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Abstract. Given an LLL-basis B of dimension n = hk we accelerate slide-reduction with block-
size k to run under a reasonable assumption within 2 n2h log,,. a local SVP-computations of

6
dimension k, where v > % measures the quality of the given LLL-basis and ¢ is the quality of slide-

reduction. If the given basis B is already slide-reduced for blocksize k/2 the § n’h log, . a bound
further decreases to %h3(1 +1log; ;. Vk/2). This bound is polynomial in n for arbitrary bit-length of

B, it improves previous bounds considerably. We also accelerate LLL-reduction.
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Introduction. Lattices are discrete subgroups of the R™. A basis B = [b,...,b,] € R™*™ of
n linear independent vectors bu, ..., b, generates the lattice £L(B) = {Bx|x € Z"} of dimension
n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors.
Ai(£) = minpez bro(b'b)'/? is the minimal length of nonzero b € L. The determinant of £
is det £ = (det B'B)'/2. The Hermite bound Ai(£)? < ~,(det £)*/™ holds for all lattices £ of
dimension n and the Hermite constant 7y,.

The LLL-algorithm of H.-W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a

n—1
given basis B in polynomial time into a basis B such that ||b1]] < a2 A1, where o > 4/3. It is
important to minimize the proven bound on ||by||/A; for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize £ > 2 generalising
the blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The al-
gorithm of [GHKNO6] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So

far slide-reduction of [GNO8b] yields the smallest approximation factor ||b1]|/A1 < ((1 + &)yk)
of polynomial time reduction algorithms. The algorithm for slide-reduction of [GNO8b] performs
O(nh -size(B)/e) local SVP-computations, where size(B) is the bit-length of B and ¢ is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates the overall workload. [NSV10] shows that the
bit complexity of LLL-reduction is quasi-linear in size(B). To obtain this quasi-linear bit-complexity
the LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to
Lehmer’s ged-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms
for matrix multiplication.

n—k
k—1

Our results. We improve the O(nh - size(B)/e) bound of [GNO8b] in two ways. We concen-
trate the required conditions for slide-reduced bases in the concept of almost slide-reduced bases
which enables faster reduction. We study the algorithm for slide-reduction on input bases that
are LLL-bases. As LLL-reduction takes a minor part of the workload of slide-reduction this bet-
ter characterizes the intrinsic workload of slide-reduction. Theorem 1 studies the maximal number
of local SVP-computations for slide-reduction with blocksize k of an input LLL-basis B € Z™*"
for 6, and dimension n = hk. It shows under a reasonable assumption that this number is at
most %n2h log,,. a. This bound holds for arbitrary bit-length of B. Corollary 1 shows that if

the given basis is already slide-reduced for blocksize k/2 the number of local SVP-computations

for slide-reduction with blocksize k further decreases to %h‘o’ﬁ(l +log, . Yk/2), reducing the

%th log,,. @ bound by a factor 2k~ 21n Y2/ In a. For the first time this qualifies the advantage
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of first performing slide-reduction with half the blocksize. Theorem 2 shows that the bounds proven
in [GNO8b] on ||b1||/A1 and ||b1||/(det £)'/™ still hold for almost slide-reduced bases even with a
minor improvement.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that ac-
celerated LLL-reduction computes an LLL-basis within ’11—; log, size(B) local LLL-reductions of di-
mension 2. The ’11—; log, size(B) bound is polynomial in n if the bit-length of B is at most exponential
in n, size(B) = 27°? Lemma 2 shows that every LLL-basis for § such that 1 —§ < 27 n~227size(5)
satisfies the property max, ||b;||?/||bjs1]|* < % of ideal LLL-bases for § = 1.

Notation. Let B = QR, n = hk be the QR-decomposition of B € R™*™, where R = [r; j]i<i,j<n €
R™ ™ is upper triangular with positive diagonal entries r; ; > 0 and Q € R™*" is isometric with or-
thogonal column vectors of length . We denote GNF(B) = R. Let Ry = [Tiyj]k[_kH_lSi’jgkz € REXF
be the submatrix of R = [r; ;] € R™*™ for the ¢-th block of blocksize k, Dy = (det R¢)?, and
Ry = [rijlhe—k+2<ij<ke+1 € R*** for the ¢-th block slided by one unit. RZ‘ = UkR[tUk is the dual
of Ry € R“’ﬂ where Re_t is the inverse transpose of Ry and Uy € {O7 1}’”’C is the reversed identity
matrix with non-zero entries u; x—i+1 = 1 for i = 1,...,k. R}* = (R})* is the dual of R}. Let k > 2.

