
Accelerated and Improved Slide- and LLL-Reduction

Claus Peter Schnorr

Fachbereich Informatik und Mathematik,
Goethe-Universität Frankfurt, PSF 111932,

D-60054 Frankfurt am Main, Germany.
schnorr@cs.uni-frankfurt.de

February 9, 2012

Abstract. We accelerate the slide-reduction algorithm of [GN08] with blocksize k to run for a
given LLL-basis B of dimension n = hk under reasonable assumptions within 1

4
n2h log1+ε α lo-

cal SVP-computations of dimension k, where α ≥ 4
3

is the quality of the given LLL-basis and ε
is the quality of slide-reduction. If the given basis B is already slide-reduced for blocksize k/2 the
1
4

n2h log1+ε α bound further decreases to nh2(1+log1+ε γk/2), where γk/2 is the Hermite constant.
These bounds are polynomial in n for arbitrary bit-length of B. Slide-reduced bases for which the

approximation factor ‖b1‖/λ1 is nearly maximal can easily be improved. If ‖b1‖/λ1 = γ
n−k
k−1

k is
maximal we can easily find a shortest lattice vector. We also accelerate LLL-reduction.

Keywords. Block reduction, LLL-reduction, slide reduction.

Introduction. Lattices are discrete subgroups of the Rn. A basis B = [b1, ...,bn] ∈ Rm×n of n
linear independent vectors b1, ...,bn generates the lattice L(B) = {Bx |x ∈ Zn} of dimension n.
Lattice reduction algorithms transform a given basis into a basis consisting of short vectors. The
length of b ∈ Rm is ‖b‖ = (btb)1/2. λ1(L) = minb∈L\0 ‖b‖ is the minimal length of nonzero b ∈ L.

The determinant of L is detL = (det BtB)1/2. The Hermite bound λ1(L)2 ≤ γn(detL)2/n holds for
all lattices L of dimension n and the Hermite constant γn.

The LLL-algorithm of H.W. Lenstra Jr., A.K. Lenstra and L. Lovász [LLL82] transforms a

given basis B in polynomial time into a basis B such that ‖b1‖ ≤ α
n−1

2 λ1, where α > 4/3. It is
important to minimize the proven bound on ‖b1‖/λ1 for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k ≥ 2 generalizing the
blocksize 2 of LLL-reduction. Schnorr [S87] introduced blockwise HKZ-reduction. The algorithm
of [GHKN06] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So far slide-

reduction of [GN08b] yields the smallest proven approximation factor ‖b1‖/λ1 ≤ ((1 + ε)γk)
n−k
k−1

of polynomial time reduction algorithms. The algorithm for slide-reduction of [GN08b] performs
O(nh · size(B)/ε) local SVP-computations, where size(B) is the bit-length of B and ε is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates the overall workload. [NSV10] shows that the
bit complexity of LLL-reduction is quasi-linear in size(B). The LLL-reduction is performed on
the leading bits of the entries of the basis matrix (similar to Lehmer’s gcd-algorithm) using fast
arithmetic for the multiplication of integers and fast algorithms for matrix multiplication.

Our results. We improve the O(nh · size(B)/ε) bound of [GN08b] by choosing the blocks for the
next local reduction step as to maximize its progress. We first analyze this strategy in minimizing
‖b1‖/(detL)1/n by the concept of almost slide reduction and then extend this analysis to minimize
‖b1‖/λ1(L). Theorem 1 studies the maximal number of local SVP-computations during almost
slide-reduction with blocksize k for an input LLL-basis B ∈ Zm×n for δ, α and dimension n = hk.
It shows under a reasonable assumption that this number is at most 1

4
n2h log1+ε α. This bound

is independent of the bit-length of B. Corollary 1 shows that if the given basis is almost slide-
reduced for blocksize k/2 the number of local SVP-computations for almost slide-reduction with
blocksize k further decreases to nh2 1

1−2/k
(1 + log1+ε γk/2), halving the bound of Theorem 1 for

k = 32. For the first time this qualifies the advantage of first performing block reduction with half

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 7 of Report No. 50 (2011)

the blocksize. Theorem 4 shows that given a slide-reduced basis for blocksize k and ε = 0 such

that ‖b1‖/λ1 = γ
n−k
k−1

k is maximal, we can easily find a shortest lattice vector. More generally, this
indicates that the closer ‖b1‖/λ1 is to the maximumf for slide-reduced bases of dimension n and
blocksize k the easier it is to find a nonzero lattice vector b that is substantially shorter than b1.
We point to such an algorithm.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that
accelerated LLL-reduction computes an LLL-basis within n3 log2 size(B)/3 local LLL-reductions of
dimension 2. This bound is polynomial in n if log2 size(B) = nO(1). Lemma 2 shows that every
LLL-basis for δ such that 1− δ ≤ 2−4 size(B) is an ideal LLL-basis for δ = 1.

