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Abstract. Given an LLL-basis B of dimension n = hk we accelerate slide-reduction with blocksize
k to run under a reasonable assjmption in é n?h log, . a local SVP-computations in dimension £,
where o > % measures the quality of the given LLL-basis and ¢ is the quality of slide-reduction. If the
given basis B is already slide-reduced for blocksize k/2 then the number of local SVP-computations
for slide-reduction with blocksize k reduces to %hS(l +log, . Yk/2)- This bound is polynomial for ar-

bitrary bit-length of B, it improves previous bounds considerably. We also accelerate LLL-reduction.
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Introduction. Lattices are discrete subgroups of the R™. A basis B = [bi,...,b,] € R™*" of
n linear independent vectors bu, ..., b, generates the lattice £L(B) = {Bx|x € Z"} of dimension
n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors.
Ai(£) = minpeg,bzo(b'b)/? is the minimal length of nonzero b € £. The determinant of £
is det £ = (det B'B)'/2. The Hermite bound \;(£)? < ~,(det £)?/™ holds for all lattices £ of
dimension n and the Hermite constant 7y,

The LLL-algorithm of H.-W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a

given basis B in polynomial time into a basis B such that ||by] < " A1, where o > 4/3. It is
important to minimize the proven bound on ||b1||/A1 for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k > 2 generalising
the blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The al-
gorithm of [GHKNO6] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So

far slide-reduction of [GNO8b] yields the smallest approximation factor ||b1||/A1 < (1 + €)yk)
of polynomial time reduction algorithms. The algorithm for slide-reduction of [GNO8b] performs
O(nh -size(B)/¢e) local SVP-computations, where size(B) is the bit-length of B and ¢ is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates all the other workload. [NSV10] show that the
bit complexity of LLL-reduction is quasi-linear in size(B). To obtain this quasi-linear bit-complexity
the LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to
Lehmer’s ged-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms
for matrix multiplication.

n—k
k—1

Our results. We improve the O(nh-size(B)/e) bound of [GNO08b] in two ways. We concentrate the
required conditions for slide-reduced bases in the concept of almost slide-reduced bases which enables
faster reduction. We study the algorithm for slide-reduction on input bases that are LLL-bases. As
LLL-reduction takes a minor part of the workload of slide-reduction this better characterizes the
intrinsic workload of slide-reduction. Theorem 1 studies the number of local SVP-computations for
slide-reduction with blocksize k of an input LLL-basis B € Z"™*" for 6, « and dimension n = hk.
It shows under a reasonable assumption that this number is at most & n°h log, . a. This bound
holds for arbitrary bit-length of B. Corollary 1 shows that if the given basis is already slide-reduced
for blocksize k/2 the number of local SVP-computations for slide-reduction with blocksize k further
decreases to % ﬁh:i(l +log; . Yk/2), reducing the number by a factor 2k~ 21In Viy2/ Ina. For
the first time this qualifies the advantage of first performing slide-reduction with half the blocksize.
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Theorem 2 shows that the bounds proven in [GNO8b] on [[b1||/A1 and [bi]|/(det £)*/™ still hold
for almost slide-reduced bases even with a minor improvement.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that
accelerated LLL-reduction computes an LLL-basis within 71’—; log, size(B) local LLL-reductions in
dimension 2. The number of local LLL-reductions in dimension 2 is polynomial in n if the bit-length
of B is at most exponential in n, i.e., size(B) = 2“0(1). Lemma 2 shows that every LLL-basis for ¢
such that 1—§ < 27" 722757¢(5) gatisfies the property max, ||b}||?/||bj,1* < 3 of ideal LLL-bases
for 6 = 1.

Notation. Let B = QR, n = hk be the QR-decomposition of B € R™*™. Let Ry = [ri,j|ke—k+1<i,j<ke
€ R¥** be the submatrix of R = [r;;] € R™*" for the f-th block, Dy = (det R¢)?, and R, =
[7ij]ke—ki2<ij<ker:s € RF¥F for the f-th block slided by one unit. R = (R,)* is the dual
of Ry. (Ry, = UkR,:tUk for R, € R¥** where R,:t is the inverse transpose of Ry and U, €
{0,1}*** is the reversed identity matrix with non-zero entries w; s ;11 = 1 for i = 1,...,k.) Let
MAaX gy The41,k0+1 denote the maximum of Fret1 ket1, [Ti,;] = GNF(R,T) for all T € GLk(Z)
with QR-decomposition R,T = Q' - GNF(R,T). Note that maxp, p ke+1,ke+1 = 1/A1(L(R;7)). Let
7 : R™ — span(by, ..., b;_1)® be the orthogonal projection, and b} := m;(b;) thus ||b}|| = 7.

