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Abstract. Given an LLL-basis B of dimension n = hk we accelerate slide-reduction with blocksize
k to run under a reasonable assumption in é n%h log, . a local SVP-computations in dimension £,
where o > % measures the quality of the given LLL-basis and ¢ is the quality of slide-reduction. If the
given basis B is already slide-reduced for blocksize k/2 then the number of local SVP-computations
for slide-reduction with blocksize k reduces to %hS(l +log, . Yk/2)- This bound is polynomial for ar-

bitrary bit-length of B, it improves previous bounds considerably. We also accelerate LLL-reduction.
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Introduction. Lattices are discrete subgroups of the R™. A basis B = [bi,...,b,] € R™*" of
n linear independent vectors bu, ..., b, generates the lattice £L(B) = {Bx|x € Z"} of dimension
n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors.
(L) = minbegyb¢0(btb)l/2 is the minimal length of nonzero b € L. The determinant of £
is det £ = (det B'B)/2. The Hermite bound \;(£)? < ~,(det £)?/™ holds for all lattices £ of
dimension n and the Hermite constant y,.

The LLL-algorithm of H.-W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a

given basis B in polynomial time into a basis B such that ||by] < o' A1, where o > 4/3. It is
important to minimize the proven bound on ||b1||/A1 for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k > 2 generalising
the blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The al-
gorithm of [GHKNO6] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So

far slide-reduction of [GNO8b] yields the smallest approximation factor ||b1||/A1 < (1 + &)yk)
of polynomial time reduction algorithms. The algorithm for slide-reduction of [GNO8b] performs
O(nh -size(B)/¢e) local SVP-computations, where size(B) is the bit-length of B and ¢ is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates all the other workload. [NSV10] show that the
bit complexity of LLL-reduction is quasi-linear in size(B). To obtain this quasi-linear bit-complexity
the LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to
Lehmer’s ged-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms
for matrix multiplication.

n—k
k—1

Our results. We improve the O(nh-size(B)/e) bound of [GNO08b] in two ways. We concentrate the
required conditions for slide-reduced bases in the concept of almost slide-reduced bases which enables
faster reduction. We study the algorithm for slide-reduction on input bases that are LLL-bases. As
LLL-reduction takes a minor part of the workload of slide-reduction this better characterizes the
intrinsic workload of slide-reduction. Theorem 1 studies the number of local SVP-computations for
slide-reduction with blocksize k of an input LLL-basis B € Z"*" for 6, « and dimension n = hk.
It shows under a reasonable assumption that this number is at most & n°h log, . a. This bound
holds for arbitrary bit-length of B. Corollary 1 shows that if the given basis is already slide-reduced
for blocksize k/2 the number of local SVP-computations for slide-reduction with blocksize k further
decreases to % ﬁh:i(l +log; . Yk/2), reducing the number by a factor 2k~ 21In “Viy2/ Ina. For
the first time this qualifies the advantage of first performing slide-reduction with half the blocksize.
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Theorem 2 shows that the bounds proven in [GNO8b] on [|b1||/A1 and [bi]|/(det £)*/™ still hold
for almost slide-reduced bases even with a minor improvement.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that
accelerated LLL-reduction computes an LLL-basis within 71’—; log, size(B) local LLL-reductions in
dimension 2. The number of local LLL-reductions in dimension 2 is polynomial in n if the bit-length
of B is at most exponential in n, i.e., size(B) = 2“0(1). Lemma 2 shows that every LLL-basis for ¢
such that 1—§ < 27" 722757¢(5) gatisfies the property max, ||b}||?/||bj, 1 < 3 of ideal LLL-bases
for 6 = 1.

Notation. Let B = QR, n = hk be the QR-decomposition of B € R™*™. Let Ry = [ri,j|ke—k+1<i,j<ke
€ R¥** be the submatrix of R = [r;;] € R™*" for the {-th block, Dy = (det R¢)?, and R, =
[7ij]ke—ki2<ij<kers € RF*F for the f-th block slided by one unit. R = (R})* is the dual
of Ry. (Ry = UkR,:tUk for R, € R¥** where R,:t is the inverse transpose of Ry and U, €
{0,1}*** is the reversed identity matrix with non-zero entries w; s ;11 = 1 for i = 1,...,k.) Let
MaX gy Thi+1,k0+1 denote the maximum of Fret1 ket1, [Fi,;] = GNF(R,T) for all T € GLk(Z)
with QR-decomposition R,T = Q' - GNF(R,T). Note that maxpy p ke+1,ke+1 = 1/A1(L(R;")). Let
7 : R® — span(by, ..., b;_1)® be the orthogonal projection, and b} := m;(b;) thus ||b}|| = 7.

