
The Complexity of Solving Multiobjective Optimization Problems

and its Relation to Multivalued Functions

Krzysztof Fleszar * Christian Glaßer * Fabian Lipp * Christian Reitwießner *

Maximilian Witek *

April 11, 2011

Abstract

Instances of optimization problems with multiple objectives can have several optimal solutions
whose cost vectors are incomparable. This ambiguity leads to several reasonable notions for
solving multiobjective problems. Each such notion defines a class of multivalued functions. We
systematically investigate the computational complexity of these classes.

Some solution notions 𝒮 turn out to be equivalent to NP in the sense that each function in
𝒮 has a Turing-equivalent set in NP and each set in NP has a Turing-equivalent function in
𝒮. Other solution notions are equivalent to the function class NPMV𝑔. We give evidence that
certain solution notions are not equivalent to NP and NPMV𝑔. In particular, under suitable
assumptions there are functions in NPMV𝑔 that are Turing-inequivalent to all sets. It follows
that the complexity of multiobjective problems is in general not expressible in terms of sets.

Moreover, we determine the possible combinations of complexities for every fixedmultiobjective
problem. In particular, for arbitrary 𝐴,𝐵,𝐶 ∈ NP with 𝐴 ≤p

T 𝐵 ≤p
T 𝐶 there is a multiobjective

problem where one solution notion is Turing-equivalent to 𝐴, another one is Turing-equivalent
to 𝐵, and a third one is Turing-equivalent to 𝐶.

1 Introduction

Practical optimization problems often contain multiple objectives. A typical scheduling problem is
to order given jobs in a way that minimizes both the lateness and the flow time. Here the quality of
a solution is characterized by its cost vector, which is the pair that consists of the lateness and the
flow time. This shows that two solutions of a multiobjective problem can have incomparable cost
vectors and therefore, a given instance can have several optimal cost vectors. The set of optimal
solutions (i.e., solutions with optimal cost vectors) is called the Pareto set. It shows the trade-offs
between the optimal solutions of the current instance.

The multiple optimal costs make multiobjective problems fundamentally different from single-
objective problems. In particular, they differ with respect to their optimization algorithms, their
computational complexity, their notions of optimality, their theory of approximation, and the way

*Julius-Maximilians-Universität Würzburg, Germany.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 53 (2011)

solutions are presented to users. Hence single-objective problems cannot adequately represent
multiobjective problems and therefore, multiobjective optimization is studied on its own. It has its
origins in the 1980s and has become increasingly active since that time.

For a multiobjective problem 𝒪 it is not immediately clear what it means to “solve the problem”.
There exist several reasonable notions. We group them into search notions (which ask for certain
solutions) and value notions (which ask for certain cost vectors). For example, the arbitrary optimum
search notion of 𝒪 (in notation A-𝒪) asks for an arbitrary optimal solution. The specific optimum
search notion of 𝒪 (in notation S-𝒪) asks for an optimal solution that satisfies a given minimum
quality. The corresponding value notion Val(A-𝒪) (resp., Val(S-𝒪)) asks for the cost vector of an
arbitrary optimal solution (resp., the cost vector of an optimal solution satisfying a given minimum
quality). We also consider the search notions D-𝒪, C-𝒪, L-𝒪, W-𝒪 and their corresponding value
notions Val(D-𝒪), Val(C-𝒪), Val(L-𝒪), Val(W-𝒪), which are formally defined in Definition 2.6. On
the technical side, all search notions that we consider are multivalued functions from N to N (the
function maps to solutions). Similarly, all value notions are multivalued functions from N to N𝑘 (the
function maps to cost vectors). The computational complexity of multivalued functions was first
studied by Selman [Sel92, Sel94, Sel96] and further developed by Fenner et al. [FHOS97, FGH+99]
and Hemaspaandra et al. [HNOS96].

In this paper we systematically investigate the complexity of multiobjective optimization problems
𝒪, i.e., the complexity of the corresponding search and value notions. We determine all possible
complexities and integrate them into the picture of existing classes like NP and NPMV𝑔 (the class
of multivalued functions whose graph is in P). Our contribution consists of two parts, which will be
explained in the following.

1. General complexity of value and search notions There are examples of multiobjective
problems that are easy, i.e., solvable in polynomial time, while other multiobjective problems are
NP-hard [GRSW10]. Here we investigate what intermediate complexities are possible. We use
polynomial-time Turing reducibility to compare the complexity of solution notions of multiobjective
problems with sets in NP and multivalued functions in NPMV𝑔. So two problems 𝐶 and 𝐷 have the
same complexity if they are polynomial-time Turing equivalent (in notation 𝐶 ≡p

T 𝐷). A complexity
class 𝒞 can be embedded in a complexity class 𝒟 if for every 𝐶 ∈ 𝒞 there exists a 𝐷 ∈ 𝒟 such
that 𝐶 ≡p

T 𝐷. In this case 𝒟 covers all complexities that appear in 𝒞. The classes 𝒞 and 𝒟 are
called equivalent if they can be embedded in each other. We investigate possible embeddings among
the multiobjective solution notions, NP, and NPMV𝑔. In particular we show the following results,
where {D-𝒪} is an abbreviation for {D-𝒪 | 𝒪 is a multiobjective problem}:
∙ The following classes are equivalent: NP, max ·NP, {Val(D-𝒪)}, {Val(L-𝒪)}, {Val(W-𝒪)}.

∙ The following classes are equivalent: NPMV𝑔, {D-𝒪}, {L-𝒪}, {W-𝒪}.
This means that the complexities of the value notion {Val(L-𝒪)} coincide with the complexities
of sets in NP, and hence both classes have the same degree structure. On the other hand, the
complexities of the search notion {L-𝒪} coincide with the complexities of multivalued functions
NPMV𝑔, and hence both classes have the same degree structure. Moreover, we give evidence that
certain embeddings do not hold. For example we show:

∙ NP cannot be embedded in NPMV𝑔 unless EE = NEE.

∙ NPMV𝑔 cannot be embedded in any class of sets (hence not in NP) unless FewEEE = NEEE.

2

These results might be of interest on their own, independently of multiobjective problems. In
particular, under the assumption FewEEE ̸= NEEE there exists a multivalued function 𝑓 ∈ NPMV𝑔

that is inequivalent to all sets (which implies that no partial function 𝑔 : N→ N that is a refinement
of 𝑓 is reducible to 𝑓). This shows that the complexity of functions in NPMV𝑔 (resp., the complexity
of multiobjective problems) is in general not expressible in terms of sets, unless FewEEE = NEEE.
Figure 1 summarizes the obtained embedding results.

2. Complexity settings of value notions for fixed multiobjective problems For every fixed
multiobjective problem 𝒪 we compare the search and value notions of 𝒪 with each other. For every
combination we either prove that reducibility holds in general or we show that under a reasonable
assumption it does not hold. Figure 2 gives a summary.

There exist examples of multiobjective problems 𝒪 where one solution notion is polynomial-time
solvable, while another notion is NP-hard [GRSW10]. We investigate this behavior for the value
notions and determine the possible combinations of complexities.

∙ If 𝐴,𝐿,𝑊 ∈ NP and 𝐴 ≤p
T 𝐿 ≤p

T 𝑊 , then there is a multiobjective problem 𝒪 such that 𝐴 ≡p
T

Val(A-𝒪), 𝐿 ≡p
T Val(L-𝒪), and 𝑊 ≡p

T Val(W-𝒪) ≡p
T Val(D-𝒪) ≡p

T Val(C-𝒪) ≡p
T Val(S-𝒪).

As a consequence, there exists a multiobjective problem 𝒪 such that 𝒪’s arbitrary optimum value
notion Val(A-𝒪) is solvable in polynomial-time, 𝒪’s lexicographic optimum value notion Val(L-𝒪)
is equivalent to the factorization problem of natural numbers, and 𝒪’s constraint optimum value
notion Val(C-𝒪) is equivalent to SAT.

2 Preliminaries

2.1 Computational Complexity

Let N denote the set of non-negative integers. For 𝑛 ∈ N, bin(𝑛) denotes the binary representation
of 𝑛 and |𝑛| = |bin(𝑛)|. The logarithm to base 2 is denoted by log. For every 𝑘 ≥ 1 let ⟨·, ·, . . . , ·⟩
be a polynomial-time computable and polynomial-time invertible bijection from N𝑘 to N that is
monotone in each argument.

Let 𝐴 and 𝐵 be sets. A multivalued function from 𝐴 to 𝐵 is a total function 𝐴 → 2𝐵. For a
multivalued function 𝑓 from 𝐴 to 𝐵, define supp(𝑓) = {𝑥 | 𝑓(𝑥) ̸= ∅}, graph(𝑓) = {(𝑥, 𝑦) | 𝑦 ∈ 𝑓(𝑥)},
and range(𝑓) =

⋃︀
𝑥∈𝐴 𝑓(𝑥). A multivalued function 𝑔 is a refinement of a multivalued function 𝑓 , if

supp(𝑔) = supp(𝑓) and for all 𝑥, 𝑔(𝑥) ⊆ 𝑓(𝑥). A partial function 𝑔 is a refinement of a multivalued
function 𝑓 , if for all 𝑥, 𝑓(𝑥) = ∅ if 𝑔 is not defined at 𝑥 and 𝑔(𝑥) ∈ 𝑓(𝑥) otherwise. The complexity
classes used in this paper are defined in Figure 3. We denote the complement of a set 𝐴 ⊆ N by
𝐴 = N−𝐴. Let 𝒞 be a complexity class containing subsets of N. The class of complements of 𝒞 is
denoted by co𝒞 = {𝐴 | 𝐴 ∈ 𝒞}. An infinite and co-infinite set 𝐿 ⊆ N is 𝒞-bi-immune if neither 𝐿
nor 𝐿 has an infinite subset in 𝒞 [BS85].

For reductions between multivalued functions we need the following definition by Fenner et al.
[FHOS97] which describes how a deterministic Turing transducer 𝑀 [BLS84] accesses a partial
function 𝑔 as oracle. For this, 𝑀 contains a write-only oracle input tape, a separate read-only oracle

3

NPmax ·NP

{Val(L-𝒪)}

{Val(W-𝒪)}

{Val(D-𝒪)}

wit·P

{L-𝒪}

{W-𝒪}

{D-𝒪}

AllSets {Val(A-𝒪)}

{A-𝒪}

NP ∩ coNP max ·P

P

EE = NEE

NEE = coNEE

EE = NEE ∩ coNEE

FewEEE
=

NEEE

P = NP ∩ coNP

Key:

𝒞 𝒟: ∀𝑥 ∈ 𝒞∃𝑦 ∈ 𝒟(𝑥 ≡p
T 𝑦)

𝒞 𝒟:
𝛼

(∀𝑥 ∈ 𝒞∃𝑦 ∈ 𝒟(𝑥 ≡p
T 𝑦)) =⇒ 𝛼

{𝒳 -𝒪}: {𝒳 -𝒪 | 𝒪 is a multiobjective problem}
{Val(𝒳 -𝒪)}: {Val(𝒳 -𝒪) | 𝒪 is a multiobjective problem}

Figure 1: Summary of embeddings of complexity classes. A bold arrow from 𝒞 to 𝒟 shows that 𝒞 can be
embedded in 𝒟. Dashed arrows give evidence against such an embedding. Observe that the embedding
relation is reflexive and transitive and that evidence against an embedding propagates along bold lines (heads
of dashed arrows can be moved downwards, tails can be moved upwards), and hence for each pair of classes
𝒞,𝒟 in the diagram, we either show that 𝒞 is embedded in 𝒟 or give evidence against such an embedding.
Note that wit·P = NPMV𝑔, max ·NP = OptP (Krentel [Kre88]) and AllSets is the class of all decision
problems.

output tape, and a special oracle call state 𝑞. When 𝑀 enters the state 𝑞, if the oracle 𝑔 is defined
at the string 𝑥 currently on the oracle input tape, then 𝑔(𝑥) appears on the oracle output tape. If it
is not defined at this point, then the special symbol ⊥ appears on the oracle output tape. Note
that it is possible that 𝑀 may read only a portion of the oracle’s output if the oracle’s output is
too long to read with the resources of 𝑀 . If 𝑀 computes a partial function and the function is
not defined on input 𝑥, 𝑀 can either not halt at all or return the special symbol ⊥. This allows
deterministic polynomial-time Turing transducers to compute non-total functions. If 𝑔 is a partial
function and 𝑀 is a deterministic oracle Turing transducer as just described, then let 𝑀𝑔 denote
the partial function computed by 𝑀 with oracle 𝑔.