Let MaX gy Tke41,ke41 denote the maximum of Tret1 ket1, [7i;] := GNF(RT) for all T €
GLk(Z). Note that MAaX gy The41,ke41 = 1/)\1(£(R2*)). Let m; : R" — span(bl,...,bl;l)l be the
orthogonal projection, and b; := m;(b;) thus ||bj|| = 4.

LLL-bases. [LLL82] A basis B = QR € R™*" is LLL-basis for §, 1 <§ <1, a =1/(§ — 1/4) if

o |rij;| < %r” holds for all j > 1, . 6r,-2,1- < 7"1271-4_1 + 7’7;24_1,1-4_1 holds for i =1,...,n — 1.
An LLL-basis B for § satisfies |b}||?>/||bjs1||> < aforall £=1,..,n—1 and
bl < ™5 (det £)!/7, Iball < ™7 A

Definition 1. [GNO08] An LLL-basis B = QR € R™*", n = kh is slide-reduced for e > 0 and k if
1. Tkt—k+1,kl—k+1 = Al(C(Rz)) fOT‘ ! = 1, veey h,
2. maszT Tko+1,k6+1 <Vi+4e- Tho+1,k6+1 holds fDT’ {= 1,..., h—1.

1 slightly relaxes the condition of [GNOS8] that all bases R, are HKZ-reduced. The following bounds
have been proved by GAMA and NGUYEN in [GNO8, Theorem 1] for slide-reduced bases:

n— n—~k
3. [Ibal < ((1+)m) 2 F=7 (det £)'/7, 4. bl < (T +2)m) *T Ar

Almost slide-reduced bases. We call an LLL-basis B = QR € R™*"™, n = hk, almost slide-
reduced for € > 0 and blocksize k if for some £ = {4, that maximizes D¢/De+1 we have that

1. Tke—k+1,kl—k+1 = Al(L(Rz)) fOI" é =1 and f = fmaz,
2. MAX Ry T The+1,ke+1 <V1+¢€ riesi,ke+1 holds for £ =y, and £ = h — 1.
Theorem 2 shows that the bounds 3, 4 already hold for almost slide-reduced bases.

Accelerated slide-reduction (ASR). In each round choose some ¢ = {4, that maximizes
D¢/De+1. Compute a shortest vector of L(R¢+1) and transform Rey1 and B such that rieq1,ket1 =
M(L(Res1)). By an SVP-computation on £(R;X) check that 2 holds for £. If 2 does not hold
transform R, and B such that 2 holds for ¢ = 0 (this decreases D, by a factor < (1 4 &)™)
otherwise terminate.

On termination continue with this transform on Ry, Rey1, B for £ = {4 and £ = h — 1 until 2
holds for both ¢ = ¢,,4, and £ = h — 1. Finally make sure that 1 holds for £ = 1 and size-reduce B.

Theorem 1. Accelerated slide-reduction transforms a given LLL-basis B € Z™*™ for § <1, a =

1/(6 — 1/4), n = hk, within {5n’hlog,, o = th% In « rounds of 2 local SVP-computations

either into an almost slide-reduced basis for € > 0 and blocksize k, or else arrives at D(B) < 1,
_ _ 2

where D(B) =aet [[;-; (De/Des1)" ™" = (det £)** /], T}, D;.



Proof. We use the novel version D(B) of the Lovész invariant to measure B’s reducedness. Note

that h?/4—(£—h/2)* = hé—£? is symmetric to £ = h/2 with maximal point £ = [h/2]| = [h/2—1/2]

The input LLL-basis B®™ for § < 1 satisfies for o = 1/(6 — 1/4) that Dy/Dey1 < o*” and thus
D(BU™) < a¥* for s:= Y1 e — 2 = B2=h2oh

Fact. Each round on ¢ = #,,4, that does not lead to termination results in

Dy < De/(1+e) D(B™*) < D(B)/(1+¢)*.
This is because the round changes merely the factor [1 (D)D) = (DyDyyr )21 D2
t=0—1)0,041

of D(B), where D;D¢41 does not change. Hence, after at most
. 2 3,2 n2
%10g1+5 D(B™) < %1Og1+g(ak %) = %thigh log; . a< Tgh log,,. a

rounds either B is almost slide-reduced for € or else D(B) < 1. The n2h log, ;. @ bound includes

12
the rounds on termination. Clearly log,,.a=1na/In(1+¢) and 1/In(1+¢) = 110G O

€

Conjecture. We conjecture that D(B) < 1 does not appear for output bases obtained after a
maximal number of rounds. If D(B) < 1 then E[In(D¢/D,+1)] < 0 holds for the expectation E for

random ¢ with Pr(¢) =get 6= (We have 307" Pr(£) = 1.) In this sense D; < Dyyq would

R3—hZ—h"
hold ”on the average” if D(B) < 1, whereas such Dy, D11 are extremely unlikely in practice.

