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Abstract

Given two setsA,B ⊆ R
n, a measure of their dependence, or correlation, is given by the expected

squared inner product between randomx ∈ A andy ∈ B. We prove an inequality showing that no
two sets of large enough Gaussian measure (at leaste−δn for some constantδ > 0) can have correlation
substantially lower than would two random sets of the same size. Our proof is based on a concentration
inequality for the overlap of a random vector on a large set.

As an application, we show how our result can be combined withthe partition bound of Jain and
Klauck to give a simpler proof of a recent linear lower bound on the randomized communication com-
plexity of the Gap-Hamming-Distance problem due to Chakrabarti and Regev.

1 Introduction

Let A,B ⊆ R
n, and letγ be then-dimensional Gaussian measure. Denote byγ|A×B the measure corre-

sponding to the normalized restriction ofγ × γ to A×B, and let

ν(A,B) := E(x,y)∼γ|A×B

[

(x · y)2
]

.

The quantityν(A,B) can be interpreted as a measure of correlation betweenA andB, in the sense that
a largeν indicates sets with mostly aligned vectors, while a smallν indicates sets that are close to being
orthogonal.

We study the following question: How small canν(A,B) be for arbitrary setsA,B? If A contains a
single vectorx of norm

√
n, then the minimizingB of fixed measure is the fattened equatorB = {y ∈ R

n :
−t

√
n ≤ y · x ≤ t

√
n}, for whichν({x}, B) ≤ t2n andγ(B) ∼

√

2/πt for smallt. Hence for any fixed
δ > 0 there exists a setB of constantmeasure such thatν({x}, B) = δn, an arbitrarily small fraction of its
expected value for a pair of vectors inRn chosen at random according toγ × γ. In this note we show that
in caseA is restricted to not being too small (i.e.γ(A) ≥ e−δn), then no setB of measure at leaste−δn can
significantly biasν(A,B) below its expectation for random vectors. More precisely we show the following:

Theorem 1. For anyη > 0, there exists aδ > 0 such that for all large enoughn, if A, B both have measure
γ(A), γ(B) ≥ e−δn then

ν(A,B) ≥ (1− η) ν(Rn,Rn) = (1− η)n, (1)
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Note that one may not hope for such a strong inequality in the opposite direction, as the spherical caps
A = B = {x ∈ R

n, x1 ≥
√
2δn} have measure approximatelye−δn but correlationν(A,B) = Ω(δ2n2).

The proof of the theorem is based on a concentration inequality for the random variableν({y}, S), where
y ∼ γ andS is a fixed large enough set, which is described in Lemma 7 below.

Comparison with [2]. Chakrabarti and Regev recently settled the long-standing open problem of the
randomized communication complexity of the Gap-Hamming-Distance (GHD) problem, showing aΩ(n)
lower bound forn-dimensional inputs. Their proof is based on a variant of the smooth rectangle bound [4],
and at its core is an inequality similar to the one we prove in Theorem 1, exceptthat it applies to thecosh
function, intead of the square function. More precisely, if one defines

ν̃α(A,B) := E(x,y)∼γ|A×B
[ cosh(αx · y) ]

for anyα > 0, then the key step in the proof of Theorem 3.5 from [2] consists in showingthat, for every
c, η > 0 there is aδ > 0 such that for every0 ≤ α ≤ c/

√
n andA, B of measure at leaste−δn,

ν̃α(A,B) ≥ (1− η) ν̃α(R
n,Rn). (2)

The proof of (2) is based on a powerful result, Theorem 3.1 in [2] which shows that, ifA is large enough
then for almost ally ∈ R

n the distribution of〈x, y〉 for x ∼ γ|A is close to a mixture of translated Gaussians.
Theorem 3.1 can be seen to imply both (2) and our Theorem 1. The proof of Theorem 3.1, though, is quite
involved, and the main contribution of our work consists in giving a direct proof of our Theorem 1, which
we show is strong enough to imply a linear lower bound on the randomized communication complexity of
GHD.

2 Preliminaries

Distributions. LetN(0, σ2) denote the distribution of a normal random variable with mean0 and variance
σ2. Let χ2 be the distribution of the square of a random variable distributed asN(0, 1), andχ2(k) the
distribution of the sum of the squares ofk independentN(0, 1) random variables.γ is then-dimensional
Gaussian measure onRn, with densityγ(x) = (2π)−n/2e−‖x‖2/2. We sometimes abuse notation and also
denote byγ the2n-dimensional distributionγ × γ. If S ⊆ R

n, γ|S denotes the normalized restriction ofγ
to S: γ|S(x) = γ(x)/γ(S) if x ∈ S and0 otherwise.

