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Abstract. We accelerate the slide-reduction algorithm of [GNO08] with blocksize k to run for a
given LLL-basis B of dimension n = hk under reasonable assumptions within %th log,,. a lo-
cal SVP-computations of dimension k, where o > % is the quality of the given LLL-basis and &
is the quality of slide-reduction. If the given basis B is already slide-reduced for blocksize k/2 the
1n’h log; . « bound further decreases to nh?(14log, . Vk/2), where 7> is the Hermite constant.

These bounds are polynomial in n for arbitrary bit-length of B. We also accelerate LLL-reduction.

Keywords. Block reduction, LLL-reduction, slide reduction.

Introduction. Lattices are discrete subgroups of the R". A basis B = [b1,...,b,] € R™*" of n
linear independent vectors by, ..., b, generates the lattice £L(B) = {Bx|x € Z"} of dimension n.
Lattice reduction algorithms transform a given basis into a basis consisting of short vectors. The
length of b € R™ is ||b|| = (b'b)*2. A1 (L) = minpe,\o ||b| is the minimal length of nonzero b € L.
The determinant of £ is det £ = (det B'B)'/2. The Hermite bound A (£)? < 7, (det £)?/™ holds for
all lattices £ of dimension n and the Hermite constant 7y

The LLL-algorithm of H.-W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a

given basis B in polynomial time into a basis B such that ||by] < o' A1, where o > 4/3. It is
important to minimize the proven bound on ||b1]|/A1 for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k > 2 generalizing the
blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The algorithm
of [GHKNO06] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So far slide-

reduction of [GNO8b] yields the smallest proven approximation factor ||bi]|/A < ((1+ E)’yk)H
of polynomial time reduction algorithms. The algorithm for slide-reduction of [GNO8b] performs
O(nh -size(B)/e) local SVP-computations, where size(B) is the bit-length of B and ¢ is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates the overall workload. [NSV10] shows that the
bit complexity of LLL-reduction is quasi-linear in size(B). The LLL-reduction is performed on
the leading bits of the entries of the basis matrix (similar to Lehmer’s gcd-algorithm) using fast
arithmetic for the multiplication of integers and fast algorithms for matrix multiplication.

Our results. We improve the O(nh - size(B)/e) bound of [GN08b] by choosing the blocks for the
next local reduction step as to maximize its progress. We first analyze this strategy in minimizing
[b1]l/(det £)*/™ by the concept of almost slide reduction and then extend this analysis to minimize
|[bi|l/A1(£). Theorem 1 studies the maximal number of local SVP-computations during almost
slide-reduction with blocksize k for an input LLL-basis B € Z™*" for §, o and dimension n = hk. It
shows under a reasonable assumption that this number is at most 1 n°h log,,. «. This bound is
independent of the bit-length of B. Corollary 1 shows that if the given basis is almost slide-reduced
for blocksize k/2 the number of local SVP-computations for almost slide-reduction with blocksize

k further decreases to nhzﬁ(l +log; . Vk/2), reducing the ith log, ;. @ bound of Theorem

1 by nearly a factor 4(k — 2) "' In~y,/2/In(e) < § for k = 32. For the first time this qualifies the
advantage of first performing block reduction with half the blocksize.
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We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that
accelerated LLL-reduction computes an LLL-basis within n® log, size(B)/3 local LLL-reductions of
dimension 2. This bound is polynomial in n if log, size(B) = n°". Lemma 2 shows that every
LLL-basis for § such that 1 — & < 27*5%¢(5) ig an ideal LLL-basis for § = 1.

Notation. Let B = [by,...,b,] € R™*" be a basis matrix of rank n = hk and B = QR be its QR-
decomposition, where R = [r; j]i<ij<n € R™*™ is upper triangular with positive diagonal entries
r;i > 0and Q € R™*™ is isometric with pairwise orthogonal column vectors of length 1. We denote
GNF(B) = R. Let Ry = [rijlke—kt1<ij<ke € R*** be the submatrix of R = [ri,;] € R™*™ for the
£-th block of blocksize k > 2, Dy = (det R¢)?. Let R, = [rij]re—k+2<ij<ker1 € RF** denote the
{-th block slided by one unit. RZ‘ = UkRe_tUk is the dual of Ry € Rka7 where R[t is the inverse
transpose of Ry and Uy, € {0, 1}%%* is the reversed identity matrix with nonzero entries w; x_s11 = 1
for i = 1,..., k. Note that GNF(RX) = R¥. R)* = (R})* is the dual of R}.