Time bound compared to [GNO8]. The algorithm for slide-reduction of [GN08] has been shown
to perform O(nhsize(B)/e) local SVP-computations, where size(B) is the bit-length of B. The
number of rounds of Theorem 1 is polynomial in n even if size(B) is exponential in n.

Note that ASR can accelerate the [GNO8] algorithm at best by a factor h because the [GNOS]
algorithm covers £mq. by iterating all rounds for £ =1, ..., h, whereas ASR iterates exclusively on
the current ;4. Theorem 1 decreases the O(nh size(B)/e) bound of [GNO08] to % log, ;. o and re-
quires only minor conditions on the input and output basis. In general it decreases the nhsize(B)/e
bound of [GNO8] by the factor § In a/size(B) = ©(1/(6 max,log, ||be||)).

Iterative slide-reduction with increasing blocksize. Consider the blocksize k = 27. We trans-
form the given LLL-basis B € Z™*" for §, «, n = hk iteratively as folllows:

FOR i=1,...,j DO transform B by calling ASR with blocksize 2° and e.

We bound the number #It of rounds of the last ASR-call with blocksize k = 2. The input B of
k/2
this final ASR-call satisfies ~ D¢/Deg1 < ((14€)yr2) */2-1 as follows from (3) with blocksize

n3—n2—n

k/2 and 225 <1 for k> 2. H D(B) < ((1 e
/2 and == <1 for k > 2. Hence (B) < ((1+€)vr/2)
As each round decreases D(B) by a factor (14 ¢)~2 we see that
3_p2_ 3_p2_
#1t < log, . D(B) < k/gfl Bt log (1 + &) ey2) = hl—ig/kh% In iz
1+0(e)

provided that D(B) > 1 holds on termination. Here log, . Yi/2 = Invyi 2/ In(1 +€) = ==y 2.

€

For k = 4, resp. k = 8 this is less than a 0.603, resp. a 0.201 -fraction of the % log; . o bound
of Theorem 1, where the input is an LLL-basis for §, «. The final ASR-call dominates the overall
workload of all ASR-calls, including the workload for the LLL-reduction of the input basis. We see
that iterative slide-reduction for k = 27 requires only an O(k™? In -y, 2)-fraction of the workload of

the direct ASR-call as in Theorem 1. In particular this proves

Corollary 1. Given an almost slide-reduced basis B € Z™*™ for € > 0 and blocksize k/2, n = hk,

ASR finds within %% log, . ((1 + €)yk/2) rounds of two local SVP-computations either an

almost slide-reduced basis for blocksize k and € or else arrives at D(B) < 1.

Theorem 2. The bounds 3, 4 hold for every almost slide-reduced basis B € Z™*™ and (1 + €) in
/
3, 4 can be reduced to (1 + E)lJr?l :

Proof. We see from clause 2 of Def. 1 and the Hermite bound on A1 (L(R))*) < 1/7ket1,ke41 that



k
Dy /rres1kerr < (1 +€)vk)" ng+ll}3£+l 1)
holds for £ = £ 4. and £ = h— 1, where Dz := (det RQ)Q. Moreover, the Hermite bound for R, yields

2(k—1) k 2
Thbm ki1 ht—kt1 = Tk D/ Tht—kt1,kb—k+1-

Combining these two inequalities with D} /Ty 1 xes1 = De/Tho— ki1 he—rs1 Yields

k
Tre—k+1,ke—k+1 < (14 &)%) F=T ket 16041 for £ = Limas and £ =h — 1. (2)
Next we prove
141/k 2k2

De¢/Det1 < (1+¢e) 2 i)+t forl=0,..,h—1. (3)
Proof. As (1) holds for £ = £pa, and 1 holds for £+ 1 the Hermite bound on A1 (L(Rs+41)) yields