Concentration bounds. We will use the following large deviation bounds.

Fact 2 (Gaussian tail bound). LetX be a standard normal random variable. Then for everyt ≥ 0,

Pr
(

|X| ≥ t
)

≤ e−t2/2.

Proof. Bound the upper tail as

Pr
(

X ≥ t
)

=
1√
2π

∫ ∞

t
e−x2/2dx

=
1√
2π

∫ ∞

0
e−(x+t)2/2dx

≤ e−t2/2

√
2π

∫ ∞

0
e−x2/2dx =

1

2
e−t2/2.

A similar bound holds for the lower tail.
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Fact 3 (Bernstein’s inequality, see, e.g., Prop. 16 in [6]). LetX1, . . . , XN be independent random variables
such that for everyi, E[Xi] = 0, and there existsK > 0 such that, for alli and t ≥ 0, Pr(|Xi| ≥ t) ≤
e1−t/K . Then for everya ∈ R

N andt ≥ 0, we have

Pr
(
∣

∣

∣

∑

i

aiXi

∣

∣

∣
≥ t

)

≤ 2e
− 1

4e
min

(

t2

2eK2‖a‖2
2

, t
K‖a‖∞

)

.

As a corollary, one can obtain the following bound for the tail of theχ2 distribution.

Claim 4 (χ2 tail bound). LetN ∈ N, andX1, . . . , XN be i.i.d standard normal random variables. Then for
everya1, . . . , aN ∈ R andt ≥ 0,

Pr
(∣

∣

∣

N
∑

i=1

aiX
2
i −

N
∑

i=1

ai

∣

∣

∣
≥ t

)

≤ 2 e
− 1

8e
min

(

t2

4e‖a‖2
2

, t
‖a‖∞

)

.

Proof. By Fact 2, for everyi theXi satisfy that for everyt ≥ 0,

Pr(|X2
i − 1| ≥ t) = Pr(X2

i ≥ t+ 1) + Pr(X2
i ≤ 1− t)

≤ e1−(t+1)/2

where the extra factore ensures that the bound is trivial whenever the second termPr(X2
i ≤ 1 − t) is

nonzero. Hence theYi := X2
i − 1 satisfy the hypothesis of Fact 3 withK = 2, which leads to the claimed

bound.

The bound in Claim 4 becomes very weak as soon as even one of the coefficientsai is very large. In the
case where theai are non-negative and most are small we can still keep a good control over the lower tail,
as the following claim shows.

Claim 5. Let N ∈ N, let X1, . . . , XN be i.i.d standard normal random variables,a1 ≥ . . . ≥ aN ≥ 0
non-negative reals sorted in decreasing order, andM =

∑N
i=1 ai. Then for everyβ > 0 andt ≥ 0,

Pr
(

N
∑

i=1

aiX
2
i −M ≤ −

βM
∑

i=1

ai − t
)

≤ 2 e−
βt

8e
min

(

βt

4eM
,1
)

.

Proof. Since theai are sorted, for everyi > βM we haveai ≤ 1/β, so that

‖a>βM‖22 :=
N
∑

i=βM+1

a2i ≤ N/β2 and ‖a>βM‖∞ := max
i>βM

|ai| ≤ 1/β

Hence applying Claim 4 toXβM+1, . . . , XM yields that for everyt ≥ 0,

Pr
(
∣

∣

∣

N
∑

i=βM+1

aiX
2
i −

N
∑

i=βM+1

ai

∣

∣

∣
≥ t

)

≤ 2 e−
1

8e
min

(

β2t2

4eN
,βt
)

,

which proves the claim since
∑N

i=βM aiX
2
i ≤ ∑N

i=1 aiX
2
i .

We will also use the Berry-Esseen theorem.

Fact 6 (Berry-Esseen Theorem, see, e.g., [3], Chapter XVI). LetX1, . . . , XN be i.i.d such thatE[Xi] = 0,
E[X2

i ] = σ2 andE[|Xi|3] = ρ, defineY = (X1 + · · ·+XN )/(
√
Nσ) and letZ be distributed asN(0, 1).