LLL-bases. [LLL82] A basis B = QR € R™*™ is LLL-basis for §, < § < 1if

o || < %r” holds for all j > 1, . 61",-2’1- < 7"1'2,1'+1 + 7“1-2+1’1-+1 holds fori =1,...,n — 1.
An LLL-basis B for § satisfies ||b}||*/||bj;1]|> < aforall £=1,..,n—1
bl < ™% (det £)*/7, b < @z A,

Definition 1. [GNO08] An LLL-basis B = QR € R™*"™, n = kh is slide-reduced for e > 0 if
1. Tho—kt1,k0—kt+1 = M(L(Re)) for£=1,..,h,
2. MaX gy 1 The+1,ke+1 <V1+¢€ rkes1,ke+1 holds for £ =1,....h — 1.

1 slightly relaxes the condition of [GNO8] that all bases R, are HKZ-reduced. The following bounds
have been proved by GAMA and NGUYEN in [GN08, Theorem 1] for slide-reduced bases:

n—1 n—~k
3. bl < ((1+e)w)? 7 (det £)17, 4. [bafl < ((T+&)ye) = Au.

Almost slide-reduced bases. We call an LLL-basis B = QR € R™*", n = hk, almost slide-
reduced for € > 0 if for some ¢ = £;nq, that maximizes D¢/Dey1,

1. Tho—kt1,ke—k+1 = M (L(Re)) for £ =1 and £ = linqz,

2. MAaX gy The+1,ke+1 <1+¢- Tke+1,k0+1 holds for £ = {0, and £ = h — 1.

Theorem 2 shows that the bounds 3, 4 hold for almost slide-reduced bases.

Accelerated slide-reduction (ASR). In each round find some £ = {45 that maximizes D¢/Dey1.
Compute a shortest vector of £(R¢4+1) and transform Re41 and B such that 7ret1,ke+1 = M (L(Ret1))-
By an SVP-computation for £(R}") check that 2 holds for £ and if 2 does not hold transform R,
and B such that 2 holds for € = 0 (this decreases D, by a factor < (1+¢)™"') otherwise terminate.
On termination continue with this transform on Ry, Ret1, B for £ = {4, and £ = h — 1 until 2
holds for both £ = £,,4, and £ = h — 1. Finally make sure that 1 holds for £ = 1 and size-reduce B.

Theorem 1. Accelerated slide-reduction transforms a given LLL-basis B € Z™*™ for § < 1,
a = 1/(6 — 1/4), n = hk, within 5n°hlog,,.a = th%és)lna rounds of 2 local SVP-
computations either into an almost slide-reduced basis for € > 0, or else arrives at D(B) < 1,
where D(B) =aet [112} (De/Desn)™* = (det £)*/ TT, [T'_, D2

Proof. We use the novel version D(B) of the Lovész invariant to measure B’s reduction. Note that
h?/4 — (£ — h/2)? = he — £* is symmetric to £ = h/2 with maximal point £ = [h/2].
The input LLL-basis B(™) for § < 1 satisfies for a = 1/(8 — 1/4) that Dy/Dyy1 < o*” and thus



D(BU™) < o¥’s for s:= STl he— 2 = %.

Fact. Each round that does not lead to termination results in

Dy < Dy/(1+¢) D(B™") < D(B)/(1+¢)%
This is because the round changes merely the factor [I (D:)Di1)! "™ = (DyDey1) D? of
t=0-1,0,0+1

of D(B), where D¢D¢y1 does not change. Hence, after at most

n 2s 3_ n?
3 log . D(B™) < %10g1+s(ak )= %kQ . 6 . log; . a < Tzh log;,. a

rounds either B is almost slide-reduced for € or else D(B) < 1. The n’h log, ;. @ bound includes

2
the rounds on termination. Clearly log,,. o =1In a/In(l1+¢)and 1/In(1+¢) = %(E). O

Conjecture. We conjecture that D(B) < 1 does not appear for output bases obtained after a
maximal number of rounds. If D(B) < 1 then E[In(D¢/D+1] < 0 holds for the expectation E for

random ¢ with Pr(¢) = 6=t (We have Y0~ Pr(£) = 1.) In this sense Dy < D41 would hold

R *
?on the average” if D(B) < 1 whereas such Dy, D11 are extremely unlikely in practice.