Definition 2.1 ([FHOS97]).

1. Let 𝑓 and 𝑔 be partial functions. 𝑓 is polynomial-time Turing reducible to 𝑔, 𝑓 ≤p
T 𝑔, if there

exists a deterministic, polynomial-time oracle Turing transducer 𝑀 such that 𝑓 = 𝑀𝑔.

2. Let 𝑓 and 𝑔 be multivalued functions. 𝑓 is polynomial-time Turing reducible to 𝑔, 𝑓 ≤p
T 𝑔,

if there exists a deterministic, polynomial-time oracle Turing transducer 𝑀 such that for
every partial function 𝑔′ that is a refinement of 𝑔 it holds that the partial function 𝑀𝑔′ is a
refinement of 𝑓 .

4

SAT

W-𝒪

Val(W-𝒪)

D-𝒪

Val(D-𝒪)L-𝒪

Val(L-𝒪)A-𝒪

Val(A-𝒪)

EE = NEE ∧
P = NP ∩ coNP

EE = NEE ∧
P = NP ∩ coNP

P = NPP = NP

P = NP

Key:

𝑋 𝑌 : 𝑋 ≤p
T 𝑌 for all 𝒪

𝑋 𝑌 :
𝛼

𝑋 ≤p
T 𝑌 for all 𝒪 =⇒ 𝛼

Figure 2: A complete taxonomy of reductions among search and value notions. Bold arrows indicate
reducibility for all problems 𝒪 (reductions including weighted sum notions hold if all objectives are to be
maximized or all objectives are to be minimized), whereas dashed arrows provide evidence against such a
general reducibility. Observe that such evidence propagates along bold arrows (arrow heads backwards and
arrow tails forwards) and we hence have evidence against all remaining possible reductions. Further note
that D-𝒪 ≡p

T S-𝒪 ≡p
T Ci-𝒪 and Val(D-𝒪) ≡p

T Val(S-𝒪) ≡p
T Val(Ci-𝒪) for 𝑖 ∈ {1, . . . , 𝑘}.

It is important to note that the definition above is different from the one given by Selman [Sel94]. In
Selman’s definition, if the oracle 𝑔 is a multivalued function and if some 𝑞 with 𝑔(𝑞) = ∅ is queried,
then the oracle can give an arbitrary answer. Also note that the oracle model described above
ensures that ≤p

T is reflexive and transitive.

The decision problem of a set 𝐴 is the computation of the characteristic function 𝜒𝐴, which can be
considered as a multivalued function. In this way, the polynomial-time Turing reducibility defined
above also applies to decision problems.

A multivalued function 𝑔 is called polynomial-time solvable, if there is a polynomial-time computable,
partial function 𝑓 such that 𝑓 is a refinement of 𝑔. A multivalued function 𝑔 is called NP-hard, if
all problems in NP are polynomial-time Turing-reducible to 𝑔.

For a set 𝐴 ⊆ N and a total function 𝑝 : N→ N we define the multivalued function wit𝑝·𝐴 : N→ 2N,
𝑥 ↦→ {𝑦 | ⟨𝑥, 𝑦⟩ ∈ 𝐴 and 𝑦 < 2𝑝(|𝑥|)}, the total function max𝑝 ·𝐴 : N→ N, 𝑥 ↦→ max({0}∪wit𝑝·𝐴(𝑥)),
and the set ∃𝑝·𝐴 = supp(wit𝑝·𝐴). Moreover, let wit·𝐴 = {wit𝑝·𝐴 | 𝑝 is a polynomial}, max ·𝐴 =
{max𝑝 ·𝐴 | 𝑝 is a polynomial}, and ∃·𝐴 = {∃𝑝·𝐴 | 𝑝 is a polynomial}. For a complexity class 𝒞,
define wit· 𝒞 =

⋃︀
𝐴∈𝒞 wit·𝐴, max · 𝒞 =

⋃︀
𝐴∈𝒞 max ·𝐴, and ∃· 𝒞 =

⋃︀
𝐴∈𝒞 ∃·𝐴.

Classes like max ·P and max ·NP were systematically studied by Hempel and Wechsung [HW00].
Moreover, the classes wit·P, wit·NP, and wit· coNP were studied under the names NPMVg, NPMV,

5

PF = {𝑓 | 𝑓 : N→ N is a partial function that is polynomial-time computable}

NPMV = {𝑓 | 𝑓 multivalued function from N to N, graph(𝑓)∈NP, and ∃ polynomial 𝑝, ∀(𝑥, 𝑦)∈graph(𝑓) [𝑦 < 2𝑝(|𝑥|)]}

coNPMV = {𝑓 | 𝑓 multivalued function from N to N, graph(𝑓)∈coNP, and ∃ polynomial 𝑝, ∀(𝑥, 𝑦)∈graph(𝑓) [𝑦 < 2𝑝(|𝑥|)]}
NPMVg = {𝑓 ∈ NPMV | graph(𝑓) ∈ P}

EE = DTIME(22
𝑂(𝑛)

)

NEE = NTIME(22
𝑂(𝑛)

)

NEEE = NTIME(22
2𝑂(𝑛)

)

UP = {𝐿 ∈ NP | 𝐿 is accepted by a nondet. machine 𝑁 in time 𝑛𝑂(1) s.t. 𝑁 on 𝑥 has ≤ 1 accepting paths}

UEEE = {𝐿 ∈ NEEE | 𝐿 is accepted by a nondet. machine 𝑁 in time 22
2𝑂(𝑛)

s.t. 𝑁 on 𝑥 has ≤ 1 accepting paths}

FewP = {𝐿 ∈ NP | 𝐿 is accepted by a nondet. machine 𝑁 in time 𝑛𝑂(1) s.t. 𝑁 on 𝑥 has ≤ 𝑛𝑂(1) accepting paths}

FewEEE = {𝐿 ∈ NEEE | 𝐿 is accepted by a nondet. machine 𝑁 in time 22
2𝑂(𝑛)

s.t. 𝑁 on 𝑥 has ≤ 22
2𝑂(𝑛)

accepting paths}

Figure 3: Definitions of some complexity classes.

and coNPMV by Selman [Sel92, Sel94, Sel96], Fenner et al. [FHOS97, FGH+99], and Hemaspaandra
et al. [HNOS96].

Proposition 2.2.

1. wit·P = NPMVg.

2. wit·NP = NPMV.

3. wit· coNP = coNPMV.

Proof. 1. “⊇”: Let 𝑓 ∈ NPMVg. So graph(𝑓) ∈ P and there exists a polynomial 𝑝 such that for all
(𝑥, 𝑦) ∈ graph(𝑓), 𝑦 < 2𝑝(|𝑥|). Hence the set 𝑅 = {⟨𝑥, 𝑦⟩ | (𝑥, 𝑦) ∈ graph(𝑓)} belongs to P. Moreover,
𝑓 = wit𝑝·𝑅.
“⊆”: Let 𝑓 ∈ wit·P, i.e., there exists a polynomial 𝑝 and an 𝑅 ∈ P such that 𝑓 = wit𝑝·𝑅. In
particular, for all (𝑥, 𝑦) ∈ graph(𝑓), 𝑦 < 2𝑝(|𝑥|). Note that graph(𝑓) ∈ P. Hence 𝑓 ∈ NPMVg.

2. and 3. follow immediately from the definitions of NPMV, wit·NP and coNPMV, wit· coNP.

We show that NP and max ·NP are equivalent. In particular, all sets in NP are equivalent to some
function from max ·NP. The latter might not be true for max ·P (Corollary 4.11).

Proposition 2.3. 1. For every 𝑔 ∈ max ·NP there exists a 𝐵 ∈ NP such that 𝑔 ≡p
T 𝐵.

2. For every 𝐵 ∈ NP there exists a 𝑔 ∈ max ·NP such that 𝐵 ≡p
T 𝑔.

Proof. 1. Choose a polynomial 𝑝 and 𝑅 ∈ NP such that 𝑔 = max𝑝 ·𝑅. Let 𝐵 = {⟨𝑥, 𝑦⟩ | 𝑔(𝑥) ≥ 𝑦}.
Observe that 𝐵 ∈ NP and 𝐵 ≡p

T 𝑔. 2. Let 𝑅 = {⟨𝑥, 1⟩ | 𝑥 ∈ 𝐵} and note that 𝑅 ∈ NP. Define
𝑝(𝑛) = 1 and 𝑔 = max𝑝 ·𝑅. So 𝑔 is a total function N→ {0, 1}. It holds that (𝑔(𝑥) = 1 ⇐⇒ 𝑥 ∈ 𝐵)
and hence 𝑔 ≡p

T 𝐵.

Under the assumption P ̸= NP ∩ coNP, the class max ·P cannot be embedded in NP ∩ coNP.

6

Proposition 2.4. If P ̸= NP ∩ coNP, then there exists some 𝑔 ∈ max ·P such that for all
𝐿 ∈ NP ∩ coNP we have 𝑔 ̸≤p

T 𝐿.

Proof. Assume that for all 𝑔 ∈ max ·𝑃 there is some 𝐿′ ∈ NP ∩ coNP such that 𝑔 ≤p
T 𝐿′. Let

𝐿 ∈ NP, we show 𝐿 ∈ NP ∩ coNP: 𝐿 = ∃𝑝·𝑅 for some polynomial 𝑝 and 𝑅 ∈ P. Let 𝑔 = max𝑝 ·𝑅
and observe that 𝐿 ≤p

T 𝑔. By assumption, there is some 𝐿′ ∈ NP ∩ coNP such that 𝑔 ≤p
T 𝐿′ and

hence 𝐿 ≤p
T 𝐿′. So 𝐿 ∈ NP ∩ coNP, since NP ∩ coNP is closed under ≤p

T.

With standard padding techniques we construct several very sparse sets in NP under the assumption
that certain super-exponential time classes do not coincide.

Proposition 2.5.

1. If EE ̸= NEE, then there exists a 𝐵 ∈ NP− P such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} for some 𝑐 ≥ 1.

2. If EE ̸= NEE∩ coNEE, then there exists a 𝐵 ∈ (NP∩ coNP)−P such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N}
for some 𝑐 ≥ 1.

3. If NEE ≠ coNEE, then there exists a 𝐵 ∈ NP− coNP such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} for some
𝑐 ≥ 1.

4. If FewEEE ≠ NEEE, then there exists a 𝐵 ∈ NP − FewP such that 𝐵 ⊆ {𝑡(𝑐 · 𝑖) + 𝑘 | 𝑖 ∈
N, 0 ≤ 𝑘 < 2𝑖} for some 𝑐 ≥ 1 and 𝑡(𝑛) = 22

22
𝑛

.

5. If UEEE∩ coUEEE ̸= NEEE∩ coNEEE, then there exists a 𝐵 ∈ (NP∩ coNP)− (UP∩ coUP)
such that 𝐵 ⊆ {𝑡(𝑐 · 𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖} for some 𝑐 ≥ 1 and 𝑡(𝑛) = 22

22
𝑛

.

