
Two Comments on Targeted Canonical Derandomizers

Oded Goldreich∗

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded.goldreich@weizmann.ac.il

April 8, 2011

Abstract

We revisit the notion of a targeted canonical derandomizer, introduced in our recent ECCC
Report (TR10-135) as a uniform notion of a pseudorandom generator that suffices for yielding
BPP = P . The original notion was derived (as a variant of the standard notion of a canonical
derandomizer) by providing both the distinguisher and the generator with the same auxiliary-
input. Here we take one step further and consider pseudorandom generators that fool a single
circuit that is given to them as auxiliary input. Building on TR10-135, we show that such
pseudorandom generators exist if and only if BPP = P , which means that they exist if and
only if targeted canonical derandomizers (of exponential stretch, as in TR10-135) exist. We
also relate such targeted canonical derandomizer to targeted hitters, which are the analogous
canonical derandomizers for RP.

Keywords: BPP, derandomization, pseudorandom generators, promise problems, search prob-
lems, hitters, RP.

Contents
1 Introduction 1

2 Preliminaries 1
2.1 Promise problems . 2
2.2 BPP search problem . 2

3 Definitional treatment 3
3.1 The standard (non-uniformly strong) definition . 3
3.2 The original notion of targeted generators . 4
3.3 The new notion of targeted generators . 5

4 The main result 5

5 Targeted hitters 7

6 Reflections (or de-construction) 7

Bibliography 8

∗Partially supported by the Israel Science Foundation (grant No. 1041/08).

i

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 47 (2011)

1 Introduction

In a recent work [4], we presented two results that relate the existence of certain pseudorandom
generators to certain derandomizations of the class BPP . The first result referred to the standard
notion of a uniform canonical derandomizer (as introduced in [5]) and asserted that such pseudo-
random generators of exponential stretch exist if and only if BPP is effectively in P (in the sense
that it is infeasible to find an input on which the polynomial-time derandomized algorithm errs).1

The second result referred to a new notion of a canonical derandomizer, which was introduced
in [4] and called a targeted canonical derandomizer. This notion is the subject of the current note.
We mention that it was shown in [4] that targeted canonical derandomizers (of exponential stretch)
exist if and only if BPP = P.

The foregoing notion of a targeted canonical derandomizer was derived as a variant of the
standard notion of a canonical derandomizer, which is required to produce sequences that look
random to any (linear size) non-uniform circuit. Specifically, a targeted canonical derandomizer
is only required to fool uniform (deterministic) linear-time algorithms that obtain any auxiliary
input (of linear length), but the generator is given the same auxiliary input. (This auxiliary input
represent the main input given to a generic probabilistic polynomial-time algorithm that we wish
to derandomize.)

In this note we revisit the notion of a targeted canonical derandomizer. Specifically, we take this
approach to its logical conclusion, and consider pseudorandom generators that fool a single circuit
that is given to them as auxiliary input. (This circuit represents the combination of the probabilistic
polynomial-time algorithm that we wish to derandomize coupled with the main input given to that
algorithm.) We stress that constructing such generators is not trivial. In fact, building on the ideas
of [4], we show that such pseudorandom generators exist if and only if BPP = P. Furthermore,
such pseudorandom generators may use a seed of constant length (i.e., a two-bit long random seed).

Applying the same approach to hitting set generators, we derive a notion of a targeted hit-

ter, which is adequate for derandomizing RP. Specifically, a targeted hitter is a deterministic
polynomial-time algorithm that, on input a circuit that accepts most strings of a certain length,
finds a string that satisfies this circuit. Clearly, such a targeted hitter implies that RP = P, which
in turn implies BPP = P (see, e.g., [3, §6.1.3.2]). Thus, targeted hitters exist if and only if targeted

canonical derandomizers exist.

2 Preliminaries

The following text is reproduced from [4].

Standard notation. For a natural number n, we let [n]
def
= {1, 2, ..., n} and denote by Un a

random variable that is uniformly distributed over {0, 1}n. When referring to the probability that
a uniformly distributed n-bit long string hits a set S, we shall use notation such as Pr[Un ∈S] or
Prr∈{0,1}n [r∈S].

1More accurately, for any S ∈ BPP and every polynomial p, there exists a deterministic polynomial-time A such
that no probabilistic p-time algorithm F can find (with probability exceeding 1/p) an input on which A errs; that
is, the probability that F (1n) equals an n-bit string x such that A(x) 6= χS(x) is at most 1/p(n), where χS is the
characteristic function of S.

