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Abstract

We study the problem of identity testing for multilinear ΣΠΣΠ(k) circuits, i.e. multilinear
depth-4 circuits with fan-in k at the top + gate. We give the first polynomial-time deterministic
identity testing algorithm for such circuits. Our results also hold in the black-box setting.

The running time of our algorithm is (ns)O(k3), where n is the number of variables, s is
the size of the circuit and k is the fan-in of the top gate. The importance of this model arises
from [AV08], where it was shown that derandomizing black-box polynomial identity testing
for general depth-4 circuits implies a derandomization of polynomial identity testing (PIT) for
general arithmetic circuits. Prior to our work, the best PIT algorithm for multilinear ΣΠΣΠ(k)
circuits [KMSV10] ran in quasi-polynomial-time, with the running time being nO(k6 log(k) log2 s).

We obtain our results by showing a strong structural result for multilinear ΣΠΣΠ(k) circuits
that compute the zero polynomial. We show that under some mild technical conditions, any
gate of such a circuit must compute a sparse polynomial. We then show how to combine the
structure theorem with a result by Klivans and Spielman [KS01], on the identity testing for
sparse polynomials, to yield the full result.
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1 Introduction

A central problem in algebraic complexity theory and algorithms design is the problem of Poly-
nomial Identity Testing (PIT): given an arithmetic circuit C over a field F, with input variables
x1, x2, . . . , xn, determine whether C computes the identically zero polynomial. Numerous applica-
tions and connections to other algorithmic and number theoretic problems further emphasize the
significance of PIT. Among the examples are algorithms for finding perfect matchings in graphs
[Lov79, MVV87], primality testing [AKS04], and many more. In addition, PIT also shows up in
many fundamental results in complexity theory such as IP = PSPACE [LFKN92, Sha90] and the
PCP theorem [AS98, ALM+98].

PIT is one of the most basic and natural questions for which a very simple randomized solution
is known: Schwartz and Zippel [Sch80, Zip79] independently showed that if one evaluates the
circuit at a randomly chosen point from a sufficiently large domain, then with high probability any
non-zero circuit will evaluate to a non-zero value. It has been a long standing open question to
derandomize the algorithm.

The main open question is to come up with an efficient (i.e. polynomial-time or at least
subexponential-time) deterministic algorithm for the problem. Indeed, Kabanets and Impagli-
azzo [KI04] showed that any deterministic algorithm for identity testing implies super polynomial
circuit lower bounds: either NEXP 6⊆ P/poly or the Permanent has no polynomial size arithmetic
circuits. Other connections between deterministic PIT algorithms and circuits lower bounds were
given in [HS80, DSY09].

A very natural and often desirable setting to consider the PIT question is in the black-box
model. The connection to lower bounds is even more natural and strong in this case. In the
black-box setting, one is not given the full description of the circuit C but only allowed black-box
(oracle) access to C. The problem of derandomizing identity testing in this setting reduces to
that of finding for every s an explicit set of points H ⊆ Fn of size poly(s) such that any non-zero
circuit of size s does not vanish on H. We refer to such sets as hitting sets. The Schwartz-Zippel
test, in fact, provides an exponential-size hitting set. Furthermore, applying standard probabilistic
arguments one can show existence of “small” hitting sets. Interestingly, any explicit construction of
a hitting set (for any class of circuits) immediately gives, via interpolation, an explicit polynomial
that cannot be computed by that class of circuits [Agr05].

In a recent surprising result by Agrawal and Vinay [AV08], it was shown that a complete
derandomization of black-box identity testing for just depth-4 (ΣΠΣΠ) arithmetic circuits already
implies a near complete derandomization for the general PIT problem. More precisely, they showed
that black-box identity testing for depth-4 (ΣΠΣΠ) arithmetic circuits implies exponential lower
bounds for general arithmetic circuits, which in turn implies a quasi-polynomial-time algorithm for
the general PIT problem. This makes black-box identity testing for even very low depth circuits a
very rewarding pursuit!

For a long time, black-box identity tests were only known for depth-2 circuits (equivalently
circuits computing sparse polynomials) [BOT88, KS01, LV03] (and references within). In light
of the Agrawal-Vinay result, studying black-box identity testing for depth-3 and depth-4 circuits
seems to be a very promising direction and line of attack for the general PIT problem. In recent
times there has been a surge of results on black-box (and non-black-box) identity testing for some
classes of depth-3 circuits such as depth-3 circuits with bounded top fan-in (also known as ΣΠΣ(k)
circuits) [DS06, KS07, KS08, KS09, SS09, AM10, SS10, SS11], and even some restricted classes of
depth-4 circuits [Sax08, SV09, KMSV10, AM10]. For more information on PIT we refer the reader
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to the survey [SY10].
In the current paper, we study multilinear depth-4 ΣΠΣΠ(k) circuits. Very recently Karnin

et al. [KMSV10] gave the first deterministic subexponential-time (in fact, quasi-polynomial-time)
PIT algorithm for this model. Their result was in the black-box setting. We further investigate
this class of circuits and give the first deterministic polynomial-time black-box PIT algorithm for it.
Our approach is quite different from that taken in [KMSV10], and we believe that the techniques
might be useful to understand other, more general classes of circuits as well.

Following the same approach as in [AV08], it can be shown that derandomizing black-box
identity testing for multilinear depth-4 (ΣΠΣΠ) circuits implies an exponential lower bound for
general multilinear arithmetic circuits. Getting explicit lower bounds is one of the biggest challenges
of complexity theory and has been the focus of much research. So far, the best known lower bounds
are: Ω(n4/3/ log2 n) for multilinear circuits due to Raz et al. [RSY08], and nΩ(log n) for multilinear
formulas due to Raz [Raz09]. It is an interesting open question to improve any of those bounds.
All the above makes the study of PIT for depth-4 circuits, even in the multilinear case, a really
interesting and challenging open question.

We now define the model of multilinear ΣΠΣΠ(k) circuits formally. Similar definitions were
given in [KMSV10], however we repeat them for the sake of completeness. A depth-4 circuit has 4
layers of alternating (+,×) gates and it computes a polynomial of the form

C(x1, x2, · · · , xn) =
k∑

i=1

Fi =
k∑

i=1

di∏
j=1

Pij

where k is the fan-in of the top Σ gate and di are the fan-ins of the Π gates at the second level. We
refer to Fi-s as the multiplication gates and Pij-s are the polynomials computed at the third level of
the circuit (which is a ΣΠ component). This implies that if the size of C is s then, clearly, each Pij

in C can be computed by a depth-2 (ΣΠ) circuit of size at most s. Such polynomials are known as
s-sparse polynomials as they contain at most s non-zero monomials (see e.g [BOT88, KS01, LV03]).
In other words, each Pij is s-sparse. We define gcd(C) ∆= gcd(F1, . . . , Fk), that is, the gcd of the
set of polynomials computed by the multiplication gates. We say that C is simple if gcd(C) = 1.
A ΣΠΣΠ(k) circuit is called minimal if for every proper subset ∅ ( A ( [k], the corresponding
subcircuit CA

∆=
∑

i∈A Fi of C is non-zero. Multilinear ΣΠΣΠ(k) circuits are circuits in which the
fan-in of the top Σ gate is a constant k and each multiplication gate Fi computes a multilinear
polynomial. We say that a polynomial is s-dense if it contains more than s monomials.

The main technical contribution in the proof of both black-box and non black-box identity
testing algorithms for ΣΠΣΠ(k) circuits is a new structural theorem for identically zero multilinear
ΣΠΣΠ(k) circuits. We refer to it as the Sparsity Bound. This result can be viewed as a natu-
ral (though unsuspected) generalization of the previously shown structural theorems for depth-3
ΣΠΣ(k) circuits known as the Rank Bound (see Section 1.3). Our result lends optimism to the
hope that similar structural results should also hold for general ΣΠΣΠ(k) circuits (without the re-
striction of multilinearity). At a very high level, we show that the only way a multilinear ΣΠΣΠ(k)
circuit can completely cancel itself out and compute the zero polynomial is that the circuit must
not be computing very “complex” polynomials. In particular, we show that in any simple and min-
imal multilinear ΣΠΣΠ(k) circuit that computes the identically zero polynomial, the polynomials
computed at the multiplication gates must be sparse.
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Theorem 1 (Sparsity Bound for multilinear ΣΠΣΠ(k) circuits). Let k ≥ 2 and let C(x̄) =∑k
i=1 Fi(x̄) be a simple and minimal, multilinear ΣΠΣΠ(k) circuit of size s computing the zero

polynomial. Then each Fi is sO(k2)-sparse.

One way to interpret the theorem is as follows: for a fixed k the sparsity of each multiplication
gate in a simple and minimal, identically zero multilinear ΣΠΣΠ(k) circuit is at most polynomially
large in the size of the circuit. Note, that for general circuits this sparsity can be exponentially
large. Later on (Section 4.1) we show a lower bound on the multiplication gate’s sparsity indicating
that our result is nearly optimal. Once we have the structure theorem we exploit it to design PIT
algorithms in both black-box and non black-box settings, thus proving the following theorems.

Theorem 2 (Black-Box PIT for ΣΠΣΠ(k) circuits). Let k, n, s be integers. There is an explicit set
H of size nO(k) · sO(k3), that can be constructed in time nO(k) · sO(k3), such that the following holds.
Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial computed by a multilinear ΣΠΣΠ(k) circuit of
size s on n variables. Then P |H 6≡ 0.

