) functions with k-sparse
polynomial representation in GF(2).

Proof. We prove the lower bound for k-linear functions by reducing from the k-bal-disj problem. Recall
that Ck-linear⊕ is the communication game where the inputs are the functions f, g : {0, 1}n → {0, 1} and the
players must test whether the function h = f ⊕ g is k-linear. Lemmas 2.4 and 2.6 imply that

7For more details on the Fourier representation of boolean functions see, e.g., de Wolf 2008; O’Donnell 2008.
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2Q(k-linear) ≥ R(Ck-linear⊕ )

and
R(k-bal-disj) = Ω(min{k, n− k}) .

To complete the proof, we show that R(Ck-linear⊕ ) ≥ R(k-bal-disj) with a reduction from k-bal-disj to
Ck-linear⊕ .

Let A,B ⊆ [n] be the two sets of size |A| = bk2 c + 1 and |B| = dk2 e + 1 received by Alice and by
Bob, respectively, as the input to an instance of k-bal-disj. Alice and Bob can construct the functions
ParityA,ParityB : {0, 1}n → {0, 1}. When |A ∩ B| = 1, the symmetric difference of the two sets has size
|A4B| = |A|+ |B| − 2|A∩B| = k, and the function ParityA⊕ParityB = ParityA4B is k-linear. Conversely,
when A and B are disjoint, the function ParityA ⊕ParityB is a (k+2)-parity function and, by Fact 3.4, it is
1
2 -far from k-linear functions. So Alice and Bob can solve their instance of k-bal-disj with a communication
protocol for Ck-linear⊕ . This implies that R(Ck-linear⊕ ) ≥ R(k-bal-disj), as we wanted to show.

The same reduction from k-bal-disj yields lower bounds for testing the other properties. Let Ck-junta⊕
denote the communication game where Alice and Bob receive boolean functions f and g as inputs and must
decide if h = f ⊕ g is a k-junta. Similarly, define Cdegree-k

⊕ and Ck-sparse⊕ to be the corresponding commu-
nication games where Alice and Bob must decide if h has Fourier degree at most k or can be represented
by a k-sparse GF(2) polynomial. In the k-bal-disj reduction above, Alice and Bob create a joint function
ParityA4B that is (k + 2)-linear if A and B are disjoint, and k-linear if A and B intersect. By Fact 3.4,

(k + 2)-linear functions are 1
2 -far from k-juntas, 1

2 -far from functions with Fourier degree at most k, and
1
20 -far from k-sparse polynomials. Recalling that a k-linear function is a k-junta, has Fourier degree at most
k, and can be represented by a k-sparse GF(2) polynomial, it follows that

R(k-bal-disj) ≤ min{R(Ck-junta⊕ ), R(Cdegree-k
⊕ ), R(Ck-sparse⊕ )}.

Together with Lemmas 2.4 and 2.6, we have

2Q(k-junta) ≥ R(Ck-junta⊕ ) = Ω(min{k, n− k}) ,
2Q(degree-k) ≥ R(Cdegree-k

⊕ ) = Ω(min{k, n− k}) , and

2Q(k-sparse) ≥ R(Ck-sparse⊕ ) = Ω(min{k, n− k}) .

Testing linear functions with 0-1 coefficients. With Oded Goldreich’s kind permission, we present his
proof of Theorem 1.2.

Theorem 1.2 (Restated). Testing the class of linear functions from GF(3)n to GF(3) that have only 0-1
coefficients requires Θ(n) queries.

Proof. The upper bound in the theorem follows from the query complexity of learning subclasses of linear
functions over GF(3)n. See Goldreich (2010b) for the details.

For the lower bound, we establish a reduction from the set-disjointness problem. Let C
{0,1}-Lin
+ be the

communication game where Alice and Bob receive the functions f, g : GF(3)n → GF(3), respectively, and
must determine if the function h = f + g (where the sum is taken pointwise over GF(3)) is linear and has
only {0, 1}-coefficients. By Lemma 2.4 and Theorem 2.5,

4Q({0,1}-Lin) ≥ R(C
{0,1}-Lin
+ ) and R(disj) = Ω(n) .

To complete the proof, it suffices to show that R(C
{0,1}-Lin
+ ) ≥ R(disj). We do so with a reduction from

set-disjointness to the {0,1}-Lin testing communication game.
Let a, b ∈ {0, 1}n be the strings received by Alice and Bob as input to the set-disjointness problem.

Alice and Bob build the functions f, g : GF(3)n → GF(3) defined by f(x) =
∑n
i=1 aixi and g(x) =

∑n
i=1 bixi,

respectively. The combined function h = f + g is defined by h(x) =
∑n
i=1(ai + bi)xi. This function is clearly
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linear. When a and b are disjoint, then every coefficient ai+bi of h takes value 0 or 1. Conversely, when a and
b are not disjoint, there is an index i for which ai + bi = 2. Then for any linear function ` with {0, 1}-valued
coefficients, the function h− ` is a non-zero linear function. The Schwartz-Zippel Lemma states that every
non-zero linear function over GF(3)n takes the value 0 on at most 1

3 of the inputs from GF(3)n. Thus, h is
2
3 -far from all the linear functions with only {0, 1}-valued coefficients. Therefore, Alice and Bob can run a

protocol for C
{0,1}-Lin
+ to solve their instance of set-disjointness and R(C

{0,1}-Lin
+ ) ≥ R(disj).

Testing computability by width-4 OBDDs. Again with the kind permission of Oded Goldreich, we
present his proof of Theorem 1.3. We again remark that this result was obtained independently by Brody
et al. (2011), who gave a similar proof.