Notation. Let B = [b1, ...,bn] ∈ Rm×n be a basis matrix of rank n = hk and B = QR be its QR-
decomposition, where R = [ri,j]1≤i,j≤n ∈ Rn×n is upper triangular with positive diagonal entries
ri,i > 0 and Q ∈ Rm×n is isometric with pairwise orthogonal column vectors of length 1. We denote
GNF(B) = R. Let R` = [ri,j]k`−k+1≤i,j≤k` ∈ Rk×k be the submatrix of R = [ri,j] ∈ Rn×n for the
`-th block of blocksize k ≥ 2, D` = (det R`)

2. Let R′
` = [ri,j]k`−k+2≤i,j≤k`+1 ∈ Rk×k denote the

`-th block slided by one unit. RF
` = UkR−t

` Uk is the dual of R` ∈ Rk×k, where R−t
` is the inverse

transpose of R` and Uk ∈ {0, 1}k×k is the reversed identity matrix with nonzero entries ui,k−i+1 = 1
for i = 1, ..., k. Note that GNF(RF

`) = RF
` . R′F

` = (R′
`)

F is the dual of R′
`.

Let maxR′
`
T rk`+1,k`+1 denote the maximum of r̄k`+1,k`+1, [r̄i,j]k`−k+2≤l,j≤k`+1 := GNF(R′

`T)

over all T ∈ GLk(Z). Note that maxR′
`
T rk`+1,k`+1 = 1/λ1(L(R′F

`)). Let πi : Rn → span(b1, ...,bi−1)
⊥

be the orthogonal projection, and b∗i := πi(bi) thus ‖b∗i ‖ = ri,i.

LLL-bases. [LLL82] A basis B = QR ∈ Rm×n is LLL-basis for δ, 1
4

< δ ≤ 1, α = 1/(δ − 1/4) if

• |ri,j | ≤ 1
2

ri,i holds for all j > i, • δr2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 holds for i = 1, ..., n− 1.

An LLL-basis B for δ satisfies ‖b∗`‖2/‖b∗`+1‖2 ≤ α for all ` = 1, ..., n− 1 and

‖b1‖ ≤ α
n−1

4 (detL)1/n, ‖b1‖ ≤ α
n−1

2 λ1.

Definition 1. [GN08] A basis B = QR ∈ Rm×n, n = hk is slide-reduced for ε ≥ 0 and k ≥ 2 if

1. ‖b∗k`+1‖ = rk`+1,k`+1 = λ1(L(R`+1)) for ` = 0, ..., h− 1,

2. maxR′
`
T rk`+1,k`+1 ≤

√
1 + ε · ‖b∗k`+1‖ holds for ` = 1, ..., h− 1.

1 slightly relaxes the condition of [GN08] that all bases R` are HKZ-reduced. The following bounds
have been proved by Gama and Nguyen in [GN08, Theorem 1] for slide-reduced bases:

3. ‖b1‖ ≤ ((1 + ε)γk)
1
2

n−1
k−1 (det L)1/n, 4. ‖b1‖ ≤ ((1 + ε)γk)

n−k
k−1 λ1.

Almost slide-reduced (asr-) bases. We call a basis B = QR ∈ Rm×n, n = hk, an asr-basis for
ε ≥ 0 and blocksize k if clause 2 of Def. 1 holds for some ` = `max that maximizes D`/D`+1 and
clause 1 of Def. 1 holds for R1, R`, R`+1.

Theorem 2 shows that a slightly stronger inequality 3. holds for all asr-bases.

Accelerated almost slide reduction (ASR)
INPUT LLL-basis B = QR ∈ Zm×n, R = [ri,j] ∈ Rn×n, n = hk, 0 < ε ≤ 1, k ≥ 2
LOOP Choose some ` = `max that maximizes D`/D`+1. By SVP-computations on
L(R`), L(R`+1) transform R`, R`+1 and B such that 1 of Def. 1 holds for R`, R`+1.
By an SVP-computation on R′F

` verify whether 2 holds for ` and the input ε.
IF 2 does not hold THEN transform R′

` and B such that 2 holds for ε = 0
ELSE transform R1 and B such that ‖b1‖ = λ1(L(R1)) and terminate. end loop

OUTPUT the resulting asr-basis B.

We can replace the 3 SVP-computations per round on L(R`),L(R`+1), L(R′F
`) by the stronger and

faster two SVP-computations on L(R`+1), L(R+F
`), where R+

` = [ri,j]`k−k<i,j≤`k+1 ∈ R(k+1)×(k+1).
Alternatively we can perform two SVP-computations on L(RF

`),L(R′+
`+1) per round, where R′+

`+1 :=

[ri,j]`k≤i,j≤`k+k ∈ R(k+1)×(k+1).