Then for allt ≥ 0,
∣

∣Pr(Y ≥ t)− Pr(Z ≥ t)
∣

∣ ≤ 3 ρ

σ3
√
N
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Communication complexity. For a partial functionf : X × Y → {0, 1, ⋆}, we letRε(f) be theε-
error randomized communication complexity of the functionf (we refer to [5] for more background on
communication complexity). Here we allowX,Y to be infinite subsets ofRn and measure input size by the
dimensionn alone.

3 Proof of the main inequality

The proof of Theorem 1 is based on a concentration bound for the average squared inner product between a
vectory ∈ R

n and a randomx ∈ S, whereS is a fixed subset ofRn. Given such a set, it will be convenient
to work with the positive matrixS = Ex∼γ|S

[

xxT
]

, where the expectation is taken entrywise. This matrix
satisfies the following key relation

∀y ∈ R
n yTSy = Ex∼γ|S

[

yTxxT y
]

= Ex∼γ|S

[

(x · y)2
]

. (3)

As we will see, (3) lets us relate the concentration properties ofν({y}, S), for y ∼ γ, to the spectrum ofS.
We show the following concentration bound.

Lemma 7. There exists constantsc, c′ > 0 such that the following holds. Letδ > 0 andS ⊆ R
n such that

γ(S) ≥ e−δn. Then for allα > c′δ,

Pr
y∼γ

(

yTSy ≤ TrS− αn
)

≤ e−cα4n. (4)

Note that, for any setS, Ey∼γ

[

yTSy
]

= TrS ≈ n,1 so that (4) shows thatyTSy cannot be much
lower than its expectation. Before turning to the proof of the lemma, and showing how it implies our main
theorem, we give an example showing that the constraintα > c′δ is necessary (for somec′ > 0). The same
example also shows that one cannot hope for a similar bound on the probability that yTSy is greater than
TrS+ αn, even for relatively largeα.

Example. Fix a parameterα > 0 (think of α as a small constant), and consider the spherical capSα =
{x ∈ R

n : x1 ≥ √
αn}. Since forX ∼ N(0, 1), Pr(X ≥ √

αn) ≤ e−αn/2, the measure ofSα can be
upper-bounded asγ(Sα) ≤ e−αn/2. Here the matrixSα is diagonal, with the first eigenvalue approximately
equal toαn, and the remaining(n − 1) each equal to1, so that its trace is TrSα ≈ αn + (n − 1). For
y ∼ γ, the distribution ofy21 is χ2 with expectation1 and standard deviation

√
2; in particular with constant

probability it is less than3/4. Conditioning on this event,

yTSαy ≈ αny21 + (y22 + · · ·+ y2n) ≤ (3α/4)n+ (y22 + · · ·+ y2n)

which is less than TrSα − (α/4)n with constant probability. Hence one should expect that in (4) it is
necessary to allow the overlapyTSαy to be moderately smaller than its expectation TrSα, since this can
hold even with constant probability. Moreover, it is not hard to show that for anyβ > 0 we havePr(y21 >√
2βn) = Ω(n−1/2e−βn), and if this holds then the overlapyTSαy is at leastα

√
2β n3/2, which is much

larger than TrSα = (α + 1)n − 1 for anyβ = ω(1/n): there cannot be any strong concentration in the
direction opposite to the one we are claiming.

Before proving Lemma 7, we show that it implies Theorem 1.

1We will get back to this approximation later, but it is not hard to show that TrS is within a factor≈ (1 ±
√
δ) of n by using

the bound given in Claim 4.
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Proof of Theorem 1.Let η > 0 be given, and letA := Ex∼γ|A

[

xxT
]

. Fix a δ > 0 small enough so that
both the following hold:

1. |TrA− n| ≤ η n/4. This is made possible by Claim 4.

2. The set ofy for whichyTAy ≤ TrA− ηn/4 has measure less than(η/4)e−δn. This can be obtained
from Lemma 7.

Combining these two estimates, we obtain

Ey∼γ|B

[

yTAy
]

≥ 1

γ(B)
(γ(B)− (η/4)e−δn)(TrA− ηn/4)

≥ (1− η/4)(n− η n/2)

≥ (1− η)n,

which proves the theorem in light of (3), after noting that E(x,y)∼γ

[

(x · y)2
]

= n.

