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Abstract

Given two setsA, B C R™, a measure of their dependence, or correlation, is givehdgxpected
squared inner product between randone A andy € B. We prove an inequality showing that no
two sets of large enough Gaussian measure (atdedstfor some constant > 0) can have correlation
substantially lower than would two random sets of the sae €Dur proof is based on a concentration
inequality for the overlap of a random vector on a large set.

As an application, we show how our result can be combined thighpartition bound of Jain and
Klauck to give a simpler proof of a recent linear lower boumdtioe randomized communication com-
plexity of the Gap-Hamming-Distance problem due to Chakraland Regev.

1 Introduction

Let A, B C R", and lety be then-dimensional Gaussian measure. Denoteyhy, z the measure corre-
sponding to the normalized restrictionpfx vto A x B, and let

V(A’ B) = E(fay)N’Y\AxB [(I‘ ) y)Q] :

The quantityv(A, B) can be interpreted as a measure of correlation betwieand B, in the sense that
a largev indicates sets with mostly aligned vectors, while a smdhdicates sets that are close to being
orthogonal.

We study the following question: How small caiA, B) be for arbitrary setsi, B? If A contains a
single vectorr of norm+/n, then the minimizing3 of fixed measure is the fattened equabbe= {y € R™ :
—ty/n < y-x < ty/n}, for whichv({z}, B) < t?n andv(B) ~ +/2/xt for smallt. Hence for any fixed
d > 0 there exists a sdb of constantmeasure such that{z}, B) = dn, an arbitrarily small fraction of its
expected value for a pair of vectorsitf chosen at random according4ox ~. In this note we show that
in caseA is restricted to not being too small (i.¢(A) > e~"), then no seB of measure at least*" can
significantly bias/(A, B) below its expectation for random vectors. More precisely we show thenfioigp

Theorem 1. For anyn > 0, there exists @ > 0 such that for all large enough, if A, B both have measure
v(A),v(B) > e~ then
v(4,B) = (1-n)v[R",R") = (1 -n)n, 1)
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Note that one may not hope for such a strong inequality in the opposite direeothe spherical caps
A= B = {z € R", z; > /2n} have measure approximately®” but correlation(A, B) = Q(5%n?).
The proof of the theorem is based on a concentration inequality for tliemarariablev({y}, S), where
y ~~andSs is a fixed large enough set, which is described in Lemma 7 below.

Comparison with [2]. Chakrabarti and Regev recently settled the long-standing open prolléme o
randomized communication complexity of the Gap-Hamming-Distance (GHD) pmotdkowing &2 (n)
lower bound fom-dimensional inputs. Their proof is based on a variant of the smooth gdethound [4],
and at its core is an inequality similar to the one we prove in Theorem 1, ettedpt applies to theosh
function, intead of the square function. More precisely, if one defines

Ua(A, B) = E(54) [cosh(az-y)]

~Y|Ax B
for any« > 0, then the key step in the proof of Theorem 3.5 from [2] consists in shothiaiy for every
¢,n > 0 there is @ > 0 such that for every < o < ¢/y/n andA, B of measure at least ",

7a(A,B) > (1 - 1) 7a(R,R"). 2)

The proof of (2) is based on a powerful result, Theorem 3.1 in [2] tvisttows that, ifA is large enough
then for almost ally € R" the distribution of(x, y) for = ~ |4 is close to a mixture of translated Gaussians.
Theorem 3.1 can be seen to imply both (2) and our Theorem 1. The grdbkorem 3.1, though, is quite
involved, and the main contribution of our work consists in giving a direabpof our Theorem 1, which
we show is strong enough to imply a linear lower bound on the randomized cacatian complexity of
GHD.

2 Preiminaries

Distributions. Let N (0, o2) denote the distribution of a normal random variable with mgand variance
o2. Let x2 be the distribution of the square of a random variable distributed¥ @s 1), and y?(k) the
distribution of the sum of the squaresoindependentiV (0, 1) random variablesy is the n-dimensional
Gaussian measure @&, with densityy(z) = (2r)~"/2¢~I=I°/2, We sometimes abuse notation and also
denote byy the 2n-dimensional distributiony x . If S C R", 5|5 denotes the normalized restriction-pf

to St ys(z) = v(z)/7(9) if x € S and0 otherwise.