In our construction we heavily use the black-box PIT algorithm of [KS01] for sparse polynomials
as a subroutine 1. Using their PIT algorithm we show how to make any “non sparse” circuit into
a “somewhat sparse” circuit. Our structure theorem then guarantees that within this process,
we do not inadvertently end up making a non-zero circuit into a zero circuit. Once we have a
“somewhat sparse” non-zero circuit, we use the above PIT algorithm coupled with some techniques
from [KMSV10] to find a non-zero evaluation point for it, and hence get a black-box identity
tester. In the non black-box setting (e.g. when the circuit is given to us explicitly) we get a slight
improvement in the running time.

Theorem 3 (Non Black-Box PIT for ΣΠΣΠ(k) circuits). Let k, n, s be integers. Given a multilinear
ΣΠΣΠ(k) circuit C of size s computing a polynomial over F[x1, x2, . . . , xn] there exists an algorithm
that runs in time poly(n) · sO(k2) and determines whether C ≡ 0.

1.1 Overview of the Proof of The Structure Theorem

As mentioned earlier, our algorithm is based on a new structure theorem for simple and minimal,
multilinear ΣΠΣΠ(k) circuits C =

∑k
i=1 Fi =

∑k
i=1

∏di
j=1 Pij . We now give an overview of the

proof of the structural theorem. We wish to find an upper bound on the sparsity (i.e. the number
of non-zero monomials) of the polynomials computed by the multiplication gates (Fi-s). At a high
level, our strategy will be to set a multiplication gate to zero (thus obtaining a circuit with less
multiplication gates) and then to use an inductive argument on the resulting circuit. To do so we
will find a partial zero assignment ā to some Pij (i.e. Pij(ā) = 0) and substitute it into C. Let
C ′ =

∑k
i=1 F ′

i be the resulting circuit obtained by the substitution of ā. First of all, note that
C ′ may not satisfy the conditions of the inductive claim. In other words, the substitution may
compromise either simplicity or minimality of the circuit (or both of them). Furthermore, note
that a partial substitution may decrease the sparsity of the multiplication gates. That is, for some
i ∈ [k] the sparsity of F ′

i might be much smaller than the sparsity of Fi. The main issue here is
that it is not clear how to bound this difference in sparsity accurately enough. Hence, any upper
bound obtained on the sparsity of the gates of C ′ may not provide us with any useful information
on the sparsity of the gates in the original circuit C. This makes the offered strategy problematic.

1In fact, our construction works with any black-box PIT algorithm for sparse polynomials.
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Nevertheless, we show that we can still work around these problems. Our main idea behind
effectively bounding the sparsity is that, instead of identifying a single Pij and setting it to zero, we
will go over all Pij-s and set them to zero one at a time. Once we select a Pij to set to zero, we will
look for a zero assignment of Pij that preserves certain special properties of C. More specifically, we
will find a zero assignment of Pij such that after the substitution, the resulting circuit C ′ is simple
and minimal, and in addition, the aforementioned decrease in sparsity is brought to a minimum. In
order to find such an assignment we construct a polynomial Φ such that the above conditions (e.g.
“simplicity”, “minimality” and “sparsity difference minimization”) can be formulated in terms of
being a non-zero assignment of Φ. Consequently, the desired assignment ā will be a zero assignment
of Pij which is simultaneously also a non-zero assignment of Φ. However, such an assignment may
not even exist (for example if Pij is a factor of Φ). To handle this problem we introduce a new
technique. In fact, we settle on finding a zero assignment ā of Pij which is “almost good”, paying
some “small price” for it. The main issue turns out to be the estimation of the sparsity difference
that results from the partial substitution (i.e. Sparsity(Fi) - Sparsity(F ′

i )). For this purpose we
use Shearer’s Lemma (see Lemma 2.5). To apply the lemma, we map each multilinear polynomial
P to a family of sets corresponding to P ’s non-zero monomials (see Definition 2.1). Note that the
lemma suggests that the more distinct partial substitutions we have, the tighter is the bound. This
is the reason why we combine the information received from all different partial substitutions to C
(i.e. by trying out all the Pij).

1.2 Overview of the Black-Box Algorithm

Our black-box algorithm is based on the Sparsity Bound. For the moment, let us ignore the issues
of simplicity and minimality. These do create issues which will have to have to be addressed, but
just to understand the motivation for the algorithm suppose that we were a given a simple and
minimal ΣΠΣΠ(k) circuit C. There can be two cases: either (i) each multiplication gate of C is
sparse (e.g. the circuit is “sparse”) or (ii) C has a dense multiplication gate (e.g. the circuit is
“dense”). In case (i) the polynomial computed by C is sparse (as a sum of a small number of sparse
polynomials) therefore one can invoke a PIT algorithm for sparse polynomials to check if C ≡ 0. In
case (ii) the Sparsity Bound implies that C 6≡ 0. This observation gives rise to a non black-box PIT
algorithm: Compute the sparsity of each gate separately. If there is a dense gate, then conclude
that C 6≡ 0. Otherwise, check whether the monomials cancel each other out. Again, the conditions
of simplicity and minimality create some issues, but they can be dealt with (for more details see
Section 6).

The black-box setting is trickier, since we do not get to “see” the circuit, and hence cannot
carry out the procedure described above. Indeed, the main problem is to decide in which of the
cases we are. Our strategy will be to walk on the edge between the two cases. Given a non-
zero circuit C we are going to gradually reduce the sparsities of the gates, step-by-step, until we
reach case (i), while preserving the properties of C (simplicity and minimality). In each step the
sparsities of gates will reduce by a “small” factor. Through the entire process the Sparsity Bound
will guarantee that C remains non-zero as long as we are in case (ii). Now, let us consider the
“edge step” that is, the last reduction step before we reach case (i). We claim that in this step
the circuit is dense, but not “too dense”. On one hand, we are still in case (ii) where the Sparsity
Bound guarantees that C 6≡ 0. But on the other hand, a reduction by a “small” factor makes
the circuit sparse. Hence, we can conclude that the circuit is non-zero and “somewhat sparse”.
To make the argument a bit more formal, consider a non-zero ΣΠΣΠ(k) circuit C of size s. If C
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is sO(k2)-sparse, then we are done. Otherwise, let ā = (a1, . . . , an) ∈ Fn be an assignment such
that for every 1 ≤ t ≤ n the circuit C(a1, . . . , at, xt+1, . . . , xn) - resulting from setting xj = aj for
1 ≤ j ≤ t - is simple and minimal. In particular, Fi(ā) 6= 0 for each 1 ≤ i ≤ k, and hence each Fi(ā)
is 1-sparse. Let 0 ≤ t ≤ n be the largest index such that the circuit C(a1, . . . , at, xt+1, . . . , xn) has
an sO(k2)-dense multiplication gate. Such an index exists by a hybrid argument. From the Sparsity
Bound, we get that C(a1, . . . , at, xt+1, . . . , xn) 6≡ 0. One the other hand, from the choice of t we
get that each multiplication gate in C(a1, . . . , at, at+1, xt+2 . . . , xn) is sO(k2)-sparse. Observe that
since each Fi is multilinear all the Pij-s in it must be variable disjoint. Thus, setting xt+1 = at+1

can affect at most one Pij in each Fi, and hence reduce the sparsity of each Fi by a factor of at
most s (recall that each Pij is s-sparse and that Pij(ā) 6= 0). Consequently, each multiplication
gate in C(a1, . . . , at, xt+1, . . . , xn) is s · sO(k2)-sparse. A priori we do not know what this index t is.
However, it turns out not to matter, since we can just run over all possible indices.

In all this discussion, we hid many technical issues under the rug such as the simplicity and
minimality of the original circuits and how to find such an assignment ā. We note that in the
black-box setting minimality comes for free since we can assume w.l.o.g that the black-box contains
a minimal circuit. To handle simplicity and find an assignment ā as above we use the method
of generators (see Section 2.3). This method was previously used in [SV09] and [KMSV10]. In
[KMSV10] this method has been already used to work around the aforementioned problems and to
ensure that all the steps of the proof go through smoothly.

1.3 Related Previous Results

Since the vast majority of the work on low depth circuits focused on circuits of depths 2 and 3, and
since our results can be viewed as an extension of this body of work, we formally define depth-3
circuits and some related and relevant notions. A depth-3 ΣΠΣ(k) circuit C of degree d computes
a polynomial of the form

C(x̄) =
k∑

i=1

Fi(x̄) =
k∑

i=1

di∏
j=1

Lij(x̄)

where the Lij(x̄)-s are linear functions: Lij(x̄) =
n∑

t=1
at

ijxt + a0
ij with at

ij ∈ F, and di ≤ d. Note that

Lij-s are irreducible polynomials. A multilinear ΣΠΣ(k) circuit has the additional requirement
that each Fi is a multilinear polynomial. We refer to the Fi-s as the multiplication gates of the
circuit. A subcircuit of C is defined as a sum of a subset of the multiplication gates in C. Let
gcd(C) ∆= gcd (F1, F2, . . . , Fk). We say that a circuit is simple if gcd(C) = 1. We say that a circuit is
minimal if no proper subcircuit of C computes the zero polynomial. Define the rank of C, denoted
by rank(C), as the rank of its linear functions, viewed as (n + 1)-dimensional vectors over Fn+1.
Formally: rank(C) ∆= dim

(
span{Lij}i∈[k],j∈[di]

)
. Clearly, ΣΠΣ(k) circuits are a restricted case of

ΣΠΣΠ(k) circuits.
The first non black-box [DS06] and almost all the black-box PIT algorithms for ΣΠΣ(k) circuits

[KS08, KS09, SS09, SS10] were designed based on the following structural property of ΣΠΣ(k)
known as the Rank Bound.