LLL-bases. [LLL82] A basis B = QR € R™*" is LLL-basis for §, + < § < 1if

o |rij| < %r” holds for all j > 1, . 61",-2’1- < 7"1'2,1'+1 + 7“1-2+1’1-+1 holds fori =1,...,n — 1.
An LLL-basis B for § satisfies ||b}||*/||bj;1]|> < aforall £=1,..,n—1
bl < % (det £)*/7, b < @z A,

Definition 1. [GNO8] An LLL-basis B = QR € R™*"™, n = kh is slide-reduced for e > 0 if
1. Tkt—k+1,kl—k+1 = Al([,(Re)) fOT { = 1, ceey h,
2. MaX gy 7 The+1,ke+1 <V1+¢€ rkes1,ke+1 holds for £ =1,....h — 1.

1 slightly relaxes the condition of [GNOS8] that all bases R, are HKZ-reduced. The following bounds
have been proved by GAMA and NGUYEN in [GNO8, Theorem 1] for slide-reduced bases:

n—1 n—~k
3. bl < ((1+e)w)? F (det £)V7, 4. [bafl < ((T+&)ve) = Au.

Almost slide-reduced bases. We call an LLL-basis B = QR € R™*", n = hk, almost slide-
reduced for € > 0 if for some ¢ = {;nq, that maximizes D¢/Dey1,

1. Thoe—kt1,ke—k+1 = M (L(Re)) for £ =1 and £ = linaz,

2. MAaX gy The+1,ke+1 <1+¢- Tke+1,k0+1 holds for £ = {0, and £ = h — 1.

Theorem 2 shows that the bounds 3, 4 hold for almost slide-reduced bases.

Accelerated slide-reduction (ASR). In each round find some £ = {45 that maximizes D¢/Dey1.
Compute a shortest vector of £(R¢41) and transform Re41 and B such that 7ret1,ke+1 = M (L(Ret1))-
By an SVP-computation for £(R}") check that 2 holds for £ and if 2 does not hold transform R,
and B such that 2 holds for € = 0 (this decreases D, by a factor < (1+¢)™!) otherwise terminate.
On termination continue with this transform on Ry, Ret1, B for £ = {4, and £ = h — 1 until 2
holds for both ¢ = £,,4, and £ = h — 1. Finally make sure that 1 holds for £ = 1 and size-reduce B.

Theorem 1. Accelerated slide-reduction transforms a given LLL-basis B € Z™*™ for § < 1,
a = 1/(6§ — 1/4), n = hk, within 5n°hlog,,.a = th%és)lna rounds of 2 local SVP-
computations either into an almost slide-reduced basis for € > 0, or else arrives at D(B) < 1,
where D(B) =aut [112} (De/Dess)™* = (det £)*/ TT, [T'_, D2,

Proof. We use the novel version D(B) of the Lovész invariant to measure B’s reduction. Note that
h?/4 — (£ — h/2)? = he — £* is symmetric to £ = h/2 with maximal point £ = [h/2].
The input LLL-basis B(™) for § < 1 satisfies for a = 1/(8 — 1/4) that Dy/Dyy1 < o*” and thus



D(BU™) < o¥’s for s:= STl he— 2 = %.

Fact. Each round that does not lead to termination results in

Dy < Dy/(1+¢) D(B™") < D(B)/(1+¢)%
This is because the round changes merely the factor [I (D:)Di1)! " = (DyDey1) D? of
t=0—1,0,0+1

of D(B), where D¢D¢y1 does not change. Hence, after at most

n 2s 3_ n?
3 log . D(B™) < %10g1+s(ak )= %kQ . 6 . log;,.a< Tzh log,,. a

rounds either B is almost slide-reduced for € or else D(B) < 1. The n’h log, ;. @ bound includes

2
the rounds on termination. Clearly log,,. o =1n a/In(l1+¢) and 1/In(1+¢) = %(E). O

Conjecture. We conjecture that D(B) < 1 does not appear for output bases obtained after a
maximal number of rounds. If D(B) < 1 then E[In(D¢/D4+1] < 0 holds for the expectation E for

random ¢ with Pr(¢) = 6%‘_“;. (We have 3"~ Pr(¢) = 1.) In this sense D; < D41 would hold

”on the average” if D(B) < 1 whereas such Dy, D11 are extremely unlikely in practice.