1

2.1 Promise problems

We rely heavily on the formulation of promise problems (introduced in [2]). We believe that, in
general, the formulation of promise problems is far more suitable for any discussion of feasibility
results. The original formulation of [2] refers to decisional problems, but we shall also extend it to
search problem.

In the setting of decisional problems, a promise problem, denoted 〈P,Q〉, consists of a promise
(set), denoted P , and a question (set), denoted Q, such that the problem 〈P,Q〉 is defined as given

an instance x ∈ P , determine whether or not x ∈ Q. That is, the solver is required to distinguish
inputs in P ∩ Q from inputs in P \ Q, and nothing is required in case the input is outside P .
Indeed, an equivalent formulation refers to two disjoint sets, denoted Πyes and Πno, of yes- and
no-instances, respectively. We shall actually prefer to present promise problems in these terms;
that is, as pairs (Πyes,Πno) of disjoint sets. Indeed, standard decision problems appear as special
cases in which Πyes ∪ Πno = {0, 1}∗. In the general case, inputs outside of Πyes ∪ Πno are said to
violate the promise.

Unless explicitly stated otherwise, all decisional problems discussed in this work are actually
promise problems, and P,BPP etc denote the corresponding classes of promise problems. For
example, (Πyes,Πno) ∈ BPP if there exists a probabilistic polynomial-time algorithm A such that

for every x ∈ Πyes it holds that Pr[A(x)=1] ≥ 2/3, and for every x ∈ Πno it holds that Pr[A(x)=
0] ≥ 2/3.

2.2 BPP search problem

Typically, search problems are captured by binary relations that determine the set of valid instance-

solution pairs. For a binary relation R ⊆ {0, 1}∗ × {0, 1}∗, we denote by R(x)
def
= {y : (x, y)∈R}

the set of valid solutions for the instance x, and by SR
def
= {x : R(x) 6= ∅} the set of instances

having valid solutions. Solving a search problem R means that given any x ∈ SR, we should find
an element of R(x) (whereas, possibly, we should indicate that no solution exists if x 6∈ SR).

The definition of “BPP search problems” is supposed to capture search problems that can be
solved efficiently, when random steps are allowed. Intuitively, we do not expect randomization to
make up for more than an exponential blow-up, and so the naive formulation that merely asserts that
solutions can be found in probabilistic polynomial-time is not good enough. Consider, for example,
the relation R such that (x, y) ∈ R if |y| = |x| and for every i < |x| it holds that Mi(x) 6= y, where
Mi is the ith deterministic machine (in some fixed enumeration of such machines). Then, the search
problem R can be solved by a probabilistic polynomial-time algorithm (which, on input x, outputs
a uniformly distributed |x|-bit long string), but cannot be solved by any deterministic algorithm
(regardless of its running time).

What is missing in the naive formulation is any reference to the “complexity” of the solutions
found by the solver, let alone to the complexity of the set of all valid solutions. We just postulate
the latter (i.e., that the set of all valid instance-solutions pairs is easily recognizable). Actually2, we
generalize the treatment to search problems with a promise, where the promise allows to possibly
discard some instance-solution pairs. (At first reading, the reader may assume that Rno = {0, 1}∗ \
Ryes.)

Definition 2.1 (BPP search problems): Let Ryes and Rno be two disjoint binary relations. We

say that (Ryes, Rno) is a BPP-search problem if the following two conditions hold.

2See motivational discussion in [4, Sec. 3.1].

2

1. The decisional problem represented by (Ryes, Rno) is solvable in probabilistic polynomial-time;

that is, there exists a probabilistic polynomial-time algorithm V such that for every (x, y) ∈
Ryes it holds that Pr[V (x, y)=1] ≥ 2/3, and for every (x, y) ∈ Rno it holds that Pr[V (x, y)=
1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm A such that, for every x ∈ SRyes
, it

holds that Pr[A(x) ∈ Ryes(x)] ≥ 2/3, where Ryes(x) = {y : (x, y)∈Ryes} and SRyes
= {x :

Ryes(x) 6= ∅}.

We may assume, without loss of generality, that, for every x such that Rno(x) = {0, 1}∗, it holds
that Pr[A(x) = ⊥] ≥ 2/3. Note that the algorithms postulated in Definition 2.1 allow to find valid
solutions (i.e., elements of Ryes(x)) as well as distinguish valid solutions from invalid ones (i.e.,
elements of Ryes(x) from elements of Rno(x)), while guaranteeing nothing for solutions that are
neither valid nor invalid (i.e., elements of {0, 1}∗ \ (Ryes(x) ∪Rno(x)).