Let MAaX gy 7 Thi+1,ke+1 denote the maximum of Tret1 ket1, [Fijlke—kt+2<t,j<ker1 := GNF(R,T)
over all T € GLg(Z). Note that MaX gy The41,ke41 = 1/)\1([,(R2*)). Let m; : R™ — span(by, ..., bi,1)J‘
be the orthogonal projection, and b; := m;(b;) thus ||b]|| = 7.

LLL-bases. [LLL82] A basis B = QR € R™*" is LLL-basis for §, 1 <§ <1, a =1/(6 — 1/4) if
o |rij| < %r“ holds for all j > 1, ° 57"1-2,1- < riiﬂ + r1-2+171-+1 holds fori=1,...,n — 1.
An LLL-basis B for § satisfies ||b}||*/||bj,1]|*> < a for all £ =1,....,n — 1 and
n-l 1/n n—1
[br]| < a5 (det £)7/", [bafl < a2 As.

Definition 1. [GNO8| A4 basis B = QR € R™*", n = hk is slide-reduced for e >0 and k > 2 if
1. ||bZz+1H :Al(ﬁ(Rf‘f’l)) fOT£:O7...,h—1,
2. maxg ke ket < V1 +e - [[bieyll holds for £=1,....h —1.

1 slightly relaxes the condition of [GNOS8] that all bases R, are HKZ-reduced. The following bounds
have been proved by GAMA and NGUYEN in [GNO8, Theorem 1] for slide-reduced bases:

n— n—=k
3. [|bu]l < ((1+ €)yn) 2 =1 (det £)V/7, 4. byl < ((1+€)ym) *=7 Ay

Almost slide-reduced (asr-) bases. We call a basis B = QR € R"*", n = hk, an asr-basis for
€ > 0 and blocksize k if clause 2 of Def. 1 holds for some ¢ = {pq, that maximizes Dy/De41 and
clause 1 of Def. 1 holds for Ri, Re, Re41.

n—1

Theorem 2 shows that 3. ||by| < ((1+ s)fyk)% #=1 (det £)'/™, holds for all asr-bases.

Accelerated almost slide reduction (ASR)

INPUT LLL-basis B=QRe€Z™ ", R=[ri;] ER"" n=hk, 0<e<1,k>2
LOOP Choose some ¢ = {mq, that maximizes D¢/Dey1. By SVP-computations on
L(R¢), L(Re41) transform Ry, Re11 and B such that 1 of Def. 1 holds for Ry, Rey1.
By an SVP-computation on R;* verify whether 2 holds for ¢ and the input .

IF 2 does not hold THEN transform Rj and B such that 2 holds for ¢ = 0

ELSE transform R; and B such that ||bi|| = A1 (£(R:1)) and terminate.  end loop
OUTPUT the resulting asr-basis B.

We can replace the 3 SVP-computations per round on £(R¢), £(Re+1), L(RJX) by the stronger and
faster two SVP-computations on L£(Rei1), L(R}*), where R} = [ri j]on—r<ij<eni1 € REFDXEFD,
Alternatively we can perform two SVP-computations on L(RZ‘), ﬁ(RZ’_l) per round, where R2:1 =
[Fislen<ij<onsn € RETDXEFL,

Theorem 1. ASR transforms a giwen LLL-basis B € Z™*" for § <1, a = 1/(6 — 1/4), n = hk,
within 1—12712h10g1+E a rounds (passes of the loop) of three local SVP-computations of dimension k
either into an almost slide-reduced basis for € and blocksize k, or else arrives at D(B) < 1, where

D(B) =det H;;f(w/pm)“*ﬁ = ph-iph=3...ph-2ttl. . pohiSp-htl,



Proof. We use the novel version D(B) of the Lovész invariant to measure B’s reducedness. Note that
h?/4 — (£ — h/2)* = he — £ is symmetric to £ = h/2 with maximal point £ = [h/2] = [h/2 — 1/2].
The input LLL-basis BU™ for § < 1 satisfies for o = 1/(6 — 1/4) that Dy/Dyy1 < o and thus

D(BU™) < o*’* for 5= 22;11 he— 02 = hg%’;th.