Time bound compared to [GINO8]. The algorithm for slide-reduction of [GN08] has been shown
to perform O(nhsize(B)/e) local SVP-computations, where size(B) is the bit-length of B. The
number of rounds of Theorem 1 is polynomial in n even if size(B) is exponential in n.

Note that ASR can accelerate the [GNO08| algorithm at best by a factor h because the [GNO08] al-
gorithm iterates all rounds for £ = 1, ..., h which also covers ¢,,q., whereas ASR iterates all rounds
for the current fpmaz. Theorem 1 decreases the O(nhsize(B)/e) bound of [GNOS8] to % log,, .«
and requires only minor conditions on the input and output basis. In general it decreases the
O(nhsize(B)/e) bound of [GNO8] by the factor & In a/size(B) = ©(1/(6n max, log, ||bel|)).

Iterative slide-reduction with increasing blocksize. Consider the blocksize k = 27. We trans-
form the given LLL-basis B € Z™*" for 6, o, n = hk iteratively as folllows:

FOR i=1,...,7 DO transform B by calling ASR with blocksize 2’ and «.

We bound the number #1It of rounds of the last ASR-call with blocksize k = 27. The input B of this
k/2
final ASR-call satisfies De/Desr1 < (1 + €)vry2) Rr2-1* as follows from (3) with blocksize

h3—h

2k
k/2. Hence D(B) < (14 ¢e)ypy)*72-1 6
As each round decreases D(B) by a factor (14 £)™2 we see that
3_ 3_
#It < Llog,, . D(B) < 75 5 logy (1 + )yeye) = 2255 0 n
provided that D(B) > 1 holds on termination. Here log, . vi/2 = Iny/2/In(l +¢€) = 1+(E)<E)’Yk/2.
For k = 4, resp. k = 8 this is less than a 0.603, resp. 0.201 fraction of the number of rounds

% log; . @ of Theorem 1, where the input is an LLL-basis for 4, a. The final ASR-call dominates
the workload of all other calls together, including the workload for the LLL-reduction of the input
basis. We see that iterative slide-reduction for & = 27 requires only an O(k™2In i 2)-fraction of the
workload of the direct ASR-call as in Theorem 1. In particular we have proved

Corollary 1. Given an almost slide-reduced basis B € Z™*™ for € > 0 and blocksize k/2, n = hk,
ASR finds within %(1}13%/}12) log, . ((1 4 €)Vk/2) rounds of two local SVP-computations either an
almost slide-reduced basis for blocksize k and € or else arrives at D(B) < 1.

Theorem 2. The bounds 3, 4 hold for every almost slide-reduced basis B € Z™*™ and the exponent

of (1+¢) in 3, 4 can roughly be halved, multiplying it by 1+21/k.

Proof. We see from 2 and the Hermite bound on A1 (L(R})*) = 1/rket1,ke41 that

k—
Dy /T e < (L4 €)yx)* Ti2+1,1k>l+1 1)
holds for £ = £max and £ = h— 1, where D} := (det R})?. Moreover, the Hermite bound for R, yields

2(k—1) k 2
Tl ket Lkl k41 = Yk De/Tict—k41,kt—k+1-



Combining these two inequalities with D} /1y 1 xes1 = De/The— ki1 he—rs1 Yields

K
Tht—kt1,ko—k+1 < (14 €)Vk) FTThes1,k041  for £ = lpar and £ = h — 1. (2)
Next we prove
/k 2
De/Depr < (1+) "2 4)F T for £=0,...h—1. (3)

Proof. As (1) holds for £ = £pa, and 1 holds for £+ 1 the Hermite bound on A1 (L(Re41)) yields
Dy < (1+&) virktsrners < (14)*97 Doy