3 Definitional treatment

For sake of clarity and perspective we start by reviewing the standard definition of (non-uniformly
strong) canonical derandomizer (cf., e.g., [3, Sec. 8.3.1]). Next, we review the notion of a targeted
canonical derandomizer that was introduced in [4, Sec. 4.4], and finally we present the new definition
of a targeted canonical derandomizer. The first two subsections are reproduced from [4].

3.1 The standard (non-uniformly strong) definition

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A, we first obtain
a functionally equivalent algorithm AG that uses a pseudorandom generator G in order to reduce
the randomness-complexity of A, and then take the majority vote on all possible executions of AG

(on the given input). That is, we scan all possible outcomes of the coin tosses of AG(x), which
means that the deterministic algorithm will run in time that is exponential in the randomness
complexity of AG. Thus, it suffices to have a pseudorandom generator that can be evaluated in
time that is exponential in its seed length (and polynomial in its output length).

In the standard setting, algorithm AG has to maintain A’s input-output behavior on all (but
finitely many) inputs, and so the pseudorandomness property of G should hold with respect to
distinguishers that receive non-uniform advice (which models a potentially exceptional input x on
which A(x) and AG(x) are sufficiently different). Without loss of generality, we may assume that
A’s running-time is linearly related to its randomness complexity, and so the relevant distinguishers
may be confined to linear time. Similarly, for simplicity (and by possibly padding the input x),
we may assume that both complexities are linear in the input length, |x|. (Actually, for simplicity
we shall assume that both complexities just equal |x|, although some constant slackness seems
essential.) Finally, since we are going to scan all possible random-pads of AG and rule by majority
(and since A’s error probability is at most 1/3), it suffices to require that for every x it holds that
|Pr[A(x) = 1]− Pr[AG(x) = 1]| < 1/6. This leads to the pseudorandomness requirement stated in
the following definition.

Definition 3.1 (canonical derandomizers, standard version [3, Def, 8.14])3: Let ℓ : N→ N be a

function such that ℓ(n) > n for all n. A canonical derandomizer of stretch ℓ is a deterministic
algorithm G that satisfies the following two conditions.

3To streamline our exposition, we preferred to avoid the standard additional step of replacing D(x, ·) by an
arbitrary (non-uniform) Boolean circuit of quadratic size.

3

(generation time): On input a k-bit long seed, G makes at most poly(2k · ℓ(k)) steps and outputs a

string of length ℓ(k).

(pseudorandomness): For every (deterministic) linear-time algorithm D, all sufficiently large k and

all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x,G(Uk)) = 1] − Pr[D(x,Uℓ(k)) = 1] | <
1

6
. (1)

The algorithm D represents a potential distinguisher, which is given two ℓ(k)-bit long strings as
input, where the first string (i.e., x) represents a (non-uniform) auxiliary input and the second
string is sampled either from G(Uk) or from Uℓ(k). When seeking to derandomize a linear-time
algorithm A, the first string (i.e., x) represents a potential main input for A, whereas the second
string represents a possible sequence of coin tosses of A (when invoked on a generic (primary) input
x of length ℓ(k)).

3.2 The original notion of targeted generators

Our main focus in [4] was on the standard notion of a uniform canonical derandomizer (as introduced
in [5]), which was shown to exist (with exponential stretch) exist if and only if BPP is effectively
in P (in the sense that it is infeasible to find an input on which the polynomial-time derandomized
algorithm errs). Still, seeking a notion of a canonical derandomizer the existence of which can be
shown equivalent to BPP = P (proper), we suggested the following notion of a targeted canonical
derandomizer, where both the generator and the distinguisher are presented with the same auxiliary
input (or “target”).

Definition 3.2 (targeted canonical derandomizers, [4, Def. 4.10]): Let ℓ :N→N be a function such

that ℓ(n) > n for all n. A targeted canonical derandomizer of stretch ℓ is a deterministic algorithm

G that satisfies the following two conditions.

(generation time): On input a k-bit long seed and an ℓ(k)-bit long auxiliary input, G makes at most

poly(2k · ℓ(k)) steps and outputs a string of length ℓ(k).