Concentration bounds. We will use the following large deviation bounds.
Fact 2 (Gaussian tail bound)Let X be a standard normal random variable. Then for evieiy 0,
Pr(|X|>1t) < e /2

Proof. Bound the upper tail as

Pr(X >t) = \/127[ e~ 2dx

1 > 2
_ —(z+t) /Qd
= — e X

\/271'/0

7152/2 (o) 1

e 2 2
< e P 2dx = —e V2,
V27 /0 2

A similar bound holds for the lower tail. O



Fact 3 (Bernstein’s inequality, see, e.g., Prop. 16 in [@]et X1, ..., X be independent random variables
such that for every, E[X;] = 0, and there existg{ > 0 such that, for all; and¢ > 0, Pr(|X;| > ¢) <
el~t/K Then for every, € RY and¢ > 0, we have

Pr (‘ Z aiXZ-
i

As a corollary, one can obtain the following bound for the tail of fRedistribution.

1 . t2 t
——min\ —s——=, =7 —
> t) <2e * (2eK2uan§ Kuanoo).

Claim 4 (x? tail bound) Let N € N, and X1, ..., Xy be i.i.d standard normal random variables. Then for
everyay,...,ay € Randt > 0,

N N . 2
2 _émln(&sr\a\\zw‘aﬁoo)
Pr(‘ g a; X; — E ai‘2t> < 2e 2 .
i=1 =1

Proof. By Fact 2, for every the X; satisfy that for every > 0,
Pr(| X7 —1|>t)=Pr(X? >t +1)+Pr(X? <1—1¢)
< el (t+1)/2

where the extra factor ensures that the bound is trivial whenever the second farfX? < 1 —t¢) is
nonzero. Hence thi; := X? — 1 satisfy the hypothesis of Fact 3 wifii = 2, which leads to the claimed
bound. O]

The bound in Claim 4 becomes very weak as soon as even one of theieogsfi; is very large. In the
case where the; are non-negative and most are small we can still keep a good contrah@lewer tail,
as the following claim shows.

Clam 5. Let N € N, let Xq,..., Xy be ii.d standard normal random variables, > ... > ay > 0
non-negative reals sorted in decreasing order, ddd= Efvzl a;. Then for everyd > 0 andt > 0,

¢ 2 ™ —ﬁmin( Bt 1)
Pr(ZaiXi_Mg_Zai_t) < 2¢e se TeM )
=1 i=1

Proof. Since thes; are sorted, for every> M we haveun; < 1/, so that

N
lasanl == > af < N/# and Jlaspurlleo = max ai] < 1/5
i=BM+1 ‘

Hence applying Claim 4 t& gy 11, . . ., X)r Yields that for every > 0,

N N
Pr(’ Z aiXiZ— Z a;

i=BM+1 i=BM+1

) 2,2
> t) < 9 o~ 5c Min (%vﬁt)7

which proves the claim sincg,” 5, a; X? < Y| a; X2. O

We will also use the Berry-Esseen theorem.
Fact 6 (Berry-Esseen Theorem, see, e.g., [3], Chapter X8t X1, ..., X be i.i.d such thaE[X;] = 0,
E[X?] = 02 andE[| X;|*] = p, defineY = (X1 +---+ Xy)/(V/No) and letZ be distributed asv (0, 1).
Then for allt > 0,

3
|Pr(Y > t) - Pr(Z > t)| < g3\;ﬁ



Communication complexity. For a partial functionf : X x Y — {0,1,x}, we let R.(f) be thee-
error randomized communication complexity of the functjpwe refer to [5] for more background on
communication complexity). Here we allal, Y to be infinite subsets @™ and measure input size by the
dimensiomn alone.

3 Proof of the main inequality

The proof of Theorem 1 is based on a concentration bound for thageequared inner product between a
vectory € R™ and arandom: € S, whereS is a fixed subset dR™. Given such a set, it will be convenient
to work with the positive matri = E; g [z2T], where the expectation is taken entrywise. This matrix
satisfies the following key relation

VyeR"  y'Sy = Epuryy " 22’ y] = Eonnyg [(2-9)7] . (3)

As we will see, (3) lets us relate the concentration propertieg f}, S), for y ~ ~, to the spectrum o8.
We show the following concentration bound.

Lemma 7. There exists constantsc’ > 0 such that the following holds. Lét> 0 andS C R™ such that
v(S) > e~°". Then for alla > /6,
Pr (yTSy <TrS — om) < gcaln, 4)
Yy~
Note that, for any set, E,, [y"Sy] = TrS ~ n,! so that (4) shows thaj” Sy cannot be much
lower than its expectation. Before turning to the proof of the lemma, and shdwaiw it implies our main
theorem, we give an example showing that the constraintc’d is necessary (for some > 0). The same
example also shows that one cannot hope for a similar bound on the pitglialt y” Sy is greaterthan
Tr S + an, even for relatively larger.

