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Abstract
A family of permutations in Sn is k-wise independent if a uniform permutation

chosen from the family maps any distinct k elements to any distinct k elements equally
likely. Efficient constructions of k-wise independent permutations are known for k = 2
and k = 3, but are unknown for k ≥ 4. In fact, it is known that there are no nontrivial
subgroups of Sn for n ≥ 25 which are 4-wise independent. Faced with this adversity,
research has turned towards constructing almost k-wise independent families, where
small errors are allowed. Optimal constructions of almost k-wise independent families
of permutations were achieved by several authors.

Our first result is that any such family with small enough error is statistically close
to a distribution which is perfectly k-wise. This allows for a simplified analysis of algo-
rithms: an algorithm which uses randomized permutations can be analyzed assuming
perfect k-wise independence, and then applied to an almost k-wise independent fam-
ily. In particular, it allows for an oblivious derandomization of two-sided randomized
algorithms which work correctly given any k-wise independent distribution of permu-
tations.

Another model is that of weighted families of permutations, or equivalently dis-
tributions of small support. We establish two results in this model. First, we show
that a small random set of nO(k) permutations w.h.p supports a k-wise independent
distribution. We then derandomize this by showing that any almost 2k-wise inde-
pendent family supports a k-wise independent distribution. This allows for oblivious
derandomization of algorithms for search problems which work correctly given perfect
k-wise independent distributions.

These results are all in fact special cases of a general framework where a group acts
on a set. In the aforementioned case, the group of permutations acting on tuples of k
elements. We prove all the above results in the general setting of the action of a finite
group on a finite set.

∗Supported in part by an ERC advanced grant
†Supported in part by NSF grant DMS-0835373.
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1 Introduction

Small probability spaces of limited independence are widely used in many applications.
Specifically, if the analysis of a randomized algorithm depends only on the assumption that
the entries are k-wise independent, one can replace the random tape by a tape selected
from a k-wise independent distribution. One application of this is a derandomization of the
algorithm by enumerating over all possible random strings. Another application is when
the random string needs to be saved, for example in data structures, where using k-wise
independence allows one to maintain a succinct data structure.

The case of k-wise independent distributions over {0, 1}n has been widely studied, and
there are optimal constructions of k-wise independent probability spaces of size nO(k) (see
e.g. [ABI86]). Moreover, these constructions are strongly explicit: given an index of an
element i ∈ [nO(k)] and an index of a bit j ∈ [n], one can compute the j-th bit of the i-th
string in time O(k log n). This is crucial for several applications, for example for streaming
algorithms and cryptography, where operations need to be performed in poly-logarithmic
time.

Another widely studied case is that of k-wise independent permutations of n elements.
Here, the situation is much less understood. For k = 2 the group of invertible affine transfor-
mations x 7→ ax+b over a finite field F yields a 2-wise independent family; and for k = 3 the
group of Möbius transformations x 7→ (ax+ b)/(cx+ d) with ad− bc = 1 over the projective
line F ∪ {∞} yields a 3-wise independent family. For k ≥ 4 (and n large enough), however,
no k-wise independent family is known, other than the full symmetric group Sn and the
alternating group An. In fact, it is known (c.f.., e.g., [Cam95], Theorem 5.2) that for n ≥ 25
and k ≥ 4 there are no other subgroups of Sn which form a k-wise independent family1. This
is a major obstacle, while as groups are by no means the only way to produce such families,
algebraic techniques are among the most useful in combinatorics, and the lack of algebraic
structure is a serious drawback.

Faced with this adversity, research has turned towards constructing families of permuta-
tions which are almost k-wise independent, allowing for small errors. There has been much
research towards constructing explicit almost k-wise independent families of minimal size.
This was achieved, up to polynomial factors, by Kaplan, Naor and Reingold [KNR05], who
gave a construction of such a family of size nO(k). Alternatively, one can start with the
constant size expanding set of Sn given by Kassabov [Kas07], and take a random walk on it
of length O(k log n). Both of these constructions are also strongly explicit: given an index
of a permutation i ∈ [nO(k)] and an element j ∈ [n], one can compute the image of the i-th
permutation on j in time O(k log n). Again, this is crucial for applications such as streaming
algorithms or cryptography.

For many applications, almost k-wise independent families are just as good as perfect
k-wise independent families. However, the analysis must take into account the error, which
in some cases is not trivial. Our first result shows that by choosing the error small enough,

1In the language of group theory, these are k-transitive groups. The currently known proof of this fact
seems hard, as it requires the classification of finite simple groups.
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one can analyze an algorithm using perfect k-wise independent permutations, and then apply
almost k-wise independent permutations to achieve almost the same results.

Theorem 1.1. Let µ be a distribution over permutations which is almost k-wise independent
with error ε · n−O(k). Then there exists a distribution over permutations µ′ which is k-wise
independent, and such that the statistical distance between µ and µ′ is at most ε.