Proof. For 𝐿 ⊆ N and 𝑐 ∈ N− {0} let 𝐵(𝐿, 𝑐) = {22𝑥
𝑐

| 𝑥 ∈ 𝐿}. We claim:

𝐿 ∈ DTIME(22
𝑐·𝑛

) ⇐⇒ 𝐵(𝐿, 𝑐) ∈ P (1)

𝐿 ∈ NTIME(22
𝑐·𝑛

) ⇐⇒ 𝐵(𝐿, 𝑐) ∈ NP (2)

𝐿 ∈ coNTIME(22
𝑐·𝑛

) ⇐⇒ 𝐵(𝐿, 𝑐) ∈ coNP (3)

If 𝐿 ∈ DTIME(22
𝑐·𝑛

), then 𝐵(𝐿, 𝑐) ∈ P by the algorithm that on input 𝑦 = 22
𝑥𝑐

simulates 𝑁 on 𝑥

in deterministic polynomial time in |𝑦| (𝑁 on 𝑥 needs time 22
𝑐·|𝑥| ≤ 22

𝑐·(1+log 𝑥)
= 22

𝑐·𝑥𝑐
= (log 𝑦)2

𝑐 ≤
|𝑦|2𝑐 ≤ |𝑦|𝑐′). If 𝐵(𝐿, 𝑐) ∈ P, then 𝐿 ∈ DTIME(22

𝑐·𝑛
) by the algorithm that on input 𝑥 simulates

the deterministic polynomial-time algorithm for 𝐵(𝐿, 𝑐) on input 𝑦 = 22
𝑥𝑐

(the simulation needs

time |𝑦|𝑐′′ ≤ (log 𝑦)𝑐
′′+1 = (2𝑥

𝑐
)𝑐

′′+1 ≤ 2𝑥
𝑑
= 22

𝑑 log 𝑥 ≤ 22
𝑑|𝑥|

). Analogously one shows (2) and (3).

1. If EE ̸= NEE, then let 𝐿 ∈ NEE− EE. Choose 𝑐 ≥ 1 such that 𝐿 ∈ NTIME(22
𝑐·𝑛

). By (1) and
(2), 𝐵(𝐿, 𝑐) ∈ NP− P.

2. If EE ≠ NEE ∩ coNEE, then let 𝐿 ∈ (NEE ∩ coNEE) − EE. Choose 𝑐 ≥ 1 such that 𝐿,𝐿 ∈
NTIME(22

𝑐·𝑛
). By (1)–(3), 𝐵(𝐿, 𝑐) ∈ (NP ∩ coNP)− P.

3. If NEE ̸= coNEE, then let 𝐿 ∈ NEE− coNEE. Choose 𝑐 ≥ 1 such that 𝐿 ∈ NTIME(22
𝑐·𝑛

). By
(2) and (3), 𝐵(𝐿, 𝑐) ∈ NP− coNP.

7

4. Let 𝐿 ∈ NEEE − FewEEE and choose some 𝑐 ∈ N − {0} such that 𝐿 is decidable by a

nondeterministic machine 𝑁 that works in time 22
2𝑐·𝑛

. Let 𝐵 = {𝑡(𝑐 · |𝑥|)+𝑥 | 𝑥 ∈ 𝐿} and note that
𝐵 ⊆ {𝑡(𝑐 · 𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖}. We show 𝐵 ∈ NP− FewP: 𝐵 ∈ NP by the algorithm that on
input 𝑦 = 𝑡(𝑐·|𝑥|)+𝑥 simulates 𝑁 on 𝑥 in nondeterministic polynomial time in |𝑦| (𝑁 on 𝑥 needs time

22
2𝑐·|𝑥|

= log 𝑡(𝑐 · |𝑥|) ≤ log 𝑦 ≤ |𝑦|). 𝐵 /∈ FewP, since otherwise 𝐿 ∈ FewEEE by the algorithm that
on input 𝑥 simulates the FewP-algorithm for 𝐵 on input 𝑦 = 𝑡(𝑐·|𝑥|)+𝑥 (the simulation works in time

|𝑦|𝑐′ ≤ (1 + log 𝑦)𝑐
′ ≤ (log 𝑦)𝑐

′+1 ≤ (log 2𝑡(𝑐 · |𝑥|))𝑐′+1 = (22
2𝑐·|𝑥|

+ 1)𝑐
′+1 ≤ (22

2𝑐·|𝑥|
)𝑐

′+2 ≤ 22
2𝑐

′′·|𝑥|

and similarly we see that the number of accepting paths is lower equal |𝑦|𝑑′ ≤ 22
2𝑑

′′·|𝑥|
).

5. Let 𝐿 ∈ (NEEE ∩ coNEEE) − (UEEE ∩ coUEEE) and choose some 𝑐 ∈ N − {0} such that 𝐿

(resp., 𝐿) is decidable by a nondeterministic machine 𝑁 (resp, 𝑁) that works in time 22
2𝑐·𝑛

. Let
𝐵 = {𝑡(𝑐 · |𝑥|) + 𝑥 | 𝑥 ∈ 𝐿} and note that 𝐵 ⊆ {𝑡(𝑐 · 𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖}. We show
𝐵 ∈ (NP∩ coNP)− (UP∩ coUP): 𝐵 ∈ NP by the algorithm that on input 𝑦 = 𝑡(𝑐 · |𝑥|)+𝑥 simulates

𝑁 on 𝑥 in nondeterministic polynomial time in |𝑦| (𝑁 on 𝑥 needs time 22
2𝑐·|𝑥|

= log 𝑡(𝑐 · |𝑥|) ≤
log 𝑦 ≤ |𝑦|). Similarly, 𝐵 ∈ NP by the algorithm that on input 𝑦 = 𝑡(𝑐 · |𝑥|)+𝑥 simulates 𝑁 ′ on 𝑥 in
nondeterministic polynomial time in |𝑦|. 𝐵 /∈ (UP∩coUP), since otherwise 𝐿 ∈ UEEE∩coUEEE by
the algorithm that on input 𝑥 simulates the (UP∩coUP)-algorithm for 𝐵 on input 𝑦 = 𝑡(𝑐·|𝑥|)+𝑥 (the

simulation works in time |𝑦|𝑐′ ≤ (1 + log 𝑦)𝑐
′ ≤ (log 𝑦)𝑐

′+1 ≤ (log 2𝑡(𝑐 · |𝑥|))𝑐′+1 = (22
2𝑐·|𝑥|

+ 1)𝑐
′+1 ≤

(22
2𝑐·|𝑥|

)𝑐
′+2 ≤ 22

2𝑐
′′·|𝑥|

).

2.2 Multiobjective Optimization Problems

Let 𝑘 ≥ 1. A 𝑘-objective NP optimization problem (𝑘-objective problem, for short) is a tuple (𝑆, 𝑓,←)
where

∙ 𝑆 : N→ 2N maps an instance 𝑥 ∈ N to the set of feasible solutions for this instance, denoted
as 𝑆𝑥 = 𝑆(𝑥) ⊆ N. There must be some polynomial 𝑝 such that for every 𝑥 ∈ N and every
𝑠 ∈ 𝑆𝑥 it holds that |𝑠| ≤ 𝑝(|𝑥|) and the set {⟨𝑥, 𝑠⟩ | 𝑥 ∈ N, 𝑠 ∈ 𝑆𝑥} must be polynomial-time
decidable, i.e., 𝑆 ∈ wit·P.

∙ 𝑓 : {⟨𝑥, 𝑠⟩ | 𝑥 ∈ N, 𝑠 ∈ 𝑆𝑥} → N𝑘 maps an instance 𝑥 ∈ N and a solution 𝑠 ∈ 𝑆𝑥 to its value,
denoted by 𝑓𝑥(𝑠) ∈ N𝑘. The function 𝑓 must be polynomial-time computable.

∙ ← ⊆ N𝑘 × N𝑘 is a partial order on the values of solutions. It must hold that (𝑎1, . . . , 𝑎𝑘)←
(𝑏1, . . . , 𝑏𝑘) ⇐⇒ 𝑎1 ←1 𝑏1 ∧ · · · ∧ 𝑎𝑘 ←𝑘 𝑏𝑘, where ←𝑖 is ≤ if the 𝑖-th objective is minimized,
and ←𝑖 is ≥ if the 𝑖-th objective is maximized.

We also use ≤ as the partial order ← where ←𝑖 = ≤ for all 𝑖 and ≥ is used analogously.

The superscript 𝑥 of 𝑓 and 𝑆 can be omitted if it is clear from context. The projection of 𝑓𝑥 to the 𝑖-
th component is denoted as 𝑓𝑥

𝑖 where 𝑓𝑥
𝑖 (𝑠) = 𝑣𝑖 if 𝑓

𝑥(𝑠) = (𝑣1, . . . , 𝑣𝑘). If 𝑎← 𝑏 we say that 𝑎 weakly
dominates 𝑏 (i.e., 𝑎 is at least as good as 𝑏). If 𝑎← 𝑏 and 𝑎 ̸= 𝑏 we say that 𝑎 dominates 𝑏. Note that
← always points in the direction of the better value. If 𝑓 and 𝑥 are clear from the context, then we
extend ← to combinations of values and solutions. So we can talk about weak dominance between
solutions, and we write 𝑠← 𝑡 if 𝑓𝑥(𝑠)← 𝑓𝑥(𝑡), 𝑠← 𝑐 if 𝑓𝑥(𝑠)← 𝑐, and so on, where 𝑠, 𝑡 ∈ 𝑆𝑥 and

8

𝑐 ∈ N𝑘. Furthermore, we define opt← : 2N
𝑘 → 2N

𝑘
, opt←(𝑀) = {𝑦 ∈𝑀 | ∀𝑧 ∈𝑀 [𝑧 ← 𝑦 ⇒ 𝑧 = 𝑦]}

as a function that maps sets of values to sets of optimal values. The operator opt← is also applied
to sets of solutions 𝑆′ ⊆ 𝑆𝑥 as opt←(𝑆′) = {𝑠 ∈ 𝑆′ | 𝑓𝑥(𝑠) ∈ opt←(𝑓𝑥(𝑆′))}. If even ← is clear from
the context, we write 𝑆𝑥

opt = opt←(𝑆𝑥) and opt𝑖(𝑆
′) = {𝑠 ∈ 𝑆′ | 𝑓𝑥

𝑖 (𝑠) ∈ opt←𝑖
(𝑓𝑥

𝑖 (𝑆
′))}.

Definition 2.6. For every 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,←) where 𝑘 ≥ 1 and
all 1 ≤ 𝑖 ≤ 𝑘 we define the search notions arbitrary optimum (A-𝒪), dominating solution (D-𝒪),
specific optimum (S-𝒪), constraint optimum (Ci-𝒪), lexicographic optimum (L-𝒪), and weighted
sum optimum (W-𝒪) as multivalued functions from N to N, where

A-𝒪(𝑥) = 𝑆𝑥
opt

D-𝒪(⟨𝑥, ⟨𝑐⟩⟩) = {𝑦 ∈ 𝑆𝑥 | 𝑦 ← 𝑐}
S-𝒪(⟨𝑥, ⟨𝑐⟩⟩) =

{︀
𝑦 ∈ 𝑆𝑥

opt | 𝑦 ← 𝑐
}︀

Ci-𝒪(⟨𝑥, ⟨𝑐⟩⟩) = opt𝑖
(︀{︀

𝑠 ∈ 𝑆𝑥 | 𝑓𝑥
𝑗 (𝑠)←𝑗 𝑐𝑗 for all 𝑗 ̸= 𝑖

}︀)︀
L-𝒪(𝑥) = opt𝑘(. . . (opt2(opt1(𝑆

𝑥))) . . .)

W-𝒪(⟨𝑥, ⟨𝜔⟩⟩) = {𝑦 ∈ 𝑆𝑥 | ∀𝑠 ∈ 𝑆𝑥 [𝑤𝑥
𝜔(𝑦)←1 𝑤

𝑥
𝜔(𝑠)]}

for all 𝑥 ∈ N and 𝑐, 𝜔 ∈ N𝑘, where 𝑤𝑥
𝜔(𝑦) =

∑︀𝑘
𝑗=1 𝜔𝑗𝑓

𝑥
𝑗 (𝑦) for all 𝑦 ∈ 𝑆𝑥. For the weighted sum

optimum notion, we assume that all objectives are to be maximized or all objectives are to be
minimized.

