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Abstract. We accelerate the slide-reduction algorithm of [GNO8] with blocksize k to run for a
given LLL-basis B of dimension n = hk under reasonable assumptions within in2h log,,. a lo-
cal SVP-computations of dimension k, where o > % is the quality of the given LLL-basis and &
is the quality of slide-reduction. If the given basis B is already slide-reduced for blocksize k/2 the
i n’h log, ;. o bound further decreases to nh?(1 +log, . Yk/2), where 7y /2 is the Hermite constant.

These bounds are polynomial in n for arbitrary bit-length of B. Slide-reduced bases for which the

n—=k

approximation factor ||b1| /A1 is nearly maximal can easily be improved. If ||bi|[/A1 = ~, " is

maximal we can easily find a shortest lattice vector. We also accelerate LLL-reduction.
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Introduction. Lattices are discrete subgroups of the R™. A basis B = [b1,...,b,] € R™*" of n
linear independent vectors by, ..., b, generates the lattice £(B) = {Bx|x € Z"} of dimension n.
Lattice reduction algorithms transform a given basis into a basis consisting of short vectors. The
length of b € R™ is [|b|| = (b*b)Y/2. A\ (L) = minye,\o ||bl| is the minimal length of nonzero b € L.
The determinant of £ is det £ = (det B'B)'/2. The Hermite bound A (£)? < ~,(det £)2/™ holds for
all lattices £ of dimension n and the Hermite constant 7y,

The LLL-algorithm of H-W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a

n—1
given basis B in polynomial time into a basis B such that ||b1|| < o™z A1, where o > 4/3. It is
important to minimize the proven bound on ||by||/A; for polynomial time reduction algorithms and
to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize k > 2 generalizing the
blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. The algorithm
of [GHKNO6] improves blockwise HKZ-reduction by blockwise primal-dual reduction. So far slide-

reduction of [GNO8b] yields the smallest proven approximation factor ||bi||/A1 < ((1 + 5)'yk)H
of polynomial time reduction algorithms. The algorithm for slide-reduction of [GNO08b] performs
O(nh -size(B)/e) local SVP-computations, where size(B) is the bit-length of B and ¢ is the quality
of slide-reduction. This bound is polynomial in n if and only if size(B) is polynomial in n. The
workload of the local SVP-computations dominates the overall workload. [NSV10] shows that the
bit complexity of LLL-reduction is quasi-linear in size(B). The LLL-reduction is performed on
the leading bits of the entries of the basis matrix (similar to Lehmer’s ged-algorithm) using fast
arithmetic for the multiplication of integers and fast algorithms for matrix multiplication.

Our results. We improve the O(nh - size(B)/e) bound of [GN0O8b] by choosing the blocks for the
next local reduction step as to maximize its progress. We first analyze this strategy in minimizing
[b1]l/(det £)*/™ by the concept of almost slide reduction and then extend this analysis to minimize
|[bi|l/A1(£). Theorem 1 studies the maximal number of local SVP-computations during almost
slide-reduction with blocksize k for an input LLL-basis B € Z™*™ for §,a and dimension n = hk.
It shows under a reasonable assumption that this number is at most § n°h log,,. o. This bound
is independent of the bit-length of B. Corollary 1 shows that if the given basis is almost slide-
reduced for blocksize k/2 the number of local SVP-computations for almost slide-reduction with
blocksize k further decreases to nhQﬁ(l +log, . Vk/2), halving the bound of Theorem 1 for
k = 32. For the first time this qualifies the advantage of first performing block reduction with half
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the blocksize. Theorem 4 shows that given a slide-reduced basis for blocksize k and € = 0 such

n—k
that ||b1]|/A\1 = 7" is maximal, we can easily find a shortest lattice vector. More generally, this
indicates that the closer ||bi1]|/A1 is to the maximumf for slide-reduced bases of dimension n and
blocksize k the easier it is to find a nonzero lattice vector b that is substantially shorter than b;.
We point to such an algorithm.