Time bound compared to [GNO8]. The algorithm for slide-reduction of [GNO08] is shown to per-
form O(nhsize(B)/¢e) local SVP-computations, where size(B) is the bit-length of B. The number
of rounds of Theorem 1 is polynomial in n even if size(B) is exponential in n.

However, ASR can accelerate the [GN08] algorithm at best by a factor h — 1 because the [GNOS]
algorithm iterates all rounds for ¢ = 1,...,h which also covers {,,q,, whereas ASR iterates all
rounds for the current £,q,. Thus Theorem 1 shows that the [GNO08] algorithm performs at most
% log, . a local SVP-computations if the input basis is an LLL-basis for § and the algorithm
terminates with a basis B such that D(B) > 1. Theorem 1 eliminates from the O(nhsize(B)/¢)
time bound of [GNO08] the bitlength of B and requires only minor conditions on the input and out-
put basis. As size(B) =~ >_7_, log, ||b:|| our # log, , . a bound is better than the O(nhsize(B)/e)
bound of [GNO8] if £1n ow < 2377 | log, ||b;||. The latter holds in most cases.

Iterative slide-reduction with increasing blocksize. Consider the blocksize k = 27. We trans-
form the given LLL-basis B € Z™*™ for 6, a, n = hk iteratively as folllows:

FOR i=1,..,7 DO transform B by calling ASR with blocksize 2° and «.

We bound the number #7t of rounds of the last ASR-call with blocksize k = 27. The input B of this
k/2
final ASR-call satisfies De/Des1 < (1 + €)viy2) R7-1* as follows from (3) with blocksize

.
k/2. Hence D(B) < (14 €)vky2) TS
As each round decreases D(B) by a factor (14 £)~2 we see that
3_ 3_
#It < $log,, . D(B) < ﬁ% logy 4. (1 +&)vks2) = 1}1—2/}2 M0 n
provided that D(B) > 1 holds on termination. Here log, . Vi/2 = Inyz/2/In(1l +¢) = 1+g(5)fyk/2.
For k = 4, resp. k = 8 this is less than a 0.603, resp. 0.201 fraction of the number of rounds

% log, , . a of Theorem 1, where the input is an LLL-basis for §, . The final ASR-call dominates
the workload of all other calls together, including the workload for the LLL-reduction of the input
basis. We see that iterative slide-reduction for k = 27 requires only an O(k™? In+y, 2 )-fraction of the
workload of the direct ASR-call as in Theorem 1. In particular we have proved

Corollary 1. Given an almost slide-reduced basis B € Z™*™ for e > 0 and blocksize k/2, n = hk,

ASR finds within %d’jﬁ log, . ((1 4 €)vky2) Tounds of two local SVP-computations either an

almost slide-reduced basis for blocksize k and e or else arrives at D(B) < 1.

Theorem 2. The bounds 3, 4 hold for every almost slide-reduced basis B € Z™*™ and the exponent

of (14¢) in 3, 4 can roughly be halved, multiplying it by #

Proof. We see from 2 and the Hermite bound on A1 (L(R})*) = 1/rket1,ke+1 that



k
Dy /rres1kerr < (1 +€)vk)" ng+ll}3£+l 1)
holds for £ = £ 4. and £ = h— 1, where Dz := (det RQ)Q. Moreover, the Hermite bound for R, yields

2(k—1)
Thbm k1 hl—kt1 = ’Yk DZ/TM k41,kl—Kk+1-

Combining these two inequalities with D} /17, 1 xes1 = De/The_ ki1 he—ry1 Yields

k
Tro—kt1,kt—k+1 < (14 €)k) F=T ke 1, ko1 for £ =Limar and £ =h — 1. (2)
Next we prove
1+1/k 2k2
D¢/Det1 < (1+e)" 2 )1 forl=0,...,h—1. 3)

Proof. As (1) holds for ¢ = mar and 1 holds for £+ 1 the Hermite bound on A (L£(Re+1)) yields

Dy <(1+ 5)k71157’1?1§+1,ke+1 <(1+ E)k’ynge-‘-l.