A similar result for k-wise independent hash functions was obtained by Alon, Goldreich
and Mansour [AGM03]. Our proof technique is similar in spirit, although technically more
involved. This allows for an oblivious derandomization of two-sided algorithms which ”work”
given any k-wise independent distribution over permutations: let f be a boolean function,
and let A be a randomized algorithm such that

Pr
π∼µ

[A(x, π) = f(x)] ≥ 2/3

for any k-wise independent distribution over permutations µ. Then A can be derandom-
ized by letting π be chosen uniformly from an almost k-wise independent distribution with
error n−O(k). Since such distributions can be generated strongly explicitly, the overhead (in
terms of the number of bits needed to sample from the distribution) is just O(k log n).

A relaxation of the problem of constructing small families of k-wise independent permu-
tations is that of considering weighted families, or equivalently distributions of small support
which are k-wise independent. Contrary to the case of unweighted families, it is simple to
establish that there exist distributions of small support which are k-wise independent. First,
note that given a family S of permutations, it is easy to decide if there exists a distribution µ
supported on S which is k-wise independent, using linear programming: for a permutation π
define the matrix Mk(π) to be the permutation on distinct k-tuples induced by π. Let U be
the uniform matrix all whose elements are (n− k)!/n!. Then there exists a k-wise indepen-
dent distribution supported on S iff U belongs to the convex hull of {Mk(π) : π ∈ S}. The
latter condition can be easily verified using linear programming. Now, starting with any set
of permutations which support k-wise independent permutations (for example the set of all
permutations), one can apply Carathéodory theorem, and deduce that U lies in the convex
hull of at most n2k permutations. That is, there exist k-wise independent distributions which
are supported on at most n2k permutations. Moreover, and somewhat surprisingly, one can
algorithmically find a k-wise independent distribution with small support in a weakly explicit
manner (i.e. in time nO(k)) using the ideas of Karp and Papadimitriou [KP82] and Koller
and Megiddo [KM94]2.

We consider the problem of constructing small explicit sets which support k-wise inde-
pendent distributions. First, we establish that most small sets support k-wise independent
distributions.

Theorem 1.2. Let S be a random set of size n6k. Then with high probability (w.h.p, for
short) there exists a distribution µ supported on S which is k-wise independent.

2Essentially, the linear program for finding µ has n! variables and nO(k) constraints. Its dual has nO(k)

variables and n! constraints. The dual problem can be solved efficiently using the ellipsoid method since it
has an efficient separating-hyperplane oracle.
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This shows a somewhat surprising result for search algorithms which ”work” given any k-
wise independent distribution over permutations, which allows to transform weak guarantees
to strong guarantees. Let f be a function and A an algorithm, such that for any k-wise
independent distribution µ,

Pr
π∼µ

[A(x, π) = f(x)] > 0.

Then since almost all sets of size nO(k) support such a distribution, we must have that A has
a noticeable fraction of witnesses in Sn,

Pr
π∈Sn

[A(x, π) = f(x)] ≥ n−O(k).

We also show that almost 2k-wise independent permutations give an explicit construction
of a set which supports k-wise independence, thus derandomizing Theorem 1.2.

Theorem 1.3. Let S be a family of almost 2k-wise independent permutations with error
n−O(k). Then there exists a distribution µ supported on S which is k-wise independent.

This allows for an oblivious derandomization of search algorithms which ”work” given
any k-wise independent distribution over permutations: let f be a function, and let A be a
randomized algorithm such that

Pr
π∼µ

[A(x, π) = f(x)] > 0

for any k-wise independent distribution µ over permutations. Then taking S to be an
almost 2k-wise independent family of permutations with error n−O(k), we get that there
exists π ∈ S for which A(x, π) = f(x), achieving an oblivious derandomization of A with
overhead (measured in bits, as before) O(k log n).

Here is a toy example illustrating the way the last theorem and the discussion preceding
it can be applied. Let G = (V,E) be a graph on a set V of n vertices, and suppose that
each vertex v ∈ V has a real positive weight w(v). Let d(v) be the degree of v, and assume
all degrees are bounded by k. We claim that G contains an independent set U ⊂ V of total
weight W (U) =

∑
u∈U w(u) at least

∑
v∈V

w(v)
d(v)+1

. To prove it, let π be a random permutation

of the set of vertices V , and let U consist of all vertices u so that π(u) precedes π(v) for
every neighbor v of u. It is clear that U is an independent set, and for any vertex u ∈ V
the probability that u ∈ U is exactly 1

d(u)+1
, as this is the probability that u precedes all

its neighbors. By linearity of expectation, the expected value of the total weight of U is∑
v∈V

w(v)
d(v)+1

and hence there exists an independent set U of total weight at least as claimed.

The above proof clearly works even if π is only assumed to be (k + 1)-wise independent
(in fact, a weaker condition suffices, we only need π to be (k + 1)-minwise independent).
Therefore, the discussion preceding Theorem 1.3 implies that if π is chosen uniformly at
random, then the probability it provides a set U satisfying W (U) ≥

∑
v∈V

w(v)
d(v)+1

, is at

least n−O(k). The theorem itself shows that the support of any set of almost (2k + 2)-wise
independent permutations with sufficiently small error must contain a permutation π that
provides an independent set U as above.
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A similar reasoning can be applied to other arrangement problems. Given a k-uniform
hypergraph with a weight for each permutation of the vertices in each of its edges, one
may want to find a permutation maximizing the total weight of all orders induced on the
sets of vertices in the edges. Problems of this type are called k-CSP-rank problems, (see,
e.g., [AA07]), and include Betweenness and Feedback Arc Set. In most of these problems,
finding the precise optimum is NP-hard, and the reasoning above provides some insight
about algorithms for the (much easier) problem of finding a permutation in which the total
weight is at least as large as the expected weight in a uniform random permutation.