We also accelerate LLL-reduction. Corollary 3 shows, under a reasonable assumption, that
accelerated LLL-reduction computes an LLIL-basis within n® log, size(B)/3 local LLL-reductions of
dimension 2. This bound is polynomial in n if log, size(B) = n°W . Lemma 2 shows that every
LLL-basis for § such that 1 — § < 2~*5%7¢(5) g an ideal LLL-basis for § = 1.

Notation. Let B = [b1,...,b,] € R™*" be a basis matrix of rank n = hk and B = QR be its QR-
decomposition, where R = [r; j]i<i,j<n € R™*™ is upper triangular with positive diagonal entries
rii > 0and Q@ € R™*™ is isometric with pairwise orthogonal column vectors of length 1. We denote
GNF(B) = R. Let Re = [rij]ke—k+1<i,j<ke € R¥*F be the submatrix of R = [r; ;] € R™*™ for the
{-th block of blocksize k > 2, Dy = (det R¢)?. Let R, = [rij]re—ki2<ij<wer1 € RF*¥ denote the
{-th block slided by one unit. R¥ = UyR; Uy is the dual of R, € R*** where R, " is the inverse
transpose of Ry and Uy, € {0, l}ka is the reversed identity matrix with nonzero entries u; x—i+1 =1
for i = 1,..., k. Note that GNF(R}) = RY¥. R* = (R})* is the dual of Rj.

Let HlaXRzT Tko+1,k6+1 denote the maximum of The+1,k6+1, [Fi,j}kéfk+2§l,j§ké+1 = GNF(RQT)
over all T € GLy(Z). Note that MaX gy The41,ke41 = 1/)\1(C(R2*)). Let m; : R™ — span(by, ..., bi_l)L
be the orthogonal projection, and b; := m;(b;) thus |bj|| = 7.

LLL-bases. [LLL82] A basis B = QR € R™*" is LLL-basis for §, + <§ <1, a =1/(6 — 1/4) if
o |rij| < %r“ holds for all j > 1, ° érf,i < rizyiﬂ + rfﬂyiﬂ holds fori=1,...,n — 1.
An LLL-basis B for § satisfies |b;||*>/||bjs1||> < aforall £=1,..,n — 1 and
n—1 n—1
1] < a7 (det £)1/7, [bi]] <™= Au

Definition 1. [GNO08|] A basis B = QR € R™*", n = hk is slide-reduced for e > 0 and k > 2 if
1. ||brer1ll = mees1,ke1r = A (L(Req1)) for£=0,...,h —1,
2. maxprrrerikerr S V1te- [brer1ll holds for € =1,...,h —1.

1 slightly relaxes the condition of [GNO8] that all bases R, are HKZ-reduced. The following bounds
have been proved by GAMA and NGUYEN in [GNO8, Theorem 1] for slide-reduced bases:

n— n—k
3. |Ibal < ((1+)m) 2 F=7 (det £)'/7, 4. [bafl < ((T+&)ve) = Au

Almost slide-reduced (asr-) bases. We call a basis B = QR € R™*", n = hk, an asr-basis for
€ > 0 and blocksize k if clause 2 of Def. 1 holds for some ¢ = {4, that maximizes Dy/Det1 and
clause 1 of Def. 1 holds for Ri, Re, Re+1.

Theorem 2 shows that a slightly stronger inequality 3. holds for all asr-bases.

Accelerated almost slide reduction (ASR)

INPUT LLL-basis B=QReZ™ ", R=[ri;] ER"™" n=hk, 0<e<1,k>2
LOOP Choose some ¢ = {ma, that maximizes D¢/Dey1. By SVP-computations on
L(Re), L(R¢+1) transform Ry, Re+1 and B such that 1 of Def. 1 holds for Ry, Re+1.
By an SVP-computation on R;* verify whether 2 holds for ¢ and the input €.

IF 2 does not hold THEN transform R; and B such that 2 holds for € = 0

ELSE transform R; and B such that ||bi|| = A\1(£(R:1)) and terminate.  end loop
OUTPUT the resulting asr-basis B.

