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Abstract

We consider a system of linear constraints over any finite Abelian group G of the following
form: ℓi(x1, . . . , xn) ≡ ℓi,1x1 + · · · + ℓi,nxn ∈ Ai for i = 1, . . . , t and each Ai ⊂ G, ℓi,j is
an element of G and xi’s are Boolean variables. Our main result shows that the subset of the
Boolean cube that satisfies these constraints has exponentially small correlation with the MODq

boolean function, when the order of G and q are co-prime numbers.
Our work extends the recent result of Chattopadhyay and Wigderson (FOCS’09) who obtain

such a correlation bound for linear systems over cyclic groups whose order is a product of two
distinct primes or has at most one prime factor. Our result also immediately yields the first
exponential bounds on the size of boolean depth-four circuits of the form MAJ◦AND◦ANYO(1)◦
MODm for computing the MODq function, when m, q are co-prime. No superpolynomial lower
bounds were known for such circuits for computing any explicit function.

This completely solves an open problem posed by Beigel and Maciel (Complexity’97).

1 Introduction

A fundamental open problem in theoretical computer science is to understand the computational
power of counting modulo composite numbers. For example, we do not know if hard problems
like SATISFIABILITY have efficient depth-three circuits comprising only MOD6 gates. This is in
contrast to the classical theorem of Razborov [Raz87] and Smolensky [Smo87] that says constant-
depth circuits having only AND, OR and MODm gates cannot compute even the MODq function

in sub-exponential size, i.e. in size 2n
o(1)

, when m, q are co-prime and when m has only one prime
factor. Smolensky [Smo87] conjectured that this theorem extends to all m, but despite a series
of attempts over two decades, this conjecture remains wide open. While Smolensky’s conjecture
easily implies that not all functions computable in deterministic linear time have efficient ACC0

circuits, the best one can prove is the recent breakthrough result of Williams [Wil11] who showed
that non-deterministic exponential time does not have efficient ACC0 circuits.

A recent result of Hansen and Koucky [HK09] shows that every function in ACC0[m] is in
fact computed by a quasipolynomial size circuit of the canonical form OR ◦AND ◦CC0[m], where
CC0[m] refers to the class of constant-depth circuits just comprising MODm gates. Given this
characterization, a natural first step towards proving Smolensky’s conjecture is to verify it for
depth-three circuits OR ◦AND ◦MODm with just one layer of MODm gates at the base. However,
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this step was long identified by Beigel and Maciel [BM97] as a barrier. They observed that there are
no known techniques to prove strong lower bounds on the size of such depth-three circuits when the
MODm gates at the base are generalized in the following sense: each such gate has an associated
accepting set A and the gates output 1 iff the sum of the input bits evaluates to an element in A
modulo m. Interestingly, if each gate at the base had a singleton accepting set then they could
prove very strong lower bounds, but their methods failed for general accepting sets. The problem
of handling such general accepting sets is not specific to their work but is well known to researchers.
For example, it is not hard to show that depth-two circuits having MODm gates cannot compute
even the AND function in sub-exponential size when the output gate has a singleton accepting
set, while it is consistent with our current knowledge that such circuits in linear size compute
SATISFIABILITY for an appropriate choice of accepting set for the output gate (see Caussinus
[Cau96]).

It is known that the choice of accepting sets makes a non-trivial difference in the closely related
world of polynomial representation of boolean functions. For example, polynomials, over the ring
Zm, need Ω(n) degree to compute simple functions like AND, OR and MODq when the accepting
set is a singleton. However, Barrington, Beigel and Rudich [BBR94] gave an elegant and surprising
construction for computing AND and OR with polynomials of degree O(n1/t) having proper ac-
cepting sets, where m has t distinct prime factors. Hansen [Han06] showed that judicious choice of
accepting sets affords similar advantage for computing MODq. No superlogarithmic lower bound on
the degree of polynomials with general accepting sets is known for computing any function in NP.
On the positive side, the construction of Barrington et alhas led to other interesting constructions
outside of circuit complexity. For example, all known bounds on explicit constructions of Ramsey
graphs can be achieved using it [Gop06]. Further, a series of recent breakthroughs in constructing
more efficient locally decodable codes [Efr09, DGY10] have crucially relied on the construction of
Barrington et al.

Recently, Chattopadhyay and Wigderson [CW09] attacked this depth-three question by natu-
rally considering a system of linear constraints of the form ℓi ∈ Ai for i = 1, . . . , N , where each
Ai ⊂ Zm and ℓi’s are linear forms. Their main result gives an exponentially small upper bound on
the correlation of the Boolean solution set of any such system with the MODq function, when m is
either a prime power or is a product of two distinct primes like 6. This implied the first exponential
lower bounds on the size of depth-three circuits of the form MAJ ◦ AND ◦MODA

m for computing
MODq, for such m.

Our Work: We extend the result of Chattopadhyay and Wigderson to arbitrary, fixed m. More
generally, our main result is the following: for any system of linear constraints L, let BL be the set
of points in the Boolean cube that satisfies L. The correlation of a set S of boolean points with

the MODq function, denoted by Corr
(

S,MODq

)

, is defined as maxa,b
∣

∣Prx[x ∈ S ∧MOD
{a}
q (x) =

1]− Prx[x ∈ S ∧MOD
{b}
q (x) = 1]

∣

∣.

Theorem 1 (Main Theorem). Let m be an arbitrary fixed positive integer and L be a system of
linear constraints over n variables of the following form: ℓi

(

x1, . . . , xn
)

∈ Ai for i = 1, . . . , t, where

each Ai ⊂ Zm and ℓi is a linear form over Zm. Then, Corr
(

BL,MODq

)

≤ 2−Ω(n) when m and q
are co-prime.

A direct consequence of Theorem 1, obtained by an easy application of the so call ǫ-discriminator
Lemma of Hajnal et al [HMP+93] (restated equivalently in Section 2 of this article), is the following
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exponential lower bound on the size of boolean circuits:

Corollary 2. Let GMODm denote mod-m gates with general accepting sets. Then, depth-four
circuits of the form MAJ ◦ AND ◦GMODm require exponential fan-in at the output Majority gate
to compute the MODq function, if m, q are co-prime.

We can generalize Theorem 1 to arbitrary fixed Abelian groups.

Theorem 3. Let G be any finite and fixed Abelian group and L be a system of linear con-
straints with n boolean variables where the coefficients of each constraint are elements of G. Then,
Corr

(

BL,MODq

)

≤ 2−Ω(n) when the order of G and q are co-prime.