Lemma 1.1. There exists an increasing function R(k, d) such that if C is a simple and minimal
ΣΠΣ(k) circuit of degree d computes the zero polynomial then rank(C) < R(k, d).
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Up until recently, all the resulting black-box PIT algorithms for ΣΠΣ(k) circuits were based
on the black-box PIT algorithm of [KS08] that admits a running time of poly(n) · dO(R(k,d)). The
recent result of [SS11], giving a poly(n) · dO(k) time black-box PIT algorithm, was obtained by a
different approach. In the non black-box setting Kayal & Saxena [KS07] presented a poly(n) ·dO(k)

time PIT algorithm by another methodology.
The first result of Dvir & Shpilka [DS06] gave an upper bound of R(k, d) = 2O(k2) logk−2 d over

general fields. It was later improved by Saxena & Seshadhri [SS09, SS10] to R(k, d) = O(k2 log d).
Based on an example of [KS07] they, however, also illustrated a limitation of this approach by
exhibiting a lower bound of rank(C) = Ω(k log d) over finite fields, implying that the best black-
box PIT algorithm for finite fields achieved via this approach will be quasi-polynomial-time for
constant values of k. However, over the field of reals R the bound was significantly improved by
Kayal & Saraf [KS09] to kO(k) and later on by Saxena & Seshadhri [SS10] to R(k) = O(k2). Note
that there is no dependence on d, thus implying a polynomial-time algorithm.

For multilinear ΣΠΣ(k) circuits the best upper bound of RML(k) = O(k2 log k) for general
fields was shown in [SS10]. Yet, the PIT algorithm with the best running time of nO(k) obtained
in [SV09] does not rely on the Rank Bound.

Much less is understood about depth-4 circuits. The existing deterministic PIT algorithms had
covered only very restricted classes of those circuits [Sax08, SV09, AM10]. The first PIT algorithm
for multilinear ΣΠΣΠ(k) circuits was given by Karnin et al. in [KMSV10]. The algorithm is
in the black-box setting and has a running time of nO(k3·RML(k)·log2 s), when s is the size of the
circuit and RML(k) is the multilinear Rank Bound (see above). This implies a quasi-polynomial-
time algorithm for constant values of k. The main ingredient of the algorithm is a new structural
theorem for multilinear ΣΠΣΠ(k) circuits suggesting that there is a non-zero multilinear ΣΠΣ(k)
circuit “hiding” in every non-zero multilinear ΣΠΣΠ(k) circuit. The idea is to “search” for the
hidden ΣΠΣ(k) circuit using the multilinear Rank Bound. This search is what makes the algorithm
quasi-polynomial.

The Rank Bound relies strongly on the properties of linear functions. That is, one can define a
linear space spanned by the circuit components and benefit from its structure. This notion is absent
when moving to depth-4 circuits. In the current paper we suggest a natural generalization of this
notion - the Sparsity Bound. The idea is to bound the sparsities of the polynomials computed by
each multiplication gate in terms of the sparsities of the circuit components (Pij-s). This approach
can be seen as an extension of the Rank Bound approach. The following lemma demonstrates this
point and, in fact, can be seen as a “sanity check”.

Lemma 1.2. Let C(x̄) =
∑k

i=1 Fi(x̄) =
∑k

i=1

∏di
j=1 Lij(x̄) be a simple and minimal, multilinear

ΣΠΣ(k) circuit computing the zero polynomial. Let s denote the maximal sparsity of a Lij appearing
in C. Then each Fi is sRML(k)-sparse.

Proof. Fix i ∈ [k] and consider Fi =
∏di

j=1 Lij(x̄). By definition, each Fi is sdi-sparse. As Fi is a
multilinear polynomial, it must be the case that all the Lij-s of it are variable-disjoint and hence

linearly independent. Therefore, by the Rank Bound: di = dim
(
span{Lij}j∈[di]

)
≤ rank(C) <

RML(k) and whence Fi is sRML(k)-sparse.

Finally, we note that in the light of the connections between deterministic PIT and circuit lower
bounds, the recent results of [Raz06, Raz09, RSY08, RY09], showing lower bounds for multilinear
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circuits and formulas, suggest that efficient identity testers for multilinear formulas may be at reach.
Indeed, a major progress in this question has been made in the recent of work of Anderson et al.
[AvMV11]. In this work, multilinear read-k formulas 2 were studied, resulting in polynomial and
quasi-polynomial time PIT algorithms in the black-box and the non black-box settings, respectively,
for constant values of k. In fact, they have studied a broader model - multilinear read-k formulas
in which each leaf (variable) can be replaced by a sparse polynomial. The model is referred to
as “sparse-substituted” and it extends the model considered in this paper. However, the resulting
black-box PIT algorithm for multilinear ΣΠΣΠ(k) circuits admits a quasi-polynomial running time.

1.4 Organization

We start by some basic definitions and notation in Section 2. In Section 3 we formally introduce our
model and give some related definition. In Section 4, we prove our structural theorem (Theorem
1) and exhibit a lower bound. We give our main result - a black-box PIT algorithm for multilinear
ΣΠΣΠ(k) circuits, in Section 5, thus proving Theorem 2. Finally, in Section 6 we consider a non
black-box PIT algorithm for multilinear ΣΠΣΠ(k) circuits, proving Theorem 3.

2 Preliminaries

For a positive integer n, let [n] denote the set {1, . . . , n}. Let F be the underlying field, and F
be its algebraic closure. For a polynomial P (x1, . . . , xn), a variable xi, and α ∈ F, let P |xi=α

denote the polynomial that results upon setting xi = α. We now give some definitions that apply
to polynomials P,Q ∈ F[x1, x2, . . . , xn]. We say that P depends on xi if there exist ā ∈ Fn and
b ∈ F such that: P (a1, a2, . . . , ai−1, ai, ai+1, . . . , an) 6= P (a1, a2, . . . , ai−1, b, ai+1, . . . , an). We denote
var(P ) ∆= {i : P depends on xi}. Intuitively, P depends on xi if xi appears when P is written as
a sum of monomials. Given a subset I ⊆ [n] and an assignment ā ∈ Fn we define P |x̄I=āI to be the
polynomial resulting from setting xi = ai for every i ∈ I. We say that P divides Q, or equivalently
Q is divisible by P , and denote it by P | Q if there exists a polynomial h ∈ F[x1, x2, . . . , xn] such
that Q = P ·h. Otherwise, we say that P does not divide Q (or Q is not divisible by P ) and denote
it by P 6 | Q. Given the notion of divisibility we define the gcd of a set of polynomials in the natural
way.

2.1 Sparsity of a Polynomial

In this section we formally define the notion “sparsity of a polynomial”. We also show how to upper
bound the sparsity of a given polynomial via the sparsities of its different partial substitutions. For
simplicity we concentrate on multilinear polynomials, however the definitions can be generalized to
all polynomials. A multilinear polynomial P ∈ F[x1, x2, . . . , xn] can be (uniquely) written as

P =
∑

A⊆[n]

αA ·XA (1)

where αA ∈ F (the coefficients) and XA denotes
∏
i∈A

xi.

2read-k formulas are arithmetic formulas in which each variable can appear at most k times.

7



Definition 2.1. We define the characteristic set of a multilinear polynomial P as χP
∆=

{A : A ⊆ [n], αA 6= 0}. The sparsity of P is defined as the number of (the non-zero) monomials
of P and denoted by ‖P‖. Clearly, ‖P‖ = |χP |. For the purposes of connecting the sparsity of a
given polynomial with the sparsities of its partial substitutions we extend these notions. For every
I ⊆ [n] we define χP |I

∆= {A \ I : A ⊆ [n], αA 6= 0} and ‖P‖I
∆=
∣∣χP |I

∣∣.
The following is immediate from the definitions and will be used implicitly.

Corollary 2.2. Let P,Q ∈ F[x1, x2, . . . , xn] be variable-disjoint polynomials and let I ⊆ [n]. Then
‖P‖I ≤ ‖P‖ and ‖P ·Q‖I = ‖P‖I · ‖Q‖I .

Intuitively, χP |I captures the distinct monomials left after we “erase” the variables of x̄I .
In fact, the same effect is achieved by setting these variables to field elements. However, dif-
ferent substitutions may lead to different results, as monomials may cancel out. For example:
‖(x1x3 + x1x2x3)|x3=1‖ = 2 = ‖x1x3 + x1x2x3‖{3} , however ‖(x1x3 + x1x2x3)|x3=0‖ = 0. It is not
hard too see that a random assignment to the variables of x̄I should not lead to any unwanted
cancellations, and thus achieve the same effect in sparsity as “erasing” the variables of I.

We show that ‖P‖I is, in fact, attained by the substitution that maximizes the sparsity of
the resulting polynomial. We do so by formulating this condition (of not creating any unwanted
cancellations and hence maximizing the sparsity) as that of being a non-zero assignment to a certain
polynomial ΨP . Observe that a random assignment would indeed satisfy this condition. Before
giving the proof, we need some more definitions.

Definition 2.3. Let P ∈ F[x1, x2, . . . , xn]. For B, I ⊆ [n] such that B ∩ I = ∅ we define:

PB,I
∆=
∑
J⊆I

αB∪J ·XJ and ΨP
∆=

∏
PB,I 6≡0

PB,I .

Intuitively, PB,I represents the monomials of P that could be affected by setting the variables
in x̄I to field elements. ΨP captures all the non-zero PB,I -s.

Lemma 2.4 (Max sparsity Condition). Let I ⊆ [n] and let ā ∈ Fn be such that ΨP |x̄I=āI 6≡ 0.
Then ‖P |x̄I=āI‖ = max

b̄∈Fn
‖P |x̄I=b̄I

‖ = ‖P‖I .