The hard instances we use in this proof are those introduced by Goldreich (2010b). Let n̂ := bn−14 c.
We develop base functions from the following primitive functions. Consider the following four-bit functions
φ0, φ1, φ2, φ3 : {0, 1}4 → {0, 1}:

φ0(x1, x2, x3, x4) := 0 ,

φ1(x1, x2, x3, x4) := x1x3 ,

φ2(x1, x2, x3, x4) := x2x4 ,

φ3(x1, x2, x3, x4) := x1x3 ⊕ x2x4 .

Given z = (z1, . . . , zn̂) ∈ {0, 1, 2, 3}n̂, define the function hz : {0, 1}n → {0, 1} by setting

hz(x1, . . . , xn) := x1 ⊕
n̂∑
j=1

φzj (x4j−2, x4j−1, x4j , x4j+1) .

Lemma 3.5 (Goldreich 2010b, Thm. 4.2). Fix z ∈ {0, 1, 2, 3}n̂. If every coordinate j ∈ [n̂] of z satisfies
zj ∈ {0, 1, 2} then hz can be computed by a width-4 OBDD. Otherwise, if there exists j ∈ [n̂] such that zj = 3
then hz is 1

16 -far from all functions computable by width-4 OBDDs.

Goldreich (2010b) uses Lemma 3.5 to show that testing computability by width-4 OBDDs requires Ω(
√
n)

queries. We combine this construction with our technique and get an Ω(n) lower bound.

Theorem 1.3 (Restated). Testing the class of functions that are computable by width-4 OBDDs requires
Θ(n) queries.

Proof. We reduce from disjn̂. Given sets A,B ⊆ [n̂], Alice and Bob first build strings a, b ∈ {0, 1, 2, 3}n̂ by
setting

aj :=

{
1 if j ∈ A
0 otherwise

and bj :=

{
2 if j ∈ B
0 otherwise

Alice and Bob then define functions f := ha and g := hb. We define the combining operator ψ(f, g) to
return the function hz, where zj := aj + bj . By our choice of base functions, for every x ∈ {0, 1}n we have
hz(x) = ha(x)⊕ hb(x)⊕ x1, so ψ is a simple combining operator. Also, our definitions of a, b, and z imply
that zj = 3 iff j ∈ A ∩ B. By Lemma 3.5, this means that hz is computable by a width-4 OBDD when A
and B is disjoint and hz is 1

16 -far from all functions computable by width-4 OBDDs when A and B intersect.
Thus, R(C4-OBDD

ψ ) ≥ R(disjn̂). This inequality, together with Lemma 2.4, Theorem 2.5, and the fact that
n̂ = Θ(n), yields

2Q(4-OBDD) ≥ R(C4-OBDD
ψ ) ≥ R(disjn̂) = Ω(n) .

4 Testing Monotonicity and Submodularity

Fix R ⊆ R. Recall that the function f : {0, 1}n → R is monotone if for any two inputs x, y ∈ {0, 1}n that
satisfy x1 ≤ y1, . . . , xn ≤ yn, we have f(x) ≤ f(y). In this section, we prove the following lower bound on
the query complexity for testing monotonicity.
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Theorem 1.4 (Restated). Testing f : {0, 1}n → R for monotonicity requires Ω(min{n, |R|2}) queries.

Proof. We first consider the case where R = R. We prove the lower bound for testing monotonicity in this
case with a reduction from set-disjointness. Let ψ be the combining operator that, given two functions
f, g : {0, 1}n → {−1, 1}, returns the function h : {0, 1}n → Z defined by h(x) := 2 |x|+ f(x) + g(x). Define
Cmono
ψ be the communication game where Alice and Bob are given two functions f, g : {0, 1}n → {−1, 1} and

they must test whether h is monotone. By Lemma 2.4 and Theorem 2.5,

2Q(mono) ≥ R(Cmono
ψ ) and R(disj) = Ω(n) .

We complete the proof by showing that R(Cmono
ψ ) ≥ R(disj).

Let A,B ⊆ [n] be the subsets received by Alice and Bob as the input to an instance of the set-
disjointness problem. Alice and Bob build functions χA, χB : {0, 1}n → {−1, 1}, respectively, by setting
χA(x) = (−1)

∑
i∈A xi and χB(x) = (−1)

∑
i∈B xi . Let h := ψ(χA, χB). Note that h(x) = 2 |x|+ χA(x) + χB(x).

We claim that (a) when A and B are disjoint, h is monotone, and (b) when A and B are not disjoint, h is
1
8 -far from monotone. If this claim is true, then we have completed our lower bound since it implies that
Alice and Bob can run a protocol for Cmono

ψ to solve their instance of set-disjointness and, therefore,
R(Cmono

ψ ) ≥ R(disj).

We now prove Claim (a). Fix i ∈ [n]. For x ∈ {0, 1}n, let x0, x1 ∈ {0, 1}n be the vectors obtained by
fixing the ith coordinate of x to 0 and to 1, respectively. Note that for any set S ⊆ [n], χS(x1) = −χS(x0)
if i ∈ S, and χS(x1) = χS(x0) otherwise. So when i /∈ A and i /∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| = 2 > 0 ,

when i ∈ A and i /∈ B,
h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0) ≥ 0 ,

and when i /∈ A and i ∈ B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χB(x0) ≥ 0 .

Those three inequalities imply that when i 6∈ A∩B, the function h is monotone on each edge (x0, x1) in the
ith direction. As a result, when A and B are disjoint the function h is monotone.