(pseudorandomness (targeted)): For every (deterministic) linear-time algorithm D, all sufficiently

large k and all x ∈ {0, 1}ℓ(k), it holds that

|Pr[D(x,G(Uk, x)) = 1] − Pr[D(x,Uℓ(k)) = 1] | <
1

6
. (2)

Definition 3.2 is a special case of related definitions that have appeared in [8, Sec. 2.4]. Specifically,
Vadhan [8] studied auxiliary-input pseudorandom generators (of the general-purpose type [1, 9]),
while offering a general treatment in which pseudorandomness needs to hold for an arbitrary set of
targets (i.e., x ∈ I for some set I ⊆ {0, 1}∗).4 (On the other hand, Definition 3.1 is obtained from
Definition 3.2 by mandating that G ignores s; i.e., G(s, x) = G′(s).)

The notion of a targeted canonical derandomizer is not as odd as it looks at first glance. Indeed,
the generator is far from being general-purpose (i.e., it is tailored to a specific x), but this merely
takes to (almost) the limit the insight of Nisan and Wigderson regarding relaxations that are still
useful towards derandomization [6]. Indeed, even if we were to fix the distinguisher D, constructing
a generator that just fools D(x, ·) is not straightforward, because we need to find a suitable “fooling
set” deterministically (in polynomial-time). The latter sentence (which is also reproduced from [4]),
leads to the new definition.

4His treatment vastly extends the original notion of auxiliary-input one-way functions put forward in [7].

4

3.3 The new notion of targeted generators

Indeed, we suggest to consider canonical derandomizers that fool a single distinguisher, which is
presented to them as input. The distinguisher is presented as a (deterministic) circuit, which
determines the length of the sequence that the generator ought to produce. Thus, we no longer
use a stretch function in our definitions. Instead, the seed length may be a function of the length
of the output sequence, but it turns out that we may just use a fixed seed length (for all possible
output lengths). We thus simplify our exposition by just using a fixed seed length.

Definition 3.3 (targeted canonical derandomizers, revised): A targeted canonical derandomizer
(with seed length k) is a deterministic algorithm G that satisfies the following two conditions.

(generation time): On input a k-bit long seed and a circuit C with ℓ input bits, algorithm G makes

at most poly(|C|) steps and outputs a string of length ℓ.

(pseudorandomness (targeted)): The (ℓ-bit input) circuit C cannot distinguish G(Uk, 〈C〉)) from

Uℓ; that is,

|Pr[C(G(Uk, 〈C〉)) = 1] − Pr[C(Uℓ) = 1] | <
1

6
′ (3)

where 〈C〉 denotes the description of the circuit C.

Indeed, Definition 3.3 takes the approach of [6] to its logical conclusion: The derandomization of
algorithm A with respect to input x just yields a single circuit Cx(·) = A(x, ·) that we need to fool,
and Definition 3.3 (even more than Definition 3.2) is tailored to just do that. Indeed, the existence
of a generator (as in Definition 3.3), even with a seed length that is logarithmic in the circuit size,
implies BPP = P (see Theorem 4.1).

4 The main result

Building on the ideas of [4], we prove the following

Theorem 4.1 (yet another equivalence): Targeted canonical derandomizers with constant seed

length (as per Definition 3.3) exist if and only if BPP = P.

It follows that targeted canonical derandomizers as per Definition 3.3 exist if and only if generators
as in Definition 3.2 (with exponential stretch) exist, since the latter also exist if and only if BPP = P
(see [4, Thm. 4.11]).

Proof: Using any targeted canonical derandomizer we obtain BPP = P (by just feeding to the
targeted canonical derandomizer the circuit that results from combining the randomized algorithm
with the relevant input). That is, let A be a probabilistic polynomial-time algorithm for deciding a
promise problem Π = (Πyes,Πno), and let G be a targeted canonical derandomizer with seed length
k = O(1). We first consider the probabilistic polynomial-time A′ that, on input x, constructs the
circuit Cx(·) = A(x, ·), and outputs A(x,G(Uk, 〈Cx〉)). Clearly, if x ∈ Πyes, then Pr[A′(x,Uk) =
1] > 2/3 − 1/6 = 1/2 (resp., if x ∈ Πno, then Pr[A′(x,Uk)=1] < 1/2). Next, scanning all possible
k-bit long random inputs to A′(x) and ruling by majority, we obtain the desired deterministic
algorithm, and Π ∈ P follows.

Turning to the opposite direction, we construct a targeted canonical derandomizer (with con-
stant seed length) based on BPP = P. We do so by following the approach of [4]; that is, we

5

first show that constructing a targeted canonical derandomizer is a BPP-search problem, which is
reducible to a decisional BPP problem (by [4, Thm. 3.5]), which yields a deterministic construction
(since BPP = P). Details follow.