Proof. Clearly, ‖P |x̄I=āI‖ ≤ max
b̄∈Fn

‖P |x̄I=b̄I
‖ ≤ ‖P‖I . We now show that ‖P‖I ≤ ‖P |x̄I=āI‖. In fact,

we show that χP |I ⊆ χ(P |x̄I=āI
). Let P |x̄I=āI =

∑
B⊆[n]\I

βB · XB be the representation of P |x̄I=āI

as in From 1. Observe that βB = PB,I |x̄I=āI . Now, let B ∈ χP |I . By the definition of χP |I there

exists A ⊆ [n] such that B = A \ I and αA 6= 0. Set J
∆= A \B. Note that J ⊆ I. This implies that

PB,I 6≡ 0 as the coefficient of XJ in PB,I is αB∪J = αA 6= 0. From the choice of ā, it holds that
βB = PB,I |x̄I=āI 6= 0 which implies that B ∈ χ(P |x̄I=āI

).

As mentioned earlier, the main technical task will be to bound ‖F‖ in terms of the different
‖F‖I -s. For this purpose we use Shearer’s Lemma (see e.g. [CGFS86]).

Lemma 2.5 (Shearer). Let n ∈ N and let I1, . . . Im ⊆ [n] be subsets of [n] such that every element
of i ∈ [n] is contained in at least k of I1, . . . Im. Let F be a collection of subsets of [n] and let

Fj
∆= {A ∩ Ij : A ∈ F} for j ∈ [m]. Then we have |F|k ≤

m∏
j=1

|Fj |.
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The following corollary of Shearer’s Lemma connects the sparsity of a polynomial with the
sparsities of its different partial substitutions.

Corollary 2.6. Let F ∈ F[x1, x2, . . . , xn] be a polynomial, d ≥ 2 and I1, I2, . . . , Id ⊆ [n] disjoint

sets. Then ‖F‖d−1 ≤
d∏

j=1
‖F‖Ij .

Proof. Set F = χF and Fj =
{
A ∩ Īj : A ∈ F

}
, and apply Shearer’s lemma. Note that since the

Ij-s are disjoint, every i ∈ [n] appears in every complement set Īj , except at most one.

We will need the following recent result of [SV10] that gives an efficient factorization algorithm
for sparse multilinear polynomials. In particular we can see that a factor of a multilinear s-sparse
polynomial is also a multilinear s-sparse polynomial.

Lemma 2.7 (Corollary from [SV10]). Given a multilinear polynomial P ∈ F[x1, x2, . . . , xn] there
is a poly(n, ‖P‖) time deterministic algorithm that outputs the irreducible factors, h1, . . . , hk of P .
Furthermore, ‖h1‖ · ‖h2‖ · . . . · ‖hk‖ = ‖P‖.

The following is a simple property of the sparsity of the gcd of several polynomials. For a proof
see Appendix A.

Observation 2.8. Let {Fi}, {Gi} ⊆ F[x1, x2, . . . , xn] be such that Fi, Gi 6≡ 0. Then

‖gcd(F1 ·G1, F2 ·G2, . . . , Fk ·Gk)‖ ≤ ‖gcd(F1, F2, . . . , Fk)‖ · ‖G1‖ · ‖G2‖ · . . . · ‖Gk‖.

2.2 The Operator D`

This operator was defined and used in [KMSV10] for the purpose of finding a non-zero assignment of
a polynomial, that preserves certain properties. In this paper we extend the usage of this operator
to finding zero assignments of polynomials. This task of finding zero assignments turns out to
be much trickier. In this section we formally define the operator and list some properties that
immediately follow (and will be used later).

Definition 2.9. For ` ∈ [n] let D`(P,Q) be the polynomial defined as follows:

D`(P,Q)(x̄) ∆=
∣∣∣∣( P P |x`=0

Q Q|x`=0

)∣∣∣∣ (x̄) = (P ·Q|x`=0 − P |x`=0 ·Q)(x̄).

Note that D` is a bilinear transformation. The following lemma lists several useful properties
of D` that are easy to verify.

Lemma 2.10. Let P,Q,R ∈ F[x1, x2, . . . , xn] be multilinear polynomials and let ` ∈ [n]. Then the
following properties hold:

1. D`(R + Q,P ) = D`(R,P ) + D`(Q,P ).

2. Let R be such that ` 6∈ var(R) then D`(R ·Q,P ) = R ·D`(Q,P ).

3. D`(Q,P ) = −D`(P,Q).

4. Let i 6= ` then D`(P |xi=α, Q|xi=α) = (D`(P,Q)) |xi=α.
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5. Let α, β ∈ F then ‖D`(Q,α · x` + β)‖ ≤ ‖Q‖.

6. Let P be irreducible and let ` ∈ var(P ) then D`(Q,P ) ≡ 0 iff P | Q.

The last property can be easily generalized to yield a condition for a set of polynomials to have
a (non-trivial) gcd. This condition was implicitly used in [KMSV10]. For the sake of completeness
we give a proof in Appendix A.

Lemma 2.11. Let F1, F2, . . . , Fk ∈ F[x1, x2, . . . , xn] be multilinear polynomials. Then
gcd(F1, F2, . . . , Fk) 6= 1 iff there exists ` ∈ var(F1) such that D`(Fi, F1) ≡ 0 for every i ∈ [k].

2.3 Mappings and Generators for Arithmetic Circuits

In this section, we formally define the notion of generators and hitting sets for polynomials and
describe a few useful properties. For a further discussion see [SV09, KMSV10].

A mapping G = (G1, . . . ,Gn) : Fq → Fn, is a generator for the circuit class M if for every
non-zero n-variate polynomial P ∈ M, it holds that P (G) 6≡ 0. The image of the mapping G is
denoted as Im (G) = G(F̄q). Ideally, q should be very small compared to n. A set H ⊆ Fn is a
hitting set for a circuit class M, if for every non-zero polynomial P ∈M, there exists ā ∈ H, such
that P (ā) 6= 0. A generator can also be viewed as a mapping containing a hitting set for M in its
image. That is, for every non-zero P ∈ M there exists ā ∈ Im (G) such that P (ā) 6= 0. In identity
testing generators and hitting sets play the same role. Given a generator one can easily construct
a hitting set by evaluating the generator on a large enough set of points. Conversely, in [SV09]
an efficient method of constructing a generator from a hitting set, was given. The following is an
immediate and important property of a generator:

Observation 2.12. Let P = P1 · P2 · ... · Pk be a product of non-zero polynomials Pi ∈ M and let
G be a generator for M. Then P (G) 6≡ 0.

The following Lemma from [KMSV10] establishes a generator for multilinear sparse polynomials.

Lemma 2.13 (Lemma 2.7 in [KMSV10]). For every m ≥ 1 there exists a generator Sm
∆=(

S1
m,S2

m, . . . ,Sn
m

)
: Fq → Fn for m-sparse multilinear polynomials where the individual degree of

each Si
m is bounded by n− 1 and q(n, m) = O(log nm).

We conclude this section with a well-known lemma concerning polynomials, giving a trivial (yet
possibly large) hitting set. A proof can be found in [Alo99].

Lemma 2.14. Let P ∈ F[x1, x2, . . . , xn] be a polynomial. Suppose that for every i ∈ [n] the
individual degree of xi is bounded by di, and let Si ⊆ F be such that |Si| > di. We denote S =
S1 × S2 × · · · × Sn then P ≡ 0 iff P |S ≡ 0.

3 Depth-4 Multilinear Circuits

In this section, we formally present the model of depth-4 multilinear circuits and some related
definitions. Similar definitions were given in [KMSV10].
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Definition 3.1. A multilinear depth-4 ΣΠΣΠ(k) circuit C has four layers of alternating Σ and Π
gates (the top Σ gate is at level one) and it computes a polynomial of the form

C(x̄) =
k∑

i=1

Fi(x̄) =
k∑

i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are multilinear polynomials computed by the last two layers of ΣΠ gates of the
circuit and are the inputs to the Π gates at the second level. In addition, each multiplication gate
Fi computes a multilinear polynomial.

The requirement that the Fi-s compute multilinear polynomials implies that for each i ∈ [n]
the polynomials {Pij}j∈[di]

are variable-disjoint. Note that if the circuit is of size s then each Pij

is s-sparse. For every A ⊆ [k] we define the subcircuit CA of C as CA
∆=
∑

i∈A Fi. We define

gcd(C) ∆= gcd(F1, . . . , Fk). We say that the circuit C is simple if gcd(C) = 1. We define the
simplification of C to be sim(C) ∆= C/ gcd(C). Note that sim(C) is a simple ΣΠΣΠ(k) circuit. We
say that the circuit C is minimal if no proper subcircuit of C computes the zero polynomial. That
is, for every ∅ ( A ( [k] it holds that CA 6≡ 0. For P ∈ F[x1, x2, . . . , xn] we say that the circuit C
is P -minimal if no proper subcircuit of C is divisible by P .

Lemma 2.7 implies that all the irreducible factors of the Pij-s are s-sparse. Moreover, if C
is given to us explicitly those factors can be computed efficiently. Consequently, we can assume
w.l.o.g that all the Pij-s are irreducible.

4 The Sparsity Bound

In this section we prove the main technical result (Theorem 1) an upper bound on the sparsity of
the multiplication gates in a simple and minimal, multilinear ΣΠΣΠ(k) circuit C computing the
zero polynomial. To complete the picture we also give a lower bound on the gate’s sparsity.

We first present an outline of the proof. As mentioned earlier, we assume w.l.o.g that all Pij-s
are irreducible and use the circuit size s to bound their sparsities (i.e. ‖Pij‖ ≤ s). The proof is by
induction on k (the fan-in).

Step 1: We show that for every ∅ ( A ( [k], gcd(CA) is s5(k−|A|+1)2-sparse. We do so by “embed-
ding” gcd(CA) into a circuit with a smaller k and applying the inductive argument. In particular,
we conclude that for every i 6= j it holds that gcd(Fi, Fj) is s5(k−1)2-sparse.