We can replace the 3 SVP-computations per round on L(R¢), L(Re11), L(R;*) by the stronger and
faster two SVP-computations on L£(Re11), L(R}*), where R} = [ri j|on—r<ij<ernt1 € REFDXEFD,
Alternatively we can perform two SVP-computations on £(RZ’), £(R2TH) per round, where R, =

0+1 T
R+ X (k+1)

[1i,5]er<i,j<tktr €



Theorem 1. ASR transforms a given LLL-basis B € Z™*" for 6 <1, a =1/(6 — 1/4), n = hk,
within 1—12712hlog1Jr€ a rounds (passes of the loop) of three local SVP-computations of dimension k
either into an almost slide-reduced basis for € and blocksize k, or else arrives at D(B) < 1, where

D(B) =aet [1{2 (De/Deen)* ™" = DYDY . D240 D oD,

Proof. We use the novel version D(B) of the Lovész invariant to measure B’s reducedness. Note that
h?/4 — (£ — h/2)® = b — £* is symmetric to £ = h/2 with maximal point £ = [h/2]| = [h/2 — 1/2].
The input LLL-basis B®™ for § < 1 satisfies for o = 1/(8 — 1/4) that Dg/Dey1 < o*” and thus

D(BU™) < o*’s for 5= Z:_ll he— 2 = %.
Fact. Every non-terminal round with ¢ decreases D, and D(B) as
Dy < D¢/(1+¢) D(B™") < D(B)/(1+¢)2.
This is because the round changes merely the factor . He , (D, /’DtH)t(h*t) = (D¢Dys 1) 21 D2
t=0-1,0,0+1

of D(B), where D;D¢41 does not change. Hence, after at most

. 2 3_ n2
3log, . D(BM) < Jlogy . (aF°) = k2" o logy o < ptlogy o

rounds either B is asr-basis for € or else D(B) < 1. Our bound on the number of rounds does not
count the terminal round which does not decrease D. g

Remarks. 1. We conjecture that the time bound of Theorem 1 even holds if on termination
D(B) < 1. This might be provable by the dynamical system method of [HPS11]. Anyway, D(B) < 1
is very unlikely. If D(B) < 1 then E[In(D;/D¢+1)] < 0 holds for the expectation E for random ¢

with Pr(f) =qef 6%. (Note that ZZ:_II Pr(¢) = 1.) In this sense Dy < Dy41 would hold ”on

the average” if D(B) < 1, whereas such D¢, D¢y1 are extremely unlikely.

2. On the other hand, if the output basis of ASR satisfies on average that ||b}||?/||bj . [? > o'/*
n2h

then the number of rounds decreases to at most (1 — 1/t)"5* log, ,_ a.

1+1/k n—1

Theorem 2. Every asr-basis B € Z™ ™ for e,k satisfies ||b1| < ((1+¢) 5 yk)%m(det Lytr.

Proof. We see from clause 2 of Def. 1 and the Hermite bound on A1 (L(R))*) < 1/Pket1,ke41 that
k ok
Dé/riul,kul <((1 +5)’Yk) v‘i’zﬁ,kul 1)
holds for £ = £pax, where D) := (det R})?. Moreover, the Hermite bound for R, shows that

2h—2 k 2
Tho— bt 1 kl—kt1 < Vk De/Tio—k41,kt—kt1-

Combining these two inequalities with Dj /17, 1 ko1 = De/Tho— ki1 p0—ks1 Yields for £ = lpqaa:

k
Tho—tt1,kl—k+1 < (14 €)Ve) F=T Thet1,kot1- (2)
Next we prove
1+1/k 2k2
'D[/'Dz+1 S((I—FE) 2 ’yk)’“*l for{=1,...,h—1. (3)

Proof. As (1) holds for ¢ = mar and 1 holds for Ry4+1 the Hermite bound on A\ (L£(Re+1)) yields

