Accelerated Slide- and LLL-Reduction

Claus Peter Schnorr
Fachbereich Informatik und Mathematik, Goethe-Universität Frankfurt, PSF 111932, D-60054 Frankfurt am Main, Germany. schnorr@cs.uni-frankfurt.de

April 8, 2011

Abstract

Given an LLL-basis B of dimension $n=h k$ we accelerate slide-reduction with blocksize k to run under a reasonable assjmption in $\frac{1}{6} n^{2} h \log _{1+\varepsilon} \alpha$ local SVP-computations in dimension k, where $\alpha \geq \frac{4}{3}$ measures the quality of the given LLL-basis and ε is the quality of slide-reduction. If the given basis B is already slide-reduced for blocksize $k / 2$ then the number of local SVP-computations for slide-reduction with blocksize k reduces to $\frac{2}{3} h^{3}\left(1+\log _{1+\varepsilon} \gamma_{k / 2}\right)$. This bound is polynomial for arbitrary bit-length of B, it improves previous bounds considerably. We also accelerate LLL-reduction.

Keywords. Block reduction, LLL-reduction, slide reduction.
Introduction. Lattices are discrete subgroups of the \mathbb{R}^{n}. A basis $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{m \times n}$ of n linear independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ generates the lattice $\mathcal{L}(B)=\left\{B \mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{n}\right\}$ of dimension n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors. $\lambda_{1}(\mathcal{L})=\min _{\mathbf{b} \in \mathcal{L}, \mathbf{b} \neq \mathbf{0}}\left(\mathbf{b}^{t} \mathbf{b}\right)^{1 / 2}$ is the minimal length of nonzero $\mathbf{b} \in \mathcal{L}$. The determinant of \mathcal{L} is $\operatorname{det} \mathcal{L}=\left(\operatorname{det} B^{t} B\right)^{1 / 2}$. The Hermite bound $\lambda_{1}(\mathcal{L})^{2} \leq \gamma_{n}(\operatorname{det} \mathcal{L})^{2 / n}$ holds for all lattices \mathcal{L} of dimension n and the Hermite constant γ_{n}.

The LLL-algorithm of H.W. Lenstra Jr., A.K. Lenstra and L. Lovász [LLL82] transforms a given basis B in polynomial time into a basis B such that $\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{2}} \lambda_{1}$, where $\alpha>4 / 3$. It is important to minimize the proven bound on $\left\|\mathbf{b}_{1}\right\| / \lambda_{1}$ for polynomial time reduction algorithms and to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize $k \geq 2$ generalising the blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The algorithm of [GHKN06] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So far slide-reduction of [GN08b] yields the smallest approximation factor $\left.\left\|\mathbf{b}_{1}\right\| / \lambda_{1} \leq(1+\varepsilon) \gamma_{k}\right)^{\frac{n-k}{k-1}}$ of polynomial time reduction algorithms. The algorithm for slide-reduction of [GN08b] performs $O(n h \cdot \operatorname{size}(B) / \varepsilon)$ local SVP-computations, where $\operatorname{size}(B)$ is the bit-length of B and ε is the quality of slide-reduction. This bound is polynomial in n if and only if $\operatorname{size}(B)$ is polynomial in n. The workload of the local SVP-computations dominates all the other workload. [NSV10] show that the bit complexity of LLL-reduction is quasi-linear in $\operatorname{size}(B)$. To obtain this quasi-linear bit-complexity the LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to Lehmer's gcd-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms for matrix multiplication.

Our results. We improve the $O(n h \cdot \operatorname{size}(B) / \varepsilon)$ bound of [GN08b] in two ways. We concentrate the required conditions for slide-reduced bases in the concept of almost slide-reduced bases which enables faster reduction. We study the algorithm for slide-reduction on input bases that are LLL-bases. As LLL-reduction takes a minor part of the workload of slide-reduction this better characterizes the intrinsic workload of slide-reduction. Theorem 1 studies the number of local SVP-computations for slide-reduction with blocksize k of an input LLL-basis $B \in \mathbb{Z}^{m \times n}$ for δ, α and dimension $n=h k$. It shows under a reasonable assumption that this number is at most $\frac{1}{6} n^{2} h \log _{1+\varepsilon} \alpha$. This bound holds for arbitrary bit-length of B. Corollary 1 shows that if the given basis is already slide-reduced for blocksize $k / 2$ the number of local SVP-computations for slide-reduction with blocksize k further decreases to $\frac{1}{3} \frac{1}{1-2 / k} h^{3}\left(1+\log _{1+\varepsilon} \gamma_{k / 2}\right)$, reducing the number by a factor $2 k^{-2} \ln \gamma_{k / 2} / \ln \alpha$. For the first time this qualifies the advantage of first performing slide-reduction with half the blocksize.

Theorem 2 shows that the bounds proven in [GN08b] on $\left\|\mathbf{b}_{\mathbf{1}}\right\| / \lambda_{1}$ and $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n}$ still hold for almost slide-reduced bases even with a minor improvement.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that accelerated LLL-reduction computes an LLL-basis within $\frac{n^{3}}{12} \log _{2} \operatorname{size}(B)$ local LLL-reductions in dimension 2. The number of local LLL-reductions in dimension 2 is polynomial in n if the bit-length of B is at most exponential in n, i.e., $\operatorname{size}(B)=2^{n^{O(1)}}$. Lemma 2 shows that every LLL-basis for δ such that $1-\delta \leq 2^{-n-2} 2^{- \text {size(B) }}$ satisfies the property $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \frac{4}{3}$ of ideal LLL-bases for $\delta=1$.