Step 2: Applying the previous argument, we conclude for each 1 ≤ i ≤ k − 1 there are “many”
Pkj-s that do not divide Fi. More specifically, if all the gates of C are s5k2

-sparse, then we are done.
Otherwise, w.l.o.g Fk is s5k2

-dense. Let 1 ≤ i ≤ k − 1. Write Fk = F ′
k · gcd(Fi, Fk). By definition,

F ′
k is the product of all the Pkj-s that do not divide Fi. As Fk is s5k2

-dense and gcd(Fi, Fk) is
s5(k−1)2-sparse we get that F ′

k is s5k2−5(k−1)2 = s10k−5-dense. Finally, we observe that since each
Pkj is s-sparse, F ′

k must be a product of at least 10k − 5 of them.

Step 3: For every 1 ≤ i ≤ k − 1 and j such that Pkj does not divide Fi we find a zero assignment
ā of Pkj that preserves certain properties of C (see discussion in Section 1.1). In particular, ā
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maximizes the sparsity of F ′
i - the polynomial resulting from a substitution of ā into Fi. After-

wards, using the inductive argument we obtain a “good” estimation for the sparsity of F ′
i . Formally,

we show that F ′
i is s5(k−1)2+k+19-sparse. This analysis is the heart of the proof of the sparsity bound.

Step 4: Based on the information collected in Step 3 we use Shearer’s Lemma to show that for
every 1 ≤ i ≤ k − 1, Fi is s5k2−1-sparse. As −Fk = F1 + F2 + . . . + Fk−1 we can upper bound
the sparsity of Fk by the sum of the sparsities of Fi-s, for 1 ≤ i ≤ k − 1. We conclude that Fk is
s5k2−1 · (k−1) < s5k2

-sparse, thus reaching a contradiction to our assumption. The “large” number
of distinct partial substitutions used in Shearer’s Lemma makes our bound nearly optimal.

We now give a more formal statement and then prove Theorem 1.

Theorem 4.1 (The Sparsity Bound). There exists an non-decreasing function ϕ(k, s) such that

if C(x̄) =
k∑

i=1
Fi(x̄) is a simple and minimal, multilinear ΣΠΣΠ(k) circuit of size s computing the

zero polynomial, then for each i ∈ [k] it holds that ‖Fi‖ ≤ ϕ(k, s) and ϕ(k, s) ≤ s5k2
.

Proof. The proof is by induction on k. The base case is k = 2. Note that in this case C must be
of the form C = α− α for some α ∈ F. Therefore, ‖F1‖ = ‖F2‖ = 1. Assume that k ≥ 3.

We first state and prove some lemmas that will be useful for the proof. Note that all lemma
are proven as part of the inductive argument we apply in the proof of the theorem. We start by
showing an upper bound on the sparsity of the gcd of any subcircuit of a simple and minimal,
multilinear ΣΠΣΠ(k) circuit computing the zero polynomial. We do so by ‘embedding’ the gcd as
a multiplication gate into a ΣΠΣΠ circuit of a smaller fan-in. Informally, we do this be setting
all the variables that do not appear in the gcd to field elements in such a way that the simplicity
and minimality of the circuit is preserved (and hence induction can be applied). By setting the
variables, the subcircuit corresponding to the gcd collapses to a single multiplication gate which
is just a scaled version of the gcd term. In fact, setting those variables to random field elements
would work with high probability if the underlying field is large enough. Below we present a formal
argument.

Lemma 4.2. Let C(x̄) =
k∑

i=1
Fi(x̄) be a simple and minimal, multilinear ΣΠΣΠ(k) circuit of size

s computing the zero polynomial and let G
∆= gcd(F1, F2, . . . , Ft) for some 2 ≤ t ≤ k − 1. Then

‖G‖ ≤ ϕ(k − t + 1, s).

Proof. Denote V = [n] \ var(G) and Fi = fi · G for i ∈ [t]. Observe that var(fi) ⊆ V for each fi.
We will show now that there exists a partial assignment ā ∈ Fn to x̄V that preserves the properties
of minimality and the simplicity of the circuit. For that purpose, recalling Definition 2.9, we define
the polynomial:

Φ =
∏

∅(A([k]

CA ·
∏

`,i : D`(Fi,F1) 6≡0

D`(Fi, F1).

Let ā ∈ Fn such that Φ|x̄V =āV 6≡ 0. Let F ′
i

∆= Fi|x̄V =āV for i ∈ [k]. Consider C ′ = C|x̄V =āV

∆=
k∑

i=1
F ′

i .

From the definition of ā it follows that C ′ is minimal since C ′
A = CA|x̄V =āV 6≡ 0 for every ∅ (
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A ( [k]. Next, we argue that C ′ is simple. As C is simple we have that gcd(F1, F2, . . . , Fk) = 1.
Therefore, Lemma 2.11 implies that for every ` ∈ var(F1) there exists i ∈ [k] such that D`(Fi, F1) 6≡
0. From the choice of ā we obtain that for every ` ∈ var(F1) there exists i ∈ [k] such that
D`(F ′

i , F
′
1) 6≡ 0, and thus, by the second direction of Lemma 2.11 gcd(F ′

1, F
′
2, . . . , F

′
k) = 1. Now,

set H1
∆=

t∑
i=1

F ′
i and Hi

∆= F ′
t+i−1 for 2 ≤ i ≤ k − t + 1. Recall that var(fi) ⊆ V for each i ∈ [t],

therefore

H1 =
t∑

i=1

Fi|x̄V =āV =
t∑

i=1

(fi ·G) |x̄V =āV =

(
t∑

i=1

fi|x̄V =āV

)
·G = α ·G

for some α ∈ F. We now can define Ĉ
∆=

k−t+1∑
i=1

Hi = α · G +
k∑

i=t+1
F ′

i - the circuit obtained from

C ′ by joining together the first t summands. Indeed, we embedded G into a circuit with a smaller
fan-in. We argue Ĉ satisfies the required properties so we can apply the induction hypothesis.
First, note that Ĉ ≡ 0. The minimality of Ĉ follows from the minimality of C ′. In particular,
α ·G = H1 = C ′

[t] 6≡ 0 and thus α 6= 0. Finally, observe that

gcd(Ĉ) = gcd(α ·G, F ′
t+1, . . . , F

′
k) = gcd(F ′

1, . . . , F
′
t , F

′
t+1, . . . , F

′
k) = gcd(C ′)

and hence Ĉ is simple. We can conclude that Ĉ is a simple and minimal, ΣΠΣΠ(k− t+1) circuit of
size s computing the zero polynomial. In addition, note that 2 ≤ k − t + 1 ≤ k − 1. Consequently,
we can apply the induction hypothesis on Ĉ. We obtain that ‖G‖ = ‖H1‖ ≤ ϕ(k − t + 1, s).

Next is a technical lemma that will allow us to decrease, in some sense, the top fan-in of the
circuit. This step is required in order to use the inductive argument. Recall that a P -minimal
circuit is one where no proper subcircuit is divisible by P .

Lemma 4.3. Let C(x̄) =
k∑

i=1
Fi(x̄) be a multilinear ΣΠΣΠ(k) circuit computing the zero polynomial

and let P ∈ F[x1, x2, . . . , xn] be a factor of Fk (i.e. P | Fk) such that P 6 | F1. Then there exists a set
A ⊆ [k] of size 2 ≤ |A| ≤ k−1 such that the following holds: 1 ∈ A, the subcircuit CA(x̄) =

∑
i∈A

Fi(x̄)

is P -minimal and P | CA.

Proof. As C computes the zero polynomial we have that P | C. Therefore, C can be partitioned
into subcircuits that are minimal w.r.t. this property. Formally, there exists a partition

⋃
i

Ai =

[k] , Ai
⋂

Aj = ∅ such that for every i the subcircuit CAi is P -minimal and P | CAi . Let w.l.o.g
A1 be such that 1 ∈ A1. It is only left to show that 2 ≤ |A1| ≤ k − 1. First of all, note that since
P | Fk there must be Aj = {k} for some j 6= i and hence |A1| ≤ k − 1. For the second condition,
note that since P 6 | F1 it must be the case that A1 6= {1} and hence |A1| ≥ 2.

Finally, we give the heart of our argument. The lemma shows how to transform a given simple
and P -minimal circuit C, such that P | C, into a simple and minimal circuit of a smaller fan-in,
computing the zero polynomial. As before, the transformation is carried out by finding a partial
assignment ā to x̄var(P ) that preserves the minimality and the simplicity of C. However, the most
important property of ā is that it maximizes the sparsity of the circuit, resulting upon the partial
substitution into x̄var(P ). This fact allows us to apply Shearer’s Lemma. It can be easily seen that
P (ā) = 0. To find the required assignment we present a new technique (see Sec 2.2).
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Lemma 4.4. Let 2 ≤ t ≤ k−1. Let P ∈ F[x1, x2, . . . , xn] be a non-constant, irreducible, multilinear

polynomial and let C(x̄) =
t∑

i=1
Fi(x̄) be a simple and P -minimal, multilinear ΣΠΣΠ(t) circuit of

size s such that P | C. Then ‖F1‖var(P ) ≤ ϕ(t, s) · st.

Proof. Our goal is to upperbound ‖F1‖var(P ). As previously, we wish to do so by an appropriate
embedding. What we would like to do is to fix the variables in var(P ) in a way that will make P
evaluate to zero, and at the same time, will result in a simple and minimal circuit. This way the
circuit would have fewer multiplication gates, and we could apply induction. Unfortunately, this
scenario might not be possible to implement. We will look to approximate it paying a ‘small price’.