1.1 Group action uniformity vs. almost uniformity

We actually prove all the aforementioned results in the general setting of group actions, of
which k-wise independent permutations as well as k-wise independent random variables form
specific instances. A group G acts on a set X if G acts as a group of permutations on X. That
is, g : X → X is a permutation of X for all g ∈ G, and (gh)(x) = g(h(x)) for all g, h ∈ G and
x ∈ X. This gives a general framework: k-wise independent permutations corresponds to
the case of G = Sn the group of permutations, and X = [n]k = {i1, . . . , ik ∈ [n] distinct} the
set of (ordered) distinct k-tuples, where the action of G on X is straightforward. The case
of k-wise independent distributions over {0, 1}n corresponds to G = Fn2 and X = [n]k × Fk2,
where the action of g = (g1, . . . , gn) ∈ Fn2 on x = ((i1, . . . , ik), (b1, . . . , bk)) ∈ [n]k × Fk2 is
given by g(x) = ((i1, . . . , ik), (b1 + gi1 , . . . , bk + gik)). Similarly, one can obtain in this way
distributions supporting k-wise independent random variables, even when each variable is
distributed over a different domain.

We now introduce some definitions. If G acts on X, a distribution µ over G is X-uniform
if

Pr
π∼µ

[π(x) = y] = Pr
π∈G

[π(x) = y]

for all x, y ∈ X; and is almost X-uniform with error ε if∣∣∣∣Pr
π∼µ

[π(x) = y]− Pr
π∈G

[π(x) = y]

∣∣∣∣ ≤ ε

for all x, y ∈ X. These definitions coincide with k-wise independence and almost k-wise
independence permutations when G = Sn and X = [n]k. Theorem 1.1, Theorem 1.2 and
Theorem 1.3 are immediate corollaries of the following general theorems, when applied to
G = Sn and X = [n]k.

Theorem 3.1 (informal version). Let µ be a distribution over G which is almost X-uniform
with error ε · |X|−O(1). Then there exists a distribution µ′ on G which is X-uniform, and
such that the statistical distance between µ and µ′ is at most ε.

Theorem 4.1 (informal version). Let S ⊂ G be a random set of size |X|O(1). Then w.h.p
there exists a distribution µ supported on S which is X-uniform.
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Note that G acts on X ×X in the obvious manner, g((x1, x2)) = (g(x1), g(x2)).

Theorem 5.1 (informal version). Let µ be a distribution supported on a set S ⊂ G
which is almost (X × X)-uniform with error |X|−O(1). Then there exists a distribution µ′

supported on S which is X-uniform.

The proof of Theorem 4.1 is a by a counting argument using the symmetry of the group
action. The proofs of Theorem 3.1 and Theorem 5.1 relies on representation theory of finite
groups.

Paper organization Preliminary definitions and a short introduction to representation
theory are given in Section 2. Theorem 3.1 is proved in Section 3, Theorem 4.1 in Section 4
and Theorem 5.1 in Section 5. We conclude with some open problems in Section 6. Note
that throughout the paper we do not attempt to optimize constants.

2 Preliminaries

Group action and uniformity A group G acts on a set X if there is a homomorphism
from G to the permutation group on X. That is, each g ∈ G is a permutation on X, and
(gh)(x) = g(h(x)) for all g, h ∈ G, x ∈ X. We denote by UG the uniform distribution over
G. We recall some definitions from the introduction: a distribution µ over G is X-uniform if

Pr
g∼µ

[g(x) = y] = Pr
g∈G

[g(x) = y]

for all x, y ∈ X; and a distribution µ is almost X-uniform with error ε if∣∣∣∣Pr
g∼µ

[g(x) = y]− Pr
g∈G

[g(x) = y]

∣∣∣∣ ≤ ε

for all x, y ∈ X. A set S ⊂ G is X-uniform (or almost X-uniform) if the uniform distribution
over S is such. We will need some basic facts in linear algebra, geometry and representation
theory, which are presented below.

Linear algebra Let A = (ai,j) be a complex matrix. Recall some basic definitions. The
L∞ norm of A is ‖A‖∞ = max |ai,j|. The Frobenius norm of A is ‖A‖Fr =

√∑
|ai,j|2.

Note that always ‖A‖∞ ≤ ‖A‖Fr. A matrix A is unitary if AAt = I. Note that the
Frobenius norm of a matrix is invariant under any unitary basis change. That is, if U
is unitary then ‖U−1AU‖Fr = ‖A‖Fr. The tensor product of a d1 × d1 matrix A1 and a
d2 × d2 matrix A2, denoted A1 ⊗A2, is a (d1d2)× (d1d2) matrix, whose entries are given by
(A1 ⊗A2)(i,i′),(j,j′) = (A1)i,j(A2)i′,j′ . Note that the tensor product of unitary matrices is also
unitary.

6



Geometry Let X = {x1, . . . , xN} be a set of points in Rd. The convex hull of X is the set
of points contained in the minimal convex set containing X; equivalently, it is the set of all
points {

∑
λixi : λ1, . . . , λN ≥ 0,

∑
λi = 1}.