Applying Theorem 3 to the group G = Z
O(1)
m , allows us to generalize Corollary 2 by replacing

GMODm gates by an arbitrary composition of a fixed number of MODm gates (or equivalently, a
fixed number of GMODm gates).

Corollary 4. Depth-four circuits of the form MAJ ◦AND ◦ANYO(1) ◦MODm require exponential
fan-in at the output Majority gate to compute the MODq function, if m, q are co-prime.

Proof. Note that for any s = O(1), ANYs◦MODm ⊂ GMOD(Zm)s . LetG = (Zm)s. Theorem 3 gives
that the MODq has exponentially small correlation with any function in AND ◦ GMODG. Hence
MAJ ◦AND ◦GMODG circuits that compute the MODq function require exponential size.

Beigel and Maciel [BM97] identified the problem of proving lower bounds for depth-three circuits
of the form MAJ◦AND◦GMODm as an important next step towards understanding circuits having
modular gates. Corollary 2 completely solves this problem by obtaining the first strong lower bounds
for such circuits.

In the language of Barrington and Thérien [BT87], the result of Hansen and Koucky implies
that one way of proving Smolensky’s conjecture is to show that functions computed by systems of
programs over finite solvable groups do not correlate well with the MODq function if q is co-prime
with the order of the group. Our result takes the first step in this direction by verifying this for
Abelian groups.

Our Technique In the world of arithmetic circuits, Grigoriev and Razborov [GR98] introduced
the ingenious notion of communication rank for linear systems over a finite fields. Chattopadhyay
and Wigderson [CW09] generalized this notion to systems over Zm for an arbitrary composite m.
Using this notion, [CW09] showed that if a system has high rank then it is highly unsatisfiable over
the boolean cube and if it has low rank, exploiting estimates of exponential sums by Bourgain,
they showed that the correlation of the solution set to the MODq function is small. For technical
reasons, their analysis of the low rank case only worked if m was a product of two distinct primes
or had just one prime factor.

In this work, we realize that in order to work with arbitrary composites, it is convenient to
consider more general systems of linear constraints. We consider constraints in which the accepting
set is itself a function of a constant number of variables as opposed to being a constant as in the work
of Chattopadhyay and Wigderson. This leads us to further generalize the notion of communication
rank to facilitate analysis of such linear systems. In particular, we invent an iterative simplification
of linear systems where this new notion of rank plays a crucial role. This simplification, driven
by our Lemma 9 in Section 3, is the key new ingredient of our work that allows us to work with
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arbitrary modulus m. A rough description of the main idea is as follows: either our system has
large communication rank in which case it is highly unsatisfiable or it has low rank in which case
we simplify in the following sense. Each constraint in the simplified system has either a singleton
accepting set or the number of variables on which the accepting set depends is one less than before
or the system is over a modulus m′ that is less than m. A repeated application of this procedure
yields a nice structural result: every generalized linear system L over Zm over n variables can be
decomposed into at most t = 2ǫn linear systems L1, . . . , Lt where each Li is either satisfied by an
exponentially small fraction of the points in the boolean cube or Li is the intersection of L0

i and L1
i

where every constraint in L0
i has a singleton accepting set and each constraint of L1

i corresponds
to a k = k(m)-junta.

It is already known from the work of Chattopadhyay and Wigderson, restated in Lemma 8 of
this work, that subsytems that are intersections of singleton systems over Zm and junta systems
have exponentially small correlation with MODq. The subsystems of our decomposition that have
poor satisfiability cannot, by definition, correlate with a much more balanced function like MODq.
Since there are only few subsytems in the decomposition, an easy application of the union bound
finishes the argument.

Paper organization We give basic definitions and recall the necessary background in Section 2.
We prove our result for arbitrary cyclic groups Zm in Section 3. We highlight the required gener-
alization for arbitrary Abelian groups in Appendix A. We prove some technical generalizations of
known lemmas for Abelian groups in Appendix B.

2 Preliminaries

Let Zq := {0, . . . , q−1} and N = {0, 1, 2, . . .} denote the natural numbers. We study the correlation
of subsets S ⊂ {0, 1}N with the sum modulo q. It is natural and convenient to estimate this quantity
using the q-th roots of unity. Let eq(y) := exp

(

2πiy/q), where i denotes the complex square-root
of unity. We will use in the paper the following definition for correlation:

Corr(S,MODq) := max
b∈Zq\{0}

∣

∣

∣

∣

Ex∈{0,1}n [1S(x) · eq(b(x1 + . . .+ xn))]

∣

∣

∣

∣

,

where 1S is the indicator function of S. It is straightforward to verify that

max
a,b∈Zq

∣

∣Pr
x
[x ∈ S ∧MOD{a}

q (x) = 1]− Pr
x
[x ∈ S ∧MOD{b}

q (x) = 1]
∣

∣ ≤ 2 · Corr(S,MODq),

so our definition indeed captures the more intuitive definition of having elements of S being ap-
proximately equidistributed modulo q. For a family of subsets SN = {S ⊂ {0, 1}N} we define their
correlation with sums modulo q as the maximal correlation for S ∈ SN .

The simple tool that we use for lower bounding the size of our circuits for computing MODq

is the so-called ǫ-Discriminator Lemma, introduced by Hajnal et al [HMP+93]. We state here a
specialized version of it that is particularly convenient for our work, and has been also used in
earlier works (see for example [Bou05, CGPT06]).

Lemma 5 (Discriminator Lemma). Let C be a circuit that has a MAJORITY gate at its output
that is being fed by t subcircuits C1, . . . , Ct. If C computes MODq, then there exists a subcircuit
Ci, such that Corr

(

Ci,MODq) = Ω(1/t).
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In order to estimate the correlation of the solution sets of linear systems with the MODq function,
we will need estimates of exponential sums that were first obtained in the work of Bourgain [Bou05]
and refined progressively in further works [GRS05, VW08, Cha07]. We state the most refined
estimate below:

Theorem 6 ([Cha07]). Let m, q be two fixed positive co-prime integers and let P be any n-variate
multilinear polynomial of degree d with coefficients in Zm and b be any number non-zero modulo q.
Then, there exists a constant β = β(m, q) such that the following holds:

∣

∣

∣

∣

∣

Ex∈{0,1}n

[

em
(

P (x)
)

eq

(

b
∑

i

xi

)

]∣

∣

∣

∣

∣

≤ exp(−βdn). (1)

We point out that the above estimate fails to give anything non-trivial when the degree d of the
polynomial P is more than logn. Finding exponentially small upper bounds for the exponential
sum in (1) for d > log n, even when m is prime, remains a very interesting open problem.