Fact. Every non-terminal round with ¢ decreases D, and D(B) as

Dy <Dyf(14+e)  D(B™Y) <D(B)/(1+e)
This is because the round changes merely the factor I (D: /DtH)t(h*t) = (Dﬂ?gﬂ)h*%*l D,?
t=0—1,6,0+1

of D(B), where D¢D¢y1 does not change. Hence, after at most
in 25 3_p2_ 2
%10g1+s D(B( >) < %10g1+s(ak )= %kQ%gh log, . a < nTgh log, .

rounds either B is asr-basis for € or else D(B) < 1. Our bound on the number of rounds does not
count the terminal round which does not decrease D. g

Remarks. 1. We conjecture that the time bound of Theorem 1 even holds if on termination
D(B) < 1. This might be provable by the dynamical system method of [HPS11]. Anyway, D(B) < 1
is very unlikely. If D(B) < 1 then E[In(D¢/Des1)] < 0 holds for the expectation E for random ¢

with Pr(f) =des 6%. (Note that Z?;ll Pr(¢) = 1.) In this sense Dy < D¢4+1 would hold ”on

the average” if D(B) < 1, whereas such Dy, Dyy1 are extremely unlikely.
2. On the other hand, if the output basis of ASR satisfies on average that ||b}||?/||bj 1 [? > o!/*
n%h

then the number of rounds decreases to at most (1 — 1/t) 5" log; , . a.

1+1/k n—1

Theorem 2. Every asr-basis B € Z™*" for e,k satisfies ||b1]] < ((1+¢) 5 %)% =1 (det £)Y/™.

Proof. We see from clause 2 of Def. 1 and the Hermite bound on A1 (L(R))*) < 1/rkes1.kes1 that
k—
Di/riesiness < (L)) reien (1)
holds for £ = 4., where Dj := (det R})Q. Moreover, the Hermite bound for R, shows that

2(k—1 k

) 2
Tt ki1 ko—kt1 = Yk Do /The—kt1,kb—k+1-

Combining these two inequalities with Dj/r7, 1 key1 = De/The— ki1 pe—ki1 yields for £ = lpmaa:

k
Tre—kt1,kt—k+1 < (14 €)Y%) F=T Mhog1,kot1- (2)
Next we prove
14+1/k 2k2
Di¢/Det1 < ((1+e)" 2 Ag)k1 forl=1,...,h—1. (3)

Proof. As (1) holds for £ = £y, and 1 holds for Ry4+q the Hermite bound on A\ (L£(Re+1)) yields
Dy <(1+ E)kv'ziri'/§+1,u+1 <(1+ 5)k7§kDZ+1~
Hence (2) yields for ¢ = lmax
2k
Dy = rio—pi1,h0—k1D0/Ther1 101 < (L4 €) v6) *-1 Dy (4)
Combining the two previous inequalities yields for ¢ = {p,q0
: 1+1/k 2K2
Dy < ((1+&)m)FT(1+8)" 1 Do = (1 4) 2 )T Depa.
Moreover if (3) holds for £mas it clearly holds for all £ =1,...,h — 1.
3. 1 of Def.l for Ry and (3) imply for £ =1, ..., h that

1+1/k 2k(£-1)
Ib1]? < DY * < w((L+e) 2 ) =1 Dk

The product of these h inequalities for £ = 1, ..., h yields

2k
k—1

/k kh(h—1)
b1l < A (1+) 72 ) T (det £)/%.
n— n—1
Hence the claim [b11?/(det £)¥™ < v ((1 +€) L ,yk)ﬁ <((1+e¢) s Vi) BT O