Pick ` ∈ var(P ). For each i ∈ [t] we can write Fi = Hi ·Qi such that ‖Qi‖ ≤ s and ` 6∈ var(Hi):
If ` ∈ var(Fi) set Qi to be the irreducible factor of Fi that depends on `, otherwise set Qi = 1.

Now, recalling Definition 2.9, consider C ′ = D`(C,P ) ∆=
t∑

i=1
D`(Fi, P ). By Lemma 2.10

C ′ =
t∑

i=1

Hi ·D`(Qi, P ) ≡ 0.

In addition, note that C ′ is minimal since C ′
A = D`(CA, P ) 6≡ 0 for every ∅ ( A ( [t] from the

P -minimality of C and Lemma 2.10. By definition, the polynomials Hi and Qi are variable-disjoint.
However, this might not be the case for P and Hi. Consequently, C ′ might be non-multilinear.
Furthermore, ‖D`(Qi, P )‖ might be large. In order to resolve the aforementioned problems we will
use a partial assignment ā with properties similar to the ones in Lemma 4.2. Let V = var(P ) \ {`}.
We recall Definition 2.3 and define:

Φ =
∏

∅(A([t]

C ′
A ·

∏
j,i : Dj(Fi,F1) 6≡0

Dj(Fi, F1) ·ΨH1 .

Let ā ∈ Fn such that Φ|x̄V =āV 6≡ 0. Set H ′
i

∆= Hi|x̄V =āV and Q′
i

∆= D`(Qi, P )|x̄V =āV for i ∈ [t].

Consider C ′′ = C ′|x̄V =āV

∆=
k∑

i=1
H ′

i ·Q′
i. By a reasoning similar to Lemma 4.2 we obtain that C ′′ is

minimal and that gcd(H ′
1,H

′
2, . . . ,H

′
t) = 1. By Lemma 2.10 for each i ∈ [t] we have:

Q′
i = D`(Qi|x̄V =āV , P |x̄V =āV ) = D`(Qi|x̄V =āV , αP · x` + βP )

for some αP , βP ∈ F and hence ‖Q′
i‖ ≤ ‖Qi‖ ≤ s. Consequently, we get that C ′′ is a minimal,

multilinear ΣΠΣΠ(t) circuit of size s computing the zero polynomial. In addition, from the choice
of ā and Lemma 2.4 we obtain (recall that ` 6∈ var(H1)):

‖H ′
1‖ = ‖Hi|x̄V =āV ‖ = ‖H1‖var(P )\{`} = ‖H1‖var(P ).

By the induction hypothesis applied on the simplification sim(C ′′) of C ′′:

‖H ′
1 ·Q′

1/ gcd(C ′′)‖ ≤ ϕ(t, s).

While by Observation 2.8

‖gcd(C ′′)‖ ≤ ‖gcd(H ′
1, . . . ,H

′
t)‖ · ‖Q′

1‖ · . . . · ‖Q′
t‖ ≤ st−1 · ‖Q′

1‖.
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Putting the above together we obtain:

‖F1‖var(P ) = ‖H1‖var(P ) · ‖Q1‖var(P ) ≤ ‖H ′
1‖ · s ≤ ϕ(t, s) · ‖gcd C ′′‖

‖Q′
1‖

· s ≤ ϕ(t, s) · st.

We now return to the proof Theorem 4.1.
Assume for a contradiction (and w.l.o.g) that ‖Fk‖ > s5k2

. We will show that this implies ‖Fi‖ ≤

s5k2−1 for 1 ≤ i ≤ k − 1. As
k∑

i=1
Fi ≡ 0 we would obtain that

‖Fk‖ =

∥∥∥∥∥
k−1∑
i=1

Fi

∥∥∥∥∥ ≤
k−1∑
i=1

‖Fi‖ < (k − 1) · s5k2−1 < s5k2

thus leading us to a contradiction.

For the sake of simplicity, we show that the claim holds for i = 1 (i.e. ‖F1‖ ≤ s5k2−1). Note
however, the same proof can be repeated for every 1 ≤ i ≤ k−1 due to the symmetry of the circuit.
We first show that there are “many” (irreducible) Pkj-s such that Pkj 6 | F1. Recall that we can

assume w.l.o.g. that Pij-s are irreducible. For that purpose we define F ′
k

∆= Fk/ gcd(F1, Fk). Let
w.l.o.g. Pk1, Pk2, . . . , Pkd be its irreducible factors, that is, F ′

k = Pk1 · Pk2 · . . . · Pkd. By definition,
each such Pkj divides Fk and does not divide F1. By Lemma 4.2 ‖gcd(F1, Fk)‖ ≤ s5(k−1)2 and
hence:

sd ≥ ‖Pk1 · Pk2 · . . . · Pkd‖ = ‖F ′
k‖ =

‖Fk‖
‖gcd(F1, Fk)‖

≥ s5k2−5(k−1)2

implying that d ≥ 5k2 − 5(k − 1)2 = 10k − 5. Fix some some j ∈ [d] and consider Pkj . By
Lemma 4.3 there exists a set A ⊆ [k] of size 2 ≤ |A| ≤ k − 1 such that 1 ∈ A, the sub-circuit
CA(x̄) is Pkj-minimal, and Pkj | CA. Assume w.l.o.g that A = {1, 2, . . . , t} when t = |A|. Let

G
∆= gcd(F1, F2, . . . , Ft). By Lemma 4.2.

‖G‖ ≤ ϕ(k − t + 1, s) ≤ s5(k−t+1)2 .

From the Pkj-minimality of CA we have that for each i ∈ [t] Pkj 6 | Fi and hence Pkj 6 | G. Con-

sequently, we obtain that sim(CA) ∆=
t∑

i=1
Fi/G is a simple and Pkj-minimal, multilinear ΣΠΣΠ(t)

circuit such that Pkj | sim(CA) (as the simplification does not affect the Pkj-minimality). Thus, by
Lemma 4.4:

‖F1/G‖var(Pkj) ≤ ϕ(t, s) · st ≤ s5t2+t.

Putting together:

‖F1‖var(Pkj) ≤ ‖F1/G‖var(Pkj) · ‖G‖ ≤ s5(k−t+1)2+t+5t2 ≤ s5(k−1)2+k+19. 3

3For k ≥ 3 and 2 ≤ t ≤ k − 1 it holds that: 5(k − t + 1)2 + t + 5t2 ≤ 5(k − 1)2 + k + 19.
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Recall that this inequality holds for every Pkj when 1 ≤ j ≤ 10k − 5 ≤ d. In addition, recall
that Pkj-s are variable-disjoint polynomials (as factors of a multilinear polynomial). Hence, we can
upper bound ‖F1‖ using Corollary 2.6.

‖F1‖ ≤

10k−5∏
j=1

‖F1‖var(Pkj)

 1
10k−6

≤ s(5(k−1)2+k+19)· 10k−5
10k−6 < s5k2−1. 4

As it was previously stated, the above inequality holds, in fact, for every Fi when 1 ≤ i ≤ k − 1.

Therefore, since Fk = −
k−1∑
i=1

Fi it holds that ‖Fk‖ < s5k2
. In conclusion we obtain that ‖Fi‖ ≤ s5k2

for each i ∈ [k].

4.1 Lower Bound

To give a complete picture, we show that lower bound of ϕ(k, s) = sΩ(k) on the sparsity of the
multiplication gates in a simple and minimal, multilinear ΣΠΣΠ(k) circuit, in terms of the size of
the circuit. Our lower bound is over sufficiently large fields and it suggests that our result is near
optimal. More specifically, for every ` ≥ 2 we construct a simple and minimal, multilinear ΣΠΣΠ(k)
circuit of size s = poly(k), computing the zero polynomial with sΩ(k)-dense multiplication gates,
when k = Ω(

√
`). In fact, our ΣΠΣΠ(k) circuit is a ΣΠΣ(k). Our construction is carried out in two

steps. At the first step, we construct a multilinear ΣΠΣ(`) circuit C with distinct linear functions
and show that it computes the zero polynomial. The distinct linear functions imply that every
subcircuit of C is simple. At the second step, we consider one of C’s minimal subcircuits - C ′ and
use our upper bound to show that C ′ has a “large” fan-in. A similar example was given in [SV09].

Lemma 4.5. For every ` ≥ 2 there exist k = Ω(
√

`) and a simple and minimal, multilinear

ΣΠΣΠ(k) circuit C =
k∑

i=1
Fi of size s = poly(k), computing the zero polynomial such that ‖Fi‖ =

sΩ(k) for every i ∈ [k]. (Assuming that |F| ≥ ` + 2).

Proof. Let A = {α1, α2, . . . , α`+1} ⊆ F \ {0} be a subset of ` + 1 distinct non-zero elements. For
every i ∈ [`+1] let ui(w) be the i-th Lagrange Interpolation Polynomial over A. Let R : F`2+1 → F

be defined as: R(x̄, y) =
∏̀
i=1

(xi,1 + xi,2 + . . . + xi,` + y). Since the degree of y in R(x̄, y) is ` we

get that R(x̄, y) =
`+1∑
i=1

ui(y) ·R(x̄, αi), by interpolating R(x̄, y) as a degree ` polynomial in y. Now

consider:

C
∆=

`+1∑
i=1

ui(0) ·R(x̄, αi)−R(x̄, 0)

By definition, C is a multilinear ΣΠΣΠ(` + 2) circuit computing the zero polynomial. Let C ′ =
k∑

i=1
Fi be a minimal subcircuit of C computing the zero polynomial. Note that for distinct αi-

s the multiplication gates (Fi-s) contain distinct linear functions and that ui(0) 6= 0 for every
i. Consequently, C ′ is a simple and minimal, multilinear ΣΠΣΠ(k) circuit computing the zero

4For k ≥ 3 it holds that:
`
5(k − 1)2 + k + 19

´
· 10k−5

10k−6
< 5k2 − 1.
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polynomial, with 2 ≤ k ≤ ` + 2. Let s denote the size of C. Clearly, s = poly(k, `) = `Θ(1). Now,
let i ∈ [k]. On one hand, we have that ‖Fi‖ ≥ `` = sΩ(`). On the other hand, by Theorem 1
‖Fi‖ = sO(k2). This implies that ‖Fi‖ = sΩ(k) and that k = Ω(

√
`), which in turn implies that

s = poly(k), as required.