We turn to the proof of Lemma 7. Letλ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the eigenvalues ofS, sorted in
decreasing order. For anyy ∈ R

n one can re-write

yTSy =
∑

i

λi y
2
i ,

where theyi arey’s coefficients in the eigenbasis ofS. Since the distributionγ is rotation-invariant, the
yi are distributed according to the standard normal distribution. However, asshown in the example of the
capS2δ = {x ∈ R

n : x1 ≥
√
2δn} discussed above, some of theλi can be quite large:S2δ has measure

γ(S) ≈ e−δn, but the corresponding matrixS2δ hasλ1 ≈ 2δn. Hence a direct use of Claim 4 would lead
to a rather poor bound. Rather, we will use Claim 5. For this to be effective, we need to show that, while
the largest eigenvalues ofS can be quite large, its spectrum must still be relatively spread out. This is made
precise in the following claim.

Claim 8. For anyδ > 0, letS ⊆ R
n be of measureγ(S) ≥ e−δn, and letλ1, . . . , λn be the eigenvalues of

S sorted in decreasing order. Then for anyα ≥ δ and alln large enough,
αn
∑

i=1

λi ≤ (25e)αn. (5)

Proof. If Pαn is the projection on the span of the eigenvectors corresponding to the largestαn eigenvalues of
S, their sum is Tr(PαnS) = Ex∼γ|S

[

x21 + · · ·+ x2αn
]

, where thexi are the coordinates ofx in the eigenbasis
of S. For anyt ≥ 0, Claim 4 gives the bound

Pr
x∼γ

(

x21 + · · ·+ x2αn ≥ (1 + t)αn
)

≤ 2e−
αn
8e

min
(

t2

4e
,t
)

,

so that, lettingt′ = t− 8e we have that for everyt′ ≥ 4e,

Pr
x∼γ|S

(

x21 + · · ·+ x2αn ≥ (1 + 8e+ t′)αn
)

≤ 2 e−
αn
8e

(t′+8e)eδn ≤ 2 e−
αnt′

8e ,

where we used our assumptionα ≥ δ. Since for any non-negative random variableX, E[X] =
∫∞
t=0 Pr(X ≥

t), we get
Ex∼γ|S

[

x21 + · · ·+ x2αn − (1 + 8e)αn
]

≤ 16e+ 4e αn

which proves the claim.
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We finish by showing how Claim 8 implies Lemma 7.

Proof of Lemma 7.Letα be given,β := α/(100e), and letyi ∼ N(0, 1) be i.i.d. By Claim 5, using a crude
bound TrS ≤ 2n (which follows from Claim 4 for all large enoughn), we get that for anyt ≥ 0,

Pr
(

n
∑

i=1

λiy
2
i ≤ TrS− t−

2βn
∑

i=1

λi

)

≤ 2 e−
βt

8e
min

(

βt

4en
,1
)

. (6)

By Claim 8,
∑2βn

i=1 λi ≤ (25e)2βn = αn/2, provided the condition2β ≥ δ is satisfied, which we can
ensure by settingc′ = 50e in the statement of the lemma. Choosingt = αn/2 in (6) finishes the proof.

4 Application to communication complexity

In this section we explain how Theorem 1 leads to a lower bound on the communication complexity of the
GHD problem. In fact, we will show a lower bound for its continuous analogue, the Gap-Inner-Product
(GIP) problem, defined onRn × R

n by

GIPn,t,g(x, y) =











1 if x · y ≥ t+ g,

0 if x · y ≤ t− g,

⋆ otherwise.

For us, the parameters of interest (and arguably the most natural2) aret, g = Θ(
√
n). A lower bound on GIP

is easily seen to imply an equivalent lower bound for GHD (see e.g. Proposition 3 in [1] for a proof that the
two problems have essentially the same randomized communication complexity).

The proof of the lower bound is based on a technique introduced in [2], and is closely related to the
“partition bound” of [4]. For the reader’s convenience we cite a “meta-theorem” from [2], which we will
combine with the results of the previous section to re-prove the linear lower bound on the randomized
communication complexity of the GIP problem first proved in [2], also throughthe following meta-theorem,
but using a much more involved technical argument than ours.

Theorem 9 (Theorem 2.2 in [2]). For all α0, α1, α+, ε > 0 such thatε < (α1 − α+)/(α0 + α1), there
existβ ∈ R andε′ > 0 such that the following holds. Letf : X × Y → {0, 1, ⋆} be a partial function. Let
A0 = f−1(0) andA1 = f−1(1). Suppose that there exist distributionsµ0, µ1, µ+ onX × Y , and a real
numberm > 0 such that

1. for i ∈ {0, 1}, µi is mostly supported onAi, i.e.,µi(Ai) ≥ 1− ε, and

2. the following holds for all rectanglesR ⊆ X × Y :

α1µ1(R)− α+µ+(R) ≤ α0µ0(R) + 2−m.