Strong asr-bases. We call an asr-basis B € R™*"* strong if 2 of Def. 1 holds for £ = h — 1 and 1
of Def. 1 holds for R,_1 and Ry,.
Most likely, we obtain a strong asr-basis from any asr-basis by O(kln k:/s) ASR-rounds with

¢=h—1 and £ = lmae that can possibly change B. ThlS takes at most (1 +log; . vx) ASR-
rounds with £ = h — 1 because Dp—1/Dpn < (14 &)vk) = holds for any asr-basis and each round
with £ = h — 1 decreases Dy_1/Dy, by a factor (1 + )72, Similarly we can transform an asr-basis

B into a slide-reduced basis by iterating ASR-rounds that can possibly change B. Most likely this
takes only O(nlnk/e) ASR-rounds, much fewer than to transform an LLI-basis into an asr-basis.

Theorem 3. Every strong asr-basis B = [by,...,by] for e > 0,k > 2, n = hk satisfies

141/k
bl < ((1+) ™55 3) =T
provided that some b € L(B) \ L([b1, ...,bn_x]) satisfies ||b|| = A1.

2k(h—2)
Proof. (5) for £ = h — 1 shows that IIb1]|® < 4% ((1+¢) H Vi) F-T D,ll/_kl.
Clearly 2 for £ = h — 1 implies (2) and (4) for £ = h — 1, and thus we get
14+1/k 2k(h—2) |, 2
bu)l? < (L +e) "2 ) =1 TET(D], )k (by (4) for £=h—1)
1+1/k 2kh—4k+2

<Su((L+e) 2 m) " 1 (L4 )Ml kgt ki
(we also used that r,* kLol = = M(L(RX ) < v/Dj,_; holds by the Hermite bound for R}* ,.)
<((1+¢) Hk %)2}; )lcrn kel k- (with inequality for £ > 0)
The theorem assumes that ||b|| = A1 holds for some b € £\ L([b1, ..., bn_k]). Hence rn Bl nke1 <
|Tn—k+1(b)|| < A1. The latter inequalities yield the claim |b1]] < ((1+¢) Ha Vi) (= Al

We have roughly halved the exponent of (1 + ¢) in 3 and 4 multiplying it by at most # |

Iterative almost slide-reduction with increasing blocksize. Consider the blocksize k = 27.
We transform the given LLL-basis B € Z™*™ for §, a, n = hk iteratively as folllows:

FOR i=1,...,j DO transform B by calling ASR with blocksize 2° and ¢.

The final ASR-call with blocksize k¥ = 27 dominates the overall workload of all ASR-~calls of the
iteration, including the workload for the LLL-reduction of the input basis, due to the fast increasing
workload of a local SVP-computation in dimension k.

We bound the number #It of rounds of the last ASR-call with blocksize k = 2. Importantly, the
2
input B of this final ASR-call satisfies ~ D¢/Dyy1 < ((1+€)vi/2) = as follows from (3) with

blocksize k/2 and # <1 for k > 2. In fact we have that Dy/Dey1 < maxe(D&k/g/DHLk/g)‘l,
where Dy /2 = (det Rg7k/2)2 for the £-th block Ry /2 of blocksize k/2 of the input basis B. Hence

k2 h3-n2_h

2
D(B) < ((1+&)ykye) 271 F
holds for the input B. As each round prior to termination decreases D(B) by a factor (14¢)2 the
number #/It of rounds of the last ASR-call is bounded as

2 3,2
#It < 5 10g1+5 D(B) < 15— g log . (1 +€)m/2)

< §m log . ((1+€)vk/2),

provided that D(B) > 1 holds on termination. This proves

Corollary 1. Given an almost slide-reduced-basis B € Z™*™ for e > 0 and blocksize k/2, n = hk,
ASR finds within %% log, (14 )k 2) rounds of three local SVP-computations an asr-basis
of blocksize k and £ unless it terminates with D(B) < 1.

This shows that the upper bound on the number of rounds of ASR with blocksize k and e of
Theorem 1 decreases for € < 0.01 and o ~ 4/3 by a factor



4/((1 = 2/k)k) I o/ (1 + €)yy2) ~ Ak — 2)~ Iy 2/ In(4/3)
provided that the input basis B is an asr-basis with blocksize k/2. For k = 32 this is less than a
0.5-fraction of the % log,, . @ bound of Theorem 1, where the input is an LLL-basis for §,a. It
halves run time. Here we assume that vi6 ~ 24/2.