5 Black-Box PIT for Multilinear ΣΠΣΠ(k) Circuits

In this section we give an efficient black-box PIT algorithm for multilinear ΣΠΣΠ(k) circuits. We
do so by constructing a generator for such circuits, which gives us a small hitting set. We start
by describing the construction. Intuitively, we construct a family of mappings H`,m such that the
image of H`,m contains all vectors which are obtained as a concatenation of a prefix of a vector from
Im (H`−1,m) and a suffix of a vector from Sm (a generator for m-sparse multilinear polynomials.
See Lemma 2.13). The correctness of our construction relies on the Sparsity Bound ϕ(k, s), as
defined in Theorem 4.1.

We assume that |F| > n as we are allowed to use elements from an appropriate extension field.
Throughout the entire section we fix a set A = {α0, α1, α2, . . . , αn} ⊆ F of n + 1 distinct elements.

Definition 5.1. For every i ∈ [n] let Ui(y) : F → F be defined as the degree n polynomial satis-
fying: Ui(αj) = 1 if j ≥ i and 0 otherwise. For every ` ≥ 1 and m ≥ 1 we define: for i ∈ [n]
H i

`,m(w̄1, . . . , w̄`, y1, . . . , y`) : Fq·`+` → F as

H i
`,m(w̄1, . . . , w̄`, y1, . . . , y`)

∆= H i
`−1,m(w̄1, . . . , w̄`−1, y1, . . . , y`−1) · Ui(y`) + Si

m(w̄`) · (1− Ui(y`)).

and H`,m(w̄1, . . . , w̄`, y1, . . . , y`) : Fq·`+` → Fn as H`,m
∆=
(
H1

`,m,H2
`,m, . . . ,Hn

`,m

)
.

For the sake of completeness we set H i
0,m ≡ 0. We will use the following immediate but crucial

observation:

Observation 5.2. For every 0 ≤ t ≤ n, it holds that

H`,m|y`= αt =
(
H1

`−1,m, . . . ,Ht
`−1,m,St+1

m , . . .Sn
m

)
and hence, for every ā ∈ Im (H`−1,m) and b̄ ∈ Im (Sm) it holds that

(a1, . . . , at, bt+1, . . . , bn) ∈ Im (H`,m) .

In particular, Im (H`−1,m) ∪ Im (Sm) ⊆ Im (H`,m).

To use the construction, we first show that every “non sparse” circuit can be “shrunk” into a
“somewhat sparse” circuit.

Lemma 5.3. Let M ≥ 1 and let C(x̄) =
k∑

i=1
Fi(x̄) =

k∑
i=1

di∏
j=1

Pij(x̄) be a multilinear ΣΠΣΠ(k) circuit

of size s such that max
i
‖Fi‖ > M . Let ā ∈ Fn such that Fi(ā) 6= 0 for each i ∈ [k]. Then there

exists 0 ≤ t ≤ n− 1 such that M < max
i
‖Fi|x̄[t]=ā[t]

‖ ≤ M · s

17



Proof. We apply the hybrid argument since max
i
‖Fi‖ > M and max

i
‖Fi|x̄[n]=ā[n]

‖ ≤ 1 ≤ M . Let

0 ≤ t ≤ n − 1 be the maximal index such that max
i
‖Fi|x̄[t]=ā[t]

‖ > M . From the choice of t we

have that max
i
‖Fi|x̄[t+1]=ā[t+1]

‖ ≤ M . For the remaining condition, note that for each i ∈ [k] the

polynomial Fi|x̄[t+1]=ā[t+1]
is obtained from Fi|x̄[t]=ā[t]

by fixing the value of xt+1 to at+1. As Fi

is multilinear and Fi(ā) 6= 0 this fixation can affect at most one Pij in it, and hence, reduce the
maximal sparsity by a factor of at most ‖Pij‖ ≤ s.

Next, we use our structure theorem to guarantees that in the process of shrinking, we do not
inadvertently end up making a non-zero circuit into a zero circuit, thus allowing an inductive step.

Lemma 5.4. Let k ≥ 2 and Q 6≡ 0 ∈ F[x1, x2, . . . , xn] be a polynomial computed by a simple

and minimal, multilinear ΣΠΣΠ(k) circuit C(x̄) =
k∑

i=1
Fi(x̄) of size s. In addition, let Gk−1 be

a generator for ΣΠΣΠ(k − 1) circuits of size s and (2s2)-sparse polynomials. Then there exists
ā ∈ Im (Gk−1) and 0 ≤ t ≤ n − 1, such that Q′ ∆= Q|x̄[t]=ā[t]

is a non-zero,
(
ϕ(k, s) · s2

)
-sparse

polynomial.

Proof. If max
i
‖Fi‖ ≤ ϕ(k, s), then clearly ‖Q‖ ≤ ϕ(k, s) · k ≤ ϕ(k, s) · s2. Suppose max

i
‖Fi‖ >

ϕ(k, s). We define the following polynomial:

Φ =
∏

∅(A([k]

CA ·
∏

`,i : D`(Fi,F1) 6≡0

D`(Fi, F1)

From the properties of D` (Lemma 2.10) we get that all multiplicands of Φ are either (2s2)-sparse
polynomials or ΣΠΣΠ(k − 1) circuits. Therefore, by Observation 2.12 we have that Φ(Gk−1) 6≡ 0
and consequently, there exists ā ∈ Im (Gk−1) such that Φ(ā) 6= 0. By definition, Fi(ā) 6= 0 for each
i ∈ [k]. Thus, by Lemma 5.3 there exists 0 ≤ t ≤ n− 1 such that

ϕ(k, s) < max
i
‖Fi|x̄[t]=ā[t]

‖ ≤ ϕ(k, s) · s

Consider the circuit C ′ ∆= C|x̄[t]=ā[t]
=

k∑
i=1

Fi|x̄[t]=ā[t]
. By a reasoning similar to Lemma 4.2 we obtain

that C ′ is simple and minimal. We now argue that C ′ 6≡ 0. Assume the contrary. By Theorem
4.1 we get that max

i
‖Fi|x̄[t]=ā[t]

‖ ≤ ϕ(k, s), which leads us to a contradiction. Finally, note that

‖Q′‖ ≤ ϕ(k, s) · s · k ≤ ϕ(k, s) · s2.

Having the above, we use a generator to work around the problems raised by lack of simplicity
or minimality. This idea has been previously used in [KMSV10].

Theorem 5.5 (Hk,m is a Generator). Let k ≥ 1, s ≥ 2. Let Q 6≡ 0 ∈ F[x1, x2, . . . , xn] be a

polynomial computed by a multilinear ΣΠΣΠ(k) circuit C(x̄) =
k∑

i=1
Fi(x̄) =

k∑
i=1

di∏
j=1

Pij(x̄) of size s.

Then for every m ≥ ϕ(k, s) · s2 it holds that Q(Hk,m) 6≡ 0.

Proof. We apply induction on k. For k = 1 note that Q is a product of s-sparse polynomials. Thus,
the claim follows from Observations 5.2 and 2.12, and properties of Sm (Lemma 2.13). Assume
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that k ≥ 2. We will argue that we can assume w.l.o.g that C is simple and minimal. Suppose C
is not minimal. Then there exists a ΣΠΣΠ(k′) circuit C ′ with k′ < k computing Q. Therefore,
by the induction hypothesis it holds that Q(Hk′,m) 6≡ 0; and hence, by Observation 5.2 we get
that Q(Hk,m) 6≡ 0. Now, suppose C is not simple. As previously, we assume w.l.o.g that Pij are
irreducible and write: Q ≡ G·C ′, when G = gcd(C) and C ′ = sim(C). By definition, G is a product
of s-sparse polynomials and thus, as previously, G(Hk,m) 6≡ 0. Therefore, it is sufficient to show
that C ′(Hk′,m) ≡ 0. Recall that sim(C) is a simple ΣΠΣΠ(k) circuit. Due to the above, we can
assume w.l.o.g that C is simple and minimal. By the induction hypothesis Hk−1,m is a generator
for ΣΠΣΠ(k − 1) circuits of size s. In addition, it is a generator for (2s2)-sparse polynomials
(Observation 5.2). By Lemma 5.4 there exists ā ∈ Im (Hk−1,m) and 0 ≤ t ≤ n − 1, such that

Q′ ∆= Q|x̄[t]=ā[t]
is a non-zero,

(
ϕ(k, s) · s2

)
-sparse polynomial. Being such, there exists b̄ ∈ Im (Sm)

for which Q′(b̄) 6= 0, or equivalently Q(a1, . . . , at, bt+1, . . . , bn) = Q′(b̄) 6= 0. Observation 5.2
completes the proof.

We conclude by giving an explicit construction a hitting set for polynomials Q computed by
ΣΠΣΠ(k) circuits. The idea is that Q(Hk,m) is a non-zero polynomial depending on a small number
of variables r = q · k + k, with individual degrees less than n2 + 1. Consequently, it is sufficient to
evaluate Q on the set (V q)k × V k.

Input: n, k, s ≥ 1.
Output: A set H
Let V ⊆ F be of size |V | = n2 + 1;1

Set H ∆= Hk , ϕ(k,s)·s2

(
(V q)k × V k

)
;2

Algorithm 1: Construction of a hitting set for ΣΠΣΠ(k) circuits of size s.