Let us now prove Claim (b). Let A ∩B 6= ∅. When i ∈ A ∩B,

h(x1)− h(x0) = 2 |x1| − 2 |x0| − 2χA(x0)− 2χB(x0).

This implies that for each x that satisfy χA(x0) = χB(x0) = 1, it holds that h(x1) < h(x0). Partition
{0, 1}n into 2n−1 pairs that form the endpoints to all the edges in the ith direction. We claim that at least
1
4 of these pairs satisfy the condition χA(x0) = χB(x0) = 1. To see this, note that when A = {i}, then
χA(x0) = 1 with certainty. On the other hand, if j ∈ A for some j 6= i, then take any x0, and let x̂0 be
x0 with the jth bit flipped. Then, χA(x0) = −χA(x̂0). It follows that χA(x0) = 1 with probability exactly
1
2 . A similar argument holds independently for χB(x0). Therefore, at least 1

4 of these pairs will satisfy the
condition χA(x0) = χB(x0) = 1, and for each of these pairs, either h(x0) or h(x1) must be modified to make
h monotone. Therefore, when A and B intersect, we need to modify at least 2n/8 entries, just to correct the
violated edges in the ith direction. It follows that h is at least 1

8 -far from monotone.

Suppose now that |R| ≥ 12
√
n+5. Without loss of generality assumeR ⊇ {n− 6

√
n− 2, . . . , n+ 6

√
n+ 2}.8

As before, we do a reduction from set-disjointness. Alice and Bob receive sets A,B ⊆ [n], respectively,

8This essentially boils down to a renaming of R. Formally, we prove a lower bound for testing f̂ : {0, 1}n → R̂ for an

arbitrary R̂ with |R̂| ≥ 12
√
n + 5 by reducing from the problem of testing f : {0, 1}n → R. Let φ : R → R̂ be the bijection

that maps the ith least element of R to the ith least element of R̂, and define f̂(x) := φ(f(x)). f̂ is monotone if f is monotone,

and f̂ is ε-far from monotone if f is ε-far from monotone. Thus, testing f̂ for monotonicity has the same query complexity as
testing f for monotonicity.

15



and build the functions χA, χB : {0, 1}n → {−1, 1}. The modification to the construction is in the definition
of the combining operator. We now define ψ(χA, χB) to return the function h′ defined by

h′(x) :=


h(x) if n

2 − 3
√
n ≤ |x| ≤ n

2 + 3
√
n ,

n− 6
√
n− 2 if |x| < n

2 − 3
√
n ,

n+ 6
√
n+ 2 if |x| > n

2 + 3
√
n .

Note that when n
2 − 3

√
n ≤ |x| ≤ n

2 + 3
√
n, we have n − 6

√
n − 2 ≤ h(x) ≤ n + 6

√
n + 2. The definition

of h′ takes strings with low Hamming weight and “rounds h(x) up” to n − 6
√
n − 2. In the same way, it

takes strings of high Hamming weight and “rounds h(x) down” to n+ 6
√
n+ 2. We claim that this preserves

monotonicity when h is monotone, while ensuring that when h is far from monotone, our new function h′

remains reasonably far from monotone.

Claim 4.1. If A and B are disjoint, then h′ is monotone. If A and B intersect, then h′ is 1
16 -far from

monotone.

Proof. Suppose that A ∩ B = ∅. We proceed in a manner similar to the general case. Fix any i ∈ [n], and
for x ∈ {0, 1}n, let x0 and x1 be the vectors obtained by setting the ith bit to 0 and 1 respectively. If A
and B are disjoint, then h is monotone. When |x0| and |x1| both lie in the range {n2 − 3

√
n, . . . , n2 + 3

√
n},

then h′(x1) = h(x1) ≥ h(x0) = h′(x0), so monotonicity is preserved. If |x0| and |x1| are either both less
than n

2 − 3
√
n or both greater than n

2 + 3
√
n, then monotonicity is trivially preserved, as h′ is constant on

each of these ranges. It remains to show that monotonicity is preserved when |x0| and |x1| lie in different
ranges. But h′(x) = h(x) ∈ {n − 6

√
n − 2, . . . , n + 6

√
n + 2} for all x in this middle range. Therefore,

h′(x) ≤ h′(y) ≤ h′(z) for all x, y, z such that |x| < n
2 − 3

√
n,
∣∣|y| − n

2

∣∣ ≤ 3
√
n, and |z| > n

2 + 3
√
n.

If A ∩B 6= ∅ then h is 1/8-far from monotone. We claim that h′ is at most 1/16-far from h. To see this,
let x ∈ {0, 1}n be a uniform random string. By the Chernoff Bound,

Pr
[∣∣|x| − n

2

∣∣ > 3
√
n
]
< 0.03 < 1/16 .

Furthermore, h′(x) = h(x) whenever n
2 − 3

√
n ≤ |x| ≤ n

2 + 3
√
n, hence Pr[h′(x) 6= h(x)] ≤ 1/16.

Suppose for the sake of contradiction that h′ is not 1
16 -far from monotone, and let h̃ denote the monotone

function closest to h′. By the triangle inequality and the fact that h′ is at most 1/16-far from h, we have

Pr[h(x) 6= h̃(x)] ≤ Pr[h(x) 6= h′(x)] + Pr[h′(x) 6= h̃(x)] < 1/8 .

This violates the fact that h is 1/8-far from monotone.

It is possible to make the above argument much tighter, and get the corresponding linear query complexity
lower bound for a smaller range of |R|, although |R| remains Ω(

√
n). We chose the above range size to

maximize clarity.