Example. Fix a parameterr > 0 (think of « as a small constant), and consider the sphericalSap-

{z € R" : 1 > \/an}. Since forX ~ N(0,1), Pr(X > \/an) < e~*"/2, the measure af,, can be
upper-bounded ag(S,) < e~ /2. Here the matriX8,, is diagonal, with the first eigenvalue approximately
equal toan, and the remainingn — 1) each equal td, so that its trace is T, ~ an + (n — 1). For

y ~ 1, the distribution ofy? is x? with expectationl and standard deviatioy2; in particular with constant
probability it is less tha /4. Conditioning on this event,

y'Say ~anyt + (Y3 + - +y2) < Ba/n+ (Y3 + - +yp)

which is less than T8, — («/4)n with constant probability. Hence one should expect that in (4) it is
necessary to allow the overlag S,y to be moderately smaller than its expectatior8]r since this can
hold even with constant probability. Moreover, it is not hard to show thiaahy 3 > 0 we havePr(y? >
V2Bn) = Q(n~2e=A"), and if this holds then the overlag S,y is at leasiv/25 n*/2, which is much
larger than T8, = (o + 1)n — 1 for any 5 = w(1/n): there cannot be any strong concentration in the
direction opposite to the one we are claiming.

Before proving Lemma 7, we show that it implies Theorem 1.

We will get back to this approximation later, but it is not hard to show th&t irwithin a factor (1 + v/6) of n by using
the bound given in Claim 4.



Proof of Theorem 1Letn > 0 be given, and leA := E,.,, [zz”]. Fixad > 0 small enough so that
both the following hold:

1. |TrA —n| < nn/4. This is made possible by Claim 4.

2. The set ofy for whichy” Ay < Tr A — nn/4 has measure less thém/4)e~°". This can be obtained
from Lemma 7.

Combining these two estimates, we obtain
1

Eyrs [y Ay > ) B) — (/De)(TrA —m/4)
> (1 =n/4)(n—nn/2)
> (1—mn)n,
which proves the theorem in light of (3), after noting that F..., [ (z - y)? ] = n. O

We turn to the proof of Lemma 7. Lety > Xy > ... > A\, > 0 be the eigenvalues &, sorted in
decreasing order. For agye R™ one can re-write

y'Sy=> N,
%

where they; arey’s coefficients in the eigenbasis 8f Since the distribution is rotation-invariant, the

y; are distributed according to the standard normal distribution. Howevehasn in the example of the
capSos = {x e R" : z; > \/%} discussed above, some of thecan be quite largeS,;s has measure
7(S) ~ =%, but the corresponding matrB,s has\; ~ 2én. Hence a direct use of Claim 4 would lead

to a rather poor bound. Rather, we will use Claim 5. For this to be effestigeneed to show that, while

the largest eigenvalues B8fcan be quite large, its spectrum must still be relatively spread out. This is made
precise in the following claim.

Claim 8. Foranyd > 0, let S C R™ be of measure/(S) > e~ and let\, ..., \, be the eigenvalues of
S sorted in decreasing order. Then for any> § and all n large enough,

i Ai < (25e) an. (5)
i=1

Proof. If P,, isthe projection on the span of the eigenvectors corresponding to thstlargeigenvalues of
S, their sumis T(Pu,S) = Epry g (1 4+ --- 4+ 22,,], where ther; are the coordinates afin the eigenbasis
of S. For anyt > 0, Claim 4 gives the bound

Pr (23 +- +a22, > (1+t)an) < 2e” Se mln(42et)7
zny

so that, letting’ = ¢ — 8¢ we have that for everyf > 4e,

Pr (zi+ - +22,>1+8+1t)an) < 2e 8 (W' H8)gdn < 9=
Toy|s
where we used our assumptiar®> §. Since for any non-negative random varialfleE[ X ft o Pr(X >
t), we get
(S [a:% ot —(1+ 8e)an] < 16e + 4ean

which proves the claim. Ol



We finish by showing how Claim 8 implies Lemma 7.

Proof of Lemma 7 Let « be given, := «/(100e), and lety; ~ N(0, 1) be i.i.d. By Claim 5, using a crude
bound TrS < 2n (which follows from Claim 4 for all large enough), we get that for any > 0,

n 268n
Pr(dagt<Trs—t-> x) < 9 e min (££5:1) (6)
=1 i=1

By Claim 8, Zfﬁ? Ai < (25e)28n = an/2, provided the conditior2s > § is satisfied, which we can
ensure by setting = 50e¢ in the statement of the lemma. Choosing an/2 in (6) finishes the proof. [J

4 Application to communication complexity

In this section we explain how Theorem 1 leads to a lower bound on the comettionicomplexity of the
GHD problem. In fact, we will show a lower bound for its continuous anatodbie Gap-Inner-Product
(GIP) problem, defined oR™ x R"™ by

GIPyig(2,y) =40 fa-y<t—g,
* otherwise.