Notation. Let $B=Q R, n=h k$ be the QR-decomposition of $B \in \mathbb{R}^{m \times n}$. Let $R_{\ell}=\left[r_{i, j}\right]_{k \ell-k+1 \leq i, j \leq k \ell}$ $\in \mathbb{R}^{k \times k}$ be the submatrix of $R=\left[r_{i, j}\right] \in \mathbb{R}^{n \times n}$ for the ℓ-th block, $\mathcal{D}_{\ell}=\left(\operatorname{det} R_{\ell}\right)^{2}$, and $R_{\ell}^{\prime}=$ $\left[r_{i, j}\right]_{k \ell-k+2 \leq i, j \leq k \ell+1} \in \mathbb{R}^{k \times k}$ for the ℓ-th block slided by one unit. $R_{\ell}^{\prime *}=\left(R_{\ell}^{\prime}\right)^{*}$ is the dual of R_{ℓ}^{\prime}. ($R_{k}^{*}=U_{k} R_{k}^{-t} U_{k}$ for $R_{k} \in \mathbb{R}^{k \times k}$, where R_{k}^{-t} is the inverse transpose of R_{k} and $U_{k} \in$ $\{0,1\}^{k \times k}$ is the reversed identity matrix with non-zero entries $u_{i, k-i+1}=1$ for $i=1, \ldots, k$.) Let $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}$ denote the maximum of $\bar{r}_{k \ell+1, k \ell+1},\left[\bar{r}_{i, j}\right]:=\operatorname{GNF}\left(R_{\ell}^{\prime} T\right)$ for all $T \in \operatorname{GL}_{k}(\mathbb{Z})$ with QR-decomposition $R_{\ell}^{\prime} T=Q^{\prime} \cdot \operatorname{GNF}\left(R_{\ell}^{\prime} T\right)$. Note that $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}=1 / \lambda_{1}\left(\mathcal{L}\left(R_{\ell}^{\prime *}\right)\right)$. Let $\pi_{i}: \mathbb{R}^{n} \rightarrow \operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{i-1}\right)^{\perp}$ be the orthogonal projection, and $\mathbf{b}_{i}^{*}:=\pi_{i}\left(\mathbf{b}_{i}\right)$ thus $\left\|\mathbf{b}_{i}^{*}\right\|=r_{i, i}$.

LLL-bases. [LLL82] A basis $B=Q R \in \mathbb{R}^{m \times n}$ is LLL-basis for $\delta, \frac{1}{4}<\delta \leq 1$ if

- $\left|r_{i, j}\right| \leq \frac{1}{2} r_{i, i}$ holds for all $j>i$, - $\delta r_{i, i}^{2} \leq r_{i, i+1}^{2}+r_{i+1, i+1}^{2}$ holds for $i=1, \ldots, n-1$.

An LLL-basis B for δ satisfies $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \alpha$ for all $\ell=1, \ldots, n-1$

$$
\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{4}}(\operatorname{det} \mathcal{L})^{1 / n}, \quad\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{2}} \lambda_{1}
$$

Definition 1. [GN08] An LLL-basis $B=Q R \in \mathbb{R}^{m \times n}, n=k h$ is slide-reduced for $\varepsilon \geq 0$ if

1. $r_{k \ell-k+1, k \ell-k+1}=\lambda_{1}\left(\mathcal{L}\left(R_{\ell}\right)\right)$ for $\ell=1, \ldots, h$,
2. $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1} \leq \sqrt{1+\varepsilon} \cdot r_{k \ell+1, k \ell+1}$ holds for $\ell=1, \ldots, h-1$.

1 slightly relaxes the condition of [GN08] that all bases R_{ℓ} are HKZ-reduced. The following bounds have been proved by Gama and Nguyen in [GN08, Theorem 1] for slide-reduced bases:
3. $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{1}{2} \frac{n-1}{k-1}}(\operatorname{det} \mathcal{L})^{1 / n}$,
4. $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{n-k}{k-1}} \lambda_{1}$.

Almost slide-reduced bases. We call an LLL-basis $B=Q R \in \mathbb{R}^{m \times n}, n=h k$, almost slidereduced for $\varepsilon \geq 0$ if for some $\ell=\ell_{\text {max }}$ that maximizes $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}$,

1. $r_{k \ell-k+1, k \ell-k+1}=\lambda_{1}\left(\mathcal{L}\left(R_{\ell}\right)\right)$ for $\ell=1$ and $\ell=\ell_{\text {max }}$,
2. $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1} \leq \sqrt{1+\varepsilon} \cdot r_{k \ell+1, k \ell+1}$ holds for $\ell=\ell_{\max }$ and $\ell=h-1$.

Theorem 2 shows that the bounds $\mathbf{3}, \mathbf{4}$ hold for almost slide-reduced bases.
Accelerated slide-reduction (ASR). In each round find some $\ell=\ell_{\max }$ that maximizes $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}$. Compute a shortest vector of $\mathcal{L}\left(R_{\ell+1}\right)$ and transform $R_{\ell+1}$ and B such that $r_{k \ell+1, k \ell+1}=\lambda_{1}\left(\mathcal{L}\left(R_{\ell+1}\right)\right)$. By an SVP-computation for $\mathcal{L}\left(R_{\ell}^{\prime *}\right)$ check that $\mathbf{2}$ holds for ℓ and if $\mathbf{2}$ does not hold transform R_{ℓ}^{\prime} and B such that 2 holds for $\varepsilon=0$ (this decreases \mathcal{D}_{ℓ} by a factor $\leq(1+\varepsilon)^{-1}$) otherwise terminate.

On termination continue with this transform on $R_{\ell}, R_{\ell+1}, B$ for $\ell=\ell_{\text {max }}$ and $\ell=h-1$ until $\mathbf{2}$ holds for both $\ell=\ell_{\max }$ and $\ell=h-1$. Finally make sure that $\mathbf{1}$ holds for $\ell=1$ and size-reduce B.