Fact 2.1 (Carathéodory theorem). Let X be a finite set of points in Rd, and let y be a point
in the convex hull of X. Then there exists a subset Y ⊂ X of size |Y | ≤ d + 1 such that y
is in the convex hull of Y .

Any hyperplane H partitions a set X of points into two sets: if H = {x : 〈a, x〉 = b} then
the sets are {x ∈ X : 〈a, x〉 ≥ b} and {x ∈ X : 〈a, x〉 < b}. We need the following bound on
the maximal number of ways a set can be partitioned by hyperplanes 3.

Fact 2.2 (Harding [Har67]). Let X be a set of N points in Rd. The number of different
ways to partition X into two sets by a hyperplane is at most

∑d
i=0

(
N−1
i

)
≤ Nd.

Representation theory Let G be a finite group. A representation of G (over C) is a
homomorphism R : G→ GL(d,C). That is, R(g) for g ∈ G is a d× d nonsingular complex
matrix, and R(gh) = R(g)R(h) for every g, h ∈ G. The dimension of the representation R is
d. Two representations R,R′ of G of dimension d are equivalent if there exists an invertible
matrix A such that R′(g) = A−1R(g)A for all g ∈ G. This is denoted as R ≡ R′.

A representation R is unitary if R(g) is unitary for all g ∈ G.

Fact 2.3. Any representation of G is equivalent to a unitary representation.

We will restrict our attention only to unitary representations in this paper. We note
that if R,R′ are unitary and equivalent, then there exists a unitary matrix A such that
R′(g) = A−1R(g)A.

Let G be a group which acts on a set X, that is, g : X → X is a permutation of X for
all g ∈ G, and (gh)(x) = g(h(x)) for all g, h ∈ G and x ∈ X. The associated representation
RX maps each g ∈ G to the permutation matrix it induces on the set X. That is, RX(g)
is an |X| × |X| matrix, indexed by x, y ∈ X, defined as (RX(g))x,y = 1 if g(x) = y and
(RX(g))x,y = 0 otherwise. Note that RX is always a unitary representation.

The sum of two representations R1 : G → GL(d1,C) and R2 : G → GL(d2,C) is a
representation R : G → GL(d1 + d2,C) where R(g) is defined as a block diagonal matrix
with two blocks, given by R1(g) and R2(g). For e ≥ 1 let eR := R+ . . .+R where the sum
is over e copies of R. A representation R is reducible if it is equivalent to the sum of two
representations. Otherwise, the representation R is irreducible. We summarize a few basic
properties of representations below. For details we refer the reader to any standard book on
representation theory, e.g. [FH91].

Fact 2.4 (Maschke’s theorem). Any representation R of G is equivalent to a sum of irre-
ducible representations R ≡ e1R1 + . . .+etRt, where R1, . . . , Rt are nonequivalent irreducible
representations, and ei ≥ 1 is the multiplicity of Ri. We have

∑
ei dim(Ri) = dim(R).

3A quick way to prove a slightly weaker estimate is as follows: the V C-dimension [VC71] of halfspaces
is d + 1. Hence by the VC-dimension theorem [VC71, Sau72, She72] the number of partitions is at most∑d+1

i=0

(
N
i

)
≤ Nd+1.
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Fact 2.5 (Schur’s lemma). Let R be an unitary irreducible representation of G of dimension
d. Then for any i, j, k, ` ∈ [d],

1

|G|
∑
g∈G

R(g)i,jR(g)k,` =
1

d
δi,kδj,`.

Let R′, R′′ be two non-equivalent unitary irreducible representations of G of dimensions d′, d′′.
Then for any i, j ∈ [d′] and k, ` ∈ [d′′],

1

|G|
∑
g∈G

R′(g)i,jR′′(g)k,` = 0.

The trivial representation is given by 1(g) = 1 for all g ∈ G. An immediate corollary
of Schur’s lemma is that for every representation R which is irreducible and nontrivial, we
have

∑
g∈GR(g) = 0.

The group algebra C[G] is the linear space of functions µ : G→ C. It is often written as
µ =

∑
g∈G µ(g) · g. Note that the distributions over G form a subset of C[G]. For µ ∈ C[G]

and a representation R of G, let R(µ) :=
∑

g∈G µ(g)R(g). If µ is a distribution, this is
equivalent to R(µ) = Eg∼µ[R(g)].

3 Almost X-uniform distributions are statistically

close to X-uniform distributions

We prove in this section Theorem 3.1, which states that almost X-uniform distributions with
small enough error are statistically close to X-uniform distributions.

Theorem 3.1. Let µ be a distribution on G which is almost X-uniform with error ε. Then
there exists a distribution µ′ on G which is X-uniform, and such that the statistical distance
between µ and µ′ is at most ε · 3|X|4.

We first rephrase the conditions for a distribution to be X-uniform, or almost X uniform,
in terms of representations. Let RX be the representation of the action of G on X, i.e.
RX(g)x,y = 1g(x)=y. Let UG denote the uniform distribution over G.

Claim 3.2. Let µ be a distribution on G. Then

1. µ is X-uniform iff RX(µ) = RX(UG).