3 Linear systems over cyclic groups

We study in this section systems of linear equations with arbitrary accepting sets over arbitrary
(constant) moduli.

Definition 1 (Linear system with accepting sets). A linear equation in n binary variables over Zm

with an accepting set is the set of solutions (over {0, 1}n) to an equation of the form

E = {x ∈ {0, 1}n :
∑

aixi (mod m) ∈ A},

where a1, . . . , an ∈ Zm and A ( Zm.
A linear system in n binary variables over Zm with accepting sets is the set of common solutions

to several such equations, i.e. it is a subset of {0, 1}n of the form

L = E1 ∩ . . . ∩ EN

= {x ∈ {0, 1}n :
∑

ai,jxj (mod m) ∈ Ai ∀i = 1, . . . , N},

where ai,j ∈ Zm and Ai ( Zm. We denote by Ln(m) the family of all such linear systems (where
we do not distinguish the number of equations).

We aim to bound the correlation of the solution set of linear systems with the MODq function.
Our main approach is to iteratively simplify the system. In order for us to define these simplifi-
cations, we need some further definitions of more general systems of linear forms. We first define
the special case of a linear system all of whose accepting sets are singletons, i.e. consist of a single
value.

Definition 2 (Singleton linear systems). A linear equation in n binary variables over Zm with a
single accepting value is the set of solutions (over {0, 1}n) to an equation of the form

E = {x ∈ {0, 1}n :
∑

aixi ≡ b (mod m)},

where a1, . . . , an, b ∈ Zm.
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A singleton linear system in n binary variables over Zm is the set of common solutions to several
such equations, i.e. it is a subset of {0, 1}n of the form

L = E1 ∩ . . . ∩ EN

= {x ∈ {0, 1}n :
∑

ai,jxj ≡ bi (mod m) ∀i = 1, . . . , N},

where ai,j , bj ∈ Zm. We denote by LSing
n (m) the family of all such linear systems (where we do not

distinguish the number of equations).

We will also need the following generalized notions of linear systems with accepting sets which
depend on a few variables in an arbitrary manner.

Definition 3 (Linear systems with accepting sets of sparsity k). A linear equation in n binary
variables over Zm with an accepting set of sparsity k is the set of solutions (over {0, 1}n) to a
linear equation with an accepting set which depends on k of the variables, i.e. to an equation of the
form

E = {x ∈ {0, 1}n :
∑

aixi (mod m) ∈ A(xi1 , . . . , xik)},

where a1, . . . , an ∈ Zm, i1, . . . , ik ∈ [n] and each set A(xi1 , . . . , xik) is a subset of Zm for every
setting of xi1 , . . . , xik ∈ {0, 1}k. Moreover, we require that the accepting-set function A is not
trivial, i.e. A(xi1 , . . . , xik) ( Zm for at least one setting of xi1 , . . . , xik .

A linear system in n binary variables over Zm with accepting sets of sparsity k is the set of
common solutions to several such equations, i.e. it is a subset of {0, 1}n of the form

L = E1 ∩ . . . ∩ EN

= {x ∈ {0, 1}n :
∑

ai,jxj (mod m) ∈ Ai(xi1 , . . . , xik) ∀i = 1, . . . , N},

where ai,j , bj ∈ Zm, and each accepting set-function Ai is not trivial. We denote by Ln(m, k)
the family of all such linear systems (where we do not distinguish the number of equations in the
system).

Note that Ln(m, 0) = Ln(m). For k > 1, we also allow modulus m = 1, in which case we
interpret each equation in Ln(1, k) as E = {x : 0 ∈ A(xi1 , . . . , xik)}, where set function A is not
trivial. That is, the equation is a k-junta. The linear system is the set of common solutions to
several such equations.

We now define the most general linear system, which will be simplified iteratively in the proof
of our main theorem. It will be the intersection of systems over several moduli ℓ which divide m.
Let ℓ÷m denote ”ℓ divides m”. We define linear systems which are intersections of linear systems
in LSing

n (m) and Ln(ℓ, k) for several ℓ÷m. For a modulus m define div(m) = {1 ≤ ℓ ≤ m : ℓ÷m}
to be the set of (not necessarily prime) factors of m. We will maintain a sparsity function κ :
div(m) → N ∪ {−∞} which will specify the allowed sparsity for each ℓ÷m. That is, we will have
Ln(ℓ, κ(ℓ)) systems for all ℓ ∈ div(m) such that κ(ℓ) ≥ 0, where κ(ℓ) = −∞ means we have no
Ln(ℓ, ·) system. Note that if ℓ÷m and κ : div(ℓ) → N∪{−∞} then Ln(ℓ, κ(·)) ⊂ Ln(m,κ(·)) since
equations modulo ℓ can always be lifted to equations modulo m by multiplying them by m/ℓ.

Definition 4 (Linear systems with general accepting sets over several moduli). Let m be a modulus
and let κ : div(m) → N ∪ {−∞}. We define Ln(m,κ(·)) as follows: L ∈ Ln(m,κ(·)) if there exists
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LSing ∈ LSing
n (m) and Lℓ ∈ Ln(ℓ, κ(ℓ)) for all ℓ ∈ div(m) such that κ(ℓ) ≥ 0 and

L = LSing ∩
⋂

ℓ∈div(m):κ(ℓ)≥0

Lℓ.

Theorem 1 follows from the following theorem for κ defined as κ(m) = 0 and κ(ℓ) = −∞ for all
ℓ ∈ div(m) \ {m}.

Theorem 7 (Correlation bound for Ln(m,κ(·)) and MODq). Let m, q be co-prime and κ :
div(m) → N ∪ {−∞}. Let L ∈ Ln(m,κ(·)) be any linear system. Then

Corr(L,MODq) ≤ exp(−n/c),

where c = c7(m, q, κ(·)). Crucially, c does not depend on n.

The proof of Theorem 7 follows from induction over κ(·). The following two Lemmas specify
the base case and the inductive step.

Lemma 8 (Base case). Let m, q be co-prime and let k ≥ 0 be a sparsity. Let L = L′ ∩ L′′ where
L′ ∈ LSing

n (m) and L′′ ∈ Ln(1, k). Then

Corr(L,MODq) ≤ exp(−n/βk),

where β = β(m, k) is as given in Theorem 6.