Theorem 1. Accelerated slide-reduction transforms a given LLL-basis $B \in \mathbb{Z}^{m \times n}$ for $\delta \leq 1$, $\alpha=1 /(\delta-1 / 4), n=h k$, within $\frac{1}{12} n^{2} h \log _{1+\varepsilon} \alpha=n^{2} h \frac{1+O(\varepsilon)}{12 \cdot \varepsilon} \ln \alpha$ rounds of 2 local SVPcomputations either into an almost slide-reduced basis for $\varepsilon>0$, or else arrives at $\mathcal{D}(B)<1$, where $\quad \mathcal{D}(B)={ }_{\text {def }} \prod_{\ell=1}^{h-1}\left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right)^{h \ell-\ell^{2}}=(\operatorname{det} \mathcal{L})^{2 h} / \prod_{i=1}^{h} \prod_{j=i}^{h} \mathcal{D}_{j}^{2}$.

Proof. We use the novel version $\mathcal{D}(B)$ of the Lovász invariant to measure B 's reduction. Note that $h^{2} / 4-(\ell-h / 2)^{2}=h \ell-\ell^{2}$ is symmetric to $\ell=h / 2$ with maximal point $\ell=\lceil h / 2\rfloor$.
The input LLL-basis $B^{(i n)}$ for $\delta \leq 1$ satisfies for $\alpha=1 /(\delta-1 / 4)$ that $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq \alpha^{k^{2}}$ and thus

$$
\mathcal{D}\left(B^{(i n)}\right) \leq \alpha^{k^{2} s} \text { for } s:=\sum_{\ell=1}^{h-1} h \ell-\ell^{2}=\frac{h^{3}-h}{6} .
$$

Fact. Each round that does not lead to termination results in

$$
\mathcal{D}_{\ell}^{\text {new }} \leq \mathcal{D}_{\ell} /(1+\varepsilon) \quad \mathcal{D}\left(B^{\text {new }}\right) \leq \mathcal{D}(B) /(1+\varepsilon)^{2} .
$$

This is because the round changes merely the factor $\prod_{t=\ell-1, \ell, \ell+1}\left(\mathcal{D}_{t} / \mathcal{D}_{t+1}\right)^{t(h-t)}=\left(\mathcal{D}_{\ell} \mathcal{D}_{\ell+1}\right) \mathcal{D}_{\ell}^{2}$ of of $\mathcal{D}(B)$, where $\mathcal{D}_{\ell} \mathcal{D}_{\ell+1}$ does not change. Hence, after at most

$$
\frac{1}{2} \log _{1+\varepsilon} \mathcal{D}\left(B^{(i n)}\right) \leq \frac{1}{2} \log _{1+\varepsilon}\left(\alpha^{k^{2} s}\right)=\frac{1}{2} k^{2} \frac{h^{3}-h}{6} \log _{1+\varepsilon} \alpha<\frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha
$$

rounds either B is almost slide-reduced for ε or else $\mathcal{D}(B) \leq 1$. The $\frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha$ bound includes the rounds on termination. Clearly $\log _{1+\varepsilon} \alpha=\ln \alpha / \ln (1+\varepsilon)$ and $1 / \ln (1+\varepsilon)=\frac{1+O(\varepsilon)}{\varepsilon}$.

Conjecture. We conjecture that $\mathcal{D}(B)<1$ does not appear for output bases obtained after a maximal number of rounds. If $\mathcal{D}(B)<1$ then $\mathbf{E}\left[\ln \left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right]<0\right.$ holds for the expectation \mathbf{E} for random ℓ with $\operatorname{Pr}(\ell)=6 \frac{\ell h-\ell^{2}}{h^{3}-h}$. (We have $\sum_{\ell=1}^{h-1} \operatorname{Pr}(\ell)=1$.) In this sense $\mathcal{D}_{\ell}<\mathcal{D}_{\ell+1}$ would hold "on the average" if $\mathcal{D}(B)<1$ whereas such $\mathcal{D}_{\ell}, \mathcal{D}_{\ell+1}$ are extremely unlikely in practice.

Time bound compared to [GN08]. The algorithm for slide-reduction of [GN08] is shown to perform $O(n h \operatorname{size}(B) / \varepsilon)$ local SVP-computations, where $\operatorname{size}(B)$ is the bit-length of B. The number of rounds of Theorem 1 is polynomial in n even if $\operatorname{size}(B)$ is exponential in n.
However, ASR can accelerate the [GN08] algorithm at best by a factor $h-1$ because the [GN08] algorithm iterates all rounds for $\ell=1, \ldots, h$ which also covers $\ell_{\max }$, whereas ASR iterates all rounds for the current $\ell_{\max }$. Thus Theorem 1 shows that the [GN08] algorithm performs at most $\frac{n^{2} h^{2}}{6} \log _{1+\varepsilon} \alpha$ local SVP-computations if the input basis is an LLL-basis for δ and the algorithm terminates with a basis B such that $\mathcal{D}(B) \geq 1$. Theorem 1 eliminates from the $O(n h \operatorname{size}(B) / \varepsilon)$ time bound of [GN08] the bitlength of B and requires only minor conditions on the input and output basis. As $\operatorname{size}(B) \approx \sum_{i=1}^{n} \log _{2}\left\|\mathbf{b}_{i}\right\|$ our $\frac{n^{2} h^{2}}{6} \log _{1+\varepsilon} \alpha$ bound is better than the $O(n h \operatorname{size}(B) / \varepsilon)$ bound of [GN08] if $\frac{h}{6} \ln \alpha<\frac{1}{n} \sum_{i=1}^{n} \log _{2}\left\|\mathbf{b}_{i}\right\|$. The latter holds in most cases.