We see from (2) that Do = 10— ps 10— i+1 D0/ Tres 1141 < (14 €) Vk)%DZ (4)
Combining the two previous inequalities yields for £ = {00
Do < (14 2)3) P21 (1 &) 42 Degs = (1+2) 757 ) B D,
Moreover if (3) holds for £ynqs it clearly holds for all £ =1,...,h — 1.
3. The Hermite bound for R; and (3) imply for £ =1, ..., h that

1+1/k 2k(£—1)

1+ 2k(€—1)
Ibul* < D" < (1 4e) 2 ) FT DR (5)
The product of these h inequalities for £ = 1, ..., h yields

/k kh(h— 1)
b [ < A ((1+2) 57 ) ET (det c)?/’“
This proves and improves 3 to ( without using that 2 holds for £ =h — 1. )

141/k n—k 1+1/k n= ko=l

1|2/ (det £)*™ < ye((L+e) "2 )=t = (L4+e) 2 b=ty

141/k 2k(h—
4. (5) for £ = h — 1 shows that Ib1]l> <Aw((1+e)" 2 ) *—1 Dl/kl
Clearly 2 for £ = h — 1 implies (2) and (4) for £ = h — 1, and thus we get
14+1/k 2k(h—2)
Ibull? < ye((L4e) 2" p) w1 FEET (D)) (by (4) for £=h—1)
+1/k; 2kh—4k+2 2

Sw(P+e) 2 ) U (14 e)Wmrnkiin—kt1- (by 2 for £ =h—1)

(we also used that T;QkH neii1 = M(L(Ry_1)) < v /Dj,_; holds by the Hermite bound for R} ;.)

141/k —k
((1+5) 2 ’Yk) "= 17"721—k+1,n—k+1«

W.lLo.g Tp—k+1(b) # 0 holds for some b € £ with ||b|| = A1, otherwise we remove the last k vectors
of the basis. Hence rn—k+1,n—k+1 < ||[Tn—k+1(b)]| < A1. The latter inequalities yield the claim

n—k

14+1/k
[brf| < ((1+e)” 2 ) F T Ax

We have roughly halved the exponent of (1 + ¢) in 3 and 4 multiplying it by at most 1+1/ k. O

Time bounds for extremely small e. We measure the reducedness of a basis B by the integer
m defined by

gm—1

2 < max¢(De¢/Det1) vy, N < 22", (6)

282
This integer m exists if and only if max;(De/Des1) > v,
Next we show that every round of ASR with initial value m decreases D(B) by a factor 272" The
2A2
transform of Ry, Re11, B for £ = imas results in (2), (3) holding for e = 0,i.e., Dy /Dpcy < vF

k2

Multiplying this inequality with 22" 'ykk T < pgld / D}?j_dl and D7Dy = Dz’ldDZ’idl yields



22" ppew < PP hence  D(B") < D(B4) 272" (7)
We denote My := max(||b1]|?, ..., |[bn||?) for the input basis B.

2k2

Lemma 1. If B is almost slide-reduced for ¢ < % (2" My) then max;(D¢/Des1) < 'ykkfl.

Proof. Let € > 0 be minimal such that B is almost slide-reduced for . It follows from the proof of
Theorem 1 that D;/Dyy1 = ((1+ 6)%)% holds for some ¢. Then (6) implies (1 + s)kkffl <2¥"
thus e< Blam, (8)
If B = QR is not almost slide-reduced for some 0 < &’ < & then any nearly maximal such ¢’ satisfies
max gy Teet1,ke+1 2 (14 € )rkes1,ke+1  for some £.
It follows from [LLL82, (1.28)] for the integer matrix B that rxet1,ke+1 Mg > 1 and thus
e > (MaX gy Thet1 kel — Thet1, ket 1) /Thes 1 kers 2 1/Mg'.
This contradicts (8) if % 2™ < 1/Mg, and thus excludes that —m > nlog, Mo.
(3) and (6) imply 92"t < (1+¢)

2k2 _ 2 2
=1 and thus 2m=t < % log,(1+¢) < 1351 e
2k2

Hence —m > nlog, Mo which is impossible. This implies by (6) that max, D¢/Des1 < WF. O

Next we bound the number #1t,, of rounds until the current m either decreases to m — 1 or arrives
at D(B) < 1. During this reduction the m defined by (6) implies that (7) holds for each round.