The arbitrary optimum notion of 𝒪 maps input instances to all optimal solutions and hence is
polynomial-time solvable if for all input instances 𝑥 ∈ N we can decide if 𝑆𝑥 ̸= ∅ and further find
some arbitrary optimal solution 𝑠 ∈ 𝑆𝑥

opt in polynomial time. Analogously, the specific optimum
notion searches for optimal solutions that are restricted to be at least as good as the constraint
vector 𝑐 ∈ N𝑘, whereas the dominating solution notion does not require the solutions to be optimal.
The constraint optimum notion for the 𝑖-th objective searches solutions that are at least as good
as 𝑐 for all objectives 𝑗 ≠ 𝑖 and optimal for objective 𝑖, while the lexicographical optimum notion
searches for solutions that are optimal according to some fixed order of objectives (here: 1, 2, . . . , 𝑘).
Finally, the weighted sum notion searches for solutions such that the sum of all objectives weighted
with the weight vector 𝜔 ∈ N𝑘 is optimal.

Note that the weighted sum notion takes ←1 as the partial order of the weighted sum of values of
solutions, since optimizing the weighted sum only makes sense if all objectives are to be minimized
or all objectives are to be maximized. This notion plays a special role as it combines multiple
objectives into a single function and thus turns out to be equivalent to a single-objective problem.

Proposition 2.7. For every 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,←) where all objectives
are to be maximized (resp., minimized) there is a single-objective problem 𝒪′ such that W-𝒪 = A-𝒪′.

Proof. Let 𝒪′ = (𝑆′, 𝑓 ′,←1) with 𝑆′⟨𝑥,⟨𝜔1,...,𝜔𝑘⟩⟩ = 𝑆𝑥 and 𝑓 ′⟨𝑥,⟨𝜔1,...,𝜔𝑘⟩⟩(𝑠) =
∑︀𝑘

𝑖=1 𝜔𝑖𝑓
𝑥
𝑖 (𝑠).

We refer to [GRSW10] for a more detailed introduction to solution notions of multiobjective
problems.

Each search notion maps to sets of solutions, which, in turn, map to values in N𝑘 via 𝑓 . Hence,
each search notion naturally motivates a value notion for the problem.

9

Definition 2.8. For every 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,←) we define the value
notion Val(𝒳 -𝒪) as a multivalued function from N to N𝑘, where

Val(𝒳 -𝒪)(𝜙) = 𝑓𝑥(𝒳 -𝒪(𝜙))

for all 𝜙 ∈ N and 𝒳 ∈ {A,D,S,C1,C2, . . . ,Ck,L,W}, where 𝑥 is the problem instance encoded in
𝜙, and 𝒳 = 𝑊 only if all objectives are to be maximized (resp., minimized).

We show that we can restrict to multiobjective problems whose objectives are all to be maximized.

Proposition 2.9. For every 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,←) there is a 𝑘-objective
NP optimization problem 𝒪′ = (𝑆, 𝑓 ′,≥) such that for all 𝒳 ∈ {A,D, S,C1,C2, . . . ,Ck,L,W}

𝒳 -𝒪 ≡p
T 𝒳 -𝒪′ and Val(𝒳 -𝒪) ≡p

T Val(𝒳 -𝒪′)

(where 𝒳 = 𝑊 is only considered for ← ∈ {≤,≥}).

Proof. Since 𝑓 must be polynomial-time computable, there is a polynomial 𝑝 such that for every
𝑖 ∈ {1, . . . , 𝑘}, 𝑓𝑥

𝑖 (𝑠) ≤ 2𝑝(|𝑥|). For every 𝑖 such that ←𝑖 = ≤, let 𝑓 ′𝑥𝑖 (𝑠) = 2𝑝(|𝑥|) − 𝑓𝑥
𝑖 (𝑠) and

𝑓 ′𝑥𝑖 (𝑠) = 𝑓𝑥
𝑖 (𝑠) for all other 𝑖. Observe that the assertions hold.

We obtain the following upper bounds for the search and value notions.

Proposition 2.10. Let 𝒪 = (𝑆, 𝑓,←) be a 𝑘-objective NP optimization problem.

1. 𝒳 ∈ {A, S,C1,C2, . . . ,Ck,L,W} =⇒ 𝒳 -𝒪 ∈ coNPMV and Val(𝒳 -𝒪) ∈ coNPMV.

2. D-𝒪 ∈ NPMVg and Val(D-𝒪) ∈ NPMV

Proof. 1. Let 𝒳 ∈ {A,S,C1,C2, . . . ,Ck,L,W}. By definition of multiobjective problems and
search notions, (𝑥, 𝑦) ∈ graph(𝒳 -𝒪) implies that 𝑦 is polynomially bounded in its length, and
the same holds for the value of 𝑦 in particular. Further observe that graph(𝒳 -𝒪) ∈ coNP and
graph(Val(𝒳 -𝒪)) ∈ coNP by checking some P-predicate for all possible solutions and hence
we obtain 𝒳 -𝒪 ∈ coNPMV and Val(𝒳 -𝒪) ∈ coNPMV.

2. Again, solutions are polynomially bounded. Further observe that graph(D-𝒪) ∈ P and
graph(Val(D-𝒪)) ∈ NP, because (⟨𝑥, 𝑐⟩, 𝑠) ∈ graph(D-𝒪) ⇐⇒ 𝑠 ∈ 𝑆𝑥 and 𝑦 ← 𝑐, which can
be tested in polynomial time, whereas (⟨𝑥, 𝑐⟩, 𝑦) ∈ graph(Val(D-𝒪)) needs to further check if
a solution 𝑠 ∈ 𝑆𝑥 with 𝑓𝑥(𝑠) = 𝑦 exists.

3 Reducibility Structure

We investigate the reducibility among search and value notions for multiobjective problems. More
specifically, for every possible combination we either show that reducibility holds for all multiobjective
problems (Theorem 3.1, Theorem 3.2) or we give evidence for the existence of a counter example
(Theorem 3.3, Corollary 3.5).

Glaßer et al. [GRSW10] show reductions among search notions that generally hold for all multiob-
jective optimization problems.

10

Theorem 3.1 ([GRSW10, Theorem 1]). Let 𝒪 = (𝑆, 𝑓,≥) be a 𝑘-objective NP optimization problem.

1. A-𝒪 ≤p
T L-𝒪 ≤p

T S-𝒪

2. S-𝒪 ≡p
T D-𝒪 ≡p

T C1-𝒪 ≡p
T C2-𝒪 ≡p

T . . . ≡p
T Ck-𝒪

3. L-𝒪 ≤p
T W-𝒪

4. W-𝒪 ≤p
T SAT and D-𝒪 ≤p

T SAT

Let us first analyze analogous reductions among value notions and relate them to the search notions.
After that we will give evidence that these are indeed the only reductions that hold in general.

Theorem 3.2. Let 𝒪 = (𝑆, 𝑓,≥) be a 𝑘-objective NP optimization problem.

1. Val(𝒳 -𝒪) ≤p
T 𝒳 -𝒪 for 𝒳 ∈ {A,L, S,D,C1,C2, . . . ,Ck,W}

2. Val(A-𝒪) ≤p
T Val(L-𝒪) ≤p

T Val(S-𝒪)

3. Val(D-𝒪) ≡p
T Val(S-𝒪) ≡p

T Val(Ci-𝒪) for 𝑖 ∈ {1, . . . , 𝑘}

4. Val(L-𝒪) ≤p
T Val(W-𝒪)

Proof. 1. We can compute a refinement of Val(𝒳 -𝒪) by applying 𝑓 on a refinement of 𝒳 -𝒪.

2. Val(L-𝒪) maps to values of optimal solutions, hence every refinement of Val(L-𝒪) is a
refinement of Val(A-𝒪) and we obtain Val(A-𝒪) ≤p

T Val(L-𝒪).
To show Val(L-𝒪) ≤p

T Val(S-𝒪) we perform a binary search using Val(S-𝒪) where we first
optimize the objective with the highest priority and go on with the other objectives.

3. It holds that Val(D-𝒪) ≤p
T Val(S-𝒪), because every refinement of Val(S-𝒪) is also a refinement

of Val(D-𝒪). On the other hand we can compute a refinement of Val(S-𝒪) by a binary search
using any refinement of Val(D-𝒪) and hence obtain Val(S-𝒪) ≡p

T Val(D-𝒪).
We can compute a refinement of Val(D-𝒪) by using any refinement of Val(Ci-𝒪) with the
input cost vector 𝑐 = (𝑐1, . . . , 𝑐𝑘) given to Val(D-𝒪): If the refinement of Val(Ci-𝒪) returns a
value 𝑦 = (𝑦1, . . . , 𝑦𝑘), we return 𝑦 as a value of the refinement of Val(D-𝒪) iff 𝑦𝑖 ≥ 𝑐𝑖. To
compute a refinement of Val(Ci-𝒪) we perform a binary search to optimize 𝑖 using any partial
function that is a refinement of Val(S-𝒪) with the constraints as cost vector.

4. Because 𝑓 is computable in polynomial time, there is a polynomial 𝑞 with |𝑓𝑥
𝑖 (𝑠)| ≤ 𝑞(|𝑥|)

for every instance 𝑥 ∈ N, every solution 𝑠 ∈ 𝑆𝑥 and every 𝑖 ∈ {1, . . . , 𝑘}. Let the order of
objectives for Val(L-𝒪) be 1, 2, . . . , 𝑘 and define 𝜔𝑖 = 2(𝑘−𝑖)𝑞(|𝑥|) for 𝑖 ∈ {1, . . . , 𝑘}. Then any
refinement of Val(W-𝒪) with weight vector 𝜔 = (𝜔1, . . . , 𝜔𝑘) is a refinement of Val(L-𝒪), and
we have Val(L-𝒪) ≤p

T Val(W-𝒪).

Theorem 3.3. If P ̸= NP, then there exist two-objective NP optimization problems 𝒪1,𝒪2,𝒪3 such
that:

1. Val(L-𝒪1) ̸≤p
T A-𝒪1

2. Val(W-𝒪2) ̸≤p
T D-𝒪2

3. Val(D-𝒪3) ̸≤p
T W-𝒪3

11

Proof. We avoid artificial constructions and use natural optimization problems to show the results.

1. We consider the two-objective minimum lateness and weighted flow time scheduling problem
(we assume that objects, such as lists and permutations, are implicitly encoded as non-negative
integers)

2-LWF = (𝑆, 𝑓,≤), where instances are triples (𝑃,𝐷,𝑊) such that

∙ 𝑃 = (𝑝1, . . . , 𝑝𝑛) ∈ N𝑛 are processing times,

∙ 𝐷 = (𝑑1, . . . , 𝑑𝑛) ∈ N𝑛 are due dates,

∙ 𝑊 = (𝑤1, . . . , 𝑤𝑛) ∈ N𝑛 are weights,

∙ 𝑆(𝑃,𝐷,𝑊) = {𝜋 | 𝜋 is a permutation representing the schedule 𝑝𝜋(1), . . ., 𝑝𝜋(𝑛)},
∙ 𝑓 (𝑃,𝐷,𝑊)(𝜋) = (𝐿max,

∑︀𝑛
𝑗=1𝑤𝑗𝐶𝑗) where

– the completion time of job 𝑗 is 𝐶𝑗 =
∑︀

𝑖:𝜋(𝑖)≤𝜋(𝑗) 𝑝𝑖,

– the maximum lateness is 𝐿max = max{𝐶𝑗 − 𝑑𝑗 | 1 ≤ 𝑗 ≤ 𝑛},
– the weighted flow time is

∑︀𝑛
𝑗=1𝑤𝑗𝐶𝑗 ,

and let 𝒪1 = 2-LWF. Note that 2-LWF does not strictly conform to the definition of
multiobjective optimization problems since 𝑓 can have negative values. Nonetheless, since
𝑓 is polynomial-time computable, one can easily construct an equivalent problem where the
solutions only have non-negative values by adding an appropriate number.