Finally, suppose that |R| = o(
√
n). We prove the lower bound for testing monotonicity in this case via a

reduction from the |R| ≥ 12
√
n+ 5 case. Let A be an optimal monotonicity testing algorithm for functions

f : {0, 1}n → R, and let m be the greatest integer such that |R| ≥ 12
√
m + 5. We will use A to construct

a monotonicity testing algorithm A′ for functions g : {0, 1}m → R. The construction of A′ depends on the
following claim.

Claim 4.2. Given a function g : {0, 1}m → R, there exists a function h : {0, 1}n → R with the following
properties:

1. If g is monotone, then h is monotone.

2. If g is ε-far from monotone, then h is ε-far from monotone.

3. For all x ∈ {0, 1}n, the value of h(x) can be determined with one query to g.
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Proof. We construct h : {0, 1}n → R from g by padding. Specifically, define h(x, y) := g(x) for strings
x ∈ {0, 1}m and y ∈ {0, 1}n−m. This construction clearly satisfies the first and third conditions of the claim.
For the second condition, we prove the contrapositive. Suppose that h is not ε-far from monotone. Let h̃
be the monotone function closest to h; thus, Prx,y[h̃(x, y) 6= h(x, y)] < ε. By an averaging argument, there

exists ỹ ∈ {0, 1}n−m such that Prx[h̃(x, ỹ) 6= h(x, ỹ)] < ε. Define g̃ : {0, 1}m → R as g̃(x) := h̃(x, ỹ). Then g̃
is monotone and Prx[g̃(x) 6= g(x)] = Prx[h̃(x, ỹ) 6= h(x, ỹ)] < ε, so g is not ε-far from monotone.

The construction of A′ is simple. Given input g : {0, 1}m → R, let h be the function guaranteed by
Claim 4.2. A′ runs A on h and accepts if and only if A accepts h. By Claim 4.2, if g is monotone, then
h is monotone, and if g is ε-far from monotone, then h is ε-far from monotone. The correctness of A′ then
follows from the correctness of A. Furthermore, by Claim 4.2, A′ uses one query per query of A. However,
testing g : {0, 1}m → R for monotonicity requires Ω(m) queries, because g has range size |R| ≥ 12

√
m + 5.

Since A is an optimal monotonicity tester and uses the same number of queries as A′, it follows that testing
f : {0, 1}n → R for monotonicity requires Ω(m) = Ω(|R|2) queries when |R| = o(

√
n).

Testing submodularity. The function f : {0, 1}n → R is submodular if for every x, y ∈ {0, 1}n, f(x∨y)+
f(x∧y) ≥ f(x)+f(y), where (x∨y)i = max{xi, yi} and (x∧y)i = min{xi, yi}. Testing submodularity was first
studied by Parnas, Ron, and Rubinfeld (2003) for functions over rectangles. Seshadhri and Vondrák (2011)
initiated the study of submodularity testing for functions over the boolean hypercube and, in particular,
showed that testing submodularity is at least as difficult as testing monotonicity. Specifically, they established
the following result.

Lemma 4.3 (Seshadhri and Vondrák (2011)). Given the function f : {0, 1}n → R, there exists a function
g : {0, 1}n+1 → R with the following properties:

1. If f is monotone, then g is submodular.

2. If f is ε-far from monotone, then g is ε
2 -far from submodular.

3. For each x ∈ {0, 1}n+1, the value of g(x) can be determined with 2 queries to f .

Combining the lemma with the lower bound of Fischer et al. (2002) on testing monotonicity yields
a lower bound of Ω(log n) queries for testing submodularity non-adaptively. This implies a weak lower
bound of Ω(log log n) queries for general (i.e., adaptive) submodularity testers. Combining Lemma 4.3 with
Theorem 1.4 instead, we get a stronger lower bound.

Corollary 1.5 (Restated). Testing f : {0, 1}n → R for submodularity requires Ω(n) queries.

Proof. Consider the task of testing whether f : {0, 1}n−1 → R is monotone. Let g : {0, 1}n → R be the
corresponding function whose existence is guaranteed by Lemma 4.3. We can test whether f is monotone
by simulating a submodularity tester T on g. If T makes q queries, the resulting monotonicity tester makes
a total of 2q queries. By Theorem 1.4, all monotonicity testers must make at least Ω(n) queries, so our
submodularity tester must also make q = Ω(n) queries.

5 Testing Concise Representations

We begin with formal definitions for decision trees and branching programs.

Definition 5.1 (Decision tree). A decision tree is a directed binary tree in which each internal node is
labelled with some element from [n], the two edges going out of an internal node are labelled with 0 and 1,
and each leaf node has a label from {0, 1}. The decision tree D computes the function f : {0, 1}n → {0, 1} if
for every x ∈ {0, 1}n, the path defined in D by querying the value of xi at each internal node labelled with i
and following the corresponding edge leads to a leaf node with value f(x). The size of a decision tree is the
total number of leaves it contains.
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Definition 5.2 (Branching program). A branching program is a directed acyclic graph with two sink nodes
labelled with 0 and 1, respectively, and where all other nodes have out-degree 2. Each non-sink node has
a label from [n] and the two edges leaving a node are labelled with 0 and 1, respectively. The branching
program P computes the function f : {0, 1}n → {0, 1} if each x ∈ {0, 1}n defines a path in the branching
program that leads to the sink labelled with f(x). The size of a branching program is the total number of
nodes it contains.

The proof of Theorem 1.6 relies on the following two simple lemmas.

Lemma 5.3. Fix s ≥ 1 and 0 < α < 1. Let f : {0, 1}n → {0, 1} be an s-linear function. Then f can be
computed by a decision tree of size 2s and is 1−α

2 -far from all functions that are computable by decision trees
of size at most α 2s.