2

Theorem 1. ASR transforms a given LLL-basis B ∈ Zm×n for δ ≤ 1, α = 1/(δ − 1/4), n = hk,
within 1

12
n2h log1+ε α rounds (passes of the loop) of three local SVP-computations of dimension k

either into an almost slide-reduced basis for ε and blocksize k, or else arrives at D(B) < 1, where

D(B) =def

Qh−1
`=1 (D`/D`+1)

h`−`2 = Dh−1
1 Dh−3

2 · · · Dh−2`+1
` · · · D−h+3

h−1 D−h+1
h .

Proof. We use the novel version D(B) of the Lovász invariant to measure B’s reducedness. Note that
h2/4− (`− h/2)2 = h`− `2 is symmetric to ` = h/2 with maximal point ` = dh/2c = dh/2− 1/2e.
The input LLL-basis B(in) for δ ≤ 1 satisfies for α = 1/(δ − 1/4) that D`/D`+1 ≤ αk2

and thus

D(B(in)) ≤ αk2s for s :=
Ph−1

`=1 h`− `2 = h3−h
6

.

Fact. Every non-terminal round with ` decreases D` and D(B) as

Dnew
` ≤ D`/(1 + ε) D(Bnew) ≤ D(B)/(1 + ε)2.

This is because the round changes merely the factor
Q

t=`−1,`,`+1

(Dt/Dt+1)
t(h−t) = (D`D`+1)

h−2`−1D2
`

of D(B), where D`D`+1 does not change. Hence, after at most

1
2

log1+ε D(B(in)) ≤ 1
2

log1+ε(α
k2s) = 1

2
k2 h3−h

6
log1+ε α < n2h

12
log1+ε α

rounds either B is asr-basis for ε or else D(B) < 1. Our bound on the number of rounds does not
count the terminal round which does not decrease D. �

Remarks. 1. We conjecture that the time bound of Theorem 1 even holds if on termination
D(B) < 1. This might be provable by the dynamical system method of [HPS11]. Anyway, D(B) < 1
is very unlikely. If D(B) < 1 then E[ln(D`/D`+1)] < 0 holds for the expectation E for random `

with Pr(`) =def 6 `h−`2

h3−h2−h
. (Note that

Ph−1
`=1 Pr(`) = 1.) In this sense D` < D`+1 would hold ”on

the average” if D(B) < 1, whereas such D`,D`+1 are extremely unlikely.
2. On the other hand, if the output basis of ASR satisfies on average that ‖b∗`‖2/‖b∗`+1‖2 ≥ α1/t

then the number of rounds decreases to at most (1− 1/t)n2h
12

log1+ε α.

Theorem 2. Every asr-basis B ∈ Zm×n for ε, k satisfies ‖b1‖ ≤
`
(1+ ε)

1+1/k
2 γk)

1
2

n−1
k−1 (det L)1/n.

Proof. We see from clause 2 of Def. 1 and the Hermite bound on λ1(L(R′
`)

F) ≤ 1/rk`+1,k`+1 that

D′`/r2
k`+1,k`+1 ≤ ((1 + ε)γk

´k
r2k−2

k`+1,k`+1 (1)

holds for ` = `max, where D′` := (det R′
`)

2. Moreover, the Hermite bound for R` shows that

r2k−2
k`−k+1,k`−k+1 ≤ γk

k D`/r2
k`−k+1,k`−k+1.

Combining these two inequalities with D′`/r2
k`+1,k`+1 = D`/r2

k`−k+1,k`−k+1 yields for ` = `max:

rk`−k+1,k`−k+1 ≤ ((1 + ε)γk)
k

k−1 rk`+1,k`+1. (2)
Next we prove

D`/D`+1 ≤ ((1 + ε)
1+1/k

2 γk)
2k2
k−1 for ` = 1, ..., h− 1. (3)

Proof. As (1) holds for ` = `max and 1 holds for R`+1 the Hermite bound on λ1(L(R`+1)) yields

D′` ≤ (1 + ε)kγk
kr2k

k`+1,k`+1 ≤ (1 + ε)kγ2k
k D`+1.

Hence (2) yields for ` = `max

D` = r2
k`−k+1,k`−k+1D′`/r2

k`+1,k`+1 ≤ ((1 + ε)γk)
2k

k−1D′`. (4)

Combining the two previous inequalities yields for ` = `max

D` ≤ ((1 + ε) γk)
2k

k−1 (1 + ε)kγ2k
k D`+1 = ((1 + ε)

1+1/k
2 γk)

2k2
k−1D`+1.

Moreover if (3) holds for `max it clearly holds for all ` = 1, ..., h− 1.

3. 1 of Def.1 for R1 and (3) imply for ` = 1, ..., h that

‖b1‖2 ≤ γkD1/k
1 ≤ γk((1 + ε)

1+1/k
2 γk)

2k(`−1)
k−1 D1/k

` . (5)

3

The product of these h inequalities for ` = 1, ..., h yields

‖b1‖2h ≤ γh
k ((1 + ε)

1+1/k
2 γk)

kh(h−1)
k−1 (detL)2/k.