Define Li -𝒪1 for 𝑖 = 1, 2 as the search notion in which the 𝑖-th objective has the higher priority.
It holds that L1-𝒪1 is NP-hard and L2-𝒪1 is polynomial-time solvable [GRSW10]. A-𝒪1 is
polynomial-time solvable as it can be reduced to L2-𝒪1. We now show L1-𝒪1 ≤p

T Val(L1-𝒪1):

Let (𝑃,𝐷,𝑊) with 𝐷 = (𝑑1, . . . , 𝑑𝑛) be the input. We query Val(L1-𝒪1) and obtain (𝐿max,Σ),
which is lexicographically optimal over all schedules. Let 𝐷′ = (𝑑′1, . . . , 𝑑

′
𝑛), where 𝑑′𝑖 =

𝑑𝑖 + 𝐿max (note that 𝑑′𝑖 ≥ 0 even if 𝐿max < 0). Observe that for all schedules 𝜋 we have
𝑓 (𝑃,𝐷,𝑊)(𝜋) = (𝑥, 𝑦) ⇐⇒ 𝑓 (𝑃,𝐷′,𝑊)(𝜋) = (𝑥− 𝐿max, 𝑦). It hence remains to find a schedule
for (𝑃,𝐷′,𝑊) with value (0,Σ).

Let 𝐷* ∈ N𝑛 with 𝐷* ≤ 𝐷′. As (0,Σ) is lexicographically optimal for (𝑃,𝐷′,𝑊), for all
schedules 𝜋 the value 𝑓 (𝑃,𝐷*,𝑊)(𝜋) cannot be lexicographically better than (0,Σ). Let 𝑑*1
be the smallest due date for job 1 such that a schedule with value (0,Σ) still exists. This
existence can be tested by querying Val(L1-𝒪1), and hence 𝑑*1 can be found in polynomial
time by binary search. Fix this due date for job 1 and observe that now, in every schedule
with value (0,Σ), job 1 has completion time 𝐶1 = 𝑑*1 and hence we know its exact start and
completion time in such a schedule. We proceed with the remaining jobs in the same way and
hence find a schedule with value (0,Σ) in polynomial time. It is easy to see that this schedule
has value (0,Σ) for the instance (𝑃,𝐷′,𝑊) and hence has the value (𝐿max,Σ) for (𝑃,𝐷,𝑊).
This shows L1-𝒪1 ≤p

T Val(L1-𝒪1), hence Val(L1-𝒪1) is NP-hard.

2. We consider the two-objective minimum quadratic diophantine equations problem

2-QDE = (𝑆, 𝑓,≤), where instances are ⟨𝑎, 𝑏, 𝑐⟩ with 𝑎, 𝑏, 𝑐 ∈ N,
𝑆⟨𝑎,𝑏,𝑐⟩ = {⟨𝑥, 𝑦⟩ | 𝑎𝑥2 + 𝑏𝑦2 − 𝑐 ≥ 0}, and 𝑓 ⟨𝑎,𝑏,𝑐⟩(⟨𝑥, 𝑦⟩) = (𝑥2, 𝑦2),

and let 𝒪2 = 2-QDE. It holds that D-𝒪2 is polynomial-time solvable [GRSW10]. The set
QDE = {(𝑎, 𝑏, 𝑐) ∈ N | ∃𝑥, 𝑦 ∈ N : [𝑎𝑥2 + 𝑏𝑦2 − 𝑐 = 0]} is NP-complete [MA78]. Now we show

12

that Val(W-𝒪2) is NP-hard by reducing QDE to it. For given ⟨𝑎, 𝑏, 𝑐⟩ solve Val(W-𝒪2) with
the weight vector 𝑤 = (𝑎, 𝑏). If Val(W-𝒪2) reports that 𝑆

⟨𝑎,𝑏,𝑐⟩ = ∅ then (𝑎, 𝑏, 𝑐) /∈ QDE. If
otherwise there is some (𝑥′, 𝑦′) ∈ Val(W-𝒪2)(⟨⟨𝑎, 𝑏, 𝑐⟩, ⟨𝑤⟩⟩), i.e., there exist 𝑥′, 𝑦′ ∈ N with
𝑎𝑥′ + 𝑏𝑦′ − 𝑐 ≥ 0 and minimal 𝑎𝑥′ + 𝑏𝑦′, then (𝑎, 𝑏, 𝑐) ∈ QDE if and only if 𝑎𝑥′ + 𝑏𝑦′ − 𝑐 = 0.
So it holds that QDE ≤p

T Val(W-𝒪2) and therefore Val(W-𝒪2) is NP-hard.

3. We consider the two-objective minimum spanning tree problem (again, assume that graphs
and trees are encoded as non-negative integers)

2-MST = (𝑆, 𝑓,≤), where instances are N2-edge-labeled graphs 𝐺 = (𝑉,𝐸, 𝑙),
𝑆𝐺 = {𝑇 ⊆ 𝐸 | 𝑇 is a spanning tree of 𝐺}, and 𝑓𝐺(𝑇) =

∑︀
𝑒∈𝑇 𝑙(𝑒),

and let 𝒪3 = 2-MST. It is known that W-𝒪3 is polynomial-time solvable, while D-𝒪3 is
NP-hard [GRSW10, PY82]. We show D-𝒪3 ≤p

T Val(D-𝒪3).

Given an N2-edge-labeled input graph 𝐺 = (𝑉,𝐸, 𝑙) and a cost vector 𝑐 ∈ N2, suppose there
exists a spanning tree that weakly dominates 𝑐. Since every spanning tree consists of exactly
|𝑉 |− 1 edges, if |𝐸| > |𝑉 |− 1 then there must be some edge that we can delete from the graph
such that the resulting graph still contains a spanning tree that weakly dominates 𝑐. To find
such an edge we loop over all 𝑒 ∈ 𝐸 and ask Val(D-𝒪3) whether the graph with edges 𝐸 ∖ {𝑒}
contains a spanning tree that weakly dominates 𝑐. We remove the edge we found and repeat
with the altered graph until |𝐸| = |𝑉 | − 1. Clearly, this process terminates after polynomially
many iterations and the resulting graph is a spanning tree that weakly dominates 𝑐. Hence
Val(D-𝒪3) is NP-hard, and Val(D-𝒪3) ̸≤p

T W-𝒪3, unless P = NP.

The question of whether A-𝒪 ≤p
T Val(W-𝒪) is related to the study of search versus decision

[BD76, Bal89, BBFG91], more precisely to the notion of functional self-reducibility, which was
introduced by Borodin and Demers [BD76]. A problem is functionally self-reducible if it belongs to
the following set (whose name indicates that functional self-reducibility is a universal variant of the
notion of search reduces to decision).

SRD∀ = {𝐿 ∈ NP | for all polynomials 𝑝 and all 𝑅 ∈ P it holds that (𝐿 = ∃𝑝·𝑅⇒ wit𝑝·𝑅 ≤p
T 𝐿)}

The statement 1 in the following theorem is equivalent to the statement NP ̸= SRD∀. Moreover,
if there exists an 𝐿 ∈ NP for which search does not reduce to decision (as shown by Beigel et al.
[BBFG91] under the assumption EE ̸= NEE), then statement 1 holds.

Theorem 3.4. The following statements are equivalent:

1. There exists a polynomial 𝑝 and 𝑅 ∈ P such that wit𝑝·𝑅 ̸≤p
T ∃𝑝·𝑅.

2. There exists a multiobjective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) such that A-𝒪 ̸≤p
T

Val(W-𝒪) ≡p
T Val(D-𝒪) and |range(𝑓)| = 1.

Proof. “1 ⇒ 2”: Define 𝒪 = (𝑆, 𝑓,≥) by 𝑆𝑥 = wit𝑝·𝑅(𝑥) and 𝑓(⟨𝑥, 𝑦⟩) = 1 for 𝑦 ∈ 𝑆𝑥. So
(𝑥 ∈ ∃𝑝·𝑅 ⇐⇒ 𝑆𝑥 ̸= ∅) and hence ∃𝑝·𝑅 ≡p

T Val(W-𝒪) ≡p
T Val(D-𝒪). The implication follows,

since A-𝒪 = wit𝑝·𝑅 ̸≤p
T ∃𝑝·𝑅.

13

“2 ⇒ 1”: From |range(𝑓)| = 1 it follows that each 𝑦 ∈ 𝑆𝑥 is optimal. Choose a polynomial 𝑝
such that 𝑦 < 2𝑝(|𝑥|) for all 𝑦 ∈ 𝑆𝑥. Let 𝑅 = {⟨𝑥, 𝑦⟩ | 𝑦 ∈ 𝑆𝑥} and note that 𝑅 ∈ P (by the
definition of multiobjective problems). Observe that A-𝒪 = wit𝑝·𝑅. Moreover, 𝑥 ∈ ∃𝑝·𝑅 ⇐⇒
Val(W-𝒪)(⟨𝑥, 0⟩) ̸= ∅ and hence ∃𝑝·𝑅 ≤p

T Val(W-𝒪). Therefore, wit𝑝·𝑅 ̸≤p
T ∃𝑝·𝑅, since otherwise

A-𝒪 ≤p
T ∃𝑝·𝑅 ≤

p
T Val(W-𝒪).

Corollary 3.5. If P ̸= NP∩coNP or EE ̸= NEE, then there exists a multiobjective NP optimization
problem 𝒪 = (𝑆, 𝑓,≥) such that A-𝒪 ̸≤p

T Val(W-𝒪) ≡p
T Val(D-𝒪).

Proof. Valiant [Val76] shows that P ̸= NP ∩ coNP implies statement 1 in Theorem 3.4. Beigel et al.
[BBFG91] show that EE ̸= NEE implies the same statement (cf. Theorem 4.10).

The results of this section are summarized in Figure 2.

4 Complexity of Value Notions

This section addresses the following questions concerning the complexities of value notions Val(A-𝒪),
Val(L-𝒪), Val(D-𝒪), and Val(W-𝒪).
Q1: What complexities can appear?

Q2: What settings of complexities for Val(A-𝒪), Val(L-𝒪), Val(D-𝒪), and Val(W-𝒪) are possible
for fixed multiobjective problems 𝒪?

It turns out that Val(L-𝒪), Val(D-𝒪), and Val(W-𝒪) can be embedded in NP, while we give evidence
that this does not hold for Val(A-𝒪). Moreover, NP can be embedded in Val(A-𝒪), Val(L-𝒪),
Val(D-𝒪), and Val(W-𝒪), which answers Q1. Regarding Q2, we show that the following settings
of complexities are possible: For all sets 𝐴,𝐿,𝐷,𝑊 ∈ NP that satisfy the following moderate
requirements there exist multiobjective NP optimization problems 𝒪 whose value notions are
equivalent to 𝐴,𝐿,𝐷,𝑊 .

∙ Requirement 1: 𝐴 ≤p
T 𝐿 ≤p

T 𝐷 and 𝐿 ≤p
T 𝑊

∙ Requirement 2: 𝑊 ≡p
T 𝑔 for some 𝑔 ∈ max ·𝐷

The first requirement is necessary, since by Theorem 3.2 these reducibilities hold for all multiobjective
NP optimization problems. The necessity of the second requirement is shown by Proposition 4.2.

Theorem 4.1. Let 𝐴, 𝐿, 𝐷, 𝑊 ∈ NP such that 𝐴 ≤p
T 𝐿 ≤p

T 𝐷 and 𝐿 ≤p
T 𝑊 ≡p

T 𝑔 for some
𝑔 ∈ max ·𝐷. Then there exists a two-objective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) such that

1. Val(A-𝒪) ≡p
T 𝐴

2. Val(L-𝒪) ≡p
T 𝐿

3. Val(D-𝒪) ≡p
T 𝐷

4. Val(W-𝒪) ≡p
T 𝑊

14

Proof. Let 𝐴, 𝐿, 𝐷, 𝑊 ∈ NP, 𝑔 ∈ max ·𝐷 with reduction relations as required in the statement of
the theorem and let 𝐴𝑤, 𝐿𝑤, 𝐷𝑤 ∈ P be corresponding witness sets. For the order of objectives
with regard to Val(L-𝒪) we choose to give priority to the first objective.