Proof. To construct a decision tree of size 2s that computes the function f : x 7→ xi1 ⊕ · · · ⊕ xis , create a
complete tree of depth s where each node at level j of the tree queries xij . This tree has 2s leaves and, by
setting the value of each leaf appropriately, computes the function f exactly.

Consider now a decision tree T of size at most α 2s, and let g : {0, 1}n → {0, 1} be the function
computed by this tree. We want to show that Pr[f(x) 6= g(x)] ≥ 1−α

2 when the probability is over the
uniform distribution of x ∈ {0, 1}n. For each leaf ` of T , let depth(`) denote the number of unique variables
queried by the nodes in the path from the root of T to ` and let R` ⊆ {0, 1}n represent the set of inputs
x ∈ {0, 1}n that define a path in T that reaches `. (Note that the sets R` form a partition of {0, 1}n.) Define
B :=

⋃
` : depth(`)<sR` to be the union of the sets R` for all the leaves in T of depth strictly less than s. Then

Pr[f(x) 6= g(x)] ≥ Pr[f(x) 6= g(x) ∩ x ∈ B]

= Pr[x ∈ B] · Pr[f(x) 6= g(x) | x ∈ B].

For any leaf ` of T , the probability that an input x chosen uniformly at random from {0, 1}n reaches ` is
2−depth(`). By the union bound, the probability that x reaches a leaf of depth at least s in T is at most
α 2s · 2−s = α, so Pr[x ∈ B] ≥ 1− α.

Let ` be a leaf in T of depth at most s− 1. Then there is some index i ∈ {i1, . . . , is} that is not queried
in the path from the root of T to `. We can partition R` into pairs (x, x(i)) where each pair is identical in all
but the i-th coordinate. For each such pair, f(x) 6= f(x(i)) so no matter what label is attached to the leaf
`, we have Pr[f(x) 6= g(x) | x ∈ R`] = 1

2 . This also implies that Pr[f(x) 6= g(x) | x ∈ B] = 1
2 and, therefore,

Pr[f(x) 6= g(x)] ≥ (1− α) · 12 = 1−α
2 , as we wanted to show.

Lemma 5.4. Let P be the class of all boolean functions computable by branching programs of size 2s. Then
every s-linear function is in P while every (s+ 2)-linear function is 1

6 -far from P.

Proof. Again, the first assertion is almost immediate: consider a branching program of width 2 that queries
xi1 at the start node and queries xij on both nodes at level 1 < j ≤ s. We can arrange the edges of this
branching program so that the left (resp., right) node at level j is reached when xi1 ⊕ · · · ⊕ xij−1

equals 0
(resp., equals 1). This branching program has size 2s− 1 and computes the s-linear function.

For the second assertion, let P be a branching program of size 2s, and suppose it is close to some (s+ 2)-
linear function h. Note that if one of the s+ 2 variables in h does not appear in P , then h and P are 1

2 -far,
since for every input there is a variable whose value we can flip to change the value of h without changing
the output of P .

Thus, we assume that every variable in h appears in P . Moreover, since P has only 2s nodes, there must
be at least two variables in h that are queried only once in P . Let x1 and x2 denote two such variables,
and let u1 and u2 denote the corresponding nodes in P . The graph of P is directed and acyclic, so we can
assume without loss of generality that no path reaches the node u1 after reaching u2.

Consider the paths in P generated by strings x, x(1) ∈ {0, 1}n, where x is generated uniformly at random
and x(1) is generated from x by flipping x1. Note that x(1) is also uniform. If the random path generated by
x reaches u2 with probability less than 2

3 , then with probability at least 1
3 , flipping the value of x2 changes

the value of h without changing the output of P ; hence, P is 1
6 -far from h. On the other hand, if this random
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path reaches u2 with probability at least 2
3 , then the path generated by x(1) also reaches u2 with probability

2
3 . By the union bound, the probability that both x and x(1) describe paths in P reaching u2 is at least
1
3 . But since u1 cannot be reached after u2, this means that both x and x(1) describe paths to the same
terminal in P even though they have different values in h. Therefore, P is 1

6 -far from h in this case too.

We are now ready to complete the proof of Theorem 1.6.

Theorem 1.6 (Restated). At least Ω(min{s, n − s}) queries are required to test (i) size-2s decision trees
and (ii) size-s branching programs.

Proof. The proof is nearly identical to that of Theorem 1.1. We prove the lower bound with a reduction from
the balanced version of the set-disjointness problem. Let C2s-DT

⊕ and Cs-BP
⊕ be the communication games

where Alice and Bob receive the functions f, g : {0, 1}n → {0, 1} and must test whether the function h = f⊕g
is computable by size-2s decision trees or by size-s branching programs, respectively. By Lemmas 2.4 and 2.6,

2Q(size-2s D.T.’s) ≥ R(C2s-DT
⊕ ),

2Q(size-s B.P.’s) ≥ R(Cs-BP
⊕ ), and

R(s-bal-disj) = Ω(min{s, n− s}).