Hence the claim ‖b1‖2/(detL)2/n ≤ γk

`
(1 + ε)

1+1/k
2 γk

´ n−k
k−1 ≤

`
(1 + ε)

1+1/k
2 γk

´ n−1
k−1 . �

Strong asr-bases. We call an asr-basis B ∈ Rm×hk strong if 2 of Def. 1 holds for ` = h− 1 and 1
of Def. 1 holds for Rh−1 and Rh.

Most likely, we obtain a strong asr-basis from any asr-basis by O(k ln k/ε) ASR-rounds with

` = h− 1 and ` = `max that can possibly change B. This takes at most k2

k−1
(1 + log1+ε γk) ASR-

rounds with ` = h − 1 because Dh−1/Dh ≤ ((1 + ε)γk)
2k2
k−1 holds for any asr-basis and each round

with ` = h − 1 decreases Dh−1/Dh by a factor (1 + ε)−2. Similarly we can transform an asr-basis
B into a slide-reduced basis by iterating ASR-rounds that can possibly change B. Most likely this
takes only O(n ln k/ε) ASR-rounds, much fewer than to transform an LLL-basis into an asr-basis.

Theorem 3. Every strong asr-basis B = [b1, ...,bn] for ε ≥ 0, k ≥ 2, n = hk satisfies

‖b1‖ ≤ (1 + ε)
1+1/k

2 γk)
n−k
k−1 λ1

provided that some b ∈ L(B) \ L(b1, ...,bn−k) satisfies ‖b‖ = λ1.

Proof. (5) for ` = h− 1 shows that ‖b1‖2 ≤ γk

`
(1 + ε)

1+1/k
2 γk

´ 2kh−4k
k−1 D1/k

h−1.

Clearly 2 for ` = h− 1 implies (2) and (4) for ` = h− 1, and thus we get

‖b1‖2 ≤ γk

`
(1 + ε)

1+1/k
2 γk

´ 2kh−4k
k−1

`
(1 + ε)γk

´ 2
k−1D′h−1

1/k
(by (4) for ` = h− 1)

≤ γk

`
(1 + ε)

1+1/k
2 γk

´ 2kh−4k
k−1

`
(1 + ε) γk)

2
k−1+1r2

n−k+1,n−k+1

(by 1, 2 for ` = h− 1 and the Hermite bound for R′F
h−1 we have D′h−1

1/k ≤ (1+ ε)γk r2
n−k+1,n−k+1)

≤
`
(1 + ε)

1+1/k
2 γk

´2 n−k
k−1 r2

n−k+1,n−k+1. (since 1 + 2
k−1

< 2k
k−1

for k ≥ 2)

The theorem assumes that ‖b‖ = λ1 holds for some b ∈ L\L([b1, ...,bn−k]). Hence rn−k+1,n−k+1 ≤
‖πn−k+1(b)‖ ≤ λ1. The latter inequalities yield the claim.

We have decreased the exponent 1 of (1 + ε) in 3 and 4 to 1+1/k
2

≈ 1/2 for large k. �

Iterative almost slide-reduction with increasing blocksize. Consider the blocksize k = 2j .
We transform a given LLL-basis B ∈ Zm×n for δ, α, n = hk iteratively as folllows:

FOR i = 1, ..., j DO transform B by calling ASR with blocksize 2i and ε.

The final ASR-call with blocksize k = 2j dominates the overall workload of all ASR-calls of the
iteration, including the workload for the LLL-reduction of the input basis, due to the dominating
workload of local SVP-computations in dimension k.

We bound the number #It of rounds of the last ASR-call with blocksize k = 2j . Importantly, the

input B of this final ASR-call satisfies D`/D`+1 ≤ ((1+ε)γk/2)
2k2

k/2−1 as follows from (3) with

blocksize k/2 and 1+2/k
2

≤ 1 for k ≥ 2. In fact we have that D`/D`+1 ≤ max`(D`,k/2/D`+1,k/2)
4,

where D`,k/2 = (det R`,k/2)
2 for the `-th block R`,k/2 of blocksize k/2 of the input basis B. Hence

D(B) ≤ ((1 + ε)γk/2)
2k2

k/2−1
h3−h

6

holds for the input B. As each round prior to termination decreases D(B) by a factor (1 + ε)−2 the
number #It of rounds of the last ASR-call is bounded as

#It ≤ 1
2

log1+ε D(B) ≤ k2

k/2−1
h3−h2−h

6
log1+ε((1 + ε)γk/2)

< 1
3

nh2

1−2/k
log1+ε((1 + ε)γk/2),

provided that D(B) ≥ 1 holds on termination. This proves

4

Corollary 1. Given an almost slide-reduced-basis B ∈ Zm×n for ε > 0 and blocksize k/2, n = hk,

ASR finds within 1
3

nh2

1−2/k
log1+ε((1 + ε)γk/2) rounds of three local SVP-computations an asr-basis

of blocksize k and ε unless it terminates with D(B) < 1.

