Accelerated Slide- and LLL-Reduction

Claus Peter Schnorr
Fachbereich Informatik und Mathematik, Goethe-Universität Frankfurt, PSF 111932, D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

December 9, 2011

Abstract

We accelerate the slide-reduction algorithm of [GN08] with blocksize k to run for a given LLL-basis B of dimension $n=h k$ under reasonable assumptions within $\frac{1}{4} n^{2} h \log _{1+\varepsilon} \alpha$ local SVP-computations of dimension k, where $\alpha \geq \frac{4}{3}$ is the quality of the given LLL-basis and ε is the quality of slide-reduction. If the given basis B is already slide-reduced for blocksize $k / 2$ the $\frac{1}{4} n^{2} h \log _{1+\varepsilon} \alpha$ bound further decreases to $n h^{2}\left(1+\log _{1+\varepsilon} \gamma_{k / 2}\right)$, where $\gamma_{k / 2}$ is the Hermite constant. These bounds are polynomial in n for arbitrary bit-length of B. We also accelerate LLL-reduction.

Keywords. Block reduction, LLL-reduction, slide reduction.
Introduction. Lattices are discrete subgroups of the \mathbb{R}^{n}. A basis $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{m \times n}$ of n linear independent vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ generates the lattice $\mathcal{L}(B)=\left\{B \mathbf{x} \mid \mathbf{x} \in \mathbb{Z}^{n}\right\}$ of dimension n. Lattice reduction algorithms transform a given basis into a basis consisting of short vectors. The length of $\mathbf{b} \in \mathbb{R}^{m}$ is $\|\mathbf{b}\|=\left(\mathbf{b}^{t} \mathbf{b}\right)^{1 / 2} . \lambda_{1}(\mathcal{L})=\min _{\mathbf{b} \in \mathcal{L} \backslash \mathbf{0}}\|\mathbf{b}\|$ is the minimal length of nonzero $\mathbf{b} \in \mathcal{L}$. The determinant of \mathcal{L} is $\operatorname{det} \mathcal{L}=\left(\operatorname{det} B^{t} B\right)^{1 / 2}$. The Hermite bound $\lambda_{1}(\mathcal{L})^{2} \leq \gamma_{n}(\operatorname{det} \mathcal{L})^{2 / n}$ holds for all lattices \mathcal{L} of dimension n and the Hermite constant γ_{n}.

The LLL-algorithm of H.W. Lenstra Jr., A.K. Lenstra and L. Lovász [LLL82] transforms a given basis B in polynomial time into a basis B such that $\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{2}} \lambda_{1}$, where $\alpha>4 / 3$. It is important to minimize the proven bound on $\left\|\mathbf{b}_{1}\right\| / \lambda_{1}$ for polynomial time reduction algorithms and to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize $k \geq 2$ generalizing the blocksize 2 of LLL-reduction. Schnorr [S87] introduced blockwise HKZ-reduction. The algorithm of [GHKN06] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So far slidereduction of [GN08b] yields the smallest proven approximation factor $\left\|\mathbf{b}_{1}\right\| / \lambda_{1} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{n-k}{k-1}}$ of polynomial time reduction algorithms. The algorithm for slide-reduction of [GN08b] performs $O(n h \cdot \operatorname{size}(B) / \varepsilon)$ local SVP-computations, where size (B) is the bit-length of B and ε is the quality of slide-reduction. This bound is polynomial in n if and only if $\operatorname{size}(B)$ is polynomial in n. The workload of the local SVP-computations dominates the overall workload. [NSV10] shows that the bit complexity of LLL-reduction is quasi-linear in $\operatorname{size}(B)$. The LLL-reduction is performed on the leading bits of the entries of the basis matrix (similar to Lehmer's gcd-algorithm) using fast arithmetic for the multiplication of integers and fast algorithms for matrix multiplication.

Our results. We improve the $O(n h \cdot \operatorname{size}(B) / \varepsilon)$ bound of [GN08b] by choosing the blocks for the next local reduction step as to maximize its progress. We first analyze this strategy in minimizing $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n}$ by the concept of almost slide reduction and then extend this analysis to minimize $\left\|\mathbf{b}_{1}\right\| / \lambda_{1}(\mathcal{L})$. Theorem 1 studies the maximal number of local SVP-computations during almost slide-reduction with blocksize k for an input LLL-basis $B \in \mathbb{Z}^{m \times n}$ for δ, α and dimension $n=h k$. It shows under a reasonable assumption that this number is at most $\frac{1}{4} n^{2} h \log _{1+\varepsilon} \alpha$. This bound is independent of the bit-length of B. Corollary 1 shows that if the given basis is almost slide-reduced for blocksize $k / 2$ the number of local SVP-computations for almost slide-reduction with blocksize k further decreases to $n h^{2} \frac{1}{1-2 / k}\left(1+\log _{1+\varepsilon} \gamma_{k / 2}\right)$, reducing the $\frac{1}{4} n^{2} h \log _{1+\varepsilon} \alpha$ bound of Theorem 1 by nearly a factor $4(k-2)^{-1} \ln \gamma_{k / 2} / \ln (\alpha)<\frac{1}{2}$ for $k=32$. For the first time this qualifies the advantage of first performing block reduction with half the blocksize.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that accelerated LLL-reduction computes an LLL-basis within $n^{3} \log _{2}$ size $(B) / 3$ local LLL-reductions of dimension 2. This bound is polynomial in n if $\log _{2} \operatorname{size}(B)=n^{O(1)}$. Lemma 2 shows that every LLL-basis for δ such that $1-\delta \leq 2^{-4 \operatorname{size}(B)}$ is an ideal LLL-basis for $\delta=1$.