2. µ is almost X-uniform with error ε iff ‖RX(µ)−RX(UG)‖∞ ≤ ε.

Proof. The claim is immediate from the definitions of X-uniform and almost X-uniform
definitions, since RX(µ)x,y = Prg∼µ[g(x) = y] and RX(UG)x,y = Prg∈G[g(x) = y].
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The first step is to decompose RX into its irreducible representations. Let RX ≡
e01 + e1R1 + . . . + etRt, where R1, . . . , Rt are unitary nonequivalent non-trivial irreducible
representations, and ei is the multiplicity of Ri in RX . We next transform the conditions of
Claim 3.2 to the basis of the irreducible representations.

Claim 3.3. Let µ be a distribution on G. Then

1. µ is X-uniform iff Ri(µ) = 0 for all i ∈ [t].

2. If µ is almost X-uniform with error ε then ‖Ri(µ)‖∞ ≤ ε|X| for all i ∈ [t].

Proof. Note that as µ is a distribution, then 1(µ) =
∑

g∈G µ(g) = 1, and the same holds for
UG. Hence always 1(µ) = 1(UG). Thus, RX(µ) = RX(UG) iff Ri(µ) = Ri(UG) for all i ∈ [t].
The first item follows since Ri(UG) = 0 for all i ∈ [t]. To see that, note that by Schur’s
lemma

Ri(UG)j,k =
1

|G|
∑
g∈G

Ri(g)j,k =
1

|G|
∑
g∈G

Ri(g)j,k1(g) = 0

since Ri and 1 are nonequivalent unitary irreducible representations. To prove the second
item, let µ be an almost X-uniform distribution with error ε. By Claim 3.2 this is equivalent
to ‖RX(µ)− RX(UG)‖∞ ≤ ε. The L∞ norm is not convenient for the basis change required
to switch to the basis of the irreducible representations. We thus switch to the Frobenius
norm, which is trivially bounded by

‖RX(µ)−RX(UG)‖Fr ≤ ε|X|.

Note that the Frobenius norm is invariant under unitary change of basis, and as both RX

and R1, . . . , Rt are unitary, the basis change can also be assumed to be unitary. We thus
have √√√√ t∑

i=1

ei‖Ri(µ)−Ri(UG)‖2Fr = ‖RX(µ)−RX(UG)‖Fr ≤ ε|X|,

which combined with the fact that Ri(UG) = 0 implies that ‖Ri(µ)‖∞ ≤ ε|X|.

The idea is to ”correct” each element of Ri(µ) to be zero by making a small statistical
change in µ, and without affecting the other elements of Ri or in any other Ri′ . This
is analogous to the proof idea of [AGM03] for almost k-wise independent bits (see also
[AAK+07]). Performing all these local changes sequentially over all elements of Ri, i ∈ [t],
will shift µ into an X-uniform distribution. Actually, as a first step we will get a general
element in C[G], which we then rectify to be a distribution.

Let Ri be one of the irreducible representations, and let di = dim(Ri) be its dimension.
For j, k ∈ [di] we define ∆i,j,k ∈ C[G] as

∆i,j,k(g) =
di
|G|

Ri(g)j,k.

We consider how shifting µ by a small multiple of ∆i,j,k affects the entries of R1, . . . , Rt.
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Claim 3.4. Let i ∈ [t], j, k ∈ [di] and i′ ∈ [t], j′, k′ ∈ [di′ ]. For any δ ∈ R we have

Ri′(µ+ δ∆i,j,k)j′,k′ = Ri′(µ)j′,k′ + δ · 1(i,j,k)=(i′,j′,k′).

Proof. First, note that by additivity

Ri′(µ+ δ∆i,j,k)j′,k′ = Ri′(µ)j′,k′ + δ ·Ri′(∆i,j,k)j′,k′ .

The claim follows from the orthogonality of the entries of the irreducible representations.
By Schur’s Lemma,

Ri′(∆i,j,k)j′,k′ =
di
|G|

∑
g∈G

Ri′(g)j′,k′Ri(g)j,k = 1(i,j,k)=(i′,j′,k′).

We will also need the following claim, which asserts that 1(∆i,j,k) = 0 and that ‖∆i,j,k‖∞
is bounded.

Claim 3.5. Let i ∈ [t], j, k ∈ [di]. Then

1. 1(∆i,j,k) = 0.

2. ‖∆i,j,k‖∞ ≤ |X|
|G| .

Proof. The first item follows because
∑

g∈GRi(g)j,k = 0 by Schur’s lemma, since Ri is a
nontrivial irreducible representation. The second item follows because di ≤ |X| and because
|Ri(g)j,k| ≤ 1 since Ri(g) is a unitary matrix.

Applying Claim 3.4 and Claim 3.5 iteratively over all elements of R1, . . . , Rt, we obtain
the following corollary.

Corollary 3.6. Let µ be a distribution over G which is almost X-uniform with error ε.
Define ∆ ∈ C[G] by

∆(g) = −
∑
i∈[t]

∑
j,k∈[di]

Ri(µ)j,k ·∆i,j,k(g).

Then

1. RX(µ+ ∆) = RX(UG).

2. ‖∆‖∞ ≤ ε|X|4
|G| .