We first show that we can demand the following without loss of generality:

Claim 4.1.1. By replacing all sets and functions in the theorem with equivalent sets and functions,
it can be assumed that 𝑝 is a polynomial such that for any 𝑥 the following holds:

1. for any 𝐿 ∈ {𝐴𝑤, 𝐿𝑤, 𝐷𝑤} and any 𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝐿 it holds that 𝑦 < 2𝑝(|𝑥|)

2. for all 𝑦 where ⟨𝑥, 𝑦⟩ ∈ 𝐷 it holds that 0 < 𝑦 < 2𝑝(|𝑥|) − 1 and 𝑔 = max𝑝 ·𝐷

3. there is at least one 𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝐷

4. for all 𝑦 it holds that ⟨𝑥, 𝑦⟩ ∈ 𝐷 ⇐⇒ ⟨𝑥, 2𝑝(|𝑥|) − 1− 𝑦⟩ ∈ 𝐷

Proof. Statement 1 can be fulfilled by using a large enough polynomial and removing witnesses
from the witness set that are too large. Note that 1 remains fulfilled for larger polynomials.

For an arbitrary 𝐷0 ∈ NP and 𝑔0 = max𝑝0 ·𝐷0 (with 𝑝0 > 0), we now construct 𝐷 ≡p
T 𝐷0 and

𝑔 = max𝑝 ·𝐷 ≡p
T 𝑔0 for some polynomial 𝑝 that fulfill the assertions. Consider the set

𝐷′
𝑑𝑓
={⟨⟨𝑥, 0⟩, 𝑦⟩ | ⟨𝑥, 𝑦⟩ ∈ 𝐷0 and 𝑦 < 2𝑝0(|𝑥|)} ∪ {⟨⟨𝑥, 1 + 𝑦⟩, 𝑎⟩ | 𝑎 = 1 ∨ (𝑎 = 0 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐷0)}.

Observe that 𝐷0 ≡p
T 𝐷′, 𝑔0 ≡p

T 𝑔′
𝑑𝑓
=max𝑝0 ·𝐷′ and for all ⟨𝑥, 𝑦⟩ ∈ 𝐷′ it holds that 𝑦 < 2𝑝0(|𝑥|).

Choose some polynomial 𝑝 such that 𝑝 > 𝑝0 + 3 and 𝑝 is large enough for assertion 1. Observe that
for

𝐷
𝑑𝑓
= {⟨𝑥, 2𝑝(|𝑥|)−1 + 𝑦⟩ | ⟨𝑥, 𝑦⟩ ∈ 𝐷′} ∪
{⟨𝑥, 2𝑝(|𝑥|)−1 − 1⟩ | 𝑥 ∈ N} ∪
{⟨𝑥, 2𝑝(|𝑥|)−1⟩ | 𝑥 ∈ N} ∪
{⟨𝑥, 2𝑝(|𝑥|)−1 − 1− 𝑦⟩ | ⟨𝑥, 𝑦⟩ ∈ 𝐷′}

it holds that 𝐷 ≡p
T 𝐷′ and 𝑔

𝑑𝑓
=max𝑝 ·𝐷 ≡p

T 𝑔0. Moreover, 𝐷 and 𝑔 fulfill the remaining assertions.

We define the 2-objective maximization problem 𝒪 = (𝑆, 𝑓,≥) by

𝑆3𝑥 = {⟨0, 0, 𝑦⟩ | ⟨𝑥, 𝑦⟩ ∈ 𝐴𝑤} (stage for 𝐴)

𝑆3𝑥+1 = {⟨0, 0, 0⟩} ∪ {⟨0, 1, 𝑦⟩ | ⟨𝑥, 𝑦⟩ ∈ 𝐿𝑤} (stage for 𝐿)

𝑆3𝑥+2 = {⟨0, 𝑖, 0⟩ | 𝑖 ≤ 2𝑝(|𝑥|)} ∪ (stage for 𝑊 and 𝐷)

{⟨1, 𝑦, 𝑧⟩ | 𝑦 < 2𝑝(|𝑥|) and ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐷𝑤}
𝑓3𝑥+𝑟(⟨𝑎, 𝑖, 𝑧⟩) = (𝑖+ 𝑎, 𝑗) such that 𝑖+ 𝑗 = 2𝑝(|𝑥|)

The lengths of valid solutions are obviously polynomially bounded and 𝑆 is in P, because ⟨𝑎, 𝑖, 𝑧⟩ ∈
𝑆3𝑥+𝑟 can always be checked by simple arithmetic and optionally some query to a witness set in P.
The objective function 𝑓 is computable in polynomial time.

15

𝑓𝑥
1

𝑓𝑥
2

0
0

1

1

2

2

3

3

4

4

5

5

6

6

...

· · ·
2𝑝(|𝑥|)

2𝑝(|𝑥|)

· · ·

exists ⇐⇒ ⟨𝑥, 1⟩ ∈ 𝐷
exists ⇐⇒ ⟨𝑥, 2⟩ ∈ 𝐷

exists ⇐⇒ ⟨𝑥, 2𝑝(|𝑥|) − 2⟩ ∈ 𝐷

· · ·

· · ·

Figure 4: Illustration of 𝑓(𝑆3𝑥+2).

1. Val(A-𝒪) ≤p
T 𝐴: Note that the value (0, 2𝑝(|𝑥|)) is always optimal for instances of the form

3𝑥+ 1 or 3𝑥+ 2, so the reduction algorithm can output it without querying 𝐴. For instances
of the form 3𝑥 it queries 𝐴 for 𝑥 and outputs (0, 2𝑝(|𝑥|)) if the answer is yes and ⊥ otherwise.

𝐴 ≤p
T Val(A-𝒪): Here, on input 𝑥 the reduction is done by a query for Val(A-𝒪)(3𝑥) with

output “no” if and only if the answer is ⊥.

2. Val(L-𝒪) ≤p
T 𝐿: Note that for instances of the form 3𝑥+2, the values (0, 2𝑝(|𝑥|)) and (2𝑝(|𝑥|), 0)

are always optimal, so the reduction algorithm can output a lexicographically optimal solution
without querying 𝐿. Instances of the form 3𝑥 can be solved by a query to Val(A-𝒪) ≤p

T 𝐴 ≤p
T 𝐿.

Let now the instance be 3𝑥 + 1. Note that Val(L-𝒪) has to output (0, 2𝑝(|𝑥|)) if 𝑥 /∈ 𝐿 and
(1, 2𝑝(|𝑥|) − 1) otherwise, which can be checked by a simple query to 𝐿.

𝐿 ≤p
T Val(L-𝒪): Similar to the case for 𝐴, the reduction is a simple query to Val(L-𝒪)(3𝑥+1).

3. Val(D-𝒪) ≤p
T 𝐷: Instances not of the form 3𝑥+ 2 can be handled by queries to Val(A-𝒪) or

Val(L-𝒪) since Val(A-𝒪) ≤p
T 𝐴 ≤p

T 𝐷 and Val(L-𝒪) ≤p
T 𝐿 ≤p

T 𝐷. Let now ⟨3𝑥+ 2, ⟨𝑖, 𝑗⟩⟩ be
the input.

If 𝑖 + 𝑗 ≤ 2𝑝(|𝑥|), output 𝑓3𝑥+2(⟨0, 𝑖, 0⟩) = (𝑖, 2𝑝(|𝑥|) − 𝑖), which is always the value of some
solution. If 𝑖+ 𝑗 > 2𝑝(|𝑥|)+1, there is no solution that (weakly) dominates this value, so output
⊥. For the last case, 𝑖+ 𝑗 = 2𝑝(|𝑥|) + 1, note that the only solutions that can possibly (weakly)
dominate the value (𝑖, 𝑗) are those of type ⟨1, 𝑦, 𝑧⟩ for 𝑦 < 2𝑝(|𝑥|) and ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ 𝐷𝑤 which
also have the value (𝑖, 𝑗). This means that 𝑦 = 𝑖− 1, so we can return (𝑖, 𝑗) if ⟨𝑥, 𝑖− 1⟩ ∈ 𝐷
and ⊥ otherwise.

𝐷 ≤p
T Val(D-𝒪): On input ⟨𝑥, 𝑦⟩, Val(D-𝒪)(⟨3𝑥+ 2, ⟨𝑖, 𝑗⟩⟩) with 𝑖 = 𝑦 + 1 and 𝑗 = 2𝑝(|𝑥|) − 𝑦

is queried. As shown in the previous paragraph, the result of this query tells whether or not
⟨𝑥, 𝑦⟩ ∈ 𝐷.

16

4. Val(W-𝒪) ≤p
T 𝑊 : As in the case of Val(D-𝒪), instances not of the form 3𝑥+2 can be handled

by indirect reductions. For instances of the form 3𝑥+ 2 we show Val(W-𝒪) ≤p
T 𝑔:

It obviously suffices to return values from the border of the convex hull of all solution values.
It even suffices to consider only corner points of the convex hull. These corner points are
(0, 2𝑝(|𝑥|)), (2𝑝(|𝑥|), 0), (1 + 𝑦min, 2

𝑝(|𝑥|) − 𝑦min) and (1 + 𝑦max, 2
𝑝(|𝑥|) − 𝑦max) where 𝑦min and

𝑦max are the minimal and maximal values for 𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝐷. Since we required
that ⟨𝑥, 𝑦⟩ ∈ 𝐷 ⇐⇒ ⟨𝑥, 2𝑝(|𝑥|) − 1− 𝑦⟩ ∈ 𝐷, we only need to determine 𝑦max and this can
obviously be done by a query to 𝑔(𝑥) (note that we also required that there is at least one 𝑦
such that ⟨𝑥, 𝑦⟩ ∈ 𝐷).

5. 𝑊 ≤p
T Val(W-𝒪): The reduction 𝑔 ≤p

T Val(W-𝒪) holds as follows: On input 𝑥,
Val(W-𝒪)(⟨3𝑥+ 2, ⟨𝑤,𝑤 − 1⟩⟩) for 𝑤 = 2𝑝(|𝑥|) + 1 is queried. The weighted sum of the
value of a solution 𝑠 = ⟨𝑎, 𝑖, 𝑧⟩ is

𝑤𝑓3𝑥+2
1 (⟨𝑎, 𝑖, 𝑧⟩) + (𝑤 − 1)𝑓3𝑥+2

2 (⟨𝑎, 𝑖, 𝑧⟩) = 𝑤(𝑖+ 𝑎) + (𝑤 − 1)(2𝑝(|𝑥|) − 𝑖)

= 𝑖+ 𝑤𝑎+ (𝑤 − 1)2𝑝(|𝑥|).

Since every possible value for 𝑖 is at most 2𝑝(|𝑥|) < 𝑤 and we required that there is at least one
𝑦 such that ⟨𝑥, 𝑦⟩ ∈ 𝐷, the function Val(W-𝒪) returns the value of a solution of type ⟨1, 𝑦, 𝑧⟩
with maximal 𝑦, which is exactly 𝑔(𝑥).

We now show that in Theorem 4.1 it is necessary to restrict the relationship between 𝐷 and 𝑊 such
that 𝑊 ≡p

T 𝑔 for some 𝑔 ∈ max ·𝐷. As a consequence, the complexities for Val(A-𝒪), Val(L-𝒪),
Val(D-𝒪), and Val(W-𝒪) provided by Theorem 4.1 are indeed all possible complexities for the value
notions that can be described in terms of sets (cf. Corollary 4.3).

Proposition 4.2. For every multiobjective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) there is some
𝐴 ∈ NP and 𝑔 ∈ max ·𝐴 such that

Val(D-𝒪) ≡p
T 𝐴 and Val(W-𝒪) ≡p

T 𝑔.