2k2

Moreover, initially maxe Dy/Dit1 < 7F22m

reduction of m to m — 1: LTt < log2(D(B(i"))/D(B(fi")))/2m_l
3 m jom— —m 2
< Bon(gmjgmet g2 g o,
Thus within O(nh?log, k) rounds ASR either decreases m > 0 to m — 1 or arrives at D(B) < 1.

. This shows for the initial and final bases for the

Open problem. Can ASR perform for m < 0 more than O(nh?log, k) rounds until either the
current m decreases to m — 1 or that D(B) < 1 7 We can exclude this by the following rule of

2k2 R3—h
Early Termination (ET). Terminate as soon as D(B) <, ' °
282 R3—h R
D(B) < vF ' ° implies that E[In(D¢/Des1)] < 255 Invk holds for random ¢, where Pr(¢) =
6@’3#5. In this sense (3), (4) and 3 hold for € = 0 ”on the average”.
Corollary 2. ASR terminates under ET for arbitrary e > 0 in Lg_h(m + |mol) rounds, where

m, mo are the m-value of the input and final basis. Moreover |mo| < nlogy Mo.

Proof. Consider #It,, the number of rounds until the current m decreases to m — 1. During this

_y o 262
reduction the m of (6) satisfies max, Dy/Des1 > 2 17,5_1. This implies by (7) and ET for the
initial and final bases for the reduction of m to m — 1:
. . m 37 L 3
HIt, < logy(D(BU™)/D(BUM)) /271 < log, (22" 5 ) j2m 1 = o,
2k2 h3—h

Thus within hSS_h rounds ASR either decreases m to m — 1 or arrives at D(B) < 'y,fj g

Hence ASR terminates within hggh (m 4+ |mo|) rounds, where |mo| < nlog, Mo holds by the proof

of Lemma 1. 0

Accelerated LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gauf-
reductions or LLL-swaps on by, by11 for an £ that maximizes the resulting reduction progress.

We associate to a basis B satisfying max ||b;[*/|[b,1[*> > 3 the integer m defined by



m—1 * % m
227 < max |[b7|*/|lbjy [17/5 < 27 (9)

If m > 0 we transform in the current round by, bet1 for an £ that maximizes ||b}||>/||bji1]> by
GauBl-reducing the basis m¢(bg), m¢(bes1) of dimension 2. (GauB-reducing the basis 7 (bg), m¢(bet1)
means to LLL-reduce m¢(be),m¢(bey1) with 6 = 1.) This decreases ||bj||> by a factor less than
2-2" < L

Ifm2< 0 or m does not exist, we transform in the current round by, byt for an £ that maximizes
b7 11%/l1me(bi,1)||* after size-reducing byt against by by setting bet1 := b1 — [ree41/7e/e]be. If
lme(b;1)]1? < 3||bj||* we swap by, bet1 and otherwise terminate.

On termination we size-reduce the basis B.

Theorem 3. Given an LLL-basis B € Z™*™ for §' <1, o/ =1/(8' —1/4) ALR with & satisfyin
ying

1> § > max(d, %) arrives within ’1‘—; log, /5 o' rounds of Gauf-reductions, resp. LLL-swaps either

at an LLL-basis for 8, or else arrives at D(B) := [[,=, (|b; |I*/|[bis1]|?) ™7 < 1.

Proof. We use D(B) for blocksize 1, D(B) := ?:_ll(HbZ‘H2/||bZ+1H2)Z(”4). Each round decreases
|b;||> by a factor §, and both ||bj||?/||bj.1||>, D(B) by a factor °. Then the number of rounds
until either an LLL-basis for  appears or else D(B) < 1 is at most

n3—n 3
3logy /s D(B) < zlogy 5(a’) 5 < fglogy sa. 0

The workload per round. If each round completely size-reduces by, b,41 against by, ...,bs—1 it
requires O(n?) arithmetic steps. If we only size-reduce b1 against by then a round costs merely
O(n) arithmetic steps but the length of the integers explodes. This explosion can be prevented at
low costs by doing size-redction in segments, see [S06], [KSO01].

Lemma 2. If B is LLL-basis for § and 1 — & <27 ""*/My then max ||b;|*/|[b;, [ < 2.