Proof. The first item holds since Ri(µ + ∆)j,k = Ri(UG)j,k for all i ∈ [t] and j, k ∈ di by
Claim 3.4, and since 1(µ + ∆) = 1(UG) = 1 by the first item in Claim 3.5. The second
item holds since

∑
d2i ≤ |X|2 as dim(RX) = |X|, |Ri(µ)j,k| ≤ ε|X| by Claim 3.3, and

|∆i,j,k(g)| ≤ |X|/|G| by the second item in Claim 3.5.
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We are nearly done. The only problem is that µ + ∆ may not be a distribution: it may
be complex, or have negative values. This can be fixed, without increasing the statistical
distance too much. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let λ = |G| · ‖∆‖∞ ≤ ε|X|4. Define

µ′ = (1− λ)

(
µ+

∆ + ∆

2

)
+ λUG.

We claim that µ′ is a distribution which isX-uniform. First lets show thatRX(µ′) = RX(UG).
We already know by Corollary 3.6 that RX(µ + ∆) = RX(UG). Conjugating this equality,
since RX is a real representation (i.e. all elements in RX(g) are real), and since µ, UG ∈ R[G]
are also real, we obtain that also

RX(µ+ ∆) = RX(UG).

Thus RX(µ′) = RX(UG) since RX(µ′) is a convex combination of RX(µ+∆), RX(µ+∆) and
RX(UG).

To conclude we need to show that µ′ in a distribution, i.e. it is real, nonnegative and
sums to one. By definition of µ′ it is real, and since RX(µ′) = RX(UG) we have

∑
g∈G µ

′(g) =
1(µ′) = 1(UG) = 1. The bound µ′(g) ≥ 0 for all g ∈ G follows by elementary calculations
from µ(g) ≥ 0, |∆(g)| ≤ λ/|G| and UG(g) = 1/|G|.

4 Random sets support X-uniform distributions

We establish Theorem 4.1 in this section, which states that w.h.p a random set of size |X|O(1)

supports an X-uniform distribution.

Theorem 4.1. Let S ⊂ G be a random set of size O(|X|6). Then with probability 0.99 over
the choice of S, there exists a distribution µ supported on S which is X-uniform.

Recall that a distribution µ is X-uniform if Prg∼µ[g(x) = y] = Prg∈G[g(x) = y] for all
x, y ∈ X. We say a set S supports X-uniformity if there exists a distribution supported on
S which is X-uniform. We first establish that this a purely geometric property of S.

Let RX be the representation of the action of G on X, that is, RX(g)x,y = 1g(x)=y. Let
U = RX(UG) = Eg∈G[RX(g)] denote the matrix which corresponds to the action on X of the
uniform distribution over G. We consider these matrices as points in Rd for d = |X|2.

Claim 4.2. A set S ⊂ G supports X-uniformity iff the convex hull of the matrices {RX(g) :
g ∈ S} contains the matrix U .

Proof. A point in the convex hull is given by M =
∑

g∈S µ(g) · RX(g) where µ(g) ≥ 0 and∑
g∈S µ(g) = 1. Thus, each point in the convex hull corresponds to a distribution µ over

S, and vice versa. Note that Mx,y = Prg∼µ[g(x) = y], hence an X-uniform distribution
corresponds to the matrix U .
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Let S ⊂ G be a random set. By Claim 4.2 it is enough to show that the matrix U lies
in the convex hull of {RX(g) : g ∈ S}. Suppose this is not the case; then there must exist
a hyperplane H in Rd which passes through U and such that all matrices {RX(g) : g ∈ S}
lie on one side of H. We first show that any hyperplane which passes through U has a
noticeable fraction of the matrices {RX(g) : g ∈ G} on both sides.

Claim 4.3. Let H be a hyperplane which passes through U . The number of matrices {RX(g) :
g ∈ G} on any side of H is at least |G|/(|X|2 + 1).

Proof. Let H+ denote a halfspace defined by H, and let G+ = {g ∈ G : RX(g) ∈ H+}
denote the set of permutations whose corresponding matrices lie in H+. The matrix U
can be written by Carathéodory theorem as the convex combination of d + 1 matrices
RX(g0), . . . , RX(gd). We claim that for any h ∈ G, the matrix U also belongs to the convex
hull of RX(g0h), . . . , RX(gdh). This follows since RX(gih) = RX(gi)RX(h) and URX(h) = U .
Thus, at least one of g0h, . . . , gdh must lie in G+, for any choice of h ∈ G. This concludes
the proof since for a randomly chosen h,

1 = Pr
h∈G

[∃i, gih ∈ G+] ≤
d∑
i=0

Pr
h∈G

[gih ∈ G+] = (d+ 1) · |G
+|
|G|

.

We now establish Theorem 4.1.