This shows that the upper bound on the number of rounds of ASR with blocksize k and ε of
Theorem 1 decreases for ε ≤ 0.01 and α ≈ 4/3 by a factor

4/((1− 2/k)k) ln α/ ln((1 + ε)γk/2) ≈ 4(k − 2)−1 ln γk/2/ ln(4/3)

if the input basis B is an asr-basis with blocksize k/2. For k = 32 this is less than half the bound from
Theorem 1, where the input is an LLL-basis for δ, α. Here we assume that γ16 ≈ 2

√
2. Moreover,

within only half of these rounds ASR achieves D(B) ≤
`
(1 + ε)γk

´ 2k2
k−1

h3−h
6 , a bound on the final

B that follows from (3). Interestingly, this bound on D(B) is sharp on the average.

Fast slide-reduction for extremely small ε. Instead of running ASR with a very small ε and
some k on an input LLL-basis it is faster to first run ASR for some ε′ > ε and k′ > k such that

((1 + ε)γk)k′−1 > ((1 + ε′)γk′)
k−1. (6)

Then perform on this asr-basis ASR-rounds for ε, k for such ` that the ASR-round can possibly
change B, and terminate when B can no more change. (6) implies that the upper bound 3 on
‖b1‖/(detL)1/n is smaller for an asr-basis with ε′, k′ than for an asr-basis with ε, k. This suggests
that there are most likely only a few ASR-rounds for ε, k.
.

Lemma 1. Any asr-basis B = [b1, ...,bn] ∈ Zm×n for ε < 1/M2n
0 , M0 := max(‖b1‖2, ..., ‖bn‖2),

is asr-basis for ε = 0.

Proof. Let ε > 0 be minimal such that B is asr-basis for ε, k. We see from the proof of (3) that
the inequality 2 of Def. 1 holds with equality for some ` = `max. Consider an artificial ASR-
round performed on B with ` = `max resulting in rnew

k`+1,k`+1 = maxR′
`
T rk`+1,k`+1. Let D` :=

(det[b1, ...,bk`])
2 ∈ Z denote the value before and Dnew

` after this round. Then Dnew
` < D` because

det R` decreases in that round. Importantly, the values (rk`+1,k`+1)
2D`, (r

new
k`+1,k`+1)

2Dnew
` before

and after this round are integers – this claim is analogous to [LLL82,(1.28)]. As 2 of Def. 1 holds
with equalty we have (rnew

k`+1,k`+1)
2 = (1 + ε) (rk`+1,k`+1)

2 and thus

ε, (rk`+1,k`+1)
2, (rnew

k`+1,k`+1)
2 ∈ Z/(D`D

new
`).

Hence ε ≥ 1/(D`D
new
`) ≥ 1/M2n−2k

0 since Dnew
` < D` ≤ Mk`

0 ≤ Mn−k
0 . Therefore, the minimality

of ε implies that either ε = 0 or ε > 1/M2n
0 . This proves the claim. �

Improving worst case slide-reduced bases. We characterize slide-reduced bases for k and ε = 0
for which ‖b1‖/λ1 is maximal. A shortest lattice vector can easily be found for such a basis.

Theorem 4. Let the basis R = GNF(R) = [b1, ...,bn] ∈ Rn×n, n = hk be slide-reduced for k and

ε = 0. If ‖b1‖/λ1 = γ
n−k
k−1

k then there exists bmin ∈ 0n−kRk ∩ L(R) with ‖bmin‖ = λ1. Any such
bmin can be found from its projection πn−k+1(bmin) in O(n2) arithmetic steps.

Proof. Let R = [ri,j] ∈ Rn×n then πn−k+1 L(R) = L([[ri,j]n−k<i,j≤n) is a lattice of dimension k.
By (2)the slide-reduced R satisfies

rk`−k+1,k`−k+1 ≤ γ
1

k−1
k rk`+1,k`+1 for ` = 1, ..., h− 1.

Therefore ‖b1‖/λ1 = γ
n−k
k−1

k implies ‖bmin‖ = rn−k+1,n−k+1. Hence πn−k+1(bmin) is a shortest
nonzero vector of πn−k+1 L(R) of length rn−k+1,n−k+1. Therefore bmin ∈ 0n−kRk ∩ L(R). Let
bmin =

Pn
i=1 tibi. Then, given

Pn
i=n−k+1 tibi we find tn−k, ..., t1 ∈ Z from the equations

tjrj,j + · · ·+ tn−krj,n−k +
P

+i = m− k + 1ntirj,i = 0

for j = n− k, ..., 1. This proves the Theorem. �

5

Note that we find all bmin ∈ 0n−kRk ∩ L(R) by enumerating the shortest vectors of πn−k+1 L(R)
and trying to extend them to some bmin ∈ 0n−kRk ∩L(R). In particular, uf the shortest vector ±b
of πn−k+1 L(R) is unique, which is most likely the case, then we find bmin ∈ 0n−kRk ∩L(R) by an
SVP-computation of dimension k in O(n2) arithmetic steps that compute t + 1, ..., yn−k ∈ Z.