Dy < (1+ €)k71§7"1%§+1,ke+1 < (14 " Doy
Hence (2) yields for £ = lmaa

2k
Dy = Tip i1 he—tt1 D0/ Ther 1 pe01 < (L4 €)yk) F-1 Dy (4)
Combining the two previous inequalities yields for £ = £y a0
2k k. 2k 14+1/k 2k2
Dy < ((1+2)3) 2T (1+ £) 125 Degr = (1+2) "3 4) BT Dy

Moreover if (3) holds for £,qs it clearly holds for all £ =1,...,h — 1.
3. 1 of Def.1 for Ry and (3) imply for £ =1, ..., h that

1+1/k | 2k(4-1)
Io1]|? < mDy* < (L +e) 2 ) =1 Dk



The product of these h inequalities for £ =1,..., h yields

/k kh(h
2 < (1 €)5 ) TFT (det £)2/%,
/k n—k /k n—1
Hence the claim  |[by|?/(det £)*/™ < 41 ((1 +¢) e ) P < (1 +¢) e Vi) BT O

Strong asr-bases. We call an asr-basis B € R™*"* strong if 2 of Def. 1 holds for £ = h — 1 and 1
of Def. 1 holds for R,—1 and R.

Most likely, we obtain a strong asr-basis from any asr-basis by O(k‘ln k/a) ASR-rounds with
¢ =h—1and ¢ = {4, that can possibly change B. ThlS takes at most k 7(1+log;, . vr) ASR-
rounds with £ = h — 1 because Dy—1/Dr < ((1 + €)vk) = holds for any asr-basis and each round
with £ = h — 1 decreases Dp—1/Ds by a factor (1 + 5)72. Similarly we can transform an asr-basis
B into a slide-reduced basis by iterating ASR-rounds that can possibly change B. Most likely this
takes only O(nlnk/e) ASR-rounds, much fewer than to transform an LLL-basis into an asr-basis.

Theorem 3. Every strong asr-basis B = [by,...,by] fore > 0,k > 2, n = hk satisfies

14+1/k n—k
[baff < (T+e)" = )=t h
provided that some b € L(B) \ L(b1,...,bn_x) satisfies |b|| = A1.

+1/ 2kh—4k
Proof. (5) for £ = h — 1 shows that [b1]> <yk((L+e)" 2 ) *T Dl/kl
Clearly 2 for £ = h — 1 implies (2) and (4) for £ = h — 1, and thus we get
1+1/k 2kh—4k 2
oul> < ((L42) 2 %) =1 (L+e)m) D),/ (by (4) for £ =h —1)
1+1/k 2kh—4k

1+ 2kh—4k 2
S%((lJﬂf) 2 ’Yk) k-t ((1+5)7k)k71+17ﬁ721—k+1,n—k+1

(by 1, 2 for £ = h—1 and the Hermite bound for R;Ltl we have D;L,ll/k <(1 +6)’yk ri,kﬂ,n,kﬂ)
/ n—k
<(1+ E)1+; - 'yk)z’c*1 TR kbl ki1- (since 1+ =5 < =5 for k > 2)

The theorem assumes that ||b|| = A1 holds for some b € £\ L([b1, ..., bp_k]). Hence Tr—kt1,n—k4+1 <
[[Tn—k+1(b)|| < A1. The latter inequalities yield the claim.

We have decreased the exponent 1 of (1+¢) in 3 and 4 to # ~ 1/2 for large k. O

Iterative almost slide-reduction with increasing blocksize. Consider the blocksize k = 27.
We transform a given LLL-basis B € Z™*"™ for §,a, n = hk iteratively as folllows:

FOR i=1,..,7 DO transform B by calling ASR with blocksize 2° and .

The final ASR-call with blocksize k = 2/ dominates the overall workload of all ASR-calls of the
iteration, including the workload for the LLL-reduction of the input basis, due to the dominating
workload of local SVP-computations in dimension k.