For us, the parameters of interest (and arguably the most rijtaret, g = ©(/n). A lower bound on GIP
is easily seen to imply an equivalent lower bound for GHD (see e.g. Rtimpo3 in [1] for a proof that the
two problems have essentially the same randomized communication complexity).

The proof of the lower bound is based on a technique introduced in fid]jsaclosely related to the
“partition bound” of [4]. For the reader’s convenience we cite a “mettem” from [2], which we will
combine with the results of the previous section to re-prove the linear lowerdoon the randomized
communication complexity of the GIP problem first proved in [2], also thrabgHollowing meta-theorem,
but using a much more involved technical argument than ours.

Theorem 9 (Theorem 2.2 in [2]) For all o, a1, ay, € > 0 such that: < (a1 — ay)/(ap + 1), there
exists € R ande’ > 0 such that the following holds. Lgt: X x Y — {0, 1, x} be a partial function. Let
Ag = f71(0) and A; = f~1(1). Suppose that there exist distributiomg, 11, 1+ on X x Y, and a real
numberm > 0 such that

1. fori € {0,1}, p; is mostly supported oA;, i.e.,u;(A;) > 1 —¢,and

2. the following holds for all rectangleB C X x Y:
a1pir(R) — appg(R) < aopo(R) +27™

ThenR. (f) > m+ 5.

2Note that two random vectors taken according toave expected inner produgtwith a standard deviation gfn.



We will apply this theorem t¢f = GIP, ; 4, with parameters = —(d+c¢)y/n/2 andg = (d—c)\/n/2,
wherec = 0.5 andd = 0.6 (hote that Lemmas 4.1 and 4.2 in [2] show that the exact choiceaofl ¢
does not affect the randomized communication complexity too much, as loray asys= O(y/n)). We
instantiaten; as the2n-dimensional standard Gaussian distributionFor 1o we choose the distribution

with density
0 if -y >0,
po(z,y) = 2

(T y)2el=l?/2¢-18l*/2  otherwise,

while u is chosen with density (z,y) = po(—=z, y). All these distributions are invariant under arbitrary
simultaneous rotations afandy; their densities are represented on Figure 1 for a fixedy, as a function
ofx =tyy, t €R.

0.7
LI mUO
0.6 RN . =mwmw MU |
mul
0.5F b
0.4f b
0.3F J
0.2} 1
0.1r b
O L.
-5 4 5

Figure 1: The one-dimensional densities obtained fygnfdotted, left),+ (dotted, right) and:; (plain)
by conditioning ony = 1y and projecting: onRyq.

We first verify Condition 1 of Theorem 9, which intuitively states thashould be mostly supported on
0-inputs, andu; on 1-inputs, as one can observe graphically in Figure 1. For this we will uséahkarge
n, for x,y € R™ distributed independently according-othe inner product - y is essentially distributed
as a Gaussian with standard deviatign. This follows from the Berry-Esseen theorem (Fact 6) applied to



X; = x; - y;, which are i.i.d. with variance? = 1 and third momenp = 2,/2/x. This lets us write

pi(A) = Pr (z-y>—cvn)

(Ivy)N’y
— dt— Q(—
= Vor / ‘ el
1 C 2 1
> 2 (=) >
5+ 5 ( n) > 0.76
for large enough. Similarly, we compute
,U,()(A()) =1— Pr (:I) ‘Y > —d\/’ﬁ)
(zy)~po
2 // 2= lall?/2,~ /2
=1-— x-y)le 1T/ 2emIlY dx dy
n(27r)n —d\/ﬁ<az~y§0( )

2
- 2 // o lzl?/2 = 1ylI?/2 gy dy
- (2m)n —dy/n<z-y<0

1 0 1
21—2d2/ e 2 dt— Q(——
=/ (75)

2 n

1 ¢ 1
—1-2d*— 2t — Q(—=) >0.78
= (5) >

for large enough, so by settings := 0.3 we make sure that Condition 1. is satisfied. In order to verify
Condition 2., observe that for any rectangile

2 Cel2/a 2
(o 1)(B) = oy //< o e iy = S (R gy [ (0],
z,y

n

so that by setting = 0.05, Theorem 1 implies the existence aof a 0 such that thafu(R) + x4 (R))/2 >
(1 — n)y(R), as long asy(R) > e~ %". Choosingag = ay = 1/2, a1 = 0.95 andm = (In2)én,
Condition 2. reads

po(R) + p4 (R)

2

which is trivially satisfied by any? with v(R) < e~°", and for allR such thaty(R) > e~°" by the previous
arguments. Note also that with our choice of coefficienthe inequality ore is satisfied.
As a consequence, Theorem 9 directly implies the existenge>of) and € R such that

> 0.95v(R) — e ",
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