Notation. Let $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{R}^{m \times n}$ be a basis matrix of rank $n=h k$ and $B=Q R$ be its QRdecomposition, where $R=\left[r_{i, j}\right]_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ is upper triangular with positive diagonal entries $r_{i, i}>0$ and $Q \in \mathbb{R}^{m \times n}$ is isometric with pairwise orthogonal column vectors of length 1 . We denote $\operatorname{GNF}(B)=R$. Let $R_{\ell}=\left[r_{i, j}\right]_{k \ell-k+1 \leq i, j \leq k \ell} \in \mathbb{R}^{k \times k}$ be the submatrix of $R=\left[r_{i, j}\right] \in \mathbb{R}^{n \times n}$ for the ℓ-th block of blocksize $k \geq 2, \mathcal{D}_{\ell}=\left(\operatorname{det} R_{\ell}\right)^{2}$. Let $R_{\ell}^{\prime}=\left[r_{i, j}\right]_{k \ell-k+2 \leq i, j \leq k \ell+1} \in \mathbb{R}^{k \times k}$ denote the ℓ-th block slided by one unit. $R_{\ell}^{\star}=U_{k} R_{\ell}^{-t} U_{k}$ is the dual of $R_{\ell} \in \mathbb{R}^{k \times k}$, where R_{ℓ}^{-t} is the inverse transpose of R_{ℓ} and $U_{k} \in\{0,1\}^{k \times k}$ is the reversed identity matrix with nonzero entries $u_{i, k-i+1}=1$ for $i=1, \ldots, k$. Note that $\operatorname{GNF}\left(R_{\ell}^{\star}\right)=R_{\ell}^{\star} \cdot R_{\ell}^{\prime \star}=\left(R_{\ell}^{\prime}\right)^{\star}$ is the dual of R_{ℓ}^{\prime}.

Let $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}$ denote the maximum of $\bar{r}_{k \ell+1, k \ell+1},\left[\bar{r}_{i, j}\right]_{k \ell-k+2 \leq l, j \leq k \ell+1}:=\operatorname{GNF}\left(R_{\ell}^{\prime} T\right)$ over all $T \in \mathrm{GL}_{k}(\mathbb{Z})$. Note that $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}=1 / \lambda_{1}\left(\mathcal{L}\left(R_{\ell}^{\prime \star}\right)\right)$. Let $\pi_{i}: \mathbb{R}^{n} \rightarrow \operatorname{span}\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{i-1}\right)^{\perp}$ be the orthogonal projection, and $\mathbf{b}_{i}^{*}:=\pi_{i}\left(\mathbf{b}_{i}\right)$ thus $\left\|\mathbf{b}_{i}^{*}\right\|=r_{i, i}$.

LLL-bases. [LLL82] A basis $B=Q R \in \mathbb{R}^{m \times n}$ is LLL-basis for $\delta, \frac{1}{4}<\delta \leq 1, \alpha=1 /(\delta-1 / 4)$ if

- $\left|r_{i, j}\right| \leq \frac{1}{2} r_{i, i}$ holds for all $j>i$,
- $\delta r_{i, i}^{2} \leq r_{i, i+1}^{2}+r_{i+1, i+1}^{2}$ holds for $i=1, \ldots, n-1$.

An LLL-basis B for δ satisfies $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \alpha$ for all $\ell=1, \ldots, n-1$ and

$$
\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{4}}(\operatorname{det} \mathcal{L})^{1 / n}, \quad\left\|\mathbf{b}_{1}\right\| \leq \alpha^{\frac{n-1}{2}} \lambda_{1}
$$

Definition 1. [GN08] A basis $B=Q R \in \mathbb{R}^{m \times n}, n=h k$ is slide-reduced for $\varepsilon \geq 0$ and $k \geq 2$ if

1. $\left\|\mathbf{b}_{k \ell+1}^{*}\right\|=\lambda_{1}\left(\mathcal{L}\left(R_{\ell+1}\right)\right)$ for $\ell=0, \ldots, h-1$,
2. $\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1} \leq \sqrt{1+\varepsilon} \cdot\left\|\mathbf{b}_{k \ell+1}^{*}\right\|$ holds for $\ell=1, \ldots, h-1$.

1 slightly relaxes the condition of [GN08] that all bases R_{ℓ} are HKZ-reduced. The following bounds have been proved by Gama and NguyEn in [GN08, Theorem 1] for slide-reduced bases:
3. $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{1}{2} \frac{n-1}{k-1}}(\operatorname{det} \mathcal{L})^{1 / n}$,
4. $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{n-k}{k-1}} \lambda_{1}$.

Almost slide-reduced (asr-) bases. We call a basis $B=Q R \in \mathbb{R}^{m \times n}, n=h k$, an asr-basis for $\varepsilon \geq 0$ and blocksize k if clause 2 of Def. 1 holds for some $\ell=\ell_{\max }$ that maximizes $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}$ and clause 1 of Def. 1 holds for $R_{1}, R_{\ell}, R_{\ell+1}$
Theorem 2 shows that 3. $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{1}{2} \frac{n-1}{k-1}}(\operatorname{det} \mathcal{L})^{1 / n}$, holds for all asr-bases.

```
Accelerated almost slide reduction (ASR)
```



```
LOOP Choose some \ell= \ell max that maximizes }\mp@subsup{\mathcal{D}}{\ell}{}/\mp@subsup{\mathcal{D}}{\ell+1}{}\mathrm{ . By SVP-computations on
L}(\mp@subsup{R}{\ell}{}),\mathcal{L}(\mp@subsup{R}{\ell+1}{})\mathrm{ transform }\mp@subsup{R}{\ell}{},\mp@subsup{R}{\ell+1}{}\mathrm{ and }B\mathrm{ such that }1\mathrm{ of Def. 1 holds for }\mp@subsup{R}{\ell}{},\mp@subsup{R}{\ell+1}{}\mathrm{ .
By an SVP-computation on }\mp@subsup{R}{\ell}{\prime\star}\mathrm{ verify whether 2 holds for }\ell\mathrm{ and the input }\varepsilon\mathrm{ .
IF 2 does not hold THEN transform }\mp@subsup{R}{\ell}{\prime}\mathrm{ and }B\mathrm{ such that 2 holds for }\varepsilon=
ELSE transform R R and B such that |\mp@subsup{\mathbf{b}}{1}{}|=\mp@subsup{\lambda}{1}{}(\mathcal{L}(\mp@subsup{R}{1}{}))\mathrm{ and terminate. end loop}
OUTPUT the resulting asr-basis B.
```

We can replace the 3 SVP-computations per round on $\mathcal{L}\left(R_{\ell}\right), \mathcal{L}\left(R_{\ell+1}\right), \mathcal{L}\left(R_{\ell}^{\prime \star}\right)$ by the stronger and faster two SVP-computations on $\mathcal{L}\left(R_{\ell+1}\right), \mathcal{L}\left(R_{\ell}^{+\star}\right)$, where $R_{\ell}^{+}=\left[r_{i, j}\right]_{\ell k-k<i, j \leq \ell k+1} \in \mathbb{R}^{(k+1) \times(k+1)}$. Alternatively we can perform two SVP-computations on $\mathcal{L}\left(R_{\ell}^{\star}\right), \mathcal{L}\left(R_{\ell+1}^{\prime+}\right)$ per round, where $R_{\ell+1}^{\prime+}:=$ $\left[r_{i, j}\right]_{\ell k \leq i, j \leq \ell k+k} \in \mathbb{R}^{(k+1) \times(k+1)}$.