We see from (2) that De = i1 he—rt1 Do/Ther,kess < (1 +¢) Vk)%DZ (4)
Combining the two previous inequalities yields for £ = {0
Dy < (1+) ) T (1+ )92 Degs = (14€) 5 ) BT Di,
Moreover if (3) holds for £,,q, it clearly holds for all £ =1,...,h — 1.
3. The Hermite bound for R; and (3) imply for £ =1, ..., h that

141/k 2k(2—1)
+1/ ﬁpl}/k

balf* < D" < ((14+6) 2" )
The product of these h inequalities for £ = 1, ..., h yields

141/k kh(h— 1)
T—

[baf?" <AR((L+e) "= ) (detﬁ)g/’“
This proves and improves 3 to ( without using that 2 holds for £ =h — 1. )

141/k n—k 14+1/k n—k 2=1

[b1]?/(det £)*™ < (L +€) "2 m) =1 = (1+e) 2 *=1 "

k(h—2)
4. (5) for £ = h — 1 shows that IIb1])? < & ((1+¢) L ryk)Q = Di/fl.
Clearly 2 for £ = h — 1 implies (2) and (4) for £ = h — 1, and thus we get
14+1/k 2k(h—2) | 2
b1l < am((L+e) "2 ) =1 TET(D), )" (by (4) for £=h—1)
1+1/k 2kh—4k+2 9
Sw(P+e) 2 ) U (14 e)mrnkiin—kt1- (by 2 for £ =h—1)

(we also used that T;Ek+17n7k+1 = M (L(R}_1)) < vr/Dj_; holds by the Hermite bound for R ;.)

14+1/k n—k
<((1+4+¢e) 2 ’Yk)Q k=1 T?L—k+l,n—k+l‘
W.lLo.g Tp—k+1(b) # 0 holds for some b € £ with ||b|| = A1, otherwise we remove the last k vectors
of the basis. Hence rn—k41,n—k+1 < ||[Tn—k+1(b)]| < A1. The latter inequalities yield the claim

n—k

141/k
b1l < ((14+e)" 2 ) FL A1

We have roughly halved the exponent of (1 + ¢) in 3 and 4 multiplying it by at most 1+1/ k. O

Time bounds for extremely small e. We measure the reducedness of a basis B by the integer

m defined by k2

22" max¢(De/Det1) vy, kT <02 (6)
&21

This integer m exists if and only if max,(D¢/Des1) > 'ykk
Next we show that every round of ASR with initial value m decreases D(B) by a factor 272" The

2k2

transform of Ry, Re+1, B for £ = £yq, results in (2), (3) holding for e = 0, i.e., Dy /Dpey < F'.

2
Multiplying this inequality with 22" 7; T < DD and Dy Dyey = DgDyY yields
22" ppew < PP hence  D(B") < D(B4) 272" (7)

We denote My := max(||b1]|?, ..., |[bn||?) for the input basis B.
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Lemma 1. If B is almost slide-reduced for e < % (2" Mo) then maxe(De/Des1) < vy " .

Proof. Let € > 0 be minimal such that B is almost slide-reduced for . It follows from the proof of
Theorem 1 that D¢/Der1 = ((1 + fs)’yk)’ELf1 holds for some ¢. Then (6) implies (1 + E)kkffl < 22"
thus €< % 2m. (8)
If B = QR is not almost slide-reduced for some 0 < &’ < € then any nearly maximal such &’ satisfies
MAX Ry 1 The+1,k04+1 (14 ¢€)rret1,ke+1  for some £.
It follows from [LLL82, (1.28)] for the integer matrix B that rxet1,ke+1 Mg > 1 and thus
e > (maXRZT Thtt1,ke4+1 — Thi1,k+1)/The+1,ke+1 > 1/Mg'.
This contradicts (8) if % 2™ < 1/Mg, and thus excludes that —m > nlog, Mo.
(3) and (6) imply 22" < (1+¢)

22 — 2 2
=1 and thus 2m=t < %1082(1+5) < 1351 e

2K2

Hence —m > nlog, My which is impossible. This implies by (6) that max; D¢/Dey1 <vF ", O

Next we bound the number #1t,, of rounds until the current m either decreases to m — 1 or arrives
at D(B) < 1. During this reduction the m defined by (6) implies that (7) holds for each round.