The Lemma above is implicit in the work of Chattopadhyay and Wigderson and points out why
we call such linear systems simple. It is obvious that if we could decompose a given linear system
into unions of a few such simple systems, we would obtain our desired correlation bounds by the
union bound. The next lemma, the main inductive step, roughly shows that the only obstacle
from having such a nice decomposition is the existence of subsystems that are satisfied by an
exponentially small fraction of the points of the cube.

Lemma 9 (Simplification process for Ln(m, k)). For any m, k ≥ 0, there exists c = c9(m, k) such
that for any L ∈ Ln(m, k) and any 1 ≤ r ≤ n, one of the following must hold:

1. Prx∈{0,1}n [x ∈ L] ≤ exp(−r/c).

2. There exist L1, . . . , LR ∈ Ln(m,κ(·)) such that L = L1 ·∪ . . . ·∪LR for R ≤ exp(cr), and
κ : div(m) → N ∪ {−∞} is given as

(a) If k > 0 then κ(m) = k − 1 and κ(ℓ) = k +m logm for all ℓ ∈ div(m) \ {m}.

(b) If k = 0 then κ(m) = −∞ and κ(ℓ) = k +m logm for all ℓ ∈ div(m) \ {m}.

We first prove Theorem 7 given Lemmas 8 and 9. We then proceed to prove Lemmas 8 and 9.

Proof of Theorem 7 given Lemmas 8 and 9. Define a lexicographic order on κ : div(m) → N ∪
{−∞}: κ > κ′ if there exists ℓ0 ∈ div(m) such that κ(ℓ) = κ′(ℓ) for all ℓ > ℓ0 and κ(ℓ0) > κ′(ℓ0)

1.

1As Nd is a well founded set for all d ≥ 1 this defines a proper Noetherian induction. An explicit bound can be
derived using the explicit bounds on the growth of κ(·) given by Lemma 9.
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The base case of κ(ℓ) = −∞ for all ℓ > 1 is given by Lemma 8. For the inductive step, let
ℓmax > 1 be maximal such that κ(ℓmax) ≥ 0. Let L ∈ Ln(m,κ(·)). Then

L = LSing ∩
⋂

ℓ∈div(m):κ(ℓ)≥0

Lℓ,

where LSing ∈ LSing
n (m) and Lℓ ∈ Ln(ℓ, κ(ℓ)). Apply Lemma 9 for Lℓmax . Let c = c9(ℓmax, κ(ℓmax))

and let r = n/c∗ be a parameter to be determined later. One of the following must hold:

1. Prx∈{0,1}n [x ∈ Lℓmax ] ≤ exp(−r/c) = exp(−n/(cc∗)). Hence, Prx∈{0,1}n [x ∈ L] ≤
exp(−n/(cc∗)) and Corr(L,MODq) ≤ exp(−n/(cc∗)).

2. There exists Lℓmax
1 , . . . , Lℓmax

R ∈ Ln(ℓmax, κ1(·)) ⊂ Ln(m,κ1(·)) such that Lℓmax =

Lℓmax
1 ·∪ . . . ·∪Lℓmax

R for R ≤ exp(cr) = exp(n(c/c∗)), where κ1 < κ is given by κ1(ℓmax) <
κ(ℓmax) and κ1(ℓ) = κ(ℓmax) + ℓmax log ℓmax for ℓ < ℓmax. Define

Li := LSing ∩
⋂

ℓ∈div(m):ℓ<ℓmax,κ(ℓ)≥0

Lℓ ∩ Lℓmax
i .

We have L = L1 ·∪ . . . ·∪LR where Li ∈ Ln(m,κ′(·)), with κ′(·) defined as κ′(ℓmax) = κ1(ℓmax)
and κ′(ℓ) = max(κ(ℓ), κ1(ℓ)) for ℓ < ℓmax. Note that κ′ < κ, so we can apply the induction
hypothesis for L1, . . . , LR:

Corr(L,MODq) = max
b∈Zq\{0}

∣

∣

∣

∣

Ex∈{0,1}n [1L(x) · ωq(b(x1 + . . .+ xn))]

∣

∣

∣

∣

= max
b∈Zq\{0}

∣

∣

∣

∣

R
∑

i=1

Ex∈{0,1}n [1Li
(x) · ωq(b(x1 + . . .+ xn))]

∣

∣

∣

∣

≤
R
∑

i=1

max
b∈Zq\{0}

∣

∣

∣

∣

Ex∈{0,1}n [1Li
(x) · ωq(b(x1 + . . .+ xn))]

∣

∣

∣

∣

≤ |R| · Corr(Ln(m,κ′(·)),MODq)

≤ exp((c/c∗ − 1/c7(m,κ′(·)))n),

where crucially we used the fact that L1, . . . , LR are disjoint.

Setting c∗ to be a large enough constant (say c∗ = 2c · c7(m,κ′(·))) concludes the proof.

3.1 Proof of base case: Lemma 8

Our argument here essentially is taken from [CW09]. Let L = L′ ∩ L′′ with L′ ∈ LSing
n (m) and

L′′ ∈ Ln(1, k). That is,

L′ = {x ∈ {0, 1}n :
∑

ai,jxj ≡ bi (mod m) ∀i = 1, . . . , N ′}

L′′ = {x ∈ {0, 1}n : 0 ∈ Ai(xv(i,1), . . . , xv(i,k)) ∀i = 1, . . . , N ′′},

where ai,j , bi ∈ Zm, v(i, j) ∈ [n] and Ai(z1, . . . , zk) ⊂ Zm.
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Define Pi(x) :=
∑

ai,jxj − bi to be linear functions over Zm for i ∈ [N ′] so that

1L′(x) =
N ′
∏

i=1

1Pi(x)=0.

Define Qi(x) to be polynomials over Zm of degree at most k such that Qi(x) = 0 iff 0 ∈
Ai(xv(i,1), . . . , xv(i,k)), so that

1L′′(x) =
N ′′
∏

i=1

1Qi(x)=0.

Using the fact that for z ∈ Zm we have 1z=0 =
1
m

∑m−1
a=0 em(a · z) we get

1L(x) =

( N ′
∏

i=1

1

m

m−1
∑

a=0

em
(

a · Pi(x)
)

)

×

( N ′′
∏

j=1

1

m

m−1
∑

b=0

em
(

b ·Qj(x)
)

)

=
1

mN ′+N ′′

∑

em





N ′
∑

i=1

ai · Pi(x) +

N ′′
∑

j=1

bj ·Qj(x)



 .

where the last summation is over a1, . . . , aN ′ , b1, . . . , bN ′′ ∈ Zm. The bound for the correlation
between L and MODq now follows from Theorem 6 since all Pi(x), Qj(x) are polynomials of degree
at most k, and so are all linear combinations of them.