Theorem 1. ASR transforms a given LLL-basis $B \in \mathbb{Z}^{m \times n}$ for $\delta \leq 1, \alpha=1 /(\delta-1 / 4)$, $n=h k$, within $\frac{1}{12} n^{2} h \log _{1+\varepsilon} \alpha$ rounds (passes of the loop) of three local SVP-computations of dimension k either into an almost slide-reduced basis for ε and blocksize k, or else arrives at $\mathcal{D}(B)<1$, where $\mathcal{D}(B)={ }_{\operatorname{def}} \prod_{\ell=1}^{h-1}\left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right)^{h \ell-\ell^{2}}=\mathcal{D}_{1}^{h-1} \mathcal{D}_{2}^{h-3} \cdots \mathcal{D}_{\ell}^{h-2 \ell+1} \cdots \mathcal{D}_{h-1}^{-h+3} \mathcal{D}_{h}^{-h+1}$.

Proof. We use the novel version $\mathcal{D}(B)$ of the Lovász invariant to measure B 's reducedness. Note that $h^{2} / 4-(\ell-h / 2)^{2}=h \ell-\ell^{2}$ is symmetric to $\ell=h / 2$ with maximal point $\ell=\lceil h / 2\rfloor=\lceil h / 2-1 / 2\rceil$. The input LLL-basis $B^{(i n)}$ for $\delta \leq 1$ satisfies for $\alpha=1 /(\delta-1 / 4)$ that $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq \alpha^{k^{2}}$ and thus

$$
\mathcal{D}\left(B^{(i n)}\right) \leq \alpha^{k^{2} s} \text { for } s:=\sum_{\ell=1}^{h-1} h \ell-\ell^{2}=\frac{h^{3}-h^{2}-h}{6} .
$$

Fact. Every non-terminal round with ℓ decreases \mathcal{D}_{ℓ} and $\mathcal{D}(B)$ as

$$
\mathcal{D}_{\ell}^{\text {new }} \leq \mathcal{D}_{\ell} /(1+\varepsilon) \quad \mathcal{D}\left(B^{\text {new }}\right) \leq \mathcal{D}(B) /(1+\varepsilon)^{2}
$$

This is because the round changes merely the factor $\prod_{t=\ell-1, \ell, \ell+1}\left(\mathcal{D}_{t} / \mathcal{D}_{t+1}\right)^{t(h-t)}=\left(\mathcal{D}_{\ell} \mathcal{D}_{\ell+1}\right)^{h-2 \ell-1} \mathcal{D}_{\ell}^{2}$ of $\mathcal{D}(B)$, where $\mathcal{D}_{\ell} \mathcal{D}_{\ell+1}$ does not change. Hence, after at most

$$
\frac{1}{2} \log _{1+\varepsilon} \mathcal{D}\left(B^{(i n)}\right) \leq \frac{1}{2} \log _{1+\varepsilon}\left(\alpha^{k^{2} s}\right)=\frac{1}{2} k^{2} \frac{h^{3}-h^{2}-h}{6} \log _{1+\varepsilon} \alpha<\frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha
$$

rounds either B is asr-basis for ε or else $\mathcal{D}(B)<1$. Our bound on the number of rounds does not count the terminal round which does not decrease \mathcal{D}.

Remarks. 1. We conjecture that the time bound of Theorem 1 even holds if on termination $\mathcal{D}(B)<1$. This might be provable by the dynamical system method of [HPS11]. Anyway, $\mathcal{D}(B)<1$ is very unlikely. If $\mathcal{D}(B)<1$ then $\mathbf{E}\left[\ln \left(\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1}\right)\right]<0$ holds for the expectation \mathbf{E} for random ℓ with $\operatorname{Pr}(\ell)={ }_{\text {def }} 6 \frac{\ell h-\ell^{2}}{h^{3}-h^{2}-h}$. (Note that $\sum_{\ell=1}^{h-1} \operatorname{Pr}(\ell)=1$.) In this sense $\mathcal{D}_{\ell}<\mathcal{D}_{\ell+1}$ would hold "on the average" if $\mathcal{D}(B)<1$, whereas such $\mathcal{D}_{\ell}, \mathcal{D}_{\ell+1}$ are extremely unlikely.
2. On the other hand, if the output basis of ASR satisfies on average that $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \geq \alpha^{1 / t}$ then the number of rounds decreases to at most $(1-1 / t) \frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha$.

Theorem 2. Every asr-basis $B \in \mathbb{Z}^{m \times n}$ for ε, k satisfies $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{1}{2} \frac{n-1}{k-1}}(\operatorname{det} \mathcal{L})^{1 / n}$.
Proof. We see from clause 2 of Def. 1 and the Hermite bound on $\lambda_{1}\left(\mathcal{L}\left(R_{\ell}^{\prime}\right)^{\star}\right) \leq 1 / r_{k \ell+1, k \ell+1}$ that

$$
\begin{equation*}
\mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2} \leq\left((1+\varepsilon) \gamma_{k}\right)^{k} r_{k \ell+1, k \ell+1}^{2(k-1)} \tag{1}
\end{equation*}
$$

holds for $\ell=\ell_{\text {max }}$, where $\mathcal{D}_{\ell}^{\prime}:=\left(\operatorname{det} R_{\ell}^{\prime}\right)^{2}$. Moreover, the Hermite bound for R_{ℓ} shows that

$$
r_{k \ell-k+1, k \ell-k+1}^{2(k-1)} \leq \gamma_{k}^{k} \mathcal{D}_{\ell} / r_{k \ell-k+1, k \ell-k+1}^{2}
$$