We bound the number #1It of rounds of the last ASR-call with blocksize k = 27. Importantly, the

252
input B of this final ASR-call satisfies ~ D¢/Deq1 < ((14€)7yy2) F/27 1 as follows from (3) with
blocksize k/2 and # <1 for k > 2. In fact we have that Dy/Dey1 < maxe(DL;’k/Q/DeH’k/Q)‘l,
where Dy /2 = (det Rg7k/2)2 for the £-th block Ry /2 of blocksize k/2 of the input basis B. Hence

k2 h3—h

2
D(B) < (1 +&)yks2)*277°
holds for the input B. As each round prior to termination decreases D(B) by a factor (1+¢)2 the
number #1t of rounds of the last ASR-call is bounded as
2 3,2
#It < 3 10g1+5 D(B) < k/k2 P logy (14 €)yy2)
< §m logy . ((1+€)vk/2),

provided that D(B) > 1 holds on termination. This proves




Corollary 1. Given an almost slide-reduced-basis B € Z™*™ for € > 0 and blocksize k/2, n = hk,
ASR finds within %% log, (14 )k 2) rounds of three local SVP-computations an asr-basis
of blocksize k and £ unless it terminates with D(B) < 1.

This shows that the upper bound on the number of rounds of ASR with blocksize k and e of
Theorem 1 decreases for ¢ < 0.01 and o = 4/3 by a factor

4/((1 = 2/k)k) I o/ n((1 + €)2) ~ Ak — 2)~ Iy 2/ In(4/3)
if the input basis B is an asr-basis with blocksize k/2. For k = 32 this is less than half the bound from
Theorem 1, where the input is an LLL-basis for §,a. Here we assume that y16 ~ 2v/2. Moreover,

within only half of these rounds ASR achieves D(B) < ((1 4 €)7k) 6, a bound on the final
B that follows from (3). Interestingly, this bound on D(B) is sharp on the average.

212
k—1

Fast slide-reduction for extremely small e. Instead of running ASR with a very small € and
some k on an input LLL-basis it is faster to first run ASR for some ¢’ > ¢ and k' > k such that

(L)) 71 > (L)) (6)
Then perform on this asr-basis ASR-rounds for ¢, k for such ¢ that the ASR-round can possibly
change B, and terminate when B can no more change. (6) implies that the upper bound 3 on

[b1]|/(det £)*/™ is smaller for an asr-basis with ', k' than for an asr-basis with e, k. This suggests
that there are most likely only a few ASR-rounds for ¢, k.

Lemma 1. Any asr-basis B = [b1,...,by] € Z™*™ for ¢ < 1/MZ™, Mo := max(||b1|?, ..., [|bx|?),
is asr-basis for e = 0.

Proof. Let € > 0 be minimal such that B is asr-basis for e, k. We see from the proof of (3) that
the inequality 2 of Def. 1 holds with equality for some ¢ = /{,,4,. Consider an artificial ASR-
round performed on B with ¢ = {,,4,; resulting in Tl?éefl,kul = MAXp,T kit 1,ke41- Let Dy :=
(det[b1, ..., bxe])? € Z denote the value before and D7¢* after this round. Then D7 < D, because
det R, decreases in that round. Importantly, the values (Tk[+17kz+1)2De, (rZﬁ”LMHFD?ew before
and after this round are integers — this claim is analogous to [LLL82,(1.28)]. As 2 of Def. 1 holds
with equalty we have (ri¢¥s ret1)” = (1 +€) (Twet1,ke41)° and thus

&, (Phes1,ket1)”, (7'2!.641—”1,194-5-1)2 € Z/(D.Dg“”).

Hence ¢ > 1/(D,D}") > 1/MZ" 2" since Dy < D, < M§* < MJ~*. Therefore, the minimality
of € implies that either € = 0 or &€ > 1/Mg™. This proves the claim. O

Improving worst case slide-reduced bases. We characterize slide-reduced bases for k and ¢ = 0
for which ||b1]|/A1 is maximal. A shortest lattice vector can easily be found for such a basis.

Theorem 4. Let the basis R = GNF(R) = [b,...,by] € R"*", n = hk be slide-reduced for k and

n—k
e = 0. If |[b1]|[/\ = v, " then there exists buin € 0" "RF N L(R) with ||bmin|| = M. Any such
bmin can be found from its projection mwn—k+1(Pmin) in O(n2) arithmetic steps.