Proof. For the 𝑘-objective problem 𝒪 = (𝑆, 𝑓,≥) let

𝐴 := {⟨⟨𝑥, ⟨𝑤⟩⟩, ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′⟩ | 𝑤 ∈ N𝑘, 𝑦𝑖 < 2𝑝(|𝑥|), 𝑧 =
𝑘∑︁

𝑖=1

𝑤𝑖𝑦𝑖, and

there is some 𝑠 ∈ 𝑆𝑥 such that 𝑓𝑥(𝑠) ≥ (𝑦1, . . . , 𝑦𝑘)}

where 𝑝 is a polynomial upper bound for all polynomials in the definition of 𝒪 and ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ 𝑑𝑓=1+
𝑧 · 2𝑘·𝑝(|𝑥|) +

∑︀𝑘
𝑖=1 𝑦𝑖 · 2(𝑖−1)·𝑝(|𝑥|) for 𝑧 ∈ N and 0 ≤ 𝑦𝑖 < 2𝑝(|𝑥|). This means that ⟨·⟩′ is a

bijection between N × {0, . . . , 2𝑝(|𝑥|) − 1}𝑘 and N+ that transfers the lexicographical order on
N×{0, . . . , 2𝑝(|𝑥|)−1}𝑘 to the natural order on N+. Furthermore, for all ⟨⟨𝑥, ⟨𝑤⟩⟩, ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′⟩ ∈ 𝐴
it holds that ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ < 2𝑞(|⟨𝑥,⟨𝑤⟩⟩|) for some polynomial 𝑞. Since {⟨𝑥, 𝑠⟩ | 𝑥 ∈ N, 𝑠 ∈ 𝑆𝑥} ∈ P
and 𝑓 ∈ PF we have 𝐴 ∈ NP. Let 𝑔 = max𝑞 ·𝐴. We will show Val(D-𝒪) ≡p

T 𝐴 and Val(W-𝒪) ≡p
T 𝑔.

17

1. Val(D-𝒪) ≤p
T 𝐴: On input ⟨𝑥, ⟨𝑐⟩⟩, we query 𝑥′ := ⟨⟨𝑥, ⟨0, 0, . . . , 0⟩⟩, ⟨0, 𝑐𝑘, . . . , 𝑐1⟩′⟩ ∈ 𝐴. If

𝑥′ /∈ 𝐴, then there is no 𝑠 ∈ 𝑆𝑥 with 𝑓𝑥(𝑠) ≥ (𝑐1, . . . , 𝑐𝑘), and we return ⊥. Otherwise there is
some 𝑠 ∈ 𝑆𝑥

opt with 𝑓𝑥(𝑠) = (𝑐′1, . . . , 𝑐
′
𝑘) ≥ (𝑐1, . . . , 𝑐𝑘). We find (𝑐′1, . . . , 𝑐

′
𝑘) by a binary search

using queries similar to 𝑥′ and return (𝑐′1, . . . , 𝑐
′
𝑘).

2. 𝐴 ≤p
T Val(D-𝒪): On input ⟨⟨𝑥, ⟨𝑤⟩⟩, ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′⟩, we reject if 𝑧 ̸=

∑︀𝑘
𝑖=1𝑤𝑖𝑦𝑖. Otherwise we

accept if and only if there is some 𝑠 ∈ 𝑆𝑥 with 𝑓𝑥(𝑠) ≥ (𝑦1, . . . , 𝑦𝑘), which can be determined
by a query to Val(D-𝒪) on ⟨𝑥, ⟨𝑦1, . . . , 𝑦𝑘⟩⟩.

3. Val(W-𝒪) ≤p
T 𝑔: On input ⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩, we obtain 𝑟 := 𝑔(⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩) by a query to

the oracle. If 𝑟 = 0, there are no 𝑧, 𝑦1, . . . , 𝑦𝑘 ∈ N with ⟨⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩, ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′⟩ ∈ 𝐴,
and thus 𝑆𝑥 = ∅ and we return ⊥. Otherwise, let 𝑧, 𝑦1, . . . , 𝑦𝑘 ∈ N with ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ = 𝑟.
Hence we have 𝑧 =

∑︀𝑘
𝑖=1𝑤𝑖𝑦𝑖 and 𝑓𝑥(𝑠) ≥ (𝑦1, . . . , 𝑦𝑘) for some 𝑠 ∈ 𝑆𝑥.

Assume there is some 𝑠′ ∈ 𝑆𝑥
opt such that 𝑧′

𝑑𝑓
=
∑︀𝑘

𝑖=1𝑤𝑖𝑓
𝑥
𝑖 (𝑠
′) >

∑︀𝑘
𝑖=1𝑤𝑖𝑓

𝑥
𝑖 (𝑠) ≥

∑︀𝑘
𝑖=1𝑤𝑖𝑦𝑖.

Then ⟨𝑧′, 𝑓𝑥
𝑘 (𝑠
′), . . . , 𝑓𝑥

1 (𝑠
′)⟩′ > ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ = 𝑟 because of the lexicographic ordering

induced by ⟨·⟩′ and thus 𝑟 is not maximal, which is a contradiction.

It remains to show that (𝑦1, . . . , 𝑦𝑘) is the value of some solution. Let 𝑠 be the previously
mentioned solution and assume that 𝑓𝑥

𝑖 (𝑠) > 𝑦𝑖 for some 𝑖. Let 𝑧′
𝑑𝑓
=
∑︀𝑘

𝑖=1𝑤𝑖𝑓
𝑥
𝑖 (𝑠). If 𝑧

′ > 𝑧,
then ⟨𝑧′, 𝑓𝑥

𝑘 (𝑠), . . . , 𝑓
𝑥
1 (𝑠)⟩

′ > 𝑟, which is impossible. Otherwise 𝑧′ = 𝑧 (and 𝑤𝑖 = 0) and
hence ⟨𝑧′, 𝑓𝑥

𝑘 (𝑠), . . . , 𝑓
𝑥
1 (𝑠)⟩

′ > 𝑟, which is impossible again. Thus we have 𝑓𝑥(𝑠) = (𝑦1, . . . , 𝑦𝑘),
which is a valid answer for the input.

4. 𝑔 ≤p
T Val(W-𝒪): On input ⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩, let 𝑤𝑖 := 𝑤𝑖 · 2𝑘·𝑝(|𝑥|) + 2(𝑖−1)·𝑝(|𝑥|) for all 𝑖 and

query Val(W-𝒪) on ⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩. On answer ⊥ we have 𝑆𝑥 = ∅ and return 0, which is
obviously the correct value. Otherwise, if (𝑦1, . . . , 𝑦𝑘) is the obtained answer, let the reduction
function return 1+

∑︀𝑘
𝑖=1𝑤𝑖𝑦𝑖 = 1+

∑︀𝑘
𝑖=1𝑤𝑖𝑦𝑖2

𝑘·𝑝(|𝑥|)+
∑︀𝑘

𝑖=1 𝑦𝑖2
(𝑖−1)·𝑝(|𝑥|) = ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ for

𝑧 =
∑︀𝑘

𝑖=1𝑤𝑖𝑦𝑖. Because we got (𝑦1, . . . , 𝑦𝑘) from a query to Val(W-𝒪), there is some 𝑠 ∈ 𝑆𝑥

such that 𝑓𝑥(𝑠) ≥ (𝑦1, . . . , 𝑦𝑘) and thus, the returned value is in wit𝑞·𝐴(⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩). To
see that it is indeed maximal, assume there is some ⟨𝑧′, 𝑦′1, . . . , 𝑦′𝑘⟩

′ ∈ wit𝑞·𝐴(⟨𝑥, ⟨𝑤1, . . . , 𝑤𝑘⟩⟩)
that is strictly larger. Here we get

𝑘∑︁
𝑖=1

𝑤𝑖𝑦
′
𝑖 =

𝑘∑︁
𝑖=1

𝑤𝑖𝑦
′
𝑖2

𝑘·𝑝(|𝑥|) +
𝑘∑︁

𝑖=1

𝑦′𝑖2
(𝑖−1)·𝑝(|𝑥|)

= ⟨𝑧′, 𝑦′𝑘, . . . , 𝑦′1⟩
′ − 1 > ⟨𝑧, 𝑦𝑘, . . . , 𝑦1⟩′ − 1 =

𝑘∑︁
𝑖=1

𝑤𝑖𝑦𝑖,

which contradicts the fact that Val(W-𝒪) returns a value that is optimal with respect to the
sum weighted by (𝑤1, . . . , 𝑤𝑘).

18

Corollary 4.3. Let 𝐴,𝐿,𝐷,𝑊 ∈ NP. The following statements are equivalent:

1. There exists a multiobjective NP optimization problem 𝒪 = (𝑆𝑥, 𝑓,≥) such that

𝐴 ≡p
T Val(A-𝒪),

𝐿 ≡p
T Val(L-𝒪),

𝐷 ≡p
T Val(D-𝒪),

𝑊 ≡p
T Val(W-𝒪).

2. 𝐴 ≤p
T 𝐿 ≤p

T 𝐷,𝑊 and 𝑊 is ≤p
T-equivalent to some function in max ·𝐷′ for some 𝐷′ ∈ NP

such that 𝐷′ ≡p
T 𝐷.

Proof. “2 ⇒ 1” follows from Theorem 4.1 applied to 𝐴,𝐿,𝐷′,𝑊 and “1 ⇒ 2” follows from Proposi-
tion 4.2 and Theorem 3.2.

Corollary 4.4. If 𝐴,𝐿,𝑊 ∈ NP such that 𝐴 ≤p
T 𝐿 ≤p

T 𝑊 , then there exists a multiobjective NP
optimization problem 𝒪 such that 𝐴 ≡p

T Val(A-𝒪), 𝐿 ≡p
T Val(L-𝒪), and 𝑊 ≡p

T Val(W-𝒪) ≡p
T

Val(D-𝒪).

Proof. Let 𝐷 = 𝐷′ = {⟨𝑥, 1⟩ | 𝑥 ∈𝑊} and 𝑝(𝑛) = 1. Note that 𝐷,𝐷′ ∈ NP, 𝐷′ ≡p
T 𝐷 ≡p

T 𝑊 , and
max𝑝 ·𝐷′ ≡p

T 𝑊 . So we can apply Corollary 4.3, which finishes the proof.

From the results in this section it follows that Val(L-𝒪), Val(D-𝒪), and Val(W-𝒪) are always
equivalent to sets in NP, which is probably not true for Val(A-𝒪).

Corollary 4.5. For every multiobjective NP optimization problem 𝒪 the following holds.

1. Val(L-𝒪) ≡p
T 𝐵 for some 𝐵 ∈ NP.

2. Val(D-𝒪) ≡p
T 𝐵 for some 𝐵 ∈ NP.

3. Val(W-𝒪) ≡p
T 𝐵 for some 𝐵 ∈ NP.

Proof. 1. Let 1, 2, . . . , 𝑘 be the order of objectives for Val(L-𝒪). For the 𝑘-objective problem
𝒪 = (𝑆, 𝑓,←), let 𝑝 be a polynomial upper bound for all values of 𝑓 . Let

𝐵 = {⟨𝑥, ⟨𝑦1, . . . , 𝑦𝑘⟩⟩ | 𝑥, 𝑦1, . . . , 𝑦𝑘 ∈ N and there is some 𝑠 ∈ 𝑆𝑥 such that 𝑓1(𝑠)←1 𝑦1

∧ 𝑓1(𝑠) = 𝑦1 =⇒ (𝑓2(𝑠)←2 𝑦2

∧ 𝑓2(𝑠) = 𝑦2 =⇒ (𝑓3(𝑠)←3 𝑦3

. . .

∧ 𝑓𝑘−1(𝑠) = 𝑦𝑘−1 =⇒ 𝑓𝑘(𝑠)←𝑘 𝑦𝑘 . . .))}

and observe that 𝐵 ∈ NP. We have Val(L-𝒪) ≤p
T 𝐵 by a binary search over 𝑘 stages: suppose

(𝑦*1, . . . , 𝑦
*
𝑘) ∈ Val(L-𝒪)(𝑥). In the 𝑖-th stage of the binary search, we ask queries of the form

⟨𝑥, ⟨𝑦*1, . . . , 𝑦*𝑖−1, 𝑦𝑖, 𝑧𝑖+1, . . . , 𝑧𝑘⟩⟩ ∈ 𝐵, where 𝑧𝑗 = 0 if the 𝑗-th objective is maximized, and

𝑧𝑗 = 2𝑝(|𝑥|) otherwise. This way we find 𝑦*𝑖 in polynomial time. On the other hand, given the
value of Val(L-𝒪)(𝑥), it is easy to determine whether or not ⟨𝑥, ⟨𝑦1, . . . , 𝑦𝑘⟩⟩ ∈ 𝐵, hence we
also have 𝐵 ≤p

T Val(L-𝒪).