ThenRε′(f) ≥ m+ β.

2Note that two random vectors taken according toγ have expected inner product0, with a standard deviation of
√
n.
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We will apply this theorem tof = GIPn,t,g, with parameterst = −(d+c)
√
n/2 andg = (d−c)

√
n/2,

wherec = 0.5 andd = 0.6 (note that Lemmas 4.1 and 4.2 in [2] show that the exact choice oft andg
does not affect the randomized communication complexity too much, as long as say t, g = Θ(

√
n)). We

instantiateµ1 as the2n-dimensional standard Gaussian distributionγ. For µ0 we choose the distribution
with density

µ0(x, y) =

{

0 if x · y > 0,
2

n(2π)n (x · y)2e−‖x‖2/2e−‖y‖2/2 otherwise,

while µ+ is chosen with densityµ+(x, y) = µ0(−x, y). All these distributions are invariant under arbitrary
simultaneous rotations ofx andy; their densities are represented on Figure 1 for a fixedy = y0, as a function
of x = t y0, t ∈ R.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

mu
0

mu
+

mu
1

Figure 1: The one-dimensional densities obtained fromµ0 (dotted, left),µ+ (dotted, right) andµ1 (plain)
by conditioning ony = y0 and projectingx onRy0.

We first verify Condition 1 of Theorem 9, which intuitively states thatµ0 should be mostly supported on
0-inputs, andµ1 on 1-inputs, as one can observe graphically in Figure 1. For this we will use that for large
n, for x, y ∈ R

n distributed independently according toγ, the inner productx · y is essentially distributed
as a Gaussian with standard deviation

√
n. This follows from the Berry-Esseen theorem (Fact 6) applied to
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Xi = xi · yi, which are i.i.d. with varianceσ2 = 1 and third momentρ = 2
√

2/π. This lets us write

µ1(A1) = Pr
(x,y)∼γ

(

x · y > −c
√
n
)

≥ 1√
2π

∫ ∞

−c
e−t2/2dt− Ω

( 1√
n

)

≥ 1

2
+

c√
2π

e−c2/2 − Ω
( 1√

n

)

≥ 0.76

for large enoughn. Similarly, we compute

µ0(A0) = 1− Pr
(x,y)∼µ0

(

x · y > −d
√
n
)

= 1− 2

n(2π)n

∫∫

−d
√
n<x·y≤0

(x · y)2e−‖x‖2/2e−‖y‖2/2 dx dy

≥ 1− 2d2

(2π)n

∫∫

−d
√
n<x·y≤0

e−‖x‖2/2e−‖y‖2/2 dx dy

≥ 1− 2d2
1√
2π

∫ 0

−d
e−t2/2 dt− Ω

( 1√
n

)

= 1− 2d2
1√
2π

∫ d

0
e−t2/2 dt− Ω

( 1√
n

)

≥ 0.78

for large enoughn, so by settingε := 0.3 we make sure that Condition 1. is satisfied. In order to verify
Condition 2., observe that for any rectangleR,

(µ0 + µ+)(R) =
2

n(2π)n

∫∫

(x,y)∈R
(x · y)2e−‖x‖2/2e−‖y‖2/2 dx dy=

2

n
γ(R)E(x,y)∼γ|R

[

(x · y)2
]

,

so that by settingη = 0.05, Theorem 1 implies the existence of aδ > 0 such that that(µ0(R)+µ+(R))/2 ≥
(1 − η)γ(R), as long asγ(R) ≥ e−δn. Choosingα0 = α+ = 1/2, α1 = 0.95 andm = (ln 2) δn,
Condition 2. reads

µ0(R) + µ+(R)

2
≥ 0.95 γ(R)− e−δn,

which is trivially satisfied by anyR with γ(R) < e−δn, and for allR such thatγ(R) ≥ e−δn by the previous
arguments. Note also that with our choice of coefficientsα the inequality onε is satisfied.

As a consequence, Theorem 9 directly implies the existence ofε′ > 0 andβ ∈ R such that

Rε′(GIPn,−.55
√
n,.05

√
n) ≥ (ln 2) δn+ β.
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