3.2 Proof of inductive step: Lemma 9

We define a notion of rank of L ∈ Ln(m, k) which is appropriate for our purposes and whose origins
lie in the elegant work of Grigoriev and Razborov [GR98]. Chattopadhyay and Wigderson [CW09]
generalized the Grigoriev-Razborov notion to deal with linear systems of type Ln(m). We further
generalize it to deal with systems in Ln(m, k), where k is a constant non-negative integer. For
the sake of consistency with earlier work, we call this notion the communication rank of the linear
system. Fix some equations E1, . . . , EN of sparsity k such that L = E1 ∩ . . . ∩ EN , where each Ei

is given by

Ei = {x ∈ {0, 1}n :
∑

ai,jxj (mod m) ∈ Ai(xv(i,1), . . . , xv(i,k))}.

The definition of communication rank will in fact depend on the specific E1, . . . , EN chosen.

Definition 5 (Communication Rank). Let L ∈ Ln(m, k) given by L = E1 ∩ . . .∩EN . We say that
a subset of equations I = {i1, . . . , ir} ⊂ [N ] is s-wise independent if the following conditions hold.
Let Vi = {v(i, 1), . . . , v(i, k)} for i ∈ I be the set of variables on which Ai depends. We first require
that all sets Vi1 , . . . , Vir be disjoint. We also require that there exist subsets of variables Jp,t ⊂ [n]
of size |Jp,t| = |I| = r, where p ranges over the distinct prime factors of m and t = 1, . . . , s, such
that:

1. All sets Jp,t and Vi1 , . . . , Vir are pair-wise disjoint.

2. Let Mp,t be the following r × r matrix over Fp: if Jp,t = {j1, . . . , jr} then the (x, y)-entry of
Mp,t is given by aix,jy (modulo p), i.e. Mp,t is the r × r minor given by the rows of I and
the columns of Jp,t. We require that for any prime factor p of m, and any t = 1, . . . , s, the
matrix Mp,t has full rank modulo p.

9



The s-wise communication rank of L modulo m, denoted by ccrankms (L), is the maximal r for which
this holds for some I ⊂ [N ] of size |I| = r.

If k = 0, then the above definition exactly corresponds to the notion of communication rank
used by Chattopadhyay and Wigderson. We use the following result that follows from their work:

Lemma 10 (Implicit in Chattopadhyay-Wigderson [CW09]). Let L ∈ Ln(m) have ccrankmm com-
munication rank at least r. Then

Pr
x∈{0,1}n

[ N
∧

i=1

ℓi(x) ∈ Ai

]

≤ exp
(

− r/c10(m)
)

,

where each Ai ( Zm is an arbitrary set.

Remark 1. This lemma appears in [CW09] with the restriction that m has no repeated prime
factors. We show in the appendix that this restriction can be lifted by a slight modification of the
argument in [CW09]. In fact, we generalize it to all Abelian groups.

We next show an easy corollary of the above lemma for systems in Ln(m, k), when k > 0.

Lemma 11. Let L ∈ Ln(m, k) have m-wise communication rank at least r. Then

Pr
x∈{0,1}n

[x ∈ L] ≤ exp(−r/c11(m, k)).

Proof. Let I = {i1, . . . , ir} be a set of indices corresponding to independent equations. We focus
entirely on the sub-system indexed by this set. Since the sets Vi1 , . . . , Vir are disjoint, we can
sample all xj ∈ ∪i∈IVi and guarantee, by the Chernoff bound, that with probability at least
1 − exp(−r/2k) we will get Ω(r/2k) non-trivial accepting sets left. Thus, after sampling, we are
left with an ordinary sub-system in Ln′(m) whose rank is Ω(r/2k), where n′ ≥ n − rk. Applying
Lemma 10 to this sub-system, the argument follows by setting c9(m, k) = O(2kc8(m)).

Lemma 11 shows that if the linear system has high communication rank, then its correlation
with MODq is small as the size of the solution set is a very small fraction of the boolean cube. We
next deal with the complementary case, where the communication rank is small.

We start off by a convenient structural result about such systems, stated in Chattopadhyay and
Wigderson that generalizes a lemma of Grigoriev and Razborov. In our

formula-

tions we

take the

set I for

all

primes.

Thus

|I| = r

and not

(ws + 1)r

Lemma 12 (Restatement of Lemma 13 of [CW09]). Let m have w distinct prime factors p1, . . . , pw.
Consider an ordinary linear system L ∈ Ln(m) such that ccrankms (L) = r. Then, there exists a set
I of r linear forms satisfying the following condition: for every linear form ℓ in L, there exists a
prime pj such that ℓ ≡ ℓI + ℓ0 (mod pj), where ℓI is in the Zpj -linear span of I and ℓ0 is ws-sparse.

We will also need the following simple claim.

Claim 13. Let ℓ(x1, . . . , xn) ∈ A (mod m) be any linear constraint. Let p be a prime factor of
m, and assume that ℓ ≡ ℓI + ℓ0 (mod p) where ℓ0 is supported on variables xi1 , . . . , xik . For
a ∈ Zm let Ba = {x ∈ {0, 1}n : ℓI(x) ≡ a (mod m)}. Then for every a ∈ Zm and values for
xi1 , . . . , xik ∈ {0, 1}, there exists a linear form ℓ′(x) and a set Aa(xi1 , . . . , xik) ⊂ Zm/p such that

Ba ∩ {x ∈ {0, 1}n : ℓ(x) (mod m) ∈ A}

= Ba ∩ {x ∈ {0, 1}n : ℓ′(x) (mod m/p) ∈ Aa(xi1 , . . . , xik)},

10



Proof. Let S = {x1, . . . , xk} be the variables in the support of ℓ0, and T = [n] \S be the remaining
variables. For x ∈ {0, 1}n let xS ∈ {0, 1}S and xT ∈ {0, 1}T denote its restriction to the correspond-
ing variables sets. Note that ℓ0(x) = ℓ0(x

S). Partition ℓ(x) = ℓS(xS)+ ℓT (xT ) to a linear form over
xS and a linear form over xT , and similarly ℓI(x) = ℓSI (x

S)+ℓTI (x
T ). Note that by assumption ℓT ≡

ℓTI (mod p), hence all the coefficients of ℓT − ℓTI are divisible by p. We now define ℓ′(x) = ℓ′(xT ) =
(ℓT (xT ) − ℓTI (x

T ))/p (mod m/p). Note that ℓ(x) ≡ pℓ′(xT ) + ℓI(x) + ℓS(xS) − ℓSI (x
S) (mod m).