Iterative slide-reduction with increasing blocksize. Consider the blocksize $k=2^{j}$. We transform the given LLL-basis $B \in \mathbb{Z}^{m \times n}$ for $\delta, \alpha, n=h k$ iteratively as folllows:

$$
\text { FOR } i=1, \ldots, j \text { DO transform } B \text { by calling ASR with blocksize } 2^{i} \text { and } \varepsilon .
$$

We bound the number \#It of rounds of the last ASR-call with blocksize $k=2^{j}$. The input B of this final ASR-call satisfies $\quad \mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq\left((1+\varepsilon) \gamma_{k / 2}\right)^{\frac{k / 2}{k / 2-1} 4} \quad$ as follows from (3) with blocksize
$k / 2$. Hence

$$
\mathcal{D}(B) \leq\left((1+\varepsilon) \gamma_{k / 2}\right)^{\frac{2 k}{k / 2-1} \frac{h^{3}-h}{6}} .
$$

As each round decreases $\mathcal{D}(B)$ by a factor $(1+\varepsilon)^{-2}$ we see that

$$
\# I t \leq \frac{1}{2} \log _{1+\varepsilon} \mathcal{D}(B) \leq \frac{k}{k / 2-1} \frac{h^{3}-h}{6} \log _{1+\varepsilon}\left((1+\varepsilon) \gamma_{k / 2}\right)=\frac{h^{3}-h}{1-2 / k} \frac{1+O(\varepsilon)}{3 \cdot \varepsilon} \ln \gamma_{k / 2}
$$

provided that $\mathcal{D}(B) \geq 1$ holds on termination. Here $\log _{1+\varepsilon} \gamma_{k / 2}=\ln \gamma_{k / 2} / \ln (1+\varepsilon)=\frac{1+O(\varepsilon)}{\varepsilon} \gamma_{k / 2}$. For $k=4$, resp. $k=8$ this is less than a 0.603 , resp. 0.201 fraction of the number of rounds $\frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha$ of Theorem 1, where the input is an LLL-basis for δ, α. The final ASR-call dominates the workload of all other calls together, including the workload for the LLL-reduction of the input basis. We see that iterative slide-reduction for $k=2^{j}$ requires only an $O\left(k^{-2} \ln \gamma_{k / 2}\right)$-fraction of the workload of the direct ASR-call as in Theorem 1. In particular we have proved

Corollary 1. Given an almost slide-reduced basis $B \in \mathbb{Z}^{m \times n}$ for $\varepsilon>0$ and blocksize $k / 2, n=h k$, ASR finds within $\frac{1}{3} \frac{h^{3}-h}{(1-2 / k)} \log _{1+\varepsilon}\left((1+\varepsilon) \gamma_{k / 2}\right)$ rounds of two local SVP-computations either an almost slide-reduced basis for blocksize k and ε or else arrives at $\mathcal{D}(B)<1$.

Theorem 2. The bounds $\mathbf{3}, \mathbf{4}$ hold for every almost slide-reduced basis $B \in \mathbb{Z}^{m \times n}$ and the exponent of $(1+\varepsilon)$ in 3, $\mathbf{4}$ can roughly be halved, multiplying it by $\frac{1+1 / k}{2}$.

Proof. We see from 2 and the Hermite bound on $\lambda_{1}\left(\mathcal{L}\left(R_{\ell}^{\prime}\right)^{*}\right)=1 / r_{k \ell+1, k \ell+1}$ that

$$
\begin{equation*}
\mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2} \leq\left((1+\varepsilon) \gamma_{k}\right)^{k} r_{k \ell+1, k \ell+1}^{2(k-1)} \tag{1}
\end{equation*}
$$

holds for $\ell=\ell_{\max }$ and $\ell=h-1$, where $\mathcal{D}_{\ell}^{\prime}:=\left(\operatorname{det} R_{\ell}^{\prime}\right)^{2}$. Moreover, the Hermite bound for R_{ℓ} yields

$$
r_{k \ell-k+1, k \ell-k+1}^{2(k-1)} \leq \gamma_{k}^{k} \mathcal{D}_{\ell} / r_{k \ell-k+1, k \ell-k+1}^{2}
$$

Combining these two inequalities with $\mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2}=\mathcal{D}_{\ell} / r_{k \ell-k+1, k \ell-k+1}^{2}$ yields

$$
\begin{equation*}
r_{k \ell-k+1, k \ell-k+1} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{k}{k-1}} r_{k \ell+1, k \ell+1} \quad \text { for } \ell=\ell_{\text {max }} \text { and } \ell=h-1 . \tag{2}
\end{equation*}
$$

Next we prove

$$
\begin{equation*}
\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}} \quad \text { for } \ell=0, \ldots, h-1 . \tag{3}
\end{equation*}
$$

Proof. As (1) holds for $\ell=\ell_{\text {max }}$ and $\mathbf{1}$ holds for $\ell+1$ the Hermite bound on $\lambda_{1}\left(\mathcal{L}\left(R_{\ell+1}\right)\right)$ yields

$$
\mathcal{D}_{\ell}^{\prime} \leq(1+\varepsilon)^{k} \gamma_{k}^{k} r_{k \ell+1, k \ell+1}^{2 k} \leq(1+\varepsilon)^{k} \gamma_{k}^{2 k} \mathcal{D}_{\ell+1}
$$

We see from (2) that

$$
\begin{equation*}
\mathcal{D}_{\ell}=r_{k \ell-k+1, k \ell-k+1}^{2} \mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k}{k-1}} \mathcal{D}_{\ell}^{\prime} \tag{4}
\end{equation*}
$$

Combining the two previous inequalities yields for $\ell=\ell_{\text {max }}$

$$
\mathcal{D}_{\ell} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k}{k-1}}(1+\varepsilon)^{k} \gamma_{k}^{2 k} \mathcal{D}_{\ell+1}=\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}} \mathcal{D}_{\ell+1}
$$