To complete the proof, it suffices to show that R(s-bal-disj) is a lower bound for R(C2s-DT
⊕ ) and R(Cs-BP

⊕ ).
Let A,B ⊆ [n] be the two sets of size |A| = b s2c + 1 and |B| = d s2e + 1 received by Alice and by

Bob, respectively, as the input to an instance of s-bal-disj. Alice and Bob can construct the functions
ParityA,ParityB : {0, 1}n → {0, 1}. When |A ∩B| = 1, the function h = ParityA ⊕ ParityB = ParityA4B is
s-linear. Such a function can be computed by size-2s decision trees and by size-s branching programs. When
A and B are disjoint, the function h is (s+2)-linear. By Lemmas 5.3 and 5.4, when h is (s+2)-linear, it is
3
8 -far from all functions computable by decision trees of size 2s (= 1

42s+2) and it is 1
6 -far from all functions

computable by branching programs of size s. So Alice and Bob can solve their instance of s-bal-disj with
a communication protocol for C2s-DT

⊕ or for Cs-BP
⊕ .

Testing juntas. Fischer et al. (2004) asked if it is easier to test k-juntas if we are only required to reject
functions that are far from (k+ t)-juntas for some t > 0. The lower bound of Chockler and Gutfreund (2004)
gives a lower bound of Ω(k/t) queries for this task. (See also (Diakonikolas et al., 2007, App. E).) This
bound is not sufficiently strong to answer Fischer et al.’s question for any t = ω(1).

The following result shows that for any t ≤ O(
√
k), the task of distinguishing k-juntas from functions

that are far from (k + t)-juntas requires (asymptotically) as many queries as the standard k-junta testing
problem.

Theorem 1.7 (Restated). Fix k ≤ n
2 and t > 0. Any algorithm that accepts k-juntas and rejects functions

far from (k + t− 2)-juntas with high probability must make Ω
(

min{(kt )2, k}
)

queries.

Proof. We prove the theorem with a reduction from the extended Gap Hamming Distance problem. If

t = Ω(k), there is nothing to prove. Otherwise, suppose t = o(k), and let C
(k,t)-junta
⊕ be the communication

game where Alice and Bob receive the functions f, g : {0, 1}n → {0, 1} and must distinguish between the
case where h = f ⊕ g is a k-junta from the case where h is far from (k + t − 2)-juntas. By Lemmas 2.4
and 2.10 and the fact that k + t/2 = Θ(k), we have

2Q
(
(k, t)-junta

)
≥ R(C

(k,t)-junta
⊕ )

and
R(eghdn,k+ t

2 ,
t
2
) = Ω

(
min{(kt )2, k}

)
.

To complete the proof, we want to show that R(C
(k,t)-junta
⊕ ) ≥ R(eghdn,2k+t, t2 ).

19



Let x and y be the strings received by Alice and Bob, respectively, as input to an instance of the
eghdn,k+ t

2 ,
t
2

problem. Alice and Bob then construct the functions ParityA,ParityB : {0, 1}n → {0, 1},
where A := {i : xi = 1} and B := {i : yi = 1}. The function h = ParityA ⊕ ParityB = ParityA4B is
|A4B|-linear. When ∆(x, y) = |A4B| ≤ k+ t/2− t/2 = k, the function h is a k-parity function. Conversely,
when ∆(x, y) ≥ k + t/2 + t/2 = k + t, by Fact 3.4(ii), the function h is 1

2 -far from all (k + t − 2)-juntas.

Therefore, Alice and Bob can run a protocol for the game C
(k,t)-junta
⊕ to solve their instance of the Extended

Gap Hamming Distance problem and, as we wanted to show, R(C
(k,t)-junta
⊕ ) ≥ R(eghdn,k+ t

2 ,
t
2
).

Remark. The conference version of this paper (Blais et al., 2011) used a different argument to prove
Theorems 1.6 and 1.7. During the review process, a flaw was found in that argument. For a retraction of
the earlier version of Theorem 1.6 and a discussion of the error, see (Blais et al., 2012).

6 Testers with One-Sided Error

Testing decision trees. We saw in the last section that Ω(log s) queries are required to test whether a
function can be represented as a boolean decision tree with at most s nodes. For testers with one-sided error,
we get an exponentially larger bound.

Theorem 1.8 (Restated). At least Ω(s) queries are required to test size-s decision trees with one-sided error.

Proof. We first consider the case where s = 2n−1 for some n ≥ 5. We prove this case with a reduction from
the gap-equality problem on s-bit strings. Let Cs-DT

⊕ be the communication game where Alice and Bob
receive the functions f, g : {0, 1}n → {0, 1} and they must test whether the function h = f ⊕g is computable
by a decision tree of size s. By Lemmas 2.4 and 2.7,

2Q1
(
s-DT

)
≥ R1(Cs-DT

⊕ ) and R1(geqs, s8 ) = Ω
(
s
)
.

We complete the proof by showing that R1(Cs-DT
⊕ ) ≥ R1(geqs, s8 ).

Let a, b ∈ {0, 1}s be received by Alice and Bob as input to an instance of the gap-equality problem.
They must determine if a = b or whether ∆(a, b) = s

8 . Alice and Bob can solve their instance of the
geq problem with the following protocol. Let the set of vectors x ∈ {0, 1}n with even parity Parity(x) =
x1 ⊕ · · · ⊕ xn = 0 define an indexing of the bits of a. (I.e., fix a bijection between those strings and [s].)
Alice and Bob build the functions f, g : {0, 1}n → {0, 1} by setting

f(x) =

{
ax when Parity(x) = 0,

0 when Parity(x) = 1,

and

g(x) =

{
bx when Parity(x) = 0,

1 when Parity(x) = 1.

Alice and Bob then test whether f ⊕ g can be represented with a decision tree of size at most 15
162n; when it

can, they answer ∆(a, b) = s
8 .