M m
Moreover, initially max,D;/Dey1 < v, " 22", This shows for the initial and final bases for the

reduction of m to m — 1: LTt < logQ(D(B(i"))/D(B(f"")))/Zm*l
3_ m jom— —m 2
< PR (em/2m T 4 27 2 log, k).

Thus within O(nh?log, k) rounds ASR. either decreases m > 0 to m — 1 or arrives at D(B) < 1.

Open problem. Can ASR perform for m < 0 more than O(nh?log, k) rounds until either the

current m decreases to m — 1 or that D(B) < 1 7 We can exclude this by the following rule of
2k2 R3—h

Early Termination (ET). Terminate as soon as D(B) <, ' °

2k2 h3—h

D(B) < v~ " °  implies that E[In(D¢/Des1)] < % In~, holds for random ¢, where Pr(¢) =

6%‘}; . In this sense (3), (4) and 3 hold for € = 0 "on the average”.

Corollary 2. ASR terminates under ET for arbitrary € > 0 in #(m + |mol|) rounds, where

m,mo are the m-value of the input and final basis defined by (6). Moreover |mo| < nlogy Mo.

Proof. Consider #It,, the number of rounds until the current m decreases to m — 1. During this
212

vF=1. This implies by (7) and ET for the

reduction the m of (6) satisfies max, Dy/Desq > 227

initial and final bases for the reduction of m to m — 1:
h3—h

. . B m o 3
#Itm < logy(D(B™)/D(BY™)) /2"~ <log, (22" 75 ) /2" = bt
2k2 h3—h
Thus within h33_h rounds ASR either decreases m to m — 1 or arrives at D(B) <y~ °
Hence ASR terminates within hs;h (m 4+ |mo|) rounds, where |mo| < nlog, Mo holds by the proof
of Lemma 1. O

Accelerated LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gau$-
reductions or LLL-swaps on by, byt1 for an £ that maximizes the resulting reduction progress.

We associate to a basis B satisfying max ||b;[*/|[b;11[*> > 3 the integer m defined by
m—1 m
227 < max |[bg]*/[[bia|?/5 < 2% 9)

If m > 0 we transform in the current round by, bei; for an ¢ that maximizes ||bj||?/||bjy1|*> by



GauBl-reducing the basis m(bg), m¢(bet1) of dimension 2. (GauB-reducing the basis 7 (bg), m¢(bet1)
means to LLL-reduce m¢(be), m¢(bey1) with 6 = 1.) This decreases ||bj||> by a factor less than
272" < L.

If m2< 0 or m does not exist, we transform in the current round by, byt for an £ that maximizes
67 11%/l1me(bjo1)||* after size-reducing bei1 against by by setting bet1 := b1 — [r041/70/0]be. If
lme(bii1)]I? < 6||bs||> we swap by, ber1 and otherwise terminate.

On termination we size-reduce the basis B.

Theorem 3. Given an LLL-basis B € Z™*" for §' <1, o’ =1/(8' —1/4) ALR with § satisfying
1> § > max(d, %) arrives within 71‘—; log1/5 o rounds of Gaufl-reductions, resp. LLL-swaps either
at an LLL-basis for &, or else arrives at D(B) := [[;=,'(|Ib;||*/|Ibi;1]|?) ™~ < 1.

Proof. We use D(B) for blocksize 1, D(B) := [[;=, (Ibi|I*/|Ibis1]|*)“" 9. Each round decreases
[b;]1? by a factor &, and both ||b}||?/||bj,1||?, D(B) by a factor §°. Then the number of rounds
until either an LLL-basis for ¢ appears or else D(B) < 1 is at most

n3—n 3
310g,,5 D(B) < 3log, 5(a’) 5 < %3log, 50 O

The workload per round. If each round completely size-reduces by, bs41 against by, ...,bs—1 it
requires O(n?) arithmetic steps. If we only size-reduce b1 against by then a round costs merely
O(n) arithmetic steps but the length of the integers explodes. This explosion can be prevented at
low costs by doing size-redction in segments, see [S06], [KSO01].

Lemma 2. If B is LLL-basis for § and 1 — 6 < 27"7%/My then max ||b;|*/|[b;,[* < 3.