Fast slide-reduction for extremely small . Instead of running ASR with a very small £ and
some k on an input LLL-basis it is faster to first run ASR. for some ¢’ > ¢ and k' > k such that

(L)) ™ > (L)) (6)
Then perform on this asr-basis ASR-rounds for ¢, k for such ¢ that the ASR-round can possibly
change B, and terminate when B can no more change. (6) implies that the upper bound 3 on
[b1]|/(det £)*/™ is smaller for an asr-basis with ', &’ than for an asr-basis with ¢, k. This suggests
that there are most likely only a few ASR-rounds for ¢, k.

Lemma 1. Any asr-basis B = [b1,...,b,] € Z™*" for e < 1/M§™, My := max(||b1]?, ..., ||bn|?),
is asr-basis for e = 0.

Proof. Let € > 0 be minimal such that B is asr-basis for €, k. We see from the proof of (3) that
the inequality 2 of Def. 1 holds with equality for some ¢ = {p,q. Consider an artificial ASR-
round performed on B with £ = {4, resulting in rﬂffl,MH = MaXp/ 7 Tket1,ke41- Let Dy :=
(det[by, ..., bke])2 € Z denote the value before and Dy “" after this round. Then Dy < D, because
det R, decreases in that round. Importantly, the values (Txet1,ke41)°De, (rEeds geg1)? D7 before
and after this round are integers — this claim is analogous to [LLL82,(1.28)]. As 2 of Def. 1 holds
with equalty we have (rifty rer1)” = (1 +€) (Tkeg1,ke41)” and thus

& (rrerres1)?s (PEEY1 kes1)? € Z/(DeDEE™).
Hence ¢ > 1/(D,Dy**) > 1/M;" 2% since D} < Dy < M§* < MJ™". Therefore, the minimality
of € implies that either ¢ = 0 or € > 1/M&™. This proves the claim. g

Accelerating LLL-reduction (ALR). We accelerate LLL-reduction by performing either Gauf-
reductions, i.e., LLL-reductions with 6 = 1, or LLL-swaps on by, by41 for an £ that promises maximal
reduction progress.

We value the reduction of the basis B satisfying max, [|b[|*/[[bjy,[|* > 3 the integer  defined by
227 < maxe [[bF 2/ b7 P/ 5 < 2. (7)

ALR iterates the following loop:

WHILE the loop changes B DO
IF ;>0 THEN for an ¢ that maximizes ||bj||/||b7;1]| LLL-reduce m¢(be), me(bes1)
with 6 = 1. ( this is a GauB-reduction of m¢(by), m¢(bet1) )
ELSE choose an ¢ that after the size-reduction bey1 := bet1 — [re,e41/7e,e]be
maximizes |7 |2/ |ms(be1)[ . 1 [me(bes1) |2 < ollbi 2 swap b, bss
and size-reduce by, byt against by, ..., be_1. end while

termination size-reduce the basis B to satisfy |r; ;| < %r“ for all j > 1.

Theorem 4. Given an LLL-basis B € Z™*™ for §' <1, o’ =1/(8' —1/4) ALR with § such that
1> 6§ > max(d, %) terminates within % log, /s o rounds of Gaufl-reductions, resp. LLL-swaps at
an LLL-basis for 8, unless it arrives at D(B) := :_,Zf(”bzf||2/Hb27+1||2)M42 <1.

Theorem 4 proves that the number of rounds of ALR is O(n?) for input LLL-bases of arbitrary
quality d, i, a bound that is independent of size(B), whereas the number of rounds is for the original
LLL-algorithm [LLL82] merely polynomial in size(B).