Proof. The LLL-basis B satisfies |b}||*> < ﬁ b;,1]|>. Therefore (9) implies 22" < ﬁ 3
Setting § = 1 — € this shows that

2" < log, 15 < log, @ =1In(l — 3¢)/In2

< —1.453e <277 /M.

This implies m < —nlog, My which is impossible ( by the proof of Lemma 1 ). This shows that
m is undefined and thus max; [|b}||*/|bj,, || < 4. O

Corollary 3. Let m be the m-value of the input basis and ¢ € Z ¢ > 0 be constant. Within
3

I35 (m+2.22- 2°) rounds ALR. either decreases the initial m to m < —c or else arrives at D(B) < 1.

Moreover m < log, n + log, log, Mo.

Surprisingly, the number of rounds in Cor. 3 is polynomial in n if log, log, My < nPW,

Proof. We have shown that ASR with k = 2 either decreases within at most

(n/32)3 (2m/2m—1 +2—m+1810g2 \/R)

rounds either the current m to m — 1 or arrives at D(B) < 1. Therefore ALR either decreases the
m of the input-basis within at most

22 (2m 424 log, \/A/3X277) < o (m+ 27t log, /4/3) < o (m + 2.22 - 2°)
rounds to m = —|c| or else arrives at D(B) < 1
The bound m < log, n + log, log, My follows from (9) and ||bj,,||* > 1/M{". a

Comparison with previous algorithms for LLL-reduction. The LLL was originally proved
[LLL82] to be of bit-complexity O(n®"¢(log, Mo)**¢) performing O(n? log, s Mo) rounds, each
round size-reduces some by in n? arithmetic steps on integers of bit-length n log, My; € in the expo-
nent comes from the fast FFT-multiplication of integers. The large bit-length of integers nlog, My
has been reduced to n 4 log, My by orthogonalizing the basis in floating point arithmetic.



The number of rounds in Cor. 3 is independent of Mj. This is because ALR maximizes the reduction
progress per round. To minimize the workload of size-reduction ALR should be organized according
to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k
basis vectors. The bit-complexity of GauB-reduction of m¢(be), me(bet1) is quasi-linear in size(B)
[NSV10]. Therefore we do not split up this Gauss-reduction into LLL-swaps. If the current m is
large then GaufB-reduction of m¢(be), m¢(bey1) for £ = lqae decreases D(B) be the factor 27 while

3
LLL-swaps guarantee only a decrease by the factor 3.

The algorithm for LLL-reduction with fixed complexity iterates all possible LLL-swaps of
be,beyr for £ =1,...,n — 1. If this algorithm would not just do LLL-swaps but Gauss-reductions of
me(be), me(bey1) for all £ its number of rounds would be at most n — 1 times the number of rounds
"2 log, /5@ of ALR.

n3—
Early Termination (ET). Terminate as soon as D(B) < (3) ©

7L377L
D(B) < 2) " implies that E[In(||b}||?/|b;1]|%)] < In(4/3) holds for random £ and Pr(f) =

3
6 Zhhff; . In this sense the output basis approximates ”on the average” the logarithm of the inequality

[bul/(det £)/™ < ()™ that holds for ideal LLL-bases with § = 1.

Corollary 4. ALR terminates under ET in n®(m-|mo|)/3 rounds, where m, mo are the m-values
of the input and output basis. Moreover |mo| < nlogy Mo and m < log, n + log, log, Mp.

Proof. Consider the number #1It,, of rounds until either the current m decreases to m — 1 or else
D(B) becomes less than (4/3)”35%”, As in the proof of Corollary 2 each round with m results in
Gauf3-reduction under 7 if m > 0, resp. an LLL-swap if m < 0, results in
by e |I> < |[b;*"|*2~ hence  D(B"*") < D(B”")2~
Under ET this shows as in the proof of Cor. 1 that
#Itm < logy(D(BU™)/(D(BY™))/2m " < (2masgm) /27 = mogn,

om—2 ogm—1

Hence m decreases to m — 1 under ET in less than "33_” rounds. The proof of Lemma 1 shows that

|mo| < nlog, Mo. O

Open problem. Does ALR realize maz¢||b¢||*/|[bes1]* < 3 in a polynomial number of rounds ?
Can ALR perform for m < 0 without ET more than O(n®) rounds until either the current m
decreases to m—1 or that D(B) < 1 ? We can exclude this for m > 0 and under ET also for m < 0.
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