D) < (L4 &) veritsiperr < (1+ )% Doy

. 2k,
Hence (2) yields Dy =17t he—rt1 D0/ Ther1ker1 < (L4€) ) 51Dy 4)
Combining the two previous inequalities yields for £ = £pqx
2k 141/k
Di < (L+) 1) T (L+e)* P Deyr = (L+e) 2 )t D/+1~
Moreover if (3) holds for £,qs it clearly holds for all £ =1,...,h — 1.
3. The Hermite bound for R; and (3) imply for £ =1, ..., h that

1+1/k 2k(£—1)
b1l < Dy < a((L+e)" 2 ) *=1 D/ (5)

The product of these h inequalities for £ = 1, ..., h yields

1+1/k kh(h—1

)
[ba|** <A ((L+e) "2 ) #1 (det £)*/*.
This proves and improves 3 to ( without using that 2 holds for £ =h —1.)

1+1/k n—k 1+1/k n= n=q
b ]|?/(det £)*/™ < yi((1+€) "2 )0 = (Le) 2 it T
2k(h— 2)
4. (5) for £ = h — 1 shows that IIb1])? < & ((1+¢) e Vi) F— D}lb/kl
Clearly 2 for £ = h — 1 implies (2) and (4) for £ = h — 1, and thus we get
1+1/k 2k(h—2) | 2
Ibr]2 < (1) 72 ) 5T TR (D) (by (4) for £=h—1)
1+1/k 2kh—4k+2 5

< (1 + 5) T2 k) P (L) ek ekt (by 2 for £=h—1)

(we also used that r, > kil = = M(L(RX ) < v/Dj_; holds by the Hermite bound for R}X ,.)

QWIC

Vrigk

((1 +€) 2 'yk) k= lrn k+1,n—k+1-
W.lo.g Th—k+1(b) # 0 holds for some b € £ with ||b|| = A1, otherwise we remove the last k vectors
of the basis. Hence Tn—k+1,n—k+1 < ||[Tn—k+1(b)|| < A1. The latter inequalities yield the claim

n—k

11/k
bl < ((T+e) 2 %) F T As.

. T 14+1/k
We have roughly halved the exponent of (1 + ¢) in 3 and 4 multiplying it by at most T/ g

Time bounds for extremely small e. We measure the slide-reducedness of a basis B by the
integer p defined by

— 2 n
2" < maX[(De/Dg+1) ’yk BT < 22* (6)

2k2

This integer u exists for k > 2 if and only if maxe(De/Det1) > 7, *

2

Next we show that every round of ASR with initial value u decreases D(B) by a factor 2-2""" The
2A2

transform of Ry, Ret1, B for £ = lmae results in (2), (3) holding for e = 0, i.e., Dy /Dpey < vF

Multiplying this inequality with 22‘“17:?1 < Dz’ld/Dﬂ,_dl and DDyt = Dgldpgfl yields



22" 7"prew < pgld hence  D(B™V) < D(B) 272" (7)
We denote My := max(||b1]|, ..., |[bn||?) for the input basis B.

2k2

Lemma 1. If B is almost slide-reduced for e < (2™ Mo) then max;(De/Des1) < v

6k2

Proof. Let € > 0 be minimal such that B is almost slide-reduced for e. It follows from the proof of
(3) that Dy/Det1 = ((1+¢) L Vi) 5T holds for some £. Then (6) implies (1+¢) = <2
thus e < MMk kol ok, (8)
If B = QR is not almost slide-reduced for some 0 < ¢’ < ¢ then any nearly maximal such ¢’ satisfies
max gy 1 Tket1,ke+1 A~ (14 e)rkes1,ke+1  for some £.
It follows from [LLL82, (1.28)] for the integer matrix B that rxet1,ke+1 Mg > 1 and thus
€' 2 (MaXpyq Phet1,ke+1 = The+1,ke41) /The1,oe+1 > 1/M'

This contradicts (8) if kkzl 2¥ < 1/M¢, and thus proves that —p < nlog, Mo.

2
(3) and (6) imply 22"~ ' < 1+ 5)%, and thus on—t < 2k T logy(1+¢) < 2k21 -
22

Hence —u > nlog, My which is impossible. This implies by (6) that max, D¢/De1 <7, 1. O

Next we bound the number #1It,, of rounds until the current p either decreases to 4 — 1 or arrives
at D(B) < 1. During this reduction the p defined by (6) implies that (7) holds for each round.