Moreover if (3) holds for $\ell_{\max }$ it clearly holds for all $\ell=1, \ldots, h-1$.
3. The Hermite bound for R_{1} and (3) imply for $\ell=1, \ldots, h$ that

$$
\begin{equation*}
\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k} \mathcal{D}_{1}^{1 / k} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(\ell-1)}{k-1}} \mathcal{D}_{\ell}^{1 / k} . \tag{5}
\end{equation*}
$$

The product of these h inequalities for $\ell=1, \ldots, h$ yields

$$
\left\|\mathbf{b}_{1}\right\|^{2 h} \leq \gamma_{k}^{h}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{k h(h-1)}{k-1}}(\operatorname{det} \mathcal{L})^{2 / k} .
$$

This proves and improves $\mathbf{3}$ to (without using that $\mathbf{2}$ holds for $\ell=h-1$.)

$$
\left\|\mathbf{b}_{1}\right\|^{2} /(\operatorname{det} \mathcal{L})^{2 / n} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}}=(1+\varepsilon)^{\frac{1+1 / k}{2} \frac{n-k}{k-1}} \gamma_{k}^{\frac{n-1}{k-1}} .
$$

4. (5) for $\ell=h-1$ shows that

$$
\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(h-2)}{k-1}} \mathcal{D}_{h-1}^{1 / k}
$$

Clearly 2 for $\ell=h-1$ implies (2) and (4) for $\ell=h-1$, and thus we get

$$
\begin{array}{ll}
\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(h-2)}{k-1}+\frac{2}{k-1}}\left(\mathcal{D}_{h-1}^{\prime}\right)^{1 / k} & (\text { by }(4) \text { for } \ell=h-1) \\
\leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k h-4 k+2}{k-1}}(1+\varepsilon) \gamma_{k} r_{n-k+1, n-k+1}^{2} . & (\text { by } \mathbf{2} \text { for } \ell=h-1)
\end{array}
$$

(we also used that $r_{n-k+1, n-k+1}^{-2}=\lambda_{1}^{2}\left(\mathcal{L}\left(R_{h-1}^{\prime *}\right)\right) \leq \gamma_{k} / D_{h-1}^{\prime}$ holds by the Hermite bound for $R_{h-1}^{* *}$.)

$$
<\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{2 \frac{n-k}{k-1}} r_{n-k+1, n-k+1}^{2}
$$

W.l.o.g $\pi_{n-k+1}(\mathbf{b}) \neq \mathbf{0}$ holds for some $\mathbf{b} \in \mathcal{L}$ with $\|\mathbf{b}\|=\lambda_{1}$, otherwise we remove the last k vectors of the basis. Hence $r_{n-k+1, n-k+1} \leq\left\|\pi_{n-k+1}(\mathbf{b})\right\| \leq \lambda_{1}$. The latter inequalities yield the claim

$$
\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}} \lambda_{1}
$$

We have roughly halved the exponent of $(1+\varepsilon)$ in $\mathbf{3}$ and $\mathbf{4}$ multiplying it by at most $\frac{1+1 / k}{2}$.
Time bounds for extremely small ε. We measure the reducedness of a basis B by the integer m defined by

$$
\begin{equation*}
2^{2^{m-1}}<\max _{\ell}\left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right) \gamma_{k}^{-\frac{2 k^{2}}{k-1}} \leq 2^{2^{m}} \tag{6}
\end{equation*}
$$

This integer m exists if and only if $\max _{\ell}\left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right)>\gamma_{k}^{\frac{22^{2}}{k-1}}$
Next we show that every round of ASR with initial value m decreases $\mathcal{D}(B)$ by a factor $2^{-2^{m-1}}$. The transform of $R_{\ell}, R_{\ell+1}, B$ for $\ell=\ell_{\text {max }}$ results in (2), (3) holding for $\varepsilon=0$, i.e., $\mathcal{D}_{\ell}^{\text {new }} / \mathcal{D}_{\ell+1}^{\text {new }} \leq \gamma_{k}^{\frac{2 k^{2}}{k-1}}$. Multiplying this inequality with $2^{2^{m-1}} \gamma_{k}^{\frac{2 k^{2}}{k-1}}<\mathcal{D}_{\ell}^{\text {old }} / \mathcal{D}_{\ell+1}^{\text {old }}$ and $\mathcal{D}_{\ell}^{\text {new }} \mathcal{D}_{\ell+1}^{\text {new }}=\mathcal{D}_{\ell}^{\text {old }} \mathcal{D}_{\ell+1}^{\text {old }}$ yields

$$
\begin{equation*}
2^{2^{m-2}} \mathcal{D}_{\ell}^{\text {new }} \leq \mathcal{D}_{\ell}^{\text {old }} \quad \text { hence } \quad \mathcal{D}\left(B^{\text {new }}\right) \leq \mathcal{D}\left(B^{\text {old }}\right) 2^{-2^{m-1}} \tag{7}
\end{equation*}
$$

We denote $M_{0}:=\max \left(\left\|\mathbf{b}_{1}\right\|^{2}, \ldots,\left\|\mathbf{b}_{n}\right\|^{2}\right)$ for the input basis B.
Lemma 1. If B is almost slide-reduced for $\varepsilon<\frac{k-1}{6 k^{2}} /\left(2^{n} M_{0}\right)$ then $\max _{\ell}\left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right) \leq \gamma_{k}^{\frac{2 k^{2}}{k-1}}$.
Proof. Let $\varepsilon>0$ be minimal such that B is almost slide-reduced for ε. It follows from the proof of Theorem 1 that $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}=\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}}$ holds for some ℓ. Then (6) implies $(1+\varepsilon)^{\frac{k^{2}}{k-1}} \leq 2^{2^{m}}$, thus $\quad \varepsilon<\frac{k-1}{k^{2}} 2^{m}$.
If $B=Q R$ is not almost slide-reduced for some $0<\varepsilon^{\prime}<\varepsilon$ then any nearly maximal such ε^{\prime} satisfies

$$
\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1} \approx\left(1+\varepsilon^{\prime}\right) r_{k \ell+1, k \ell+1} \quad \text { for some } \ell .
$$