Conclusion. Given a slide-reduced basis R ∈ Rn×n with blocksize k and ε = 0 for which ‖b1‖/λ1

is maximal we can easily find a shortest vector of L ∗ R). More generally, this suggests that the
closer ‖b1‖/λ1 is to the maximumf or slide-reduced bases of dimension n and blocksize k the easier
it is to find a nonzero lattice vector b that is substantially shorter than b1.

Such short b can be found by random sampling reduction [S03]. This method transforms a given
basisR = GNF(R) = [ri,j] = [b1, ...,bn] ∈ Rn×n by checking for sufficiently many integer combi-
nations b̄ =

Pn
i=n tibi whether size-reduction of b̄ versus b1, ...bn−u−1 yields a vector b that is

shorter than b1. By Theorem 1 of [S03] this method finds under reasonable assumptions a basis such
that ‖b1‖/λ1 ≤ (k/6)

n
2k within time O(n2(k/6)k/4). Random sampling reduction of [S03] seems to

outperform slide-reduction which produces a basis such that ‖b1‖/λ1 ≤ ((1 + ε)γk)
n−k
k−1 in time

O(n2k
k
2e

(1+o(1))). Random sample reduction of [S03] is complementary to slide-reduction in that it
largely improves slide-reduced bases for which ‖b1‖/λ1 is maximal. It makes sense to alternate the
two reduction methods iteratively as the two methods rely on independent principles.

Improving worst case LLL-bases. We translate Theorem 4 to LLL-bases with δ = 1. These
bases are slide-reduced for k = 2 and ε = 0 and thus ‖b1‖2 ≤ (4

3
)n−2λ2

1 holds by Theorem 3
since γ2

3 = 4
3
. If ‖b1‖2 = (4

3
)n−2λ2

1 then by Theorem 4 a shortest lattice vector can be found by
size-reducing a combination of the last two basis vectors:

Theorem 5. Let R = GNF(R) ∈ Rn×n be an LLL-basis for δ = 1. If ‖b1‖2 = (4
3
)n−2λ2

1, i.e.,
‖b1‖/λ1 is maximal, then there exists bmin = (0, ..., 0,±rn−1,n−1, rn,n)t ∈ L(R) of length ‖bmin‖ =
λ1 and such bmin can be found in O(n2) arithmetic steps.

Accelerating LLL-reduction (ALR). We accelerate LLL-reduction by performing either local
Gauß-reductions, i.e., LLL-reductions with δ = 1, or LLL-swaps on b`,b`+1 for an ` that maximizes
‖b`‖/‖π`(b`+1)‖ and thus promises maximal reduction progress.

We value the reduction of the basis B satisfying max` ‖b∗`‖2/‖b∗`+1‖2 > 4
3

the integer µ defined by

22µ−1
< max` ‖b∗`‖2/‖b∗`+1‖2/ 4

3
≤ 22µ

. (7)

ALR iterates the following loop:

WHILE the loop changes B DO

IF µ ≥ 0 THEN for an ` that maximizes ‖b∗`‖/‖b∗`+1‖ LLL-reduce π`(b`), π`(b`+1)
with δ = 1. (this is a Gauß-reduction of π`(b`), π`(b`+1))

ELSE choose an ` that after the size-reduction b`+1 := b`+1 − dr`,`+1/r`,`cb`

maximizes ‖b∗`‖2/‖π`(b`+1)‖2 . If ‖π`(b`+1)‖2 ≤ δ‖b∗`‖2 swap b`, b`+1

and size-reduce b`, b`+1 against b1, ...,b`−1. end while

termination size-reduce the basis B to satisfy |ri,j | ≤ 1
2
ri,i for all j > i.

Theorem 6. Given an LLL-basis B ∈ Zm×n for δ′ < 1, α′ = 1/(δ′ − 1/4) ALR with δ such that

1 > δ > max(δ′, 1
2
) terminates within n3

12
log1/δ α′ rounds of local Gauß-reductions, resp. LLL-swaps

at an LLL-basis for δ, unless it arrives at D(B) :=
Qn−1

`=1 (‖b∗`‖2/‖b∗`+1‖2)n`−`2 < 1.

Theorem 6 proves that the number of rounds of ALR is O(n3) for input LLL-bases of arbitrary
quality δ, α, a bound that is independent of size(B), whereas the number of rounds for the original
LLL-algorithm [LLL82] is merely polynomial in size(B).