2k2
k— 122

Moreover, initially max; D¢/Det1 < 7, This shows for the initial and final bases for the

reduction of u to p — 1: Wlt, < logQ(D(B“"))/D(B(fm)))/2‘“1
< ISk (9020 4270 2 log, ). 9)
Thus within O(nh?log, k) rounds ASR either decreases 2 0 to o — 1 or arrives at D(B) < 1.

Open problem. Can ASR perform for y < 0 more than O(nh?log, k) rounds until either the
current p decreases to u — 1 or that D(B) < 1 ? We can exclude this by the following rule of

22 R3—h2_h
Early Termination (ET). Terminate as soon as D(B) <~/~' °

282 B3—h%—h

D(B) <~ °  implies that E[In(D¢/Des1)] < % In % holds for random ¢, with probability

Pr(0) =gey 6m In this sense (3), (4) and 3 hold for e = 0 ”on the average”.
Corollary 2. ASR terminates under ET for arbitrary ¢ > 0 in m(m+ |mol) rounds, where
W, po are the p-value of the input and final basis defined by (6). Moreover |mo| < nlog, Mo.

Proof. Consider #1It,, the number of rounds until the current p decreases to p — 1. During this

oy 22
reduction the u of (6) satisfies max, Dy/Dey1 > 22" 17,5’1. This implies by (7) and ET for the
initial and final bases for the reduction of p to pu — 1:

#1t, < logy(D(B™)/D(BU™)) /247" < log,(2*"

b3 —h —h 1 W3_nZ_n
)/2H T = ==t

Thus within % rounds ASR either decreases y to 1 — 1 or arrives at D(B) < v, R
Hence ASR terminates within w (1 +|pol) rounds, where |uo| < nlog, Mo holds by the proof

of Lemma 1. 0

Accelerated LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gau8-
reductions or LLL-swaps on by, by41 for an £ that promises maximal reduction progress.

We associate to a basis B satisfying max, ||b;||*/||bj.1||* > 3 the integer fi defined by



22"7" < max [|by||2/|[b},, |17/ 2 < 22" (10)

If & > 0 we transform in the current round by, bei1 for an £ that maximizes ||b;||>/||bj1||> by
GauBl-reducing the basis m¢(bg), m¢(bes1) of dimension 2. (GauB-reducing the basis 7 (bg), m¢(bet1)
means to LLL-reduce m¢(be), m¢(bey1) with 6 = 1.) This decreases ||bj||> by a factor less than
27 < L.

If & < 0 or i does not exist, we transform in the current round by, byt for an £ that maximizes
b5 112/ llme(besr)||* after size-reducing bes1 against b, by setting bery := byt — [re.er1/7e.0|be. If
lme(b;1)]1? < 3||bj||* we swap by, byt and otherwise we terminate.

On termination we size-reduce the basis B.

Theorem 3. Given an LLL-basis B € ZF*™ for §' < 1, o/ = 1/(8' —1/4) ALR with § satisfying

1 3

1> 6 > max(d',5) arrives within 2 log, /5 o' rounds of Gauf-reductions, resp. LLL-swaps either
at an LLL-basis for &, or else arrives at D(B) := [[;—, (|Ib;[|*/|Ibiy1]|*) ™~ < 1.
Proof. We use D(B) for blocksize 1, D(B) := [[;=, (Ibi|I*/|Ibis1]|*)“" 9. Each round decreases

[b;|1? by a factor &, and both ||b}||?/||bj,1||?, D(B) by a factor §°. Then the number of rounds
until either an LLL-basis for  appears or else D(B) < 1 is at most

3 2

n’—n“—n

’I’L3
310g,/5 D(B) < 3log, 5(a’) o < I logy 5. ]

The workload per round. If each round completely size-reduces bs, bey1 against by, ..., be_1 it
requires O(n2) arithmetic steps. If we only size-reduce by against by then a round costs merely
O(n) arithmetic steps but the length of the integers might explode. This explosion can be prevented
at low costs by doing size-redction in segments, see [S06], [KS01].

Lemma 2. If B is LLL-basis for § and 1 — 6 < 27""*/My then max ||b;|*/|[b;1[* < 3.

Proof. The LLL-basis B satisfies ||b}||* < ﬁ b4 1|°. Therefore (10) implies 22"t < 67711/4 3.
Setting 6 = 1 — £ this shows that

2871 < log, 1525 < log, 1_—1%6 =1In(l - 3¢)/In2

< —1.455e <271 /M.