It follows from [LLL82, (1.28)] for the integer matrix B that $r_{k \ell+1, k \ell+1} M_{0}^{n} \geq 1$ and thus

$$
\varepsilon^{\prime} \gtrsim\left(\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}-r_{k \ell+1, k \ell+1}\right) / r_{k \ell+1, k \ell+1} \geq 1 / M_{0}^{n} .
$$

This contradicts (8) if $\frac{k-1}{k^{2}} 2^{m}<1 / M_{0}^{n}$, and thus excludes that $-m>n \log _{2} M_{0}$.
(3) and (6) imply $2^{2^{m-1}}<(1+\varepsilon)^{\frac{2 k^{2}}{k-1}}$, and thus $\quad 2^{m-1}<\frac{2 k^{2}}{k-1} \log _{2}(1+\varepsilon)<\frac{2 k^{2}}{k-1} \frac{\varepsilon}{\ln 2}$.

Hence $-m>n \log _{2} M_{0}$ which is impossible. This implies by (6) that $\max _{\ell} \mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq \gamma_{k}^{\frac{2 k^{2}}{k-1}}$.
Next we bound the number \#It t_{m} of rounds until the current m either decreases to $m-1$ or arrives at $\mathcal{D}(B)<1$. During this reduction the m defined by (6) implies that (7) holds for each round. Moreover, initially $\max _{\ell} \mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq \gamma_{k}^{\frac{2 k^{2}}{k-1}} 2^{2^{m}}$. This shows for the initial and final bases for the reduction of m to $m-1$:

$$
\begin{aligned}
& \# I t_{m} \leq \log _{2}\left(\mathcal{D}\left(B^{(i n)}\right) / \mathcal{D}\left(B^{(f i n)}\right)\right) / 2^{m-1} \\
& \leq \frac{h^{3}-h}{3}\left(2^{m} / 2^{m-1}+2^{-m+1} \frac{2 k^{2}}{k-1} \log _{2} \gamma_{k}\right)
\end{aligned}
$$

Thus within $O\left(n h^{2} \log _{2} k\right)$ rounds ASR either decreases $m \geq 0$ to $m-1$ or arrives at $\mathcal{D}(B)<1$.
Open problem. Can ASR perform for $m \ll 0$ more than $O\left(n h^{2} \log _{2} k\right)$ rounds until either the current m decreases to $m-1$ or that $\mathcal{D}(B)<1$? We can exclude this by the following rule of
Early Termination (ET). Terminate as soon as $\mathcal{D}(B)<\gamma_{k}^{\frac{2 k^{2}}{k-1} \frac{h^{3}-h}{6}}$.
$\mathcal{D}(B)<\gamma_{k}^{\frac{2 k^{2}}{k-1} \frac{h^{3}-h}{6}}$ implies that $\mathbf{E}\left[\ln \left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right)\right]<\frac{2 k^{2}}{k-1} \ln \gamma_{k}$ holds for random ℓ, where $\operatorname{Pr}(\ell)=$ $6 \frac{\ell h=\ell^{2}}{h^{3}-h}$. In this sense (3), (4) and $\mathbf{3}$ hold for $\varepsilon=0$ "on the average".
Corollary 2. ASR terminates under ET for arbitrary $\varepsilon \geq 0$ in $\frac{h^{3}-h}{3}\left(m+\left|m_{0}\right|\right)$ rounds, where m, m_{0} are the m-value of the input and final basis. Moreover $\left|m_{0}\right| \leq n \log _{2} M_{0}$.

Proof. Consider \#It t_{m} the number of rounds until the current m decreases to $m-1$. During this reduction the m of (6) satisfies $\max _{\ell} \mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}>2^{2^{m-1}} \gamma_{k}^{\frac{2 k^{2}}{k-1}}$. This implies by (7) and ET for the initial and final bases for the reduction of m to $m-1$:

$$
\# I t_{m} \leq \log _{2}\left(\mathcal{D}\left(B^{(i n)}\right) / \mathcal{D}\left(B^{(f i n)}\right)\right) / 2^{m-1} \leq \log _{2}\left(2^{2^{m} \frac{h^{3}-h}{6}}\right) / 2^{m-1}=\frac{h^{3}-h}{3}
$$

Thus within $\frac{h^{3}-h}{3}$ rounds ASR either decreases m to $m-1$ or arrives at $\mathcal{D}(B)<\gamma_{k}^{\frac{2 k^{2}}{k-1} \frac{h^{3}-h}{3}}$.
Hence ASR terminates within $\frac{h^{3}-h}{3}\left(m+\left|m_{0}\right|\right)$ rounds, where $\left|m_{0}\right| \leq n \log _{2} M_{0}$ holds by the proof of Lemma 1.

Accelerated LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gaußreductions or LLL-swaps on $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ for an ℓ that maximizes the resulting reduction progress.
We associate to a basis B satisfying $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}>\frac{4}{3}$ the integer m defined by

$$
\begin{equation*}
2^{2^{m-1}}<\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} / \frac{4}{3} \leq 2^{2^{m}} \tag{9}
\end{equation*}
$$

If $m \geq 0$ we transform in the current round $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ for an ℓ that maximizes $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}$ by Gauß-reducing the basis $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ of dimension 2. (Gauß-reducing the basis $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ means to LLL-reduce $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ with $\delta=1$.) This decreases $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2}$ by a factor less than $2^{-2^{m}}<\frac{1}{2}$.