Proof. We use D(B) for blocksize 1, D(B) := [[;=, (Ibi|I*/|Ibis1]*)“" 9. Each round decreases
[[b;||? by a factor &, and both ||b}||?/||bj,1||*, D(B) by a factor §°. Then the number of rounds
until either an LLL-basis for § appears or else D(B) < 1 is at most

3 2

n’—n“—n

TL3
%logl/(;D(B) < %logl/é(o/) ¢ < fylogys o a

The workload per round. If each round completely size-reduces by, bey1 against by, ..., be_1 it
requires O(n2) arithmetic steps. If we only size-reduce b,+1 against by then a round costs merely
O(n) arithmetic steps but the length of the integers might explode. This explosion can be prevented
at low costs by doing size-redction in segments, see [S06], [KSO1]. Note that the bit complexity of
the round can be made quasi-linear in size(B) by the method of [NSV10]: perform the arithmetic
steps of the round on the leading bits of the entries of the basis matrix using fast integer arithmetic.

Corollary 2. The p-value of the input basis satisfies p < logy, n + log, log, Mo, let c € Z ¢ > 0 be
constant. Within %(u + 2°) rounds ALR either decreases the initial p to p < —c or else arrives

at D(B) < 1. This number of rounds is polynomial in n if log, logy Mo < nPW.

Proof. As initially 222" < max, [|bj[|?/|[bjs.]|> < %2%" Each round of ALR with £ = £y,
decreases ||b;||?/||bj1||> by a factor 2_2“71, where p is the initial value of the round. Following the
fact in the proof of Theorem 1 this decreases D(B) =ges H?;f(”b}fHQ/Hb}fHHQ)”Z_Z2 for k=1 as

D(B™*")/D(B°'%) < 2-2""" This bounds the number #1t, of ALR-rounds for the reduction of x
tou—1to s 9
#1t, < %(QH + log, %)/Tﬁl

unless ALR arrives at D(B) < 1. Similarly ALR decreases the x of the input-basis within at most

3 —1 n3 c n3 c
T 2nte) +logy § 27 < B (ut e+ 27 og, 3) < - (n+29)

rounds to —|c| unless it arrives at D(B) < 1.
The bound x < log, n + log, log, Mo follows from (7) and ||bj4|* > 1/Mg". O

LLL-reduction for extremely small 1—§. It follows from Cor. 2 that LLL-reduction with § = 1
is in polynomial time n®™) if log, size(B) = n®® . For this first compute an LLL-basis for § = 3/4,
transform it into a strong asr-basis for k = 3 and € = 0.07. As ¥ > 1.07~3 the proven bound
for |[b1]|/(det £)/™ is smaller for this asr-basis then for an LLL-basis with § = 1. Transform the
asr-basis by iterating ALR-rounds with ¢ = 0 that can possibly change B. The work load of the
latter ALR-roads should be negligible compared to the previous reductions.

Next we study LLL-reduction for extremely small 1 — § by block reduction of dimension 2.

Lemma 2. Every LLL-basis B = [b1,...,by] for § > 1 —1/Mg", My := max(||b1|?, ..., ||bn]|?), is
LLL-basis for § =1 and thus max ||b;||*/|bj,.[*> < 3.

Proof. Follow the proof of Lemma 1 for ¢ = 1 — §. Let § be maximal such that B is LLL-basis
for §. Consider the effect of an artificial ALR-round with ¢ = £,,,4, that maximizes r?ye /r? 1,041
performed on the LLL-basis B for § < 1 and resulting in (r7$*)* = 677 ,. This holds as § is maximal
such that B is LLL-basis for . Then
D, = (det[by,...,be])> € Z, 17,De1, (rp}¢*)* DY €Z

1—6>1/(Deo1D}eY) > 1/M3" 2, and thus 1 — § < 1/Mg"™ implies § = 1. O
Comparison with previous algorithms for LLL-reduction. The original LLL for § = %
[LLL82] has bit-complexity O(n*T¢(log, Mo)*>™*) performing O(n? log, ;s Mo) rounds, each round
size-reduces some b, in n? arithmetic steps on integers of bit-length nlog, My; € in the expo-
nent comes from the fast FFT-multiplication of integers. The nlog, Mo bit-length of integers
has been reduced to n + log, Mo by orthogonalizing the basis in floating point arithmetic. It is



well known that the LLL-time can be reduced by 10 - 15 % by successively increasing 0 from
3/4,7/8,15/16,31/32,63/64 to 0.99.