Consider any assignment for xi1 , . . . , xik , and let b := a + ℓS(xS) − ℓSI (x
S) (mod m). We set

Aa(xi1 , . . . , xik) = {(z − b)/p (mod m/p) : z ∈ A, z ≡ b (mod p)}.

We now state the simplification lemma for Ln(m, k) systems of low communication rank.

Lemma 14. Let L ∈ Ln(m, k) have m-wise communication rank at most r. Then there exist
L1, . . . , LR ∈ Ln(m,κ(·)) such that L = L1 ·∪ . . . ·∪LR where R ≤ exp((k + logm +m logm)r) and
κ : div(m) → N ∪ {−∞} is defined as

1. If k > 0 then κ(m) = k − 1 and κ(ℓ) = k +m logm for all ℓ ∈ div(m) \ {m}.

2. If k = 0 then κ(m) = −∞ and κ(ℓ) = k +m logm for all ℓ ∈ div(m) \ {m}.

Proof. Let L =
∧N

i=1{x ∈ {0, 1}n : ℓi(x) (mod m) ∈ Ai(xv(i,1),...,xv(i,k)
)}. Denote the number of

distinct prime factors of m by w ≤ logm. Assume that L has m-wise communication rank of at
most r. Let I be the set of r equations given by Lemma 12. Consider the set of variables W ⊂ [n]
given by

W =
⋃

i∈I

Vi ∪
⋃

p,t

Jp,t.

We have |W | ≤ r(k + mw). We will consider all possible assignments to variables in W and all
possible values for equations in I. For α ∈ {0, 1}W and β ∈ ZI

m define

Bα,β := {x ∈ {0, 1}n : ∀w ∈ W,xw = αw and ∀i ∈ I, ℓi(x) ≡ βi (mod m)}.

Note that {0, 1}n = ·∪α∈{0,1}W ,β∈ZI
m
Bα,β . We will show that for any setting of α, β we have

Bα,β ∩ L ∈ Ln(m,κ(·)).

Hence, L = L1 ·∪ . . . ·∪LR for R = 2|W |m|I| ≤ exp((k + logm+m logm)r).
We partition the set of rows outside of I into two parts. I ′ is the set of all rows i′ such that Vi′

intersects W . Let I ′′ be the set of all other rows not in I ′. Note that if k = 0 then I ′ is empty.
Consider first rows i′ ∈ I ′. Note that after fixing values for elements in W the sparsity of Ai′

reduces by at least one, hence they are equivalent to linear forms in Ln(m, k− 1). Consider next a
row i′′ ∈ I ′′. By Lemma 12 there exists a prime factor p of m with ℓi′′ ≡ ℓI+ℓ0 (mod p), where ℓI is
in the Zp-span of rows in I and ℓ0 is wm-sparse and supported on variables in xu(i′′,1), . . . , xu(i′′,wm).
We will add these wm variables to the accepting set of row i′′. Thus, under every fixing of linear
forms in I over Zm, by Claim 13 every linear constraint in I ′′ simplifies to one over a modulus
m/p for some factor p of m with an accepting set of sparsity at most k + mw. Combining these
arguments, for any row i ∈ [N ] and any assignment α ∈ {0, 1}W , β ∈ ZI

m we have

L ∩Bα,β = L
(α,β)
Sing ∩ L(α,β)

m ∩
⋂

p prime factor of m

L
(α,β)
m/p ,

11



where L
(α,β)
Sing ∈ LSing

m is the constraints xw = αw for w ∈ W (which can equivalently by stated

modulo m as xw ∈ {0, 1}) and ℓi(x) ≡ βi (mod m) for i ∈ I; L
(α,β)
m ∈ Ln(m, k − 1) is given by

simplified equations for i′ ∈ I ′; and Lm/p(α, β) ∈ Ln(m/p, k+mw) is given by equations for i′′ ∈ I ′′.
Note that if k = 0 then Lm does not appear. Thus L ∩Bα,β ∈ Ln(m,κ(·)) and the lemma follows.

Lemma 9 follows immediately by combining Lemma 11 and Lemma 14, concluding this section.
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A Linear systems over Abelian groups

In this section we generalize the argument to arbitrary Abelian groups of constant size. Most of
the argument generalizes in a straightforward manner, and we highlight the required changes.

Let G = Zm1 ⊕ . . .⊕ Zmt be a general Abelian group. We start by generalizing the definitions
of systems of linear forms. A linear equation in n binary variables over G with an accepting set A
is the set of solutions of

E = {x ∈ {0, 1}n :
∑

gixi ∈ A}

where g1, . . . , gn ∈ G and A ⊂ G. Let Ln(G) denote the set of common solutions to several such
equations. Similarly, let LSing

n (G) denote the common solutions to several equations with a singleton
accepting set and Ln(G, k) denote the set of common solutions to equations with accepting sets of
sparsity k. We next generalize the definition of several linear systems with different moduli to the
more general setting of Abelian groups. Let div(G) = {H < G} be the set of all subgroups of G.
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Note that for G = Zm this is equivalent to our former definition, as div(Zm) = {Zℓ : ℓ ÷m}. For
κ : div(G) → N ∪ {−∞} we define Ln(G, κ(·)) to be the intersection of a system in LSing

n (G) with
systems Ln(H,κ(H)) for H ∈ div(G) for which κ(H) ≥ 0.

The following is the natural generalization of Theorem 7, which we will shortly prove.

Theorem 15 (Correlation bound for Ln(G, κ(·)) and MODq). Let G be an Abelian group, and let
q be co-prime to |G|. Let κ : div(G) → N ∪ {−∞}. Then

Corr(Ln(G, κ(·)),MODq) ≤ exp(−n/c),

where c = c15(G, q, κ(·)).

Similar to Theorem 7, the proof follows from a base case and an inductive argument. Note that
Z1 = {0} corresponds to ℓ = 1 in the cyclic case.

Lemma 16 (Base case for Abelian groups). Let G be an Abelian group, and let q be co-prime to
|G|. Let k ≥ 0 be a sparsity. Let L = L′ ∩ L′′ where L′ ∈ LSing

n (G) and L′′ ∈ Ln(Z1, k). Then

Corr(L,MODq) ≤ exp(−n/βk),

where β = β(|G|, k) is as given in Theorem 6.