If $m<0$ or m does not exist, we transform in the current round $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ for an ℓ that maximizes $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\pi_{\ell}\left(\mathbf{b}_{\ell+1}^{*}\right)\right\|^{2}$ after size-reducing $\mathbf{b}_{\ell+1}$ against \mathbf{b}_{ℓ} by setting $\mathbf{b}_{\ell+1}:=\mathbf{b}_{\ell+1}-\left\lceil r_{\ell, \ell+1} / r_{\ell / \ell}\right\rfloor \mathbf{b}_{\ell}$. If $\left\|\pi_{\ell}\left(\mathbf{b}_{\ell+1}^{*}\right)\right\|^{2} \leq \delta\left\|\mathbf{b}_{\ell}^{*}\right\|^{2}$ we swap $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ and otherwise terminate.

On termination we size-reduce the basis B.
Theorem 3. Given an LLL-basis $B \in \mathbb{Z}^{m \times n}$ for $\delta^{\prime}<1, \alpha^{\prime}=1 /\left(\delta^{\prime}-1 / 4\right)$ ALR with δ satisfying $1>\delta>\max \left(\delta^{\prime}, \frac{1}{2}\right)$ arrives within $\frac{n^{3}}{12} \log _{1 / \delta} \alpha^{\prime}$ rounds of Gauß-reductions, resp. LLL-swaps either at an LLL-basis for δ, or else arrives at $\mathcal{D}(B):=\prod_{\ell=1}^{n-1}\left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)^{\ell(n-\ell)}<1$.

Proof. We use $\mathcal{D}(B)$ for blocksize $1, \mathcal{D}(B):=\prod_{\ell=1}^{n-1}\left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)^{\ell(n-\ell)}$. Each round decreases $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2}$ by a factor δ, and both $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}, \mathcal{D}(B)$ by a factor δ^{2}. Then the number of rounds until either an LLL-basis for δ appears or else $\mathcal{D}(B) \leq 1$ is at most

$$
\frac{1}{2} \log _{1 / \delta} \mathcal{D}(B) \leq \frac{1}{2} \log _{1 / \delta}\left(\alpha^{\prime}\right)^{\frac{n^{3}-n}{6}} \leq \frac{n^{3}}{12} \log _{1 / \delta} \alpha^{\prime}
$$

The workload per round. If each round completely size-reduces $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ against $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell-1}$ it requires $O\left(n^{2}\right)$ arithmetic steps. If we only size-reduce $\mathbf{b}_{\ell+1}$ against \mathbf{b}_{ℓ} then a round costs merely $O(n)$ arithmetic steps but the length of the integers explodes. This explosion can be prevented at low costs by doing size-redction in segments, see [S06], [KS01].
Lemma 2. If B is LLL-basis for δ and $1-\delta<2^{-n-2} / M_{0}$ then $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \frac{4}{3}$.
Proof. The LLL-basis B satisfies $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} \leq \frac{1}{\delta-1 / 4}\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}$. Therefore (9) implies $2^{2^{m-1}}<\frac{1}{\delta-1 / 4} \frac{3}{4}$. Setting $\delta=1-\varepsilon$ this shows that

$$
\begin{aligned}
2^{m-1} & <\log _{2} \frac{3}{4 \delta-1}<\log _{2} \frac{1}{1-\frac{4}{3} \varepsilon}=\ln \left(1-\frac{4}{3} \varepsilon\right) / \ln 2 \\
& <-1.45 \frac{4}{3} \varepsilon<2^{-n-1} / M_{0} .
\end{aligned}
$$

This implies $m<-n \log _{2} M_{0}$ which is impossible (by the proof of Lemma 1). This shows that m is undefined and thus $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} / \mid \mathbf{b}_{\ell+1}^{*} \|^{2} \leq \frac{4}{3}$.

Corollary 3. Let m be the m-value of the input basis and $c \in \mathbb{Z} c \geq 0$ be constant. Within $\frac{n^{3}}{12}\left(m+2.22 \cdot 2^{c}\right)$ rounds $\mathbf{A L R}$ either decreases the initial m to $m \leq-c$ or else arrives at $\mathcal{D}(B)<1$. Moreover $m \leq \log _{2} n+\log _{2} \log _{2} M_{0}$.

Surprisingly, the number of rounds in Cor. 3 is polynomial in n if $\log _{2} \log _{2} M_{0} \leq n^{O(1)}$.

Proof. We have shown that ASR with $k=2$ either decreases within at most

$$
\frac{(n / 2)^{3}}{3}\left(2^{m} / 2^{m-1}+2^{-m+1} 8 \log _{2} \sqrt{4 / 3}\right)
$$

rounds either the current m to $m-1$ or arrives at $\mathcal{D}(B)<1$. Therefore ALR either decreases the m of the input-basis within at most

$$
\frac{n^{3}}{24}\left(2 m+2^{4} \log _{2} \sqrt{4 / 3} \sum_{i=-c}^{m} 2^{-i}\right)<\frac{n^{3}}{12}\left(m+2^{c+4} \log _{2} \sqrt{4 / 3}\right)<\frac{n^{3}}{12}\left(m+2.22 \cdot 2^{c}\right)
$$

rounds to $m=-|c|$ or else arrives at $\mathcal{D}(B)<1$
The bound $m \leq \log _{2} n+\log _{2} \log _{2} M_{0}$ follows from (9) and $\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \geq 1 / M_{0}^{n}$.
Comparison with previous algorithms for LLL-reduction. The LLL was originally proved [LLL82] to be of bit-complexity $O\left(n^{5+\varepsilon}\left(\log _{2} M_{0}\right)^{2+\varepsilon}\right)$ performing $O\left(n^{2} \log _{1 / \delta} M_{0}\right)$ rounds, each round size-reduces some \mathbf{b}_{ℓ} in n^{2} arithmetic steps on integers of bit-length $n \log _{2} M_{0} ; \varepsilon$ in the exponent comes from the fast FFT-multiplication of integers. The large bit-length of integers $n \log _{2} M_{0}$ has been reduced to $n+\log _{2} M_{0}$ by orthogonalizing the basis in floating point arithmetic.