To minimize the workload of size-reduction ALR should be organized according to segment
reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k basis vec-
tors. The bit-complexity of GauB-reduction of m(b¢), m¢(b,, ) is quasi-linear in the bit-length of
by, b, [NSV10]. Therefore we do not split up this LLL-reduction into LLL-swaps. Gauf-reduction
of me(be), me(b, ) for £ = £inas decreases D(B) by the factor 272" =1 while LLL-swaps guarantee
only a decrease by the factor %.

A result that is very close to Cor. 2 and Cor. 3 has been proved independently in Lemma 12 of
[HPS11]: max [|b}||*/|[b;1||> < 3 + € can be achieved in polynomial time n®Wsize(B) oM for
arbitrary € > 0 by block reduction in dimension 2.

4 n3—n2_n

Early Termination (ET). Terminate as soon as D(B) < (3)
71,3771,2771,
D(B)<3) & implies that E[In(||by||?/|/bj41*)] < In(4/3) holds for random ¢ and Pr(¢) =

Lh=¢>
6 s pz—y -
n

. . 1/n 4\t H i —
inequality ||b1]|/(det £)*/™ < (3) % that holds for ideal LLL-bases with § = 1.

In this sense the output basis approximates ”on the average” the logarithm of the

Corollary 3. ALR terminates under ET in n®(u + |pol)/3 rounds, where u, po are the p-values
of the input and output basis. Moreover |po| < nlogy Mo and p < logy n + log, logy, Mo.

Proof. Consider the number #1It,, of rounds until either the current p decreases to u — 1 or else
3_n2_

D(B) becomes less than (4/3)" *. As in the proof of Corollary 2 each round with y results in
Gauf3-reduction under 7 if ¢ > 0, resp. an LLL-swap if p < 0, results in

;"< < [|b;92272" " hence D(B"**) < D(B°4)272""",
Under ET this shows as in the proof of Cor. 1 that

#1t, < log,(D(B™)/(D(BY™)Y) /21— < (Qu%)/gufl — 79—732—71

Hence p decreases to ;1 — 1 under ET in less than 3 rounds. The proof of Lemma 1 shows
that |mo| < nlog, Mo. O

Open problem. Does ALR realize max; ||b¢||*/|[bet1|* < 4 in a polynomial number of rounds ?
Can ALR. perform for y < 0 without ET more than O(n?®) rounds until either the current s

decreases to u — 1 or that D(B) <1 ? We can exclude this for u > 0 and under ET also for p < 0.

References

[GHKN] N. Gama, N. Howgrave-Graham, H. Koy and P, Q. Nguyen, Rankin’s constant and block-
wise lattice reduction. In Proc. of CRYPTO’06, LNCS 4117, Springer, pp. 112-130, 2006.

[GNO8] N. Gama and P. Nguyen, Finding Short Lattice Vectors within Mordell’s Inequality, In
Proc. of the ACM Symposium on Theory of Computing STOC’08, pp. 208-216, 2008.

[GNO8b] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008,
LNCS 4965, Springer-Verlag, pp. 31-51, 2008.

[HPS11] G. Hanrot, X. Pujol and D. Stehlé, Terminating BKZ, Cryptology ePrint Archive, Report
198, 2011, personal communication 21.2.2011, final version in Proc. CRYPTO’11, LNCS
6841, Springer-Verlag, 2011.

[KS01] H. Koy and C.P. Schnorr Segment LLL-reduction of lattice bases, In Proceedings of the
2001 Cryptography and Lattice Conference (CACL’01), LNCS 2146, Springer-Verlag, pp.
67-80, 2001.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovdsz, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515534, 1982.

[NSV10] A. Novocia, D. Stehlé and G. Villard An LLL-reduction algorithm with quasilinear time
complexity. Technical Report, version 1, Nov. 2010.

[S87]  C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret.
Comput. Sci., 53, pp. 201-224, 1987.

[S06]  C.P. Schnorr, Fast LLL-type lattice reduction, Information and Computation 204, pp. 1-25,
2006.

ECCC

http://eccc.hpi-web.de

ISSN 1433-8092