Proof. Let m = |G| = m1 . . .mt. The proof will follow from Lemma 8 for Zm. Let E = {x ∈
{0, 1}n :

∑

gixi = b} be an equation with a singleton accepting set. Let gi = (ai,1, . . . , ai,t) ∈
Zm1 ⊕ . . .⊕ Zmt and similarly let b = (b1, . . . , bt). Then E can be equivalently described as

E =
t
⋂

j=1

{x ∈ {0, 1}n :
∑

ai,jxi (mod mj) ≡ bj}.

As Zm1 , . . . ,Zmt are all subgroups of Zm we have that E ∈ LSing
n (Zm) and hence LSing

n (G) ⊂
LSing
n (Zm). An equation E ∈ Ln(1, k) can be described by a degree k polynomial over any abelian

group and in particular over Zm.

Lemma 17 (Simplification process for Ln(G, k)). Let G be an Abelian group, q be co-prime to |G|
and k ≥ 0 be a sparsity. Then there exists c = c17(G, k) such that for any L ∈ Ln(G, k) and any
1 ≤ r ≤ n, one of the following must hold:

1. Prx∈{0,1}n [x ∈ L] ≤ exp(−r/c).

2. There exist L1, . . . , LR ∈ Ln(G, κ(·)) such that L = L1 ·∪ . . . ·∪LR for R ≤ exp(cr), and κ :
div(G) → N ∪ {−∞} is given as

(a) If k > 0 then κ(G) = k − 1 and κ(H) = k + |G|2 for all H ∈ div(G) \ {G}.

(b) If k = 0 then κ(G) = −∞ and κ(H) = k + |G|2 for all H ∈ div(G) \ {G}.

The proof of Lemma 17 requires a generalization of communication rank to Abelian groups.
Let Hom(G) denote the set of all nonzero homomorphism to prime fields. That is,

Hom(G) = {ϕ : G → Fp}.

Note that these exist nonzero homomorphisms ϕ : G → Fp iff p ÷ |G|. It is also not hard to show
that |Hom(G)| < |G|, as we show in the appendix.
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Definition 6 (Communication Rank for Abelian groups). Let L ∈ Ln(G, k) given by L = E1 ∩
. . . ∩ EN . We say that a subset of equations I = {i1, . . . , ir} ⊂ [N ] is s-wise independent if the
following conditions hold. Let Vi = {v(i, 1), . . . , v(i, k)} for i ∈ I be the set of variables on which
Ai depends. We first require that all the sets Vi1 , . . . , Vir are disjoint. We also require that there
exist subsets of variables Jϕ,t ⊂ [n] of size |Jϕ,t| = |I| = r, where ϕ ∈ Hom(G) and t = 1, . . . , s,
such that:

1. All sets Jϕ,t and Vi1 , . . . , Vir are pair-wise disjoint.

2. Assume ϕ : G → Fp. Let Mϕ,t be the following r × r matrix over Fp: if Jϕ,t = {j1, . . . , jr}
then the (x, y)-entry of Mϕ,t is given by ϕ(gix,jy), i.e. Mϕ,t is the image under ϕ of the r× r
minor given by the rows of I and the columns of Jϕ,t. We require that for any ϕ ∈ Hom(G),
and any t = 1, . . . , s, the matrix Jϕ,t has full rank modulo p.

The s-wise communication rank of L modulo G, denoted by ccrankGs (L), is the maximal r for which
this holds for some I ⊂ [N ] of size |I| = r.

We will need the following generalization of Lemma 10, which we prove in the appendix.

Lemma 18. Let L ∈ Ln(G) have ccrankG|G| communication rank at least r. Then

Pr
x∈{0,1}n

[ N
∧

i=1

ℓi(x) ∈ Ai

]

≤ exp
(

− r/c18(G)
)

,

where each Ai ( Zm is an arbitrary set.

Given Lemma 18, it is straightforward to obtain the following generalization of Lemma 11.

Lemma 19. Let L ∈ Ln(G, k) have |G|-wise communication rank at least r. Then

Pr
x∈{0,1}n

[x ∈ L] ≤ exp(−r/c19(|G|, k)).

The following is a generalization of Lemma 12. The proof is identical to the original proof
in [CW09] given the natural changes required.

Lemma 20. Let G be an Abelian group. Consider an ordinary linear system L ∈ Ln(G) such
that ccrankGs (L) = r. Then, there exists a set I of at r linear forms satisfying the following
condition: for every linear form ℓ in L, there exists a nonzero homomorphism ϕ : G → Fp such
that ϕ(ℓ− (ℓI + ℓ0)) ≡ 0 (mod p), where ℓI is in the Z-span of I and ℓ0 is (|Hom(G)|s)-sparse.

The following is the generalization of Claim 13. Its proof is identical.

Claim 21. Let ℓ(x1, . . . , xn) ∈ A be any linear constraint in G. Let ϕ : G → Fp be a nonzero
homomorphism and let H = Ker(ϕ) be the kernel of ϕ (H < G). Assume that ϕ(ℓ − (ℓI + ℓ0)) ≡
0 (mod p) where ℓ0 is supported on variables xi1 , . . . , xik . For a ∈ G let Ba = {x ∈ {0, 1}n : ℓI(x) ≡
a (mod G)}. Then for every a ∈ G and values for xi1 , . . . , xik ∈ {0, 1}, there exists a linear form
ℓ′(x) in H and a set Aa(xi1 , . . . , xik) ⊂ H such that

Ba ∩ {x ∈ {0, 1}n : ℓ(x) ∈ A}

= Ba ∩ {x ∈ {0, 1}n : ℓ′(x) ∈ Aa(xi1 , . . . , xik)},
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The following is the natural generalization of Lemma 14. Its proof is identical.

Lemma 22. Let L ∈ Ln(G, k) have |G|-wise communication rank at most r. Then there exist
L1, . . . , LR ∈ Ln(G, κ(·)) such that L = L1 ·∪ . . . ·∪LR where R ≤ exp((k+2|G|2)r) and κ : div(G) →
N ∪ {−∞} is defined as

1. If k > 0 then κ(G) = k − 1 and κ(H) = k + |G|2 for all H ∈ div(G) \ {G}.

2. If k = 0 then κ(G) = −∞ and κ(H) = k + |G|2 for all H ∈ div(G) \ {G}.

B Generalizations of technical lemmas to Abelian groups

We outline how the proof of Lemmas 10 and 18 follow along the lines of the original proof of [CW09,
Lemma 13]. The only ingredient which doesn’t generalize immediately is [CW09, Lemma 14], which
we give below for general Abelian groups. Say a subset S ⊂ G is nontrivial if for any homomorphism
ϕ ∈ Hom(G) there exist g ∈ S such that ϕ(g) 6= 0. For two sets S′, S′′ ⊂ G define their sum as
S′ + S′′ = {g′ + g′′ : g′ ∈ S′, g′′ ∈ S′′}.