6

Proof. We use D(B) for blocksize 1, D(B) :=
Qn−1

`=1 (‖b∗`‖2/‖b∗`+1‖2)`(n−`). Each round decreases
‖b∗`‖2 by a factor δ, and both ‖b∗`‖2/‖b∗`+1‖2, D(B) by a factor δ2. Then the number of rounds
until either an LLL-basis for δ appears or else D(B) ≤ 1 is at most

1
2

log1/δ D(B) ≤ 1
2

log1/δ(α
′)

n3−n
6 ≤ n3

12
log1/δ α′. �

The workload per round. If each round completely size-reduces b`,b`+1 against b1, ...,b`−1 it
requires O(n2) arithmetic steps. If we only size-reduce b`+1 against b` then a round costs merely
O(n) arithmetic steps but the length of the integers might explode. This explosion can be prevented
at low costs by doing size-redction in segments, see [S06], [KS01]. Note that the bit complexity of
the round can be made quasi-linear in size(B) by the method of [NSV10]: perform the arithmetic
steps of the round on the leading bits of the entries of the basis matrix using fast integer arithmetic.

Corollary 2. The µ-value (7) of the input basis satisfies µ ≤ log2 n + log2 log2 M0, let c ∈ Z c ≥ 0

be constant. Within 2n3

3
(µ+ 2c) rounds ALR either decreases the initial µ to µ ≤ −c or else arrives

at D(B) < 1. This number of rounds is polynomial in n if log2 log2 M0 ≤ nO(1).

Proof. As initially 4
3

22µ−1
≤ max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4

3
22µ

Each round of ALR with ` = `max

decreases ‖b∗`‖2/‖b∗`+1‖2 by a factor 2−2µ−1
, where µ is the initial value of the round. Following the

fact in the proof of Theorem 1 this decreases D(B) =def

Qn−1
`=1 (‖b∗`‖2/‖b∗`+1‖2)n`−`2 for k = 1 as

D(Bnew)/D(Bold) ≤ 2−2µ−1
. This bounds the number #Itµ of ALR-rounds for the reduction of µ

to µ− 1 to
#Itµ ≤ n3−n

3
(2µ + log2

4
3
)/2µ−1

unless ALR arrives at D(B) < 1. Similarly ALR decreases the µ of the input-basis within at most

n3

3
(2(µ + c) + log2

4
3

Pµ
i=−c 2−i+1) < 2n3

3
(µ + c + 2c+1 log2

4
3
) < 2n3

3
(µ + ·2c)

rounds to −|c| unless it arrives at D(B) < 1.
The bound µ ≤ log2 n + log2 log2 M0 follows from (7) and ‖b∗`+1‖2 ≥ 1/M2n

0 . �

LLL-reduction for extremely small 1− δ. It follows from Cor. 2 that LLL-reduction with δ = 1
is in polynomial time nO(1) if log2 size(B) = nO(1). For this first compute an LLL-basis for δ = 3/4,
transform it into a strong asr-basis for k = 3 and ε = 0.07. As γ2

2 > 1.07 γ3 the proven bound
for ‖b1‖/(detL)1/n is smaller for this asr-basis then for an LLL-basis with δ = 1. Transform the
asr-basis by iterating ALR-rounds with ε = 0 that can possibly change B. The work load of the
latter ALR-roads should be negligible compared to the previous reductions.

Next we study LLL-reduction for extremely small 1− δ by block reduction of dimension 2.

Lemma 2. Every LLL-basis B = [b1, ...,bn] for δ > 1 − 1/M2n
0 , M0 := max(‖b1‖2, ..., ‖bn‖2), is

LLL-basis for δ = 1 and thus max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4
3
.

Proof. Follow the proof of Lemma 1 for ε = 1 − δ. Let δ be maximal such that B is LLL-basis
for δ. Consider the effect of an artificial ALR-round with ` = `max that maximizes r2

`,`/r2
`+1,`+1

performed on the LLL-basis B for δ < 1 and resulting in (rnew
`,`)2 = δr2

`,`. This holds as δ is maximal
such that B is LLL-basis for δ. Then

D` = (det[b1, ...,b`])
2 ∈ Z, r2

`,`D`−1, (rnew
`,`)2 Dnew

`−1 ∈ Z
1− δ ≥ 1/(D`−1D

new
`−1) > 1/M2n−2

0 , and thus 1− δ < 1/M2n
0 implies δ = 1. �

Comparison with previous algorithms for LLL-reduction. The original LLL for δ = 3
4

[LLL82] has bit-complexity O(n5+ε(log2 M0)
2+ε) performing O(n2 log1/δ M0) rounds, each round

size-reduces some b` in n2 arithmetic steps on integers of bit-length n log2 M0; ε in the exponent
comes from the fast FFT-multiplication of integers. The n log2 M0 bit-length of integers has been
reduced to n+ log2 M0 by orthogonalizing the basis in floating point arithmetic. The LLL-time can
be reduced by 10 - 15 % by successively increasing δ from 3/4, 7/8, 15/16, 31/32, 63/64 to 0.99.