We first detail a BPP-search problem, denoted (Ryes, Rno), that captures the desired construc-
tion (for seed length k = 2). This promise problem refers to pairs of the form (〈C〉, s) such that,
for some ℓ, the string 〈C〉 describes a circuit with ℓ input bits and s = (s1, ..., s4) is a quadruple
of ℓ-bit long strings. The pair (〈C〉, s) is in Ryes if |Pri∈[4][C(si) = 1] − Pr[C(Uℓ) = 1]| < 0.16
(< 1/6), and is in Rno if |Pri∈[4][C(si)=1] − Pr[C(Uℓ)=1]| ≥ 1/6 (so that (〈C〉, s) 6∈ Rno implies
|Pri∈[4][C(si)=1]− Pr[C(Uℓ)=1]| < 1/6). Clearly, a probabilistic polynomial-time can distinguish
elements of Ryes from elements of Rno, and so showing that (Ryes, Rno) is a BPP-search problem
amounts to detailing a suitable probabilistic polynomial-time algorithm. Such an algorithm is given
a circuit C with ℓ input bits, and needs to find s such that (〈C〉, s) ∈ Ryes. This can be done as
follows:

1. Using a constant number of samples, approximate pC
def
= Pr[C(Uℓ)=1] such that the approx-

imation p̃C satisfies Pr[|p̃C − pC | > 0.01] < 0.01.

2. Let iC = ⌊4 · p̃C⌉ ∈ {0, 1, 2, 3, 4}, where ⌊α⌉ denotes the integer closest to α ∈ R.

If iC ∈ {1, 2, 3}, then (using a constant number of samples) find strings x0, x1 ∈ {0, 1}
ℓ such

that C(xσ) = σ for every σ ∈ {0, 1}. If iC = 0 (resp., iC = 4), then just find a string x0

(resp., x1) as above.

3. For i = 1, ..., 4, let si = x1 if i ≤ iC and let si = x0 otherwise (i.e., if i > iC).

Note that the probability that either of the first two steps fails can be upper bounded by 0.02.
Otherwise, we have |p̃C − pC | > 0.01 and |Pri∈[4][C(si) = 1] − p̃C | ≤ 1/8, which implies that (in
this case) it holds that |Pri∈[4][C(si) = 1] − pC | ≤ 0.125 + 0.01 = 0.135. It follows that (overall)
|Pri∈[4][C(si)=1]− pC | ≤ 0.135 + 0.02 < 0.16, as desired.

Next we reduce the foregoing BPP-search problem to a BPP decisional problem, by just invoking
the following result of [4].

Theorem 4.2 (reducing search to decision – [4, Thm. 3.5]): For every BPP-search problem (Ryes, Rno),
there exists a binary relation R such that Ryes ⊆ R ⊆ ({0, 1}∗×{0, 1}∗)\Rno and solving the search

problem of R is deterministically reducible to some decisional problem in BPP, denoted Π.

Applying Theorem 4.2 to a BPP-search problem (Ryes, Rno), we obtain a deterministic reduction
of the construction of the desired pseudorandom generator to some promise problem in BPP ;
indeed, the key observation is that whenever C has a solution (i.e., exists s such that (〈C〉, s) ∈
Ryes) the reduction yields a sequence s = (s1, ..., s4) such that (〈C〉, s) 6∈ Rno (which implies that
|Pri∈[4][C(si) = 1] − pC | < 1/6). Next, using the hypothesis BPP = P, we obtain a deterministic
polynomial-time algorithm for finding such a sequence s = (s1, ..., s4), and the generator is defined
by letting G(i) = si (for every i ∈ [4] ≡ {0, 1}2). The theorem follows.

Observation 4.3 (on the distribution produced by the foregoing targeted canonical generator):
We observe that the targeted canonical generator constructed in the proof of Theorem 4.1 produces

a distribution with at most two elements in its support, which can be shown to be the very minimum

support size for any targeted canonical generator. Furthermore, this generator uses a seed of length

k = 2, which is an artifact of k = ⌈log2(3)⌉, where 1/3 is twice the desired distinguishing gap.

In general, when dealing with a distinguishing gap of δ < 1/2, it suffices to use a seed of length

6

k = ⌈log2(1/2δ)⌉, and such a generator suffices for derandomizing algorithms of error probability

0.5− δ. Thus, we may use δ = 0.3, and obtain a generator that uses a single bit seed (and suffices
for derandomizing algorithms of error probability 0.2).