Theorem 5.6. Given n, s, k as input, Algorithm 1 runs in time nO(k) ·sO(k3) and outputs H of size
nO(k) · sO(k3), which is a hitting set for n-variate polynomials that can be computed by multilinear
ΣΠΣΠ(k) circuits of size s.

Proof. Let Q 6≡ 0 ∈ F[x1, x2, . . . , xn] be a polynomial computed by a multilinear ΣΠΣΠ(k) circuit
of size s. Let H be the set given by Algorithm 1. By Theorem 5.5 we get that Q

(
Hk , ϕ(k,s)·s2

)
is a non-zero polynomial depending on r = q · k + k variables, with individual degrees less than
n2 + 1 (the degrees of y’s and w are at most n and Q is multilinear). Consequently, Lemma 2.14
implies that Q|H 6≡ 0. For the size of H. Recall Lemma 2.13 and that ϕ(k, s) ≤ s5k2

. We obtain:

|H| ≤ |V |k+q·k = nO(k) ·
(
nO(k2·logn s)

)k
= nO(k) · sO(k3).

6 Non Black-Box PIT for Multilinear ΣΠΣΠ(k) Circuits

In this section we give a non black-box PIT algorithm for multilinear ΣΠΣΠ(k) circuits. This
running time of the algorithm is slightly better then the running of the black-box one.

6.1 Overview

Given Theorem 1 it is fairly easy to check if a simple and minimal, multilinear ΣΠΣΠ(k) circuit
C computes the zero polynomial. More specifically, let C =

∑k
i=1 Fi =

∑k
i=1

∏di
j=1 Pij and let s
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denote the size of C. First, compute the sparsity of each Fi by noting that ‖Fi‖ =
∏di

j=1 ‖Pij‖. Now,
if there exists i ∈ [k] for which ‖Fi‖ > s5k2

then by Theorem 1 C 6≡ 0. Otherwise, C computes a
(k ·s5k2

)-sparse polynomial and hence we can check if C ≡ 0 by computing its monomial expansion.
However, an arbitrary multilinear ΣΠΣΠ(k) circuit C may be neither minimal nor simple. The
idea is first to transform the circuit C into a simple and minimal circuit C ′ such that C ≡ 0 iff
C ′ ≡ 0, and afterwards apply the procedure described above. In fact, we are going to “simplify”
and “minimize” C. The “minimization” is carried out by (recursively) checking if all the proper
subcircuits of C compute the zero polynomial. For the “simplification” of C, suppose that all Pij

were irreducible. Under this assumption, each multiplication gate Fi contains among its Pij-s the
exact same list of irreducible polynomials (up to multiplication by a field element) forming the
gcd of C (if gcd(C) 6= 1). Therefore, we can erase those polynomials and obtain a simple circuit.
Although the irreducibility of the Pij-s is a valid assumption for the analysis, this might not be the
case in the given circuit. We handle this scenario by factorizing each Pij to its irreducible factors.
The factorization is carried out using a recent result of [SV10] (Lemma 2.7). Note that factorization
does not affect the sparsity of Fi-s and can only decrease the size of the circuit.

6.2 The Algorithm

We now present the algorithm. First, we start with an algorithm that simplifies a given ΣΠΣΠ(k)
circuit.

Lemma 6.1. There is a deterministic algorithm that when given as input a multilinear ΣΠΣΠ(k)
circuit C of size s on n variables runs in time poly(n, s) and outputs a simple ΣΠΣΠ(k) circuit C ′

of size s such that C ≡ 0 iff C ′ ≡ 0.

Proof. Given C =
∑k

i=1

∏di
j=1 Pij we factorize each Pij to its irreducible factors in time poly(n, s)

using the algorithm in Lemma 2.7 (recall that ‖Pij‖ ≤ s). We then replace each Pij by the product

of its irreducible factors, obtaining the circuit by Cred =
∑k

i=1

∏d′i
j=1 P ′

ij . Observe that the size
of Cred is at most s. As there are at most s different Pij-s, the total running time of this step
is poly(n, s). By definition, all P ′

ij-s are irreducible. Therefore each multiplication gate of Cred

contains among its P ′
ij-s the exact same set of irreducible polynomials (up to multiplication by a

field element) forming the gcd of Cred. Let C ′ be the circuit resulting from erasing the mentioned
set of polynomials. Clearly, C ′ is a simple ΣΠΣΠ(k) circuit of size s. The polynomials computed
by C and C ′ differ by a multiplicative factor of gcd(Cred). Consequently, C ≡ 0 if and only if
C ′ ≡ 0.

Finally, we present our PIT algorithm for multilinear ΣΠΣΠ(k) circuits, thus proving Theorem 2.

Lemma 6.2. Given a multilinear ΣΠΣΠ(k) circuit C of size s on n variables Algorithm 2 runs in
time poly(n) · sO(k2) and outputs “true” if and only if C ≡ 0.

Proof. We begin the correctness analysis by induction on k. For k = 1 the claim is clear. Let
k ≥ 2. Assume the correctness for smaller values of k. By Lemma 6.1 C ≡ 0 iff C ′ ≡ 0. If there
exists ∅ ( A ( [k] such that C ′

A ≡ 0 then, clearly C ′ ≡ 0 iff C ′
[k]\A ≡ 0. Otherwise, C ′ is simple

and minimal, multilinear ΣΠΣΠ(k) circuit of size s with k ≥ 2. By Theorem 4.1 if C ′ ≡ 0 then
‖F ′

i‖ ≤ s5k2
for every i ∈ [k]. Therefore, if there exists i ∈ [k] such that ‖F ′

i‖ > s5k2
, then C 6≡ 0.

The last step is correct by its definition.
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Input: ΣΠΣΠ(k) circuit C of size s
Output: “true” iff C ≡ 0

1

if k = 1 then2

return “true” iff F1 ≡ 03

4

Compute C ′ =
∑k

i=1 F ′
i /* using Lemma 6.1. */5

foreach ∅ ( A ( [k] do6

if C ′
A ≡ 0 then7

return “true” iff C ′
[k]\A ≡ 08

9

for i = 1 to k do10

Compute ‖F ′
i‖11

if ‖F ′
i‖ > s5k2

then12

return “false”13

14

return “true” iff C ′ ≡ 0, by computing the monomial expansion of C ′15

Algorithm 2: Non-Black PIT algorithm for multilinear ΣΠΣΠ(k) circuits

Time complexity: By Lemma 6.1 C ′ can be computed in time poly(n, s). Next, as ‖F ′
i‖ ≤ 2n

for each i ∈ [k] the computation of ‖F ′
i‖ can be done in time poly(n, s). Finally, note that the last

line is reached only in the case that every F ′
i is s5k2

-sparse. Therefore, the polynomial computed by
C ′ in this case has at most k · s5k2

monomials. Consequently, this step takes poly(n) · sO(k2) time.
Putting all together we obtain the following recurrent relation: T (k, n, s) ≤ 2k−1 · T (k − 1, n, s) +
poly(n) · sO(k2) and hence T (k, n, s) = poly(n) · sO(k2).
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A Missing Proofs

For the sake of completeness we give here some of the missing proofs.

Proof of Lemma 2.11. For the first direction, assume gcd(F1, F2, . . . , Fk) 6= 1. Then, by definition,
there exists an irreducible polynomial P such that P | Fi for every i ∈ [k]. Equivalently, we can
write Fi = F ′

i · P . Pick ` ∈ var(P ). Clearly, ` ∈ var(F1) and hence ` 6∈ var(F ′
i ) since the factors

of a multilinear polynomial are variable-disjoint. From Lemma 2.10 we get that D`(Fi, F1) =
D`(F ′

i · P, F ′
1 · P ) = F ′

i · F ′
1 ·D`(P, P ) ≡ 0. For the second direction, let ` ∈ var(F1). We can write

F1 = F ′
1 · P , when P denotes the irreducible factor of F1 that depends on `. From the statement

F ′
1 ·D`(Fi, P ) = D`(Fi, F1) ≡ 0. As F ′

1 6≡ 0, we get that D`(Fi, P ) ≡ 0 for every i ∈ [k]. It follows
from Lemma 2.10 that P | Fi for every i ∈ [k], or equivalently P | gcd(F1, F2, . . . , Fk). In particular
this implies gcd(F1, F2, . . . , Fk) 6= 1 and completes the proof.

Proof Observation 2.8. Denote R = gcd(F1 ·G1, F2 ·G2, . . . , Fk ·Gk), G0 = gcd(F1, F2, . . . , Fk) and
consider P ∈ F[x1, x2, . . . , xn] an irreducible factor of R. By definition P | Fi ·Gi for each i ∈ [k].
Therefore, for each i ∈ [k] it must be the case that either P | Fi or P | Gi holds. Now, if P | Fi for all
i-s, then by definition P | G0. Otherwise, there must exist j ∈ [k] such that P | Gj . Consequently,
P | G0 · G1 · G2 · . . . · Gk. Since the above holds for every irreducible factor of R we obtain that
R | G0 ·G1 ·G2 · . . . ·Gk. Equivalently, there exists Q such that R ·Q = G0 ·G1 ·G2 · . . . ·Gk. and
hence ‖R‖ ≤ ‖G0‖ · ‖G1‖ · . . . · ‖Gk‖.

We also show that is inequality is tight. Let Φ ∆=
∏k

i=1(xi +1). Take: Gi = (xi +1), Fi = Φ/Gi.
Then gcd(F1 · G1, F2 · G2, . . . , Fk · Gk) = Φ = G1 · G2 · . . . · Gk · gcd(F1, F2, . . . , Fk). Note that
gcd(F1, F2, . . . , Fk) = 1.
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