To minimize the workload of size-reduction ALR should be organized according to segment
reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k basis vec-
tors. The bit-complexity of Gauß-reduction of π`(b`), π`(b`+1) is quasi-linear in the bit-length of

7

b`,b`+1 [NSV10]. Therefore we do not split up this LLL-reduction into LLL-swaps. Gauß-reduction

of π`(b`), π`(b`+1) for ` = `max decreases D(B) by the factor 2−2µ−1 while LLL-swaps guarantee

only a decrease by the factor 3
4
.

A result that is very close to Cor. 2 and Cor. 3 has been proved independently in Lemma 12 of
[HPS11]: max` ‖b∗`‖2/‖b∗`+1‖2 ≤ 4

3
+ ε can be achieved in polynomial time nO(1)size(B)1+o(1) for

arbitrary ε > 0 by block reduction of dimension 2.

Early Termination (ET). Terminate as soon as D(B) < (4
3
)

n3−n
6 .

D(B) < 4
3
)

n3−n
6 implies that E[ln(‖b∗`‖2/‖b∗`+1‖2)] < ln(4/3) holds for random ` and Pr(`) =

6 `h=`2

h3−h2−h
. In this sense the output basis approximates ”on the average” the logarithm of the

inequality ‖b1‖/(detL)1/n ≤ (4
3
)

n−1
4 that holds for ideal LLL-bases with δ = 1.

Corollary 3. ALR terminates under ET in n3(µ + |µ0|)/3 rounds, where µ, µ0 are the µ-values
of the input and output basis. Moreover |µ0| ≤ n log2 M0 and µ ≤ log2 n + log2 log2 M0.

Proof. Consider the number #Itµ of rounds until either the current µ decreases to µ − 1 or else

D(B) becomes less than (4/3)
n3−n

6 . As in the proof of Corollary 2 each round with µ results in

Gauß-reduction under π` if µ ≥ 0, resp. an LLL-swap if µ < 0, results in

‖b∗new
` ‖2 < ‖b∗old

` ‖22−2µ−2
hence D(Bnew) < D(Bold)2−2µ−1

.

Under ET this shows as in the proof of Cor. 1 that

#Itµ < log2(D(B(in))/(D(B(fin)))/2µ−1 ≤ (2µ n3−n
6

)/2µ−1 = n3−n
3

.

Hence µ decreases to µ− 1 under ET in less than n3−n
3

rounds. The proof of Lemma 1 shows that
|m0| ≤ n log2 M0. �

Open problem. Does ALR realize max` ‖b`‖2/‖b`+1‖2 ≤ 4
3

in a polynomial number of rounds ?
Can ALR perform for µ � 0 without ET more than O(n3) rounds until either the current µ
decreases to µ− 1 or that D(B) ≤ 1 ? We can exclude this for µ ≥ 0 and under ET also for µ < 0.

References

[GHKN] N. Gama, N. Howgrave-Graham, H. Koy and P, Q. Nguyen, Rankin’s constant and block-
wise lattice reduction. In Proc. of CRYPTO’06, LNCS 4117, Springer, pp. 112–130, 2006.

[GN08] N. Gama and P. Nguyen, Finding Short Lattice Vectors within Mordell’s Inequality, In
Proc. of the ACM Symposium on Theory of Computing STOC’08, pp. 208–216, 2008.

[GN08b] N. Gama and P.Q. Nguyen, Predicting lattice reduction, in Proc. EUROCRYPT 2008,
LNCS 4965, Springer-Verlag, pp. 31–51, 2008.

[HPS11] G. Hanrot, X. Pujol and D. Stehlé, Terminating BKZ, Cryptology ePrint Archive, Report
198, 2011, personal communication 21.2.2011, final version in Proc. CRYPTO’11, LNCS
6841, Springer-Verlag, 2011.

[KS01] H. Koy and C.P. Schnorr Segment LLL-reduction of lattice bases, In Proceedings of the
2001 Cryptography and Lattice Conference (CACL’01), LNCS 2146, Springer-Verlag, pp.
67-80, 2001.

[LLL82] H.W. Lenstra Jr., A.K. Lenstra and L. Lovász, Factoring polynomials with rational coef-
ficients, Mathematische Annalen 261, pp. 515–534, 1982.

[NSV10] A. Novocia, D. Stehlé and G. Villard An LLL-reduction algorithm with quasilinear time
complexity. Technical Report, version 1, Nov. 2010.

[S87] C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theoret.
Comput. Sci., 53, pp. 201–224, 1987.

[S03] C.P. Schnorr, Lattice reduction by sampling and birthday methods. Proc. STACS 2003:
20th Annual Symposium on Theoretical Aspects of Computer Science, LNCS 2007, Springer-
Verlag, pp. 146–156, 2003. //www.mi.informatik.uni-frankfurt.de

[S06] C.P. Schnorr, Fast LLL-type lattice reduction, Information and Computation 204, pp. 1–25,
2006.

8

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