Combining these two inequalities with $\mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2}=\mathcal{D}_{\ell} / r_{k \ell-k+1, k \ell-k+1}^{2}$ yields for $\ell=\ell_{\text {max }}$:

$$
\begin{equation*}
r_{k \ell-k+1, k \ell-k+1} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{k}{k-1}} r_{k \ell+1, k \ell+1} \tag{2}
\end{equation*}
$$

Next we prove

$$
\begin{equation*}
\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}} \quad \text { for } \ell=1, \ldots, h-1 . \tag{3}
\end{equation*}
$$

Proof. As (1) holds for $\ell=\ell_{\text {max }}$ and $\mathbf{1}$ holds for $R_{\ell+1}$ the Hermite bound on $\lambda_{1}\left(\mathcal{L}\left(R_{\ell+1}\right)\right)$ yields

$$
\mathcal{D}_{\ell}^{\prime} \leq(1+\varepsilon)^{k} \gamma_{k}^{k} r_{k \ell+1, k \ell+1}^{2 k} \leq(1+\varepsilon)^{k} \gamma_{k}^{2 k} \mathcal{D}_{\ell+1}
$$

Hence (2) yields for $\ell=\ell_{\text {max }}$

$$
\begin{equation*}
\mathcal{D}_{\ell}=r_{k \ell-k+1, k \ell-k+1}^{2} \mathcal{D}_{\ell}^{\prime} / r_{k \ell+1, k \ell+1}^{2} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k}{k-1}} \mathcal{D}_{\ell}^{\prime} \tag{4}
\end{equation*}
$$

Combining the two previous inequalities yields for $\ell=\ell_{\text {max }}$

$$
\mathcal{D}_{\ell} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k}{k-1}}(1+\varepsilon)^{k} \gamma_{k}^{2 k} \mathcal{D}_{\ell+1}=\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}} \mathcal{D}_{\ell+1}
$$

Moreover if (3) holds for $\ell_{\max }$ it clearly holds for all $\ell=1, \ldots, h-1$.
3. 1 of Def. 1 for R_{1} and (3) imply for $\ell=1, \ldots, h$ that

$$
\begin{equation*}
\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k} \mathcal{D}_{1}^{1 / k} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(\ell-1)}{k-1}} \mathcal{D}_{\ell}^{1 / k} \tag{5}
\end{equation*}
$$

The product of these h inequalities for $\ell=1, \ldots, h$ yields

$$
\left\|\mathbf{b}_{1}\right\|^{2 h} \leq \gamma_{k}^{h}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{k h(h-1)}{k-1}}(\operatorname{det} \mathcal{L})^{2 / k}
$$

Hence the claim

$$
\left\|\mathbf{b}_{1}\right\|^{2} /(\operatorname{det} \mathcal{L})^{2 / n} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}} \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-1}{k-1}}
$$

Strong asr-bases. We call an asr-basis $B \in \mathbb{R}^{m \times h k}$ strong if $\mathbf{2}$ of Def. 1 holds for $\ell=h-1$ and $\mathbf{1}$ of Def. 1 holds for R_{h-1} and R_{h}.

Most likely, we obtain a strong asr-basis from any asr-basis by $O(k \ln k / \varepsilon)$ ASR-rounds with $\ell=h-1$ and $\ell=\ell_{\text {max }}$ that can possibly change B. This takes at most $\frac{k^{2}}{k-1}\left(1+\log _{1+\varepsilon} \gamma_{k}\right)$ ASRrounds with $\ell=h-1$ because $\mathcal{D}_{h-1} / \mathcal{D}_{h} \leq\left((1+\varepsilon) \gamma_{k}\right)^{\frac{2 k^{2}}{k-1}}$ holds for any asr-basis and each round with $\ell=h-1$ decreases $\mathcal{D}_{h-1} / \mathcal{D}_{h}$ by a factor $(1+\varepsilon)^{-2}$. Similarly we can transform an asr-basis B into a slide-reduced basis by iterating ASR-rounds that can possibly change B. Most likely this takes only $O(n \ln k / \varepsilon)$ ASR-rounds, much fewer than to transform an LLL-basis into an asr-basis.

Theorem 3. Every strong asr-basis $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$ for $\varepsilon \geq 0, k \geq 2, n=h k$ satisfies

$$
\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}} \lambda_{1}
$$

provided that some $\mathbf{b} \in \mathcal{L}(B) \backslash \mathcal{L}\left(\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-k}\right]\right)$ satisfies $\|\mathbf{b}\|=\lambda_{1}$.
Proof. (5) for $\ell=h-1$ shows that $\quad\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(h-2)}{k-1}} \mathcal{D}_{h-1}^{1 / k}$.
Clearly 2 for $\ell=h-1$ implies (2) and (4) for $\ell=h-1$, and thus we get

$$
\begin{aligned}
& \left.\left\|\mathbf{b}_{1}\right\|^{2} \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k(h-2)}{k-1}+\frac{2}{k-1}}\left(\mathcal{D}_{h-1}^{\prime}\right)^{1 / k} \quad \quad \text { (by }(4) \text { for } \ell=h-1\right) \\
& \leq \gamma_{k}\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{2 k h-4 k+2}{k-1}}(1+\varepsilon) \gamma_{k} r_{n-k+1, n-k+1}^{2}
\end{aligned}
$$

(we also used that $r_{n-k+1, n-k+1}^{-2}=\lambda_{1}^{2}\left(\mathcal{L}\left(R_{h-1}^{\prime \star}\right)\right) \leq \gamma_{k} / D_{h-1}^{\prime}$ holds by the Hermite bound for $R_{h-1}^{\prime \star}$.)

$$
\left.\leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}} r_{n-k+1, n-k+1}^{2} . \quad \text { (with inequality for } \varepsilon>0\right)
$$