Proof. Let R = [r; ;] € R™™™ then mnp—p+1 L(R) = L([[7i,j]n—k<ij<n) I8 a lattice of dimension k.
By (2)the slide-reduced R satisfies

1
The—k41,kl—k+1 < Vo ' Tregiperr  for £=1,.. h—1.
n—k
Therefore ||b1||/A1 = 'y,f’l implies ||bmin|| = Tn—k+1,n—k+1. Hence mn_g41(bmin) is a shortest
nonzero vector of mn_ky1 L(R) of length 7,_k41,n—k+1. Therefore b € 0" FR* N L(R). Let

bmin = >0 tib;. Then, given > 7",  t;b; we find t,_,...,t1 € Z from the equations

tirj; bkt + >, +i=m—k+1"tr;; =0
for j =n —k, ..., 1. This proves the Theorem. O



Note that we find all by, € 0" FR* N L(R) by enumerating the shortest vectors of m,_r4+1 L(R)
and trying to extend them to some b,in € 0" FRF N L(R). In particular, uf the shortest vector +b
of Tn—k+1 L(R) is unique, which is most likely the case, then we find bmin € 0" FR* N L(R) by an
SVP-computation of dimension k in O(n?) arithmetic steps that compute ¢ + 1, ..., yn— € Z.

Conclusion. Given a slide-reduced basis R € R™*™ with blocksize k and € = 0 for which ||b1||/A1
is maximal we can easily find a shortest vector of £ * R). More generally, this suggests that the
closer ||b1]|/A1 is to the maximumf or slide-reduced bases of dimension n and blocksize k the easier
it is to find a nonzero lattice vector b that is substantially shorter than b;.

Such short b can be found by random sampling reduction [S03]. This method transforms a given
basisR = GNF(R) = [r;,;] = [b1,...,bn] € R™*™ by checking for sufficiently many integer combi-
nations b = Z?:n t;b; whether size-reduction of b versus bi,...bp_y—1 yields a vector b that is
shorter than bi. By Theorem 1 of [S03] this method finds under reasonable assumptions a basis such
that |[b1]|/M\ < (k/6)2F within time O(n?(k/6)*/*). Random sampling reduction of [S03] seems to

n—~k
outperform slide-reduction which produces a basis such that ||b1][/A1 < ((1 + €)vyk)* ! in time

O(anTIZ(HO(I))). Random sample reduction of [S03] is complementary to slide-reduction in that it
largely improves slide-reduced bases for which ||b1||/A1 is maximal. It makes sense to alternate the
two reduction methods iteratively as the two methods rely on independent principles.

Improving worst case LLL-bases. We translate Theorem 4 to LLL-bases with § = 1. These
bases are slide-reduced for k = 2 and € = 0 and thus |[b1]|*> < (3)" °A7 holds by Theorem 3
since 43 = 3. If |by|> = (3)" A7 then by Theorem 4 a shortest lattice vector can be found by
size-reducing a combination of the last two basis vectors:

Theorem 5. Let R = GNF(R) € R"*" be an LLL-basis for § = 1. If |[b1|* = (3)"7?)i, i.e.,
IIb1|l/A1 is mazimal, then there exists buin = (0,...,0, 270 _1.n—1,7n.n)" € L(R) of length ||bmin|| =
A1 and such bpin can be found in O(n2) arithmetic steps.

Accelerating LLL-reduction (ALR). We accelerate LLL-reduction by performing either local
GauB-reductions, i.e., LLL-reductions with 6 = 1, or LLL-swaps on by, by41 for an £ that maximizes
[be|l/|lme(bet1)|| and thus promises maximal reduction progress.