Proof of Theorem 4.1. Let S ⊂ G be a random set of N elements, chosen with repetitions.
Let K � G be the normal subgroup of G which acts trivially on X, i.e. K = {g ∈ G :
g(x) = x ∀x ∈ X}. Observe that the quotient group G/K also acts on X, and that
{RX(g) : g ∈ G} = {RX(g) : g ∈ G/K}. Thus the number of distinct matrices RX(g)
is bounded by |G/K| ≤ |X|!, and by Fact 2.2 the number of ways to partition this set of
matrices by any hyperplane, and in particular one which passes through U , is bounded by
(|X|!)d. Fix such a partition. The number of matrices {Rx(g) : g ∈ G} which lies on each
side of the partition is at least |G|/(d + 1) by Claim 4.3. Hence, the probability that S is
contained in one side of the partition is bounded by 2(1− 1/(d+ 1))N . Thus, by the union
bound, the probability that there exists a hyperplane passing through U , such that S is
contained in one side of it, is at most

|G/K|d · 2
(

1− 1

d+ 1

)N
≤ 2 exp(−N/(d+ 1) + d log(|X|!)),

which is at most 0.01 for N = O(d2 log(|X|!)) ≤ O(|X|6).
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5 Almost X-uniform distributions support X-uniform

distributions

We prove in this section Theorem 5.1, which states if µ is an almost X ×X-uniform distri-
bution with small enough error, then there exists an X-uniform distribution µ′ supported
on the support of µ.

Theorem 5.1. Let µ be a distribution supported on a set S ⊂ G which is almost (X ×X)-
uniform with error ε < 0.5|X|−7. Then there exists a distribution µ′ supported on S which
is X-uniform.

Fix such a distribution µ, and let S denote its support, S = {g : µ(g) > 0}. Let RX be
the representation of G acting on X. By Claim 4.2, S supports an X-uniform distribution
iff RX(UG) = Eg∈G[RX(g)] lies in the convex hull of {RX(g) : g ∈ S}. Assume this is not
the case; then there exists an hyperplane H which passes through RX(UG) and such that all
{RX(g) : g ∈ S} lies on one side of H.

We first project H into an hyperplane with a simpler representation. Let RX ≡ e01 +
e1R1 + . . . + etRt denote the decomposition of RX into unitary nonequivalent irreducible
representation. Let di = dim(Ri) denote the dimensions of the irreducible representations.
The following claim shows that H can be projected to a hyperplane separating 0 from
{R1(g)× . . .×Rt(g) : g ∈ S}.

Claim 5.2. There exists a map L : G→ R given by

L(g) :=
∑
i∈[t]

∑
j,k∈[di]

λi,j,k ·Ri(g)j,k

for some coefficients {λi,j,k ∈ C : i ∈ [t], j, k ∈ [di]} such that

1. Eg∈G[L(g)] = 0.

2. For all g ∈ S, L(g) > 0.

Proof. The hyperplane H separating RX(UG) from {RX(g) : g ∈ S} implies there exists a
map L′ : G → R defined as L′(g) =

∑
x,y∈X αx,yRX(g)x,y for some real coefficients {αx,y ∈

R : x, y ∈ X} such that
L′(g) > Eh∈G[L′(h)]

for all g ∈ S. Applying the linear transformation mapping RX into the basis of irreducible
representations, we get that L′(g) can be expressed as

L′(g) =
∑
`∈[e0]

β0,`1(g) +
∑
i∈[t]

∑
j,k∈[di]

∑
`∈[ei]

βi,j,k,`Ri(g)j,k,

where β0,`, βi,j,k,` ∈ C are obtained by a linear transformation (over C) of αx,y. Observe that
Eg∈G[L′(g)] =

∑
`∈[e0] β0,` by Schur’s lemma, and define L(g) := L′(g)− E[L′(g)]. Note that

L : G→ R is real since L′ : G→ R was real, that E[L] = 0 and that L(g) > 0 for all g ∈ S.
The coefficient λi,j,k is given by the sum of all βi,j,k,` over ` ∈ [ei].
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We may assume w.l.o.g that Eg∈G[L2(g)] = 1 by multiplying all coefficients λi,j,k by an
appropriate factor. The main idea is to show that if µ is almost X × X uniform, then
Eg∼µ[L2(g)] ≈ Eg∈G[L2(g)] = 1 while Eg∼µ[L(g)] ≈ Eg∈G[L(g)] = 0. Combining this with a
bound on ‖L‖∞ a simple calculation shows that it cannot be the case that L(g) > 0 for all
g in the support of µ.

The first step is to show that the coefficients λi,j,k cannot be very large.

Claim 5.3. We have ∑
i∈[t]

∑
j,k∈[di]

|λi,j,k|2

di
= 1.

In particular, |λi,j,k| ≤ |X|1/2 for all i, j, k.

Proof. We assumed E[L2] = 1, which, since L is real, implies E[|L|2] = 1. Using Schur’s
lemma we get

1 = Eg∈G[L(g) · L(g)]

=
∑
i,i′∈[t]

∑
j,k∈[di]

∑
j′,k′∈[di′ ]

λi,j,kλi′,j′,k′Eg∈G[Ri(g)j,kRi′(g)j′,k′ ]

=
∑
i∈[t]

∑
j,k∈[di]

|λi,j,k|2

di
,

and in particular |λi,j,k|2 ≤ di ≤ |X|.

An immediate corollary is that L(g) can never be very large.

Corollary 5.4. |L(g)| ≤ |X|2.5 for all g ∈ G.

Proof. We have |Ri(g)j,k| ≤ 1 since Ri is unitary, hence |L(g)| ≤
∑

i∈[t]
∑

j,k∈[di] |λi,j,k| ≤
|X|2.5 since

∑
d2i ≤ |X|2.