The theorem assumes that $\|\mathbf{b}\|=\lambda_{1}$ holds for some $\mathbf{b} \in \mathcal{L} \backslash \mathcal{L}\left(\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-k}\right]\right)$. Hence $r_{n-k+1, n-k+1} \leq$ $\left\|\pi_{n-k+1}(\mathbf{b})\right\| \leq \lambda_{1}$. The latter inequalities yield the claim $\left\|\mathbf{b}_{1}\right\| \leq\left((1+\varepsilon)^{\frac{1+1 / k}{2}} \gamma_{k}\right)^{\frac{n-k}{k-1}} \lambda_{1}$.
We have roughly halved the exponent of $(1+\varepsilon)$ in $\mathbf{3}$ and $\mathbf{4}$ multiplying it by at most $\frac{1+1 / k}{2}$.
Iterative almost slide-reduction with increasing blocksize. Consider the blocksize $k=2^{j}$. We transform the given LLL-basis $B \in \mathbb{Z}^{m \times n}$ for $\delta, \alpha, n=h k$ iteratively as folllows:

$$
\text { FOR } i=1, \ldots, j \text { DO transform } B \text { by calling ASR with blocksize } 2^{i} \text { and } \varepsilon .
$$

The final ASR-call with blocksize $k=2^{j}$ dominates the overall workload of all ASR-calls of the iteration, including the workload for the LLL-reduction of the input basis, due to the fast increasing workload of a local SVP-computation in dimension k.
We bound the number \#It of rounds of the last ASR-call with blocksize $k=2^{j}$. Importantly, the input B of this final ASR-call satisfies $\quad \mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq\left((1+\varepsilon) \gamma_{k / 2}\right)^{\frac{2 k^{2}}{k / 2-1}} \quad$ as follows from (3) with blocksize $k / 2$ and $\frac{1+2 / k}{2} \leq 1$ for $k \geq 2$. In fact we have that $\mathcal{D}_{\ell} / \mathcal{D}_{\ell+1} \leq \max _{\ell}\left(\mathcal{D}_{\ell, k / 2} / \mathcal{D}_{\ell+1, k / 2}\right)^{4}$, where $\mathcal{D}_{\ell, k / 2}=(\operatorname{det} \stackrel{2}{\ell, k / 2})^{2}$ for the ℓ-th block $R_{\ell, k / 2}$ of blocksize $k / 2$ of the input basis B. Hence

$$
\mathcal{D}(B) \leq\left((1+\varepsilon) \gamma_{k / 2}\right)^{\frac{2 k^{2}}{k / 2-1} \frac{h^{3}-h^{2}-h}{6}}
$$

holds for the input B. As each round prior to termination decreases $\mathcal{D}(B)$ by a factor $(1+\varepsilon)^{-2}$ the number \#It of rounds of the last ASR-call is bounded as

$$
\begin{aligned}
\# I t & \leq \frac{1}{2} \log _{1+\varepsilon} \mathcal{D}(B) \leq \frac{k^{2}}{k / 2-1} \frac{h^{3}-h^{2}-h}{6} \log _{1+\varepsilon}\left((1+\varepsilon) \gamma_{k / 2}\right) \\
& <\frac{1}{3} \frac{n h^{2}}{1-2 / k} \log _{1+\varepsilon}\left((1+\varepsilon) \gamma_{k / 2}\right),
\end{aligned}
$$

provided that $\mathcal{D}(B) \geq 1$ holds on termination. This proves
Corollary 1. Given an almost slide-reduced-basis $B \in \mathbb{Z}^{m \times n}$ for $\varepsilon>0$ and blocksize $k / 2, n=h k$, ASR finds within $\frac{1}{3} \frac{n h^{2}}{1-2 / k} \log _{1+\varepsilon}\left((1+\varepsilon) \gamma_{k / 2}\right)$ rounds of three local SVP-computations an asr-basis of blocksize k and ε unless it terminates with $\mathcal{D}(B)<1$.

This shows that the upper bound on the number of rounds of ASR with blocksize k and ε of Theorem 1 decreases for $\varepsilon \leq 0.01$ and $\alpha \approx 4 / 3$ by a factor

$$
4 /((1-2 / k) k) \ln \alpha / \ln \left((1+\varepsilon) \gamma_{k / 2}\right) \approx 4(k-2)^{-1} \ln \gamma_{k / 2} / \ln (4 / 3)
$$

provided that the input basis B is an asr－basis with blocksize $k / 2$ ．For $k=32$ this is less than a 0.5 －fraction of the $\frac{n^{2} h}{12} \log _{1+\varepsilon} \alpha$ bound of Theorem 1 ，where the input is an LLL－basis for δ, α ．It halves run time．Here we assume that $\gamma_{16} \approx 2 \sqrt{2}$ ．

Fast slide－reduction for extremely small ε ．Instead of running ASR with a very small ε and some k on an input LLL－basis it is faster to first run ASR for some $\varepsilon^{\prime}>\varepsilon$ and $k^{\prime}>k$ such that

$$
\begin{equation*}
\left((1+\varepsilon) \gamma_{k}\right)^{k^{\prime}-1}>\left(\left(1+\varepsilon^{\prime}\right) \gamma_{k^{\prime}}\right)^{k-1} \tag{6}
\end{equation*}
$$

Then perform on this asr－basis ASR－rounds for ε, k for such ℓ that the ASR－round can possibly change B ，and terminate when B can no more change．（6）implies that the upper bound $\mathbf{3}$ on $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n}$ is smaller for an asr－basis with $\varepsilon^{\prime}, k^{\prime}$ than for an asr－basis with ε, k ．This suggests that there are most likely only a few ASR－rounds for ε, k ．

Lemma 1．Any asr－basis $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right] \in \mathbb{Z}^{m \times n}$ for $\varepsilon<1 / M_{0}^{2 n}, M_{0}:=\max \left(\left\|\mathbf{b}_{1}\right\|^{2}, \ldots,\left\|\mathbf{b}_{n}\right\|^{2}\right)$ ， is asr－basis for $\varepsilon=0$ ．