Claim 23. Let G be an Abelian group with |G| = m. Let S1, . . . , Sm be nontrivial subsets of G.
Let Ti = Si ∪ {0}. Then T1 + . . . + Tm = G. In particular any element of G can be written as a
sum of subsets of S1, . . . , Sm.

Proof. It is enough to prove that if A ( G and S is a nontrivial subset of G then |A∪(A+S)| > |A|.
Assume otherwise. For every g ∈ S we have A+ g = A, hence A is closed to Z-sums of elements of
S. That is, if S = {g1, . . . , gs} then for any element a ∈ A,

{a+
s

∑

i=1

cigi : c1, . . . , cs ∈ Z} ⊂ A.

Let H = {
∑s

i=1 cigi : c1, . . . , cs ∈ Z}, and note that H < G. We will next show that H = G
which contradicts the assumption that A ( G. If H is a proper subgroup of G then there is a
homomorphism ϕ′ : G → G/H such that ϕ′(H) = 0. Let p be a prime factor of |G/H|. There
exists a nonzero homomorphism ϕ′′ : G/H → Fp. Let ϕ = ϕ′′ ◦ ϕ′ be their composition. Then
ϕ : G → Fp is a nonzero homomorphism for which ϕ(H) = {0}. In particular ϕ(S) = {0}, which
contradicts the assumption that S is nontrivial.

Claim 24. Let G be an Abelian group. Then |Hom(G)| < |G|.

Proof. Decompose G into a sum of cyclic groups of prime order, G = ⊕p prime,t≥1(Zpt)
ep,t . We have

|G| =
∏

|pt|ep,t . Fix a prime p, and consider all homomorphisms ϕ : G → Fp. They are identically
zero on any Zq for q co-prime to p, and are determined by the image of the identity on any Zpt .
Thus the number of all homomorphism ϕ : G → Fp is given by

∏

t≥1 p
ep,t . This includes also the

identically zero homomorphism, which we need to subtract. We thus get that

|Hom(G)| =
∑

p prime





∏

t≥1

pep,t − 1



 ≤ |G| − 1.

This is tight in general, as for G = (Zp)
t we have |G| = pt and |Hom(G)| = pt − 1.
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The above two claims allow us to extend the argument of [CW09] to the setting of abelian
groups to prove Lemma 18. We now describe the outline of this argument, referring the reader to
[CW09] for the missing details. Let L ∈ Ln(G) with ccrankGm = r, where |G| = m. By definition
of communication rank, there exists a set of r rows, I, and for each φ ∈ Hom(G) sets of pairwise
disjoint columns Jφ,1, . . . , Jφ,m,

∣

∣Jφ,i
∣

∣ = r for each i, with the following property: the rank of the
sub-matrix corresponding to rows in I and columns in Jφ,i, denoted by Mφ,i has full rank r over
the field Fp that is the range of φ. In order to prove Lemma 18, just as in [CW09] we will prove the
following sharper result: let d = |Hom(G)|m and let us enummerate the various sets of r columns
simply as J1, . . . , Jd. Further, let J = ∪d

i=1Ji. Let xi be the variable representing the boolean
assignment to variables corresponding to columns in Ji. For any ℓ ∈ L, let ℓ(x1, . . . , xd) represent
its natural projection to variables indexed by J . We establish

Pr
x1,...,xd

[

∧

i∈I

ℓi(x
1, . . . , xd) ∈ Ai

]

≤ exp
(

− Ω(r)
)

,

where each Ai ( G is an arbitrary subset. This immediately implies Lemma 18. Following [CW09,
GR98],

(

Prx1,...,xd

[

∧

i∈I

ℓi(x
1, . . . , xd) ∈ Ai

])2d

≤ Pr
x1
0,x

1
1,...,x

d
0,x

d
1

[

∀i ∈ I; ∀u ∈ {0, 1}d; ℓi
(

x1u1
, . . . , xdud

)

∈ Ai

]

(2)

Remarking that Claim 24 implies d to be a constant, we bound the RHS of (2) for proving our
Lemma. We note an obvious thing: let φd : G → Fpd be the relevant homomorphism for the dth
matrix. Then, for any i, φd

(

ℓi(x
d)
)

= Mdx
d[i]. Recalling that each Md has full rank over Fpd , we

directly use the following claim from the argument in [CW09].

Claim 25. There exists constants γ and ν such that with probability at least 1− exp
(

− νr
)

, there

exists a set of rows I ′ of size r/γd, such that for each i ∈ I ′ and j ≤ d, we have φj

(

ℓi(x
j
0)
)

6=

φj

(

ℓj(x
j
1)
)

.

We refer the reader to [CW09] for a proof of this claim. Assume r is large so that r/γd ≥ 1.
Then, using above claim, pick a row k ∈ I such that φj

(

ℓk(x
j
0)
)

6= φj

(

ℓk(x
j
1)
)

for all j. Consider
sets T1, . . . , Tm, defined as follows: for any φ ∈ Hom(G) and i ≤ m, there is a uφ,i ≤ d such that
Juφ,d

= Jφ,i. Set,
Ti ≡

{

ℓk(x
u
0), ℓk(x

u
1) |u = uφ,i, φ ∈ Hom(G)

}

The sets T1, . . . , Tm clearly satisfy the conditions required to invoke Claim 23. Hence, T1+· · ·+Tm =
G. So, there is a setting of u ∈ {0, 1}d such that ℓk

(

x1u1
, . . . , xdud

)

cannot lie in Ak. Such a k exists
by Claim 25, with probability at least

(

1− exp(−νr)
)

, providing the required upper bound for the
RHS of (2). This completes the proof of Lemma 18.

We end by remarking that the main simplification tool for abelian groups, Lemma 17, follows
by combining Lemma 19 and Lemma 22. This combination essentially mimicks the combination of
Lemma 11 and Lemma 14 to yield the simplification tool for cyclic groups, Lemma 9, in the main
body of the paper.
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