This implies i < —nlog, My which is impossible ( by the proof of Lemma 1 ). This shows that z
is undefined and thus max, ||b;||*/|bj1|* < 3. O

Corollary 3. Let i be the fi-value of the input basis and ¢ € Z ¢ > 0 be constant. Within ?—;(ﬂ +
2.22 - 2°) rounds ALR. either decreases the initial i to i < —c or else arrives at D(B) < 1. We

have i < log, n+log, log, Mo and the number of rounds is polynomial in n if log, log, Mo < nfW,

Proof. Note that LLL-bases for 6 = 1/(1 + ¢) satisfy clase 2 of Def.1 for £ = 2 and . We have
shown in (9) that ASR with k = 2 either decreases the current p to g — 1 within at most

It, < 22 (9 jor=1 4 9=k H1gl0g, | /4]3)
rounds or else arrives at D(B) < 1. Similarly ALR either decreases the i of the input-basis within

at most 3 _ » "3 . "3, .
220+ 2% logy /A/3XF 277 < (i + 2T log, /4/3) < (i +2.22 - 2°)
rounds to —|c| or else arrives at D(B) < 1
The bound fi < log, n + log, log, Mo follows from (10) and ||bj,,[|* > 1/Mg. O

Comparison with previous algorithms for LLL-reduction. The LLL was originally proved
[LLL82] to be of bit-complexity O(n®"¢(log, Mo)**¢) performing O(n? log, s Mo) rounds, each
round size-reduces some by in n? arithmetic steps on integers of bit-length n log, My; € in the expo-
nent comes from the fast FFT-multiplication of integers. The large bit-length of integers nlog, My
has been reduced to n + log, Mo by orthogonalizing the basis in floating point arithmetic. It is



well known that the LLL-time can be reduced by 10 - 15 % by successively increasing 0 from
3/4,7/8,15/16,31/32,63/64 to 0.99.

The number of rounds in Cor. 3 is independent of M. This is becauseALR maximizes the reduction
progress per round. To minimize the workload of size-reduction ALR should be organized according
to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k ba-
sis vectors. The bit-complexity of GauB-reducing m(be), me(be+1) is quasi-linear in size(B) [NSV10].
Therefore we do not split up this Gauss-reduction into LLL-swaps. If the current f is large then
GauB-reducing 7 (be), me(bey1) for £ = Limas decreases D(B) by the factor 277 while LLL-swaps

guarantee only a decrease by the factor %.
A result that is very close to Cor. 3 and Cor. 4 has been proved independently in Lemma 12 of
[HPS11]: max; ||bj||*/[bj:]|* < § + € can be achieved in polynomial time for arbitrary & > 0.

Early Termination (ET). Terminate as soon as D(B) < (3)

7L377L277L
D(B) < 3) ¢ implies that E[In(||bj[|*/[b;.1*)] < In(4/3) holds for random ¢ and Pr(¢) =
6%. In this sense the output basis approximates "on the average” the logarithm of the

inequality ||b1||/(det £)¥/™ < (%)HT_1 that holds for ideal LLL-bases with § = 1.

Corollary 4. ALR terminates under ET in n*( + |fio])/3 rounds, where fi, fio are the fi-values
of the input and output basis. Moreover |fio| < nlogy Mo and fi < logy n + log, logy, M.

Proof. Consider the number #1It,, of rounds until either the current f decreases to i — 1 or else

D(B) becomes less than (4/3)" 6 . As in the proof of Corollary 2 each round with i results in
GauB-reduction under 7, if i > 0, resp. an LLL-swap if i1 < 0, results in

;™| < [|b;92272" " hence D(B"*) < D(B)272""".
Under ET this shows as in the proof of Cor. 1 that

in in f— in3—n2—n n— n—n?—n
#Itm < log,(D(BU™)/(D(BY™)) 2771 < (2fno=n=ny /o=l = no—n-on,

Hence fi decreases to i — 1 under ET in less than n?-n’-n younds. The proof of Lemma 1 shows

that |mo| < nlog, Mo. O

Open problem. Does ALR realize max||b¢||*/|[bes1]* < 3 in a polynomial number of rounds ?
Can ALR perform for i < 0 without ET more than O(n®) rounds until either the current
decreases to i — 1 or that D(B) <1 ? We can exclude this for i > 0 and under ET also for i < 0.
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