Proof．Let $\varepsilon>0$ be minimal such that B is asr－basis for ε, k ．We see from the proof of（3）that the inequality 2 of Def． 1 holds with equality for some $\ell=\ell_{\max }$ ．Consider an artificial ASR－ round performed on B with $\ell=\ell_{\text {max }}$ resulting in $r_{k \ell+1, k \ell+1}^{n e w}=\max _{R_{\ell}^{\prime} T} r_{k \ell+1, k \ell+1}$ ．Let $\mathbf{D}_{\ell}:=$ $\left(\operatorname{det}\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{k \ell}\right]\right)^{2} \in \mathbb{Z}$ denote the value before and $\mathbf{D}_{\ell}^{\text {new }}$ after this round．Then $\mathbf{D}_{\ell}^{\text {new }}<\mathbf{D}_{\ell}$ because $\operatorname{det} R_{\ell}$ decreases in that round．Importantly，the values $\left(r_{k \ell+1, k \ell+1}\right)^{2} \mathbf{D}_{\ell},\left(r_{k \ell+1, k \ell+1}^{n e w}\right)^{2} \mathbf{D}_{\ell}^{\text {new }}$ before and after this round are integers－this claim is analogous to［LLL82，（1．28）］．As 2 of Def． 1 holds with equalty we have $\left(r_{k \ell+1, k \ell+1}^{n e w}\right)^{2}=(1+\varepsilon)\left(r_{k \ell+1, k \ell+1}\right)^{2}$ and thus

$$
\varepsilon,\left(r_{k \ell+1, k \ell+1}\right)^{2},\left(r_{k \ell+1, k \ell+1}^{n e w}\right)^{2} \in \mathbb{Z} /\left(\mathbf{D}_{\ell} \mathbf{D}_{\ell}^{n e w}\right) .
$$

Hence $\varepsilon \geq 1 /\left(\mathbf{D}_{\ell} \mathbf{D}_{\ell}^{n e w}\right) \geq 1 / M_{0}^{2 n-2 k}$ since $\mathbf{D}_{\ell}^{n e w}<\mathbf{D}_{\ell} \leq M_{0}^{k \ell} \leq M_{0}^{n-k}$ ．Therefore，the minimality of ε implies that either $\varepsilon=0$ or $\varepsilon>1 / M_{0}^{2 n}$ ．This proves the claim．

Accelerating LLL－reduction（ALR）．We accelerate LLL－reduction by performing either Gauß－ reductions，i．e．，LLL－reductions with $\delta=1$ ，or LLL－swaps on $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ for an ℓ that promises maximal reduction progress．
We value the reduction of the basis B satisfying $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}>\frac{4}{3}$ the integer μ defined by

$$
\begin{equation*}
2^{2^{\mu-1}}<\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} / \frac{4}{3} \leq 2^{2^{\mu}} . \tag{7}
\end{equation*}
$$

ALR iterates the following loop：

```
WHILE the loop changes B DO
    IF }\mu\geq0\mathrm{ THEN for an }\ell\mathrm{ that maximizes ||⿱⿱亠䒑口乞
            with }\delta=1.(\mathrm{ this is a Gauß-reduction of }\mp@subsup{\pi}{\ell}{}(\mp@subsup{\mathbf{b}}{\ell}{}),\mp@subsup{\pi}{\ell}{}(\mp@subsup{\mathbf{b}}{\ell+1}{})
    ELSE choose an }\ell\mathrm{ that after the size-reduction }\mp@subsup{\mathbf{b}}{\ell+1}{}:=\mp@subsup{\mathbf{b}}{\ell+1}{}-\lceil\mp@subsup{r}{\ell,\ell+1}{}/\mp@subsup{r}{\ell,\ell}{}\\mp@subsup{\mathbf{b}}{\ell}{
        maximizes |\mp@subsup{\mathbf{b}}{\ell}{*}\mp@subsup{|}{}{2}/|\mp@subsup{\pi}{\ell}{}(\mp@subsup{\mathbf{b}}{\ell+1}{})\mp@subsup{|}{}{2}.\mathrm{ If }|\mp@subsup{\pi}{\ell}{}(\mp@subsup{\mathbf{b}}{\ell+1}{})\mp@subsup{|}{}{2}\leq\delta||\mp@subsup{\mathbf{b}}{\ell}{*}\mp@subsup{|}{}{2}}\operatorname{swap}\mp@subsup{\mathbf{b}}{\ell}{},\mp@subsup{\mathbf{b}}{\ell+1}{
        and size-reduce }\mp@subsup{\mathbf{b}}{\ell}{},\mp@subsup{\mathbf{b}}{\ell+1}{}\mathrm{ against }\mp@subsup{\mathbf{b}}{1}{},\ldots,\mp@subsup{\mathbf{b}}{\ell-1}{
termination size-reduce the basis B to satisfy }|\mp@subsup{r}{i,j}{}|\leq\frac{1}{2}\mp@subsup{r}{i,i}{}\mathrm{ for all j>i.
```

Theorem 4．Given an LLL－basis $B \in \mathbb{Z}^{m \times n}$ for $\delta^{\prime}<1, \alpha^{\prime}=1 /\left(\delta^{\prime}-1 / 4\right)$ ALR with δ such that $1>\delta>\max \left(\delta^{\prime}, \frac{1}{2}\right)$ terminates within $\frac{n^{3}}{12} \log _{1 / \delta} \alpha^{\prime}$ rounds of Gau β－reductions，resp．LLL－swaps at an LLL－basis for δ ，unless it arrives at $\mathcal{D}(B):=\prod_{\ell=1}^{n-1}\left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)^{n \ell-\ell^{2}}<1$ ．

Theorem 4 proves that the number of rounds of ALR is $O\left(n^{3}\right)$ for input LLL－bases of arbitrary quality δ, α ，a bound that is independent of size (B) ，whereas the number of rounds is for the original LLL－algorithm［LLL82］merely polynomial in size (B) ．

Proof. We use $\mathcal{D}(B)$ for blocksize $1, \mathcal{D}(B):=\prod_{\ell=1}^{n-1}\left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)^{\ell(n-\ell)}$. Each round decreases $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2}$ by a factor δ, and both $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}, \mathcal{D}(B)$ by a factor δ^{2}. Then the number of rounds until either an LLL-basis for δ appears or else $\mathcal{D}(B) \leq 1$ is at most

$$
\frac{1}{2} \log _{1 / \delta} \mathcal{D}(B) \leq \frac{1}{2} \log _{1 / \delta}\left(\alpha^{\prime}\right)^{\frac{n^{3}-n^{2}-n}{6}} \leq \frac{n^{3}}{12} \log _{1 / \delta} \alpha^{\prime}
$$

The workload per round. If each round completely size-reduces $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ against $\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell-1}$ it requires $O\left(n^{2}\right)$ arithmetic steps. If we only size-reduce $\mathbf{b}_{\ell+1}$ against \mathbf{b}_{ℓ} then a round costs merely $O(n)$ arithmetic steps but the length of the integers might explode. This explosion can be prevented at low costs by doing size-redction in segments, see [S06], [KS01]. Note that the bit complexity of the round can be made quasi-linear in $\operatorname{size}(B)$ by the method of [NSV10]: perform the arithmetic steps of the round on the leading bits of the entries of the basis matrix using fast integer arithmetic.