The bound on |λi,j,k| together with the assumption that µ is almost X × X-uniform,
implies that the first and second moment of L are approximately the same under µ and
under the uniform distribution over G.

Claim 5.5. Let µ be a distribution which is almost X ×X-uniform with error ε. Then

1. |Eg∼µ[L(g)]| ≤ ε|X|4.5.

2. |Eg∼µ[L2(g)]− 1| ≤ ε|X|7.

Proof. We have

|Eg∼µ[L(g)]| ≤
∑
i∈[t]

∑
j,k∈[di]

|λi,j,k||Eg∼µ[Ri(g)j,k]|.

The bound on the first moment follows since
∑
d2i ≤ |X|2; since |λi,j,k| ≤ |X|1/2 by

Claim 5.3; and since µ is in particular X-uniform with error ε|X|, we have by Claim 3.3 that
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|Eg∼µ[Ri(g)j,k]| ≤ ε|X|2. The bound on the second moment is proved in a similar way. We
have

Eg∼µ[|L(g)|2] =
∑
i,j,k

|λi,j,k|2 · Eg∼µ[|Ri(g)j,k|2]

+
∑

(i,j,k)6=(i′,j′,k′)

λi,j,kλi′,j′,k′ · Eg∼µ[Ri(g)j,kRi′(g)j′,k′ ].

To conclude the proof we need to show that Eg∼µ[|Ri(g)j,k|2] ≈ 1/di and that
Eg∼µ[Ri(g)j,kRi′(g)j′,k′ ] ≈ 0, and combine this with the identity

∑
|λi,j,k|2/di = 1 which

we showed in Claim 5.3.
The condition that µ is almost X ×X-uniform with error ε is equivalent to

‖RX×X(µ)−RX×X(UG)‖∞ ≤ ε.

Switching to the Frobenius norm, this implies

‖RX×X(µ)−RX×X(UG)‖Fr ≤ ε|X|2.

We now decompose RX×X to simpler representations, coming from the irreducible repre-
sentations of RX . We have that RX×X = RX ⊗ RX , which since RX is real, also gives
RX×X = RX ⊗ RX . Now, if RX ≡ e01 +

∑t
i=1 eiRi is the decomposition of RX into irre-

ducible unitary nonequivalent representations, we have

RX×X ≡ e201 +
t∑
i=1

ei(Ri +Ri) +
t∑

i,i′=1

eiei′(Ri ⊗Ri′).

Note that this is not the decomposition of RX×X into irreducible representations, since
Ri ⊗Ri′ is reducible! Nevertheless, we observe that as the basis change for RX was unitary,
so is the basis change for RX×X (since the tensor product of two unitary matrices is again
unitary). In particular, we get that ‖(Ri⊗Ri′)(µ)−(Ri⊗Ri′)(UG)‖Fr ≤ ε|X|2, which implies
that

‖(Ri ⊗Ri′)(µ)− (Ri ⊗Ri′)(UG)‖∞ ≤ ε|X|2.
The matrix Ri ⊗ Ri′ is indexed by ((j, j′), (k, k′)), where (Ri ⊗ Ri′)(g)(j,j′),(k,k′) =

Ri(g)j,kRi′(g)j′,k′ . We thus get that for any i, j, k, i′, j′, k′ we have∣∣∣Eg∼µ[Ri(g)j,kRi′(g)j′,k′ ]− Eg∈G[Ri(g)j,kRi′(g)j′,k′ ]
∣∣∣ ≤ ε|X|2.

To conclude, note that by Schur’s lemma,

Eg∈G[Ri(g)j,kRi′(g)j′,k′ ] =
1

di
1(i,j,k)=(i′,j′,k′).

The bound for the second moment now follows by elementary calculations analog to the ones
for the first moment.
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We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let µ be almostX×X uniform with error ε ≤ 0.5|X|−7. Summarizing
Corollary 5.4 and Claim 5.5, we have

1. ‖L‖∞ ≤ |X|2.5.

2. Eg∼µ[L(g)] ≤ ε|X|4.5.

3. Eg∼µ[L(g)2] ≥ 1− ε|X|7.

However, since we assumed by contradiction that L(g) > 0 for all g in the support of µ, we
have

Eg∼µ[L(g)2] ≤ ‖L(g)‖∞ · Eg∼µ[L(g)] ≤ |X|2.5 · ε|X|4.5,

i.e. we have
1− ε|X|7 ≤ ε|X|7,

which is false whenever ε < 0.5|X|−7.

6 Summary and open problems

We showed that almost X-uniform (or X ×X-uniform) distributions are close to perfect X
uniform distributions in two ways: they are statistically close to some X-uniform distribution
µ′, and they support a X-uniform distribution µ′′. It may be possible that both can be
realized by the same X-uniform distribution, i.e. that µ′ = µ′′. We leave this as an open
problem.

Another interesting combinatorial problem is to construct small sets which are perfectly
uniform. This is unknown even in the special case of k-wise independent permutations, not
to mention the general setting of group actions. Currently, even a non-explicit proof for the
existence of such a small set (or small multi-set) is unknown.

Acknowledgements We thank Avi Wigderson for helpful discussions and reference to the
work of Karp and Papadimitriou [KP82].
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