Let us verify the correctness of this protocol. For any x ∈ {0, 1}n where Parity(x) = 0, we have that
(f ⊕ g)(x) = ax ⊕ bx. Furthermore, for each x where Parity(x) = 1, we get (f ⊕ g)(x) = 1. So when a = b,
then f ⊕ g is the Parity function. By Lemma 5.3, this function is 1

32 -far from every decision tree of size at
most 15

162n. When ∆(a, b) = s
8 , consider the (complete) tree that computes f ⊕ g by querying xi in every

node at level i. This tree has 2n leaves, but for every input x where ax 6= bx, we have that the corresponding
leaf has the same value as its sibling. So for each such input, we can eliminate one leaf. Therefore, we can
compute f ⊕ g with a decision tree of size at most 2n − 2n−1/8 < 15

162n.
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Testing signed k-majorities. Our next bound is for testing whether a function f : {−1, 1}n → {−1, 1}
is a signed k-majority (for convenience, in this section we will switch notation and represent boolean values
with ±1 notation). A signed majority is a majority function with some variables negated, i.e. it is a halfspace
of the form f(x) = sgn(w ·x), where w ∈ {−1, 1}n. If w ∈ {−1, 0, 1}n and exactly k of the wi’s are non-zero,
we say it is a signed k-majority. (A signed majority function is thus also a signed n-majority function.)

Signed majorities were studied by Matulef et al. (2009), who referred to them as {−1, 1}-weight halfspaces.
In that work, they showed a non-adaptive lower bound of Ω(log n) queries to test whether a function is a
signed majority on all n variables. Blais and O’Donnell (2010) studied the related problem of testing whether
a function is a (non-signed) majority on exactly k out of n variables. When k ≤ 3

4n, they showed a lower

bound of Ω(k1/12) queries for non-adaptive algorithms with two-sided error.
We show that Ω(k/ log k) queries are required to test whether f is a signed k-majority with one-sided

error. The argument of Blais and O’Donnell (2010) can be adapted to show a non-adaptive, two-sided lower
bound of Ω(k1/12) queries for this problem as well. Our bound is incomparable; it is asymptotically stronger
and applies to adaptive algorithms, but only ones with one-sided error. The proof of our result relies on the
following lemma.

Lemma 6.1. For every α > 0, there exist k0 ∈ N and ε > 0 such that for every k ≥ k0 and k′ ≥ (1 + α)k,
all signed k′-majorities are ε-far from signed k-majorities.

We defer the proof of Lemma 6.1 to Appendix B. We are now ready to complete the proof of Theorem 1.9.

Theorem 1.9 (Restated). Fix any constant γ ∈ (0, 1). For any k ≤ γn, testing signed k-majorities with
one-sided error requires at least Ω(k/ log k) queries.

Proof. We again use a reduction from the gap-equality problem. Let k′ = k
1−γ . Let ψ be a combining

operator that takes functions f, g : {−1, 1}n → {−k′,−k′ + 1, . . . , k′} and returns the function h defined by

h(x) := sgn
( f(x)+g(x)

2

)
. Define Ck-majψ to be the communication game where Alice and Bob receive functions

f, g and must test if h = ψ(f, g) is a signed k-majority function. By Lemmas 2.4 and 2.7,

log(2k′ + 1) ·Q1
(
k-maj

)
≥ R1(Ck-majψ )

and
R1(geqk′,γk′) = Ω

(
k′
)
.

We complete the proof by showing that R1(Ck-majψ ) ≥ R1(geqk′,γk′). The theorem then follows by noting

that Ω( k′

log k′ ) = Ω( k
log k ).

Let a, b ∈ {0, 1}k′ be received by Alice and Bob, respectively, as the input to an instance of the geqk′,γk′
problem. Alice and Bob generate the functions f, g : {−1, 1}n → {−k,−k + 1, . . . , k} by setting f(x) :=∑k′

i=1(−1)aixi and g(x) :=
∑k′

i=1(−1)bixi, respectively. Note that f(x) + g(x) =
∑k′

i=1

(
(−1)ai + (−1)bi

)
xi,

so h can now be written as h(x) = sgn(w · x), where

wi =


1 if ai = bi = 0 ,

0 if ai 6= bi ,

−1 if ai = bi = 1 .

When a = b, h is a signed k′-majority function. Lemma 6.1, shows that signed k′-majority functions are a
constant distance from all signed k-majority functions. When ∆(a, b) = γk′, then ai = bi for exactly k indices
i ∈ [k′] and h is a signed k-majority function. So Alice and Bob can solve their instance of the gap-equality
problem with a protocol for the Ck-majψ game and, as we wanted to show, R1(Ck-majψ ) ≥ R1(geqk′,γk′).
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A Distance from sparse polynomials

In this section we provide a self-contained proof that (k+2)-linear functions are far from k-sparse polynomials.
This lemma is a special case of Diakonikolas et al. (2007, Theorem 36). By considering only a special case
of the theorem of Diakonikolas et al. (2007), we obtain a slightly stronger bound on the distance of (k + 2)-
linear functions to k-sparse polynomials but the proof itself is essentially identical. We include the proof
here primarily for completeness.

Lemma A.1 (Diakonikolas et al. 2007). Every (k+ 2)-linear function is 1
20 -far from a k-sparse polynomial

over GF(2).

Proof. Let f be a (k+ 2)-linear function, and without loss of generality assume f is a linear function on the
first k+ 2 variables, i.e. f(x) = x1⊕ · · ·⊕xk+2. Let g be a k-sparse polynomial, i.e. g = T1⊕ · · ·⊕Tk where
each Ti is a monomial. We want to show that f and g are far. We can assume without loss of generality
that g does not contain any length-1 terms, since if it did we could just subtract those terms off of both f
and g to create f ′ and g′, which have the same distance from each other. We could then prove the theorem
for f ′, g′, and a smaller value of k.