Proof. The LLL-basis B satisfies ||b}||*> < 5_711/4 b;,1]|>. Therefore (9) implies 2" < ﬁ i
Setting § = 1 — € this shows that

2™~ < log, o < log, @ =1In(l - 3¢)/In2

< —1453e < 277" /Mo.
This implies m < —nlog, My which is impossible ( by the proof of Lemma 1 ). This shows that
m is undefined and thus max; [|b}||*/|bj,, || < 3. O

Corollary 3. Let m be the m-value of the input basis and ¢ € Z ¢ > 0 be constant. Within
7f—;(m—|—2.22~ 2°) rounds ALR either decreases the initial m to m < —c or else arrives at D(B) < 1.
Moreover m < log, n + log, logy Mo.

Surprisingly, the number of rounds in Cor. 3 is polynomial in n if log, log, My < no®,

Proof. We have shown that ASR with k& = 2 either decreases within at most

/22 (gm jam=1 4 9=mH1glog, \/4/3)
rounds either the current m to m — 1 or arrives at D(B) < 1. Therefore ALR either decreases the

m of the input-basis within at most

22 (2m 424 log, \/A/3X277) < ™2 (m + 27t log, /4/3) < o (m + 2.22 - 2°)
rounds to m = —|c| or else arrives at D(B) < 1
The bound m < log, n + log, log, Mo follows from (9) and ||bj,,||> > 1/Mg. O

Comparison with previous algorithms for LLL-reduction. The LLL was originally proved
[LLL82] to be of bit-complexity O(n’**(log, Mo)***) performing O(n*log, s Mo) rounds, each
round size-reduces some by in n? arithmetic steps on integers of bit-length n log, Mo; € in the expo-
nent comes from the fast FFT-multiplication of integers. The large bit-length of integers nlog, Mo
has been reduced to n + log, My by orthogonalizing the basis in floating point arithmetic.

The number of rounds in Cor. 3 is independent of M. This is because ALR maximizes the reduction
progress per round. To minimize the workload of size-reduction ALR should be organized according



to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k
basis vectors. The bit-complexity of GauB-reduction of m¢(be), me(bet+1) is quasi-linear in size(B)
[NSV10]. Therefore we do not split up this Gauss-reduction into LLL-swaps. If the current m is
large then GauB-reduction of m¢(be), we(bet1) for £ = £rmas decreases D(B) be the factor 2™ while
LLL-swaps guarantee only a decrease by the factor %.

A result that is very close to Cor. 3 and Cor. 4 has been proved independently in Lemma 12 of
[HPS11]: max, ||b;||*/[bj41]|* < § + € can be achieved in polynomial time for arbitrary & > 0.
3
4 n"—n

Early Termination (ET). Terminate as soon as D(B) < (3) ©

n3—n
D(B) < 2) o implies that E[In(||b7||*/|Ib741]/*)] < In(4/3) holds for random ¢ and Pr(¢) =

6 i}g:f; . In this sense the output basis approximates ”on the average” the logarithm of the inequality

[be]l/(det £)*/™ < (%)71771 that holds for ideal LLL-bases with § = 1.

Corollary 4. ALR terminates under ET in n®(m+|mo|)/3 rounds, where m, mo are the m-values
of the input and output basis. Moreover |mo| < nlogy Mo and m < log, n + log, logy Mo.

Proof. Consider the number #1It,, of rounds until either the current m decreases to m — 1 or else
D(B) becomes less than (4/3) e
GauB-reduction under 7, if m > 0, resp. an LLL-swap if m < 0, results in
;"2 < [|b;'92272" " hence D(B"") < D(B4)272" ",
Under ET this shows as in the proof of Cor. 1 that
3

#1tn < logy(D(BU™)/(D(BY™))/2m~1 < (gmnizn) jgm=t = n’zn,

. As in the proof of Corollary 2 each round with m results in

Hence m decreases to m — 1 under ET in less than "33_” rounds. The proof of Lemma 1 shows that

|mo| < nlog, Mo. O

Open problem. Does ALR realize maz¢||b¢||*/|[bes1]® < 3 in a polynomial number of rounds ?
Can ALR perform for m < 0 without ET more than O(n®) rounds until either the current m
decreases to m —1 or that D(B) < 1 ? We can exclude this for m > 0 and under ET also for m < 0.
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