We value the reduction of the basis B satisfying max [|b;[|*/||b; ., ||> > 5 the integer y defined by
27" < maxe b7 P/Ib7a 17/ < 27" )

ALR iterates the following loop:

WHILE the loop changes B DO
IF ;>0 THEN for an ¢ that maximizes ||b7||/||bzs ]| LLL-reduce m¢(be), me(bes1)
with § = 1. ( this is a GauB-reduction of m¢(b¢), m¢(bet1) )
ELSE choose an ¢ that after the size-reduction bey1 1= be1 — [ree41/7e,e]be
maximizes b |/[lme(bes1) | . I me(bes1)|2 < 8l[b7 |2 swap be, et
and size-reduce by, byy1 against by, ...,be_1. end while

termination size-reduce the basis B to satisfy |r; ;| < 27 for all j > i.

Theorem 6. Given an LLL-basis B € Z™*™ for §' <1, o’ =1/(8' —1/4) ALR with § such that
1> 6 > max(d, %) terminates within % log, /5 o rounds of local Gauf-reductions, resp. LLL-swaps
at an LLL-basis for 8, unless it arrives at D(B) := ;:_11(Hb25||2/|\b2+1||2)"Z_22 <1.

Theorem 6 proves that the number of rounds of ALR is O(n®) for input LLL-bases of arbitrary
quality §, o, a bound that is independent of size(B), whereas the number of rounds for the original
LLL-algorithm [LLL82] is merely polynomial in size(B).



Proof. We use D(B) for blocksize 1, D(B) := [[;=, (Ibi|I*/|Ibis1]*)“" 9. Each round decreases
[[b;||? by a factor &, and both ||b}||?/||bj,1||*, D(B) by a factor §°. Then the number of rounds
until either an LLL-basis for § appears or else D(B) < 1 is at most

TLB—TL

n3
3log, s D(B) < 5log, 5(a’) 5 < f5log, 5. O

The workload per round. If each round completely size-reduces by, bey1 against by, ..., be_1 it
requires O(n?) arithmetic steps. If we only size-reduce b1 against by then a round costs merely
O(n) arithmetic steps but the length of the integers might explode. This explosion can be prevented
at low costs by doing size-redction in segments, see [S06], [KSO1]. Note that the bit complexity of
the round can be made quasi-linear in size(B) by the method of [NSV10]: perform the arithmetic
steps of the round on the leading bits of the entries of the basis matrix using fast integer arithmetic.

Corollary 2. The p-value (7) of the input basis satisfies p < log, n + log, logy Mo, letc €Z ¢ >0

2n8
3

at D(B) < 1. This number of rounds is polynomial in n if log, log, Mo < n

be constant. Within (n+ 2°) rounds ALR either decreases the initial i to u < —c or else arrives

o)

Proof. As initially %22“71 < max ||b} ||?/||biy1]* < %2% Each round of ALR with £ = £z

decreases ||bj||?/|b;,1||* by a factor 272%17 where p is the initial value of the round. Following the
. . n— * * ne—e?

fact in the proof of Theorem 1 this decreases D(B) =acy [[7—, (I|b;||?/||biy1||?)™ ¢ for k =1 as

D(B™v)/D(B°%) < 272""" This bounds the number #It, of ALR-rounds for the reduction of p

t -1t
onTRe #lt, < (2 + log, 4) /247

unless ALR arrives at D(B) < 1. Similarly ALR decreases the u of the input-basis within at most
%3(2(,11 +c)+log, 2 > 27 < %(u +c+2"log, 3) < %(u +:29)

i=—c

rounds to —|c| unless it arrives at D(B) < 1.
The bound x < log, n + log, log, Mo follows from (7) and |[bj4|* > 1/Mg". O

LLL-reduction for extremely small 1—§. It follows from Cor. 2 that LLL-reduction with § = 1
is in polynomial time n®™) if log, size(B) = n®®) . For this first compute an LLL-basis for § = 3/4,
transform it into a strong asr-basis for k¥ = 3 and € = 0.07. As ¥4 > 1.07+3 the proven bound
for |[b1]|/(det £)/™ is smaller for this asr-basis then for an LLL-basis with § = 1. Transform the
asr-basis by iterating ALR-rounds with ¢ = 0 that can possibly change B. The work load of the
latter ALR-roads should be negligible compared to the previous reductions.