Corollary 2. The μ-value of the input basis satisfies $\mu \leq \log _{2} n+\log _{2} \log _{2} M_{0}$, let $c \in \mathbb{Z} c \geq 0$ be constant. Within $\frac{2 n^{3}}{3}\left(\mu+2^{c}\right)$ rounds ALR either decreases the initial μ to $\mu \leq-c$ or else arrives at $\mathcal{D}(B)<1$. This number of rounds is polynomial in n if $\log _{2} \log _{2} M_{0} \leq n^{O(1)}$.

Proof. As initially $\frac{4}{3} 2^{2^{\mu-1}} \leq \max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \frac{4}{3} 2^{2^{\mu}}$ Each round of ALR with $\ell=\ell_{\text {max }}$ decreases $\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}$ by a factor $2^{-2^{\mu-1}}$, where μ is the initial value of the round. Following the fact in the proof of Theorem 1 this decreases $\mathcal{D}(B)=_{\text {def }} \prod_{\ell=1}^{n-1}\left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)^{n \ell-\ell^{2}}$ for $k=1$ as $\mathcal{D}\left(B^{\text {new }}\right) / \mathcal{D}\left(B^{\text {old }}\right) \leq 2^{-2^{\mu-1}}$. This bounds the number \#It μ_{μ} of ALR-rounds for the reduction of μ to $\mu-1$ to

$$
\# I t_{\mu} \leq \frac{n^{3}-n^{2}-n}{3}\left(2^{\mu}+\log _{2} \frac{4}{3}\right) / 2^{\mu-1}
$$

unless ALR arrives at $\mathcal{D}(B)<1$. Similarly ALR decreases the μ of the input-basis within at most

$$
\frac{n^{3}}{3}\left(2(\mu+c)+\log _{2} \frac{4}{3} \sum_{i=-c}^{\mu} 2^{-i+1}\right)<\frac{2 n^{3}}{3}\left(\mu+c+2^{c+1} \log _{2} \frac{4}{3}\right)<\frac{2 n^{3}}{3}\left(\mu+\cdot 2^{c}\right)
$$

rounds to $-|c|$ unless it arrives at $\mathcal{D}(B)<1$.
The bound $\mu \leq \log _{2} n+\log _{2} \log _{2} M_{0}$ follows from (7) and $\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \geq 1 / M_{0}^{2 n}$.

LLL-reduction for extremely small $1-\delta$. It follows from Cor. 2 that LLL-reduction with $\delta=1$ is in polynomial time $n^{O(1)}$ if $\log _{2} \operatorname{size}(B)=n^{O(1)}$. For this first compute an LLL-basis for $\delta=3 / 4$, transform it into a strong asr-basis for $k=3$ and $\varepsilon=0.07$. As $\gamma_{2}^{2}>1.07 \gamma_{3}$ the proven bound for $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n}$ is smaller for this asr-basis then for an LLL-basis with $\delta=1$. Transform the asr-basis by iterating ALR-rounds with $\varepsilon=0$ that can possibly change B. The work load of the latter ALR-roads should be negligible compared to the previous reductions.
Next we study LLL-reduction for extremely small $1-\delta$ by block reduction of dimension 2 .

Lemma 2. Every LLL-basis $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right]$ for $\delta>1-1 / M_{0}^{2 n}, M_{0}:=\max \left(\left\|\mathbf{b}_{1}\right\|^{2}, \ldots,\left\|\mathbf{b}_{n}\right\|^{2}\right)$, is LLL-basis for $\delta=1$ and thus $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \frac{4}{3}$.

Proof. Follow the proof of Lemma 1 for $\varepsilon=1-\delta$. Let δ be maximal such that B is LLL-basis for δ. Consider the effect of an artificial ALR-round with $\ell=\ell_{\text {max }}$ that maximizes $r_{\ell, \ell}^{2} / r_{\ell+1, \ell+1}^{2}$ performed on the LLL-basis B for $\delta<1$ and resulting in $\left(r_{\ell, \ell}^{n e w}\right)^{2}=\delta r_{\ell, \ell}^{2}$. This holds as δ is maximal such that B is LLL-basis for δ. Then

$$
\begin{gathered}
\mathbf{D}_{\ell}=\left(\operatorname{det}\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{\ell}\right]\right)^{2} \in \mathbb{Z}, \quad r_{\ell, \ell}^{2} \mathbf{D}_{\ell-1}, \quad\left(r_{\ell, \ell}^{n e w}\right)^{2} \mathbf{D}_{\ell-1}^{n e w} \in \mathbb{Z} \\
1-\delta \geq 1 /\left(\mathbf{D}_{\ell-1} \mathbf{D}_{\ell-1}^{n e w}\right)>1 / M_{0}^{2 n-2}, \text { and thus } 1-\delta<1 / M_{0}^{2 n} \text { implies } \delta=1
\end{gathered}
$$

Comparison with previous algorithms for LLL-reduction. The original LLL for $\delta=\frac{3}{4}$ [LLL82] has bit-complexity $O\left(n^{5+\varepsilon}\left(\log _{2} M_{0}\right)^{2+\varepsilon}\right)$ performing $O\left(n^{2} \log _{1 / \delta} M_{0}\right)$ rounds, each round size-reduces some \mathbf{b}_{ℓ} in n^{2} arithmetic steps on integers of bit-length $n \log _{2} M_{0} ; \varepsilon$ in the exponent comes from the fast FFT-multiplication of integers. The $n \log _{2} M_{0}$ bit-length of integers has been reduced to $n+\log _{2} M_{0}$ by orthogonalizing the basis in floating point arithmetic. It is
well known that the LLL-time can be reduced by 10-15 \% by successively increasing δ from $3 / 4,7 / 8,15 / 16,31 / 32,63 / 64$ to 0.99 .