The number of rounds in Cor. 3 is independent of M_{0}. This is becauseALR maximizes the reduction progress per round. To minimize the workload of size-reduction ALR should be organized according to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k basis vectors. The bit-complexity of Gauß-reduction of $\pi_{\ell}\left(b_{\ell}\right), \pi_{\ell}\left(b_{\ell+1}\right)$ is quasi-linear in $\operatorname{size}(B)$ [NSV10]. Therefore we do not split up this Gauss-reduction into LLL-swaps. If the current m is large then Gauß-reduction of $\pi_{\ell}\left(b_{\ell}\right), \pi_{\ell}\left(b_{\ell+1}\right)$ for $\ell=\ell_{\max }$ decreases $\mathcal{D}(B)$ be the factor 2^{-m} while LLL-swaps guarantee only a decrease by the factor $\frac{3}{4}$.

The algorithm for LLL-reduction with fixed complexity iterates all possible LLL-swaps of $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ for $\ell=1, \ldots, n-1$. If this algorithm would not just do LLL-swaps but Gauss-reductions of $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ for all ℓ its number of rounds would be at most $n-1$ times the number of rounds $\frac{n^{3}}{12} \log _{1 / \delta} \alpha^{\prime}$ of ALR.

Early Termination (ET). Terminate as soon as $\mathcal{D}(B)<\left(\frac{4}{3}\right)^{\frac{n^{3}-n}{6}}$.
$\left.\mathcal{D}(B)<\frac{4}{3}\right)^{\frac{n^{3}-n}{6}}$ implies that $\mathbf{E}\left[\ln \left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)\right]<\ln (4 / 3)$ holds for random ℓ and $\operatorname{Pr}(\ell)=$ $6 \frac{\ell h=\ell^{2}}{h^{3}-h}$. In this sense the output basis approximates "on the average" the logarithm of the inequality $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n} \leq\left(\frac{4}{3}\right)^{\frac{n-1}{4}}$ that holds for ideal LLL-bases with $\delta=1$.

Corollary 4. ALR terminates under ET in $n^{3}\left(m+\left|m_{0}\right|\right) / 3$ rounds, where m, m_{0} are the m-values of the input and output basis. Moreover $\left|m_{0}\right| \leq n \log _{2} M_{0}$ and $m \leq \log _{2} n+\log _{2} \log _{2} M_{0}$.

Proof. Consider the number \# I_{m} of rounds until either the current m decreases to $m-1$ or else $\mathcal{D}(B)$ becomes less than $(4 / 3)^{\frac{n^{3}-n}{6}}$. As in the proof of Corollary 2 each round with m results in Gauß-reduction under π_{ℓ} if $m \geq 0$, resp. an LLL-swap if $m<0$, results in

$$
\left\|\mathbf{b}_{\ell}^{* \text { new }}\right\|^{2}<\left\|\mathbf{b}_{\ell}^{* o l d}\right\|^{2} 2^{-2^{m-2}} \quad \text { hence } \quad \mathcal{D}\left(B^{\text {new }}\right)<\mathcal{D}\left(B^{\text {old }}\right) 2^{-2^{m-1}}
$$

Under ET this shows as in the proof of Cor. 1 that

$$
\# I t_{m}<\log _{2}\left(\mathcal{D}\left(B^{(i n)}\right) /\left(\mathcal{D}\left(B^{(f i n)}\right)\right) / 2^{m-1} \leq\left(2^{m} \frac{n^{3}-n}{6}\right) / 2^{m-1}=\frac{n^{3}-n}{3}\right.
$$

Hence m decreases to $m-1$ under ET in less than $\frac{n^{3}-n}{3}$ rounds. The proof of Lemma 1 shows that $\left|m_{0}\right| \leq n \log _{2} M_{0}$.

Open problem. Does ALR realize $\max _{\ell}\left\|\mathbf{b}_{\ell}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}\right\|^{2} \leq \frac{4}{3}$ in a polynomial number of rounds ? Can ALR perform for $m \ll 0$ without ET more than $O\left(n^{3}\right)$ rounds until either the current m decreases to $m-1$ or that $\mathcal{D}(B) \leq 1$? We can exclude this for $m \geq 0$ and under ET also for $m<0$.

References

[NSV10] A. Novocia, D. Stehlé and G. Villard An LLL-reduction algorithm with quasilinear time complexity. Technical Report, version 1, Nov. 2010.
[GHKN] N. Gama, N. Howgrave-Graham, H. Koy and P, Q. Nguyen, Rankin's constant and blockwise lattice reduction. In Proc. of CRYPTO'06, LNCS 4117, Springer, pp. 112-130, 2006.
[GN08] N. Gama and P. Nguyen, Finding Short Lattice Vectors within Mordell's Inequality, In Proc. of the ACM Symposium on Theory of Computing STOC'08, pp. 208-216, 2008.
[GN08b] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008, LNCS 4965, Springer-Verlag, pp. 31-51, 2008.
[KS01] H. Koy and C.P. Schnorr Segment LLL-reduction of lattice bases, In Proceedings of the 2001 Cryptography and Lattice Conference (CACL’01), LNCS 2146, Springer-Verlag, pp. 67-80, 2001.
[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen 261, pp. 515-534, 1982.
[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret. Comput. Sci., 53, pp. 201-224, 1987.
[S06] C.P. Schnorr, Fast LLL-type lattice reduction, Onformation and Computation 204, pp. 1-25, 2006.