Next we study LLL-reduction for extremely small 1 — § by block reduction of dimension 2.

Lemma 2. Every LLL-basis B = [b1,...,by] for § > 1 —1/Mg", My := max(||b1|?, ..., ||bn]|?), is
LLL-basis for § =1 and thus max ||b||*/|bj,,[*> < 3.

Proof. Follow the proof of Lemma 1 for e = 1 — §. Let § be maximal such that B is LLL-basis
for §. Consider the effect of an artificial ALR-round with ¢ = /{4, that maximizes rf,g/rl%rl’[“

performed on the LLL-basis B for § < 1 and resulting in (r73*)* = 677 ,. This holds as § is maximal
such that B is LLL-basis for 6. Then

D, = (det[by,....b)*> € Z, 77 ,De_1, (r}¢")* D}y €Z
1—-8>1/(De_1DFY) > 1/MZ™ 2, and thus 1 — § < 1/ME™ implies § = 1. |

Comparison with previous algorithms for LLL-reduction. The original LLL for § = %

[LLL82] has bit-complexity O(n°*¢(log, My)**¢) performing O(n? log, ;s Mo) rounds, each round
size-reduces some by in n? arithmetic steps on integers of bit-length nlog, Mp; ¢ in the exponent
comes from the fast FFT-multiplication of integers. The nlog, Mo bit-length of integers has been
reduced to n+log, Mo by orthogonalizing the basis in floating point arithmetic. The LLL-time can
be reduced by 10 - 15 % by successively increasing ¢ from 3/4,7/8,15/16,31/32,63/64 to 0.99.

To minimize the workload of size-reduction ALR. should be organized according to segment
reduction of [KS01], [S06] doing most of the size-reductions locally on segments of k basis vec-
tors. The bit-complexity of Gaufl-reduction of m(be), 7e(b, ;) is quasi-linear in the bit-length of



by, b, ; [NSV10]. Therefore we do not split up this LLL-reduction into LLL-swaps. Gauf-reduction
of me(be), me(b, ) for £ = £ias decreases D(B) by the factor 272"~1 while LLL-swaps guarantee
only a decrease by the factor %.

A result that is very close to Cor. 2 and Cor. 3 has been proved independently in Lemma 12 of
[HPS11]: maxe ||b}||*/|bj1]* < 3 + & can be achieved in polynomial time n®Wsize(B)+°M for
arbitrary € > 0 by block reduction of dimension 2.

4 ”36*

Early Termination (ET). Terminate as soon as D(B) < (3)

77.3—77.
D(B) < 3) o implies that E[In(||b7||*/|b741]/*)] < In(4/3) holds for random ¢ and Pr(¢) =

6#252_” In this sense the output basis approximates "on the average” the logarithm of the

n—1

inequality [|b1||/(det £)*/™ < (3) 7 that holds for ideal LLL-bases with ¢ = 1.

Corollary 3. ALR terminates under ET in n®(u + |po|)/3 rounds, where u, o are the p-values
of the input and output basis. Moreover |uo| < nlogy Mo and u < log, n + log, log, Mo.

Proof. Consider the number #1It,, of rounds until either the current p decreases to u — 1 or else

D(B) becomes less than (4/3)" 8 . As in the proof of Corollary 2 each round with u results in

GauB-reduction under 7, if g > 0, resp. an LLL-swap if p < 0, results in
by ||* < [[by4|2272" " hence  D(B") < D(B*4)272""",
Under ET this shows as in the proof of Cor. 1 that
3

#1It, < log,(D(B™) /(D(BY™)) 21—t < (20’ jgn—t = n’on,

n3—n

Hence p decreases to 4 — 1 under ET in less than *—" rounds. The proof of Lemma 1 shows that
|mo| < nlog, Mo. O

Open problem. Does ALR realize max; ||b¢||*/|[bet1|* < 4 in a polynomial number of rounds ?
Can ALR perform for y < 0 without ET more than O(n®) rounds until either the current u
decreases to u— 1 or that D(B) <1 ? We can exclude this for u > 0 and under ET also for p < 0.
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