5 Targeted hitters

In this section we merely detail the last paragraph of the introduction. We first adapt Definition 3.3
to the the notion of hitting set generators, while observing that when targeting a single circuit there
is no need to output a set of possible strings (since we may test these strings and just output one
string that satisfies the circuit).

Definition 5.1 (targeted hitters): A targeted hitter is a deterministic algorithm H that satisfies

the following two conditions.

(generation time): On input a circuit C with ℓ input bits, algorithm H makes at most poly(|〈C〉|)
steps and outputs a string of length ℓ.

(hitting (targeted)): If Pr[C(Uℓ) = 1] > 1/2, then x← H(〈C〉) satisfies C (i.e., C(x) = 1).

Indeed, any targeted canonical derandomizer (as per Definition 3.3) yields a targeted hitter. While
the converse is less clear, it can be shown to hold by combining Theorem 4.1 with the fact that any
targeted hitter implies RP = P, which in turn implies BPP = P (e.g., since BPP = RPRP , see,
e.g., [3, §6.1.3.2]). Thus we get:

Theorem 5.2 (summary): The following four conditions are equivalent:

1. There exist targeted canonical derandomizers (as per Definition 3.3).

2. There exist targeted hitters.

3. BPP = P.

4. RP = P.

Indeed, the proof outlined above takes the route (2) ⇒ (4) ⇒ (3)⇒ (1)⇒ (2). We comment that
we do not see a direct proof of (2)⇐ (4) (i.e., a proof that does not pass via (4)⇒ (3)).

6 Reflections (or de-construction)

The definition of a targeted canonical derandomizer implicitly combines two tasks that need to be
performed in deterministic polynomial-time:

1. Approximating the acceptance probability of circuits; that is, given a circuit C with ℓ input
bits, the task is to (deterministically) approximate Pr[C(Uℓ)= 1] up to ±1/6.

2. Finding an input that evaluates to the majority value; that is, given a circuit C with ℓ input
bits, the task is to (deterministically) find an ℓ-bit string x such that C(x) = σ, where
Pr[C(Uℓ)=σ] > 1/2.

Indeed, the second task coincides with the task underlying the definition of a targeted hitter,
whereas the first task is directly implied (only) by a targeted canonical derandomizer. Further-
more, deterministic polynomial-time algorithms for performing both tasks yield a targeted canon-
ical derandomizer. Interestingly, our construction of a targeted canonical derandomizer (based on

7

BPP = P) implicitly uses a deterministic reduction of the second task to the first task, which is in
turn reduced to BPP .

The foregoing reductions are actually implicit in the proof of Theorem 4.2. Specifically, using
a sufficiently good approximation of the acceptance probability of a circuit, we may find an input
that satisfies the circuit by extending a prefix of such an input bit-by-bit (while making sure
that the fraction of satisfying continuations is sufficiently large). Indeed, note that each of the
aforementioned tasks can be used to solve a generalized version of this task that refers to an
arbitrary threshold ǫ > 0, provided that the running-time is allowed to depend (polynomially) on
1/ǫ. (In the case of the second task, the generalization is states as given a circuit C with ℓ input

bits such that Pr[C(Uℓ)=1] > ǫ, find an ℓ-bit string x such that C(x) = σ.)

Acknowledgments

The current note arised from questions posed to me during my presentation of [4] at the Institut
Henri Poincare (Paris).

References

[1] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SICOMP, Vol. 13, pages 850–864, 1984. Preliminary version in 23rd FOCS,
pages 80–91, 1982.

[2] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-
plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159–173,
1984.

[3] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[4] O. Goldreich. In a World of P=BPP. ECCC, TR10-135, 2010.

[5] R. Impagliazzo and A. Wigderson. Randomness vs. Time: De-randomization under a
uniform assumption. JCSS, Vol. 63 (4), pages 672–688, 2001. Preliminary version in 39th

FOCS, 1998.

[6] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages
149–167, 1994. Preliminary version in 29th FOCS, 1988.

[7] R. Ostrovsky and A. Wigderson. One-Way Functions are Essential for Non-Trivial Zero-
Knowledge. In 2nd Israel Symp. on Theory of Computing and Systems, IEEE Comp. Soc.
Press, pages 3–17, 1993.

[8] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. SICOMP,
Vol. 36 (4), pages 1160–1214, 2006. Preliminary version in 45th FOCS, 2004.

[9] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80–91,
1982.

8

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