Define the influence of a variable xi in f , denoted Infi(f), in the standard way- i.e. Infi(f) = Prx[f(x) 6=
f(x⊕i)] where x⊕i denotes x with the ith bit flipped. Define the total influence of f to be

∑
i Infi(f).

For any f and g, it is straightforward to show that if for some i the difference |Infi(f) − Infi(g)| is at
least δ, then f and g must have distance at least δ/2. When f is the (k + 2)-linear function defined above,
each variable x1 through xk+2 has influence 1. Thus, to complete the proof, we will show that in g one of
these variables must have influence at most 0.9.

If the total influence of x1 through xk+2 in g is less than 0.9(k+2), then we are done, since the pigeonhole
principle implies the existence of a variable xi with influence at most 0.9. Thus, in what follows, we assume

k+2∑
i

Infi(g) ≥ 0.9(k + 2) . (2)

We can bound the total influence of x1 through xk+2 in g as follows. First, we write g = g2 ⊕ g3 where g2
is the collection of terms in g that have length 2, and g3 is the collection of terms in g that have length at
least 3. Now note:

• Each variable xi that appears in g2 has Infi(g2) = 1/2. The reason is because since every term of g2
has length 2, xi is influential exactly when the other variables it appears with have parity 1, which
happens exactly half the time.

• For each term in g3, the total contribution of that term to the influences of all the variables is at most
3/4. To see why, suppose the term has length m, then on a random assignment the probability that a
variable is relevant to that term is 1

2m−1 , so the total effect the term can have on all the influences is
at most m · 1

2m−1 . If m ≥ 3, this is at most 3/4.

Let R2 be the number of terms of g2, and R3 be the number of terms in g3. By hypothesis, R2 +R3 ≤ k.
Since each term of g2 contributes at most 1 to the total influence of g, and each term of g3 contributes at
most 3/4 to the total influence of g, we have that

k+2∑
i

Infi(g) ≤ R2 + (3/4)R3 . (3)

Combining equations (2) and (3) we get that R2 + (3/4)R3 ≥ (9/10)k. Using the fact that R2 + R3 ≤ k,
this implies that R3 ≤ (4/10)k, in other words there cannot be too many terms of length 3 or more in g.
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Now we can bound the influence of variables x1 through xk+2 in g.

k+2∑
i

Infi(g) ≤
k+2∑
i

[Infi(g2) + Infi(g3)]

≤
k+2∑
i

Infi(g2) +

n∑
i

Infi(g3)

≤ 1

2
(k + 2) +

3

4
·R3

≤ 1

2
(k + 2) +

3

4
· 4

10
· k

< 0.9(k + 2) .

By the pigeonhole principle, there must exist a variable xi with influence at most 0.9 in g.

B Distance between majority functions

We complete the proof of Lemma 6.1 in this section. A key ingredient in this proof is the Berry-Esseen
theorem, a version of the Central Limit Theorem with error bounds (see e.g. Feller 1968):

Theorem B.1 (Berry-Esseen). Let `(x) = c1x1 + · · · + cnxn be a linear form over the random ±1 bits xi.
Assume |ci| ≤ τ for all i and write σ =

√∑
c2i . Write F for the c.d.f. of `(x)/σ; i.e., F (t) = Pr[`(x)/σ ≤ t].

Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1

1 + |t|3
,

where Φ denotes the c.d.f. of X, a standard Gaussian random variable. In particular, if A ⊆ R is any
interval then |Pr[`(x)/σ ∈ A]− Pr[X ∈ A]| ≤ C1(τ/σ), where C1 is an absolute constant.

Lemma 6.1 (Restated). For every α > 0, there exist k0 ∈ N and ε > 0 such that for every k ≥ k0 and
k′ ≥ (1 + α)k, all signed k′-majorities are ε-far from signed k-majorities.

Proof. Let f be a signed k-majority, and g be a signed k′-majority. It is easy to see that f and g have
minimum distance when they have the same sign pattern on their common variables. So without loss of
generality, assume f(x) = sgn(x1 + · · ·+ xk) and g(x) = sgn(x1 + · · ·+ xk′) (in other words, f is a majority
function on the first k variables, and g is a majority function on the first k′ variables). To simplify, we will

write S(x) =
∑k
i=1 xi and T (x) =

∑k′

i=k+1 xi. Thus, f(x) = sgn(S(x)) and g(x) = sgn(S(x) + T (x)).
For any positive real number t, we have

Pr
x

[f(x) 6= g(x)] ≥ Pr
x

[S(x) ∈ [0, t) and T (x) < −t]

= Pr
x

[S(x) ∈ [0, t)] · Pr
x

[T (x) < −t] ,

where the equality follows from the fact that S and T are functions on disjoint sets of variables.
Note that S is a linear form on k variables, so we can use the Berry-Esseen theorem on S with σ =

√
k

to get

Pr
x

[S(x) ∈ [0, t)] ≥ (Φ(t/
√
k)− Φ(0))− C1/

√
k

≥ (Φ(t/
√
k)− 1/2)− C1/

√
k , (4)

where C1 is the constant from the Berry-Esseen theorem.
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Similarly, T is a linear form on αk variables, so we can use the Berry-Esseen theorem on T with σ =
√
αk

to get

Pr
x

[T (x) < −t] ≥ Φ(−t/
√
αk)− C1/

√
αk . (5)

Setting t to be, say,
√
k, and then choosing k large enough insures that the quantities in both (4) and (5)

are positive, and bigger than a constant which only depends on α.
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