To minimize the workload of size-reduction ALR should be organized according to segment reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k basis vectors. The bit-complexity of Gauß-reduction of $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ is quasi-linear in the bit-length of $\mathbf{b}_{\ell}, \mathbf{b}_{\ell+1}$ [NSV10]. Therefore we do not split up this LLL-reduction into LLL-swaps. Gauß-reduction of $\pi_{\ell}\left(\mathbf{b}_{\ell}\right), \pi_{\ell}\left(\mathbf{b}_{\ell+1}\right)$ for $\ell=\ell_{\text {max }}$ decreases $\mathcal{D}(B)$ by the factor $2^{-2^{\mu}-1}$ while LLL-swaps guarantee only a decrease by the factor $\frac{3}{4}$.

A result that is very close to Cor. 2 and Cor. 3 has been proved independently in Lemma 12 of [HPS11]: $\max _{\ell}\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2} \leq \frac{4}{3}+\varepsilon$ can be achieved in polynomial time $n^{O(1)} \operatorname{size}(B)^{1+o(1)}$ for arbitrary $\varepsilon>0$ by block reduction in dimension 2 .
Early Termination (ET). Terminate as soon as $\mathcal{D}(B)<\left(\frac{4}{3}\right) \frac{n^{3}-n^{2}-n}{6}$.
$\left.\mathcal{D}(B)<\frac{4}{3}\right)^{\frac{n^{3}-n^{2}-n}{6}}$ implies that $\mathbf{E}\left[\ln \left(\left\|\mathbf{b}_{\ell}^{*}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}^{*}\right\|^{2}\right)\right]<\ln (4 / 3)$ holds for random ℓ and $\operatorname{Pr}(\ell)=$ $6 \frac{\ell h=\ell^{2}}{h^{3}-h^{2}-h}$. In this sense the output basis approximates "on the average" the logarithm of the inequality $\left\|\mathbf{b}_{1}\right\| /(\operatorname{det} \mathcal{L})^{1 / n} \leq\left(\frac{4}{3}\right)^{\frac{n-1}{4}}$ that holds for ideal LLL-bases with $\delta=1$.

Corollary 3. ALR terminates under ET in $n^{3}\left(\mu+\left|\mu_{0}\right|\right) / 3$ rounds, where μ, μ_{0} are the μ-values of the input and output basis. Moreover $\left|\mu_{0}\right| \leq n \log _{2} M_{0}$ and $\mu \leq \log _{2} n+\log _{2} \log _{2} M_{0}$.

Proof. Consider the number $\# I t_{\mu}$ of rounds until either the current μ decreases to $\mu-1$ or else $\mathcal{D}(B)$ becomes less than $(4 / 3)^{\frac{n^{3}-n^{2}-n}{6}}$. As in the proof of Corollary 2 each round with μ results in Gauß-reduction under π_{ℓ} if $\mu \geq 0$, resp. an LLL-swap if $\mu<0$, results in

$$
\left\|\mathbf{b}_{\ell}^{* \text { new }}\right\|^{2}<\left\|\mathbf{b}_{\ell}^{* o l d}\right\|^{2} 2^{-2^{\mu-2}} \quad \text { hence } \quad \mathcal{D}\left(B^{\text {new }}\right)<\mathcal{D}\left(B^{o l d}\right) 2^{-2^{\mu-1}} .
$$

Under ET this shows as in the proof of Cor. 1 that

$$
\# I t_{\mu}<\log _{2}\left(\mathcal{D}\left(B^{(i n)}\right) /\left(\mathcal{D}\left(B^{(f i n)}\right)\right) / 2^{\mu-1} \leq\left(2^{\mu} \frac{n^{3}-n^{2}-n}{6}\right) / 2^{\mu-1}=\frac{n^{3}-n^{2}-n}{3} .\right.
$$

Hence μ decreases to $\mu-1$ under ET in less than $\frac{n^{3}-n^{2}-n}{3}$ rounds. The proof of Lemma 1 shows that $\left|m_{0}\right| \leq n \log _{2} M_{0}$.

Open problem. Does ALR realize $\max _{\ell}\left\|\mathbf{b}_{\ell}\right\|^{2} /\left\|\mathbf{b}_{\ell+1}\right\|^{2} \leq \frac{4}{3}$ in a polynomial number of rounds ? Can ALR perform for $\mu \ll 0$ without ET more than $\bar{O}\left(n^{3}\right)$ rounds until either the current μ decreases to $\mu-1$ or that $\mathcal{D}(B) \leq 1$? We can exclude this for $\mu \geq 0$ and under ET also for $\mu<0$.

References

[GHKN] N. Gama, N. Howgrave-Graham, H. Koy and P, Q. Nguyen, Rankin's constant and blockwise lattice reduction. In Proc. of CRYPTO'06, LNCS 4117, Springer, pp. 112-130, 2006.
[GN08] N. Gama and P. Nguyen, Finding Short Lattice Vectors within Mordell's Inequality, In Proc. of the ACM Symposium on Theory of Computing STOC'08, pp. 208-216, 2008.
[GN08b] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008, LNCS 4965, Springer-Verlag, pp. 31-51, 2008.
[HPS11] G. Hanrot, X. Pujol and D. Stehlé, Terminating BKZ, Cryptology ePrint Archive, Report 198, 2011, personal communication 21.2.2011, final version in Proc. CRYPTO'11, LNCS 6841, Springer-Verlag, 2011.
[KS01] H. Koy and C.P. Schnorr Segment LLL-reduction of lattice bases, In Proceedings of the 2001 Cryptography and Lattice Conference (CACL'01), LNCS 2146, Springer-Verlag, pp. 67-80, 2001.
[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen 261, pp. 515-534, 1982.
[NSV10] A. Novocia, D. Stehlé and G. Villard An LLL-reduction algorithm with quasilinear time complexity. Technical Report, version 1, Nov. 2010.
[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret. Comput. Sci., 53, pp. 201-224, 1987.
[S06] C.P. Schnorr, Fast LLL-type lattice reduction, Information and Computation 204, pp. 1-25, 2006.