19

2. Follows from Proposition 4.2.

3. By Proposition 4.2, there exists a 𝑔 ∈ max ·NP such that Val(W-𝒪) ≡p
T 𝑔. By Proposition 2.3,

𝑔 ≡p
T 𝐵 for some 𝐵 ∈ NP.

The absence of Val(A-𝒪) in Corollary 4.5 can be explained: Below we show that each function in
wit·P is equivalent to some Val(A-𝒪) (we will later show the stronger statement that each function
in wit·P is equivalent to some A-𝒪 (Proposition 5.2) and each A-𝒪 is equivalent to some Val(A-𝒪′)
(Proposition 5.8)). Then in Corollary 4.8 we give evidence for the existence of functions in wit·P
that are inequivalent to all sets. Hence this is an evidence for the existence of multiobjective NP
optimization problems whose arbitrary optimum search and value notions are inequivalent to all
sets.

Proposition 4.6. For every 𝑔 ∈ wit·P there is some two-objective NP optimization problem 𝒪
such that 𝑔 ≡p

T Val(A-𝒪).

Proof. Let 𝑔 = wit𝑝·𝑅 for some polynomial 𝑝 and 𝑅 ∈ P. Define 𝒪 = (𝑆, 𝑓,≥) such that 𝑆𝑥 = 𝑔(𝑥)
and 𝑓𝑥(𝑠) = (𝑠, 2𝑝(|𝑥|) − 𝑠) for all 𝑠 ∈ 𝑆𝑥 and observe that 𝑔(𝑥) ≡p

T Val(A-𝒪).

Theorem 4.7. Let 𝑡,𝑚 : N→ N such that 𝑡(𝑖) = 22
22

𝑖

and 𝑚(𝑖) = 2𝑖.
Let 𝑓 ∈ wit·P such that supp(𝑓) ⊆ {𝑡(𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 𝑚(𝑖)} and 𝑓 ≡p

T 𝐴 for some 𝐴 ⊆ N.
1. supp(𝑓) ∈ FewP.

2. If supp(𝑓) = {𝑡(𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 𝑚(𝑖)} then 𝐴 ∈ UP ∩ coUP.

Proof. We begin with the first statement. Since 𝑓 ≤p
T 𝐴, there is some partial function 𝑔 : N→ N

that is a refinement of 𝑓 such that 𝑔 ≤p
T 𝐴. Furthermore, since 𝐴 ≤p

T 𝑓 , we have 𝑔 ≤p
T 𝑓 via

some polynomial-time oracle Turing machine 𝑀 . In order to simplify notation, we define for
any 𝑟 ≥ 0 and any 𝑞 = ⟨𝑞1, . . . , 𝑞𝑟⟩ and 𝑎 = ⟨𝑎1, . . . , 𝑎𝑟⟩ the multivalued function 𝑂𝑟

𝑞,𝑎 such that
𝑂𝑟

𝑞,𝑎(𝑥) = {𝑎𝑖 | 𝑥 = 𝑞𝑖 for some 1 ≤ 𝑖 ≤ 𝑟}. Let now

𝑊 := {⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞, 𝑎⟩⟩ | 0 ≤ 𝑘 < 𝑚(𝑖), 𝑞 = ⟨𝑞1, . . . , 𝑞𝑟⟩ such that

𝑞1 < 𝑞2 < · · · < 𝑞𝑟 and {𝑞1, . . . , 𝑞𝑟} ⊆ {𝑡(𝑗) + 𝑘′ | 𝑗 ≤ 𝑖, 𝑘′ < 𝑚(𝑗)},
∀1 ≤ 𝑠 ≤ 𝑟 : 𝑀𝑂𝑟

𝑞,𝑎(𝑞𝑠) ∈ 𝑂𝑟
𝑞,𝑎(𝑞𝑠) ⊆ 𝑓(𝑞𝑠),

𝑡(𝑖) + 𝑘 ∈ {𝑞1, . . . , 𝑞𝑟}}

We show that 𝑊 ∈ P and supp(𝑓) ∈ ∃·𝑊 .

𝑊 ∈ P: The only nontrivial parts are checking that 𝑂𝑟
𝑞,𝑎(𝑞𝑠) ⊆ 𝑓(𝑞𝑠) and 𝑀𝑂𝑟

𝑞,𝑎(𝑞𝑠) ∈ 𝑂𝑟
𝑞,𝑎(𝑞𝑠) for

all 1 ≤ 𝑠 ≤ 𝑟. The former can be done in polynomial time since 𝑓 ∈ wit·P and the latter by a
simulation of the polynomial-time oracle Turing machine 𝑀 .

supp(𝑓) ∈ ∃·𝑊 : We first show that there is a polynomial 𝑝 such that for ⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞, 𝑎⟩⟩ ∈ 𝑊
it holds that ⟨𝑟, 𝑞, 𝑎⟩ < 2𝑝(|𝑡(𝑖)+𝑘|), or |⟨𝑟, 𝑞, 𝑎⟩| ≤ 𝑝(|𝑡(𝑖) + 𝑘|). For some 𝑐 ∈ N, we have an obvious

20

bound of

|⟨𝑟, 𝑞, 𝑎⟩| ≤ 𝑐
𝑖∑︁

𝑗=0

𝑚(𝑗)|𝑡(𝑗) +𝑚(𝑗)|𝑐 ≤ 𝑐
𝑖∑︁

𝑗=0

|2 𝑡(𝑗)|𝑐+1 ≤ 𝑐
𝑖∑︁

𝑗=0

(2 + 22
2𝑗

)𝑐+1

≤ 𝑐
𝑖∑︁

𝑗=0

2(𝑐+2)22
𝑗

≤ 𝑐

(𝑐+2)22
𝑖∑︁

𝑗=0

2𝑗 ≤ 𝑐 · 21+(𝑐+2)22
𝑖

,

which is polynomial in 22
2𝑖

and thus in |𝑡(𝑖) + 𝑘|.

For supp(𝑓) ⊆ ∃𝑝·𝑊 , let 𝑥 = 𝑡(𝑖) + 𝑘 ∈ supp(𝑓). Let 𝑞1 < · · · < 𝑞𝑟 such that {𝑞1, . . . , 𝑞𝑟} =
supp(𝑓)∩{0, 1, . . . , 𝑡(𝑖)+𝑚(𝑖)−1} and define 𝑞 = ⟨𝑞1, . . . , 𝑞𝑟⟩ and 𝑎 = ⟨𝑔(𝑞1), . . . , 𝑔(𝑞𝑟)⟩. Remember
that 𝑔 ≤p

T 𝑓 via 𝑀 . On input 𝑡(𝑖) +𝑚(𝑖)− 1 (or smaller), there is some 𝑐 ∈ N such that the largest
number 𝑀 can query is at most

2|𝑡(𝑖)+𝑚(𝑖)−1|𝑐 ≤ 2|2 𝑡(𝑖)|
𝑐 ≤ 2|𝑡(𝑖)|

2𝑐 ≤ 2

(︂
22

2𝑖
)︂2𝑐

≤ 22
2𝑐 22

𝑖

.

For large enough 𝑖 it holds that

22
2𝑐 22

𝑖

< 22

(︂
22

𝑖
)︂2

= 22
22

𝑖+1

= 𝑡(𝑖+ 1).

By encoding oracle answers into the program, we can assume that𝑀 only queries the oracle for inputs
with 𝑖 large enough for the above inequality to hold and thus 𝑀𝑂𝑟

𝑞,𝑎(𝑥) = 𝑀𝑓 (𝑥) = 𝑔(𝑥) ∈ 𝑂𝑟
𝑞,𝑎(𝑥)

for all 𝑥 ∈ {𝑞1, . . . , 𝑞𝑟}. This shows that ⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞, 𝑎⟩⟩ ∈𝑊 .

In order to show ∃𝑝·𝑊 ⊆ supp(𝑓) let ⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞, 𝑎⟩⟩ ∈𝑊 and ⟨𝑞1, . . . , 𝑞𝑟⟩ = 𝑞. Since 𝑡(𝑖) + 𝑘 ∈
{𝑞1, . . . , 𝑞𝑟} and 𝑂𝑟

𝑞,𝑎(𝑞𝑠) ⊆ 𝑓(𝑞𝑠) for all 𝑠 ∈ {1, . . . , 𝑟}, it especially holds that 𝑓(𝑡(𝑖) + 𝑘) ̸= ∅ and
thus 𝑡(𝑖) + 𝑘 ∈ supp(𝑓).

Let us now count the number of witnesses for each 𝑡(𝑖) + 𝑘 ∈ ∃𝑝·𝑊 . Note that for a fixed set
{𝑞1, . . . , 𝑞𝑟}, the values in 𝑎 are uniquely determined by the simulations 𝑀𝑂𝑟

𝑞,𝑎 . Thus the number of
witnesses 𝑤(𝑖) is at most the number of subsets of supp(𝑓) ∩ {0, 1, . . . , 𝑡(𝑖) +𝑚(𝑖)− 1}, i.e.,

𝑤(𝑖) ≤ 2
∑︀𝑖

𝑗=0 𝑚(𝑗) = 22
𝑖+1−1 ≤

(︁
22

𝑖
)︁2
≤ |𝑡(𝑖)|2,

which is polynomial in |𝑡(𝑖) + 𝑘| and thus supp(𝑓) = ∃𝑝·𝑊 ∈ FewP.

For the second statement, note that it now holds that supp(𝑓) = {𝑡(𝑖)+𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 𝑚(𝑖)}. We
describe a (UP ∩ coUP)-Machine 𝑀 ′ that accepts 𝐴. On input 𝑥, let 𝑡(𝑖) + 𝑘 be the largest number
in supp(𝑓) that can possibly be queried in the reduction 𝐴 ≤p

T 𝑓 on input length |𝑥|. Observe that

for 𝑟 =
∑︀𝑖

𝑗=0𝑚(𝑗) there is exactly one pair (𝑞, 𝑎) such that ⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞, 𝑎⟩⟩ ∈ 𝑊 . This means
that if 𝑀 ′ searches nondeterministically for a pair (𝑞′, 𝑎′) such that ⟨𝑡(𝑖) + 𝑘, ⟨𝑟, 𝑞′, 𝑎′⟩⟩ ∈𝑊 , there
is exactly one path that finds such a pair and it holds that (𝑞′, 𝑎′) = (𝑞, 𝑎). Following that, 𝑀 ′ can
simulate the reduction 𝐴 ≤p

T 𝑓 , since 𝑂𝑟
𝑞,𝑎 is a “refinement” of 𝑓 restricted to the part of supp(𝑓)

that can possibly be queried in the reduction. After this simulation, there is a single path of 𝑀 ′

that has the information of whether or not 𝑥 ∈ 𝐴 and thus 𝐴 ∈ UP ∩ coUP.

21

The following corollary shows that under reasonable assumptions there are multivalued functions
that are inequivalent to any set. Note that a multivalued function 𝑓 is equivalent to a set if and
only if the set of partial functions that are refinements of 𝑓 has a minimal element with respect to
the partial order ≤p

T. In other words, a multivalued function 𝑓 is not equivalent to any set if and
only if no partial function that is a refinement of 𝑓 is reducible (and thus equivalent) to 𝑓 .

Corollary 4.8.

1. If FewEEE ̸= NEEE, then there exists an 𝑓 ∈ wit·P such that 𝑓 ̸≡p
T 𝐴 for all 𝐴 ⊆ N.

2. If UEEE ∩ coUEEE ̸= NEEE ∩ coNEEE, then there exists an 𝑓 ∈ wit·P such that 𝑓 ̸≡p
T 𝐴

for all 𝐴 ⊆ N.

Proof. 1. Proposition 2.5.4 provides a 𝐵 ∈ NP−FewP such that 𝐵 ⊆ {𝑡(𝑐 ·𝑖)+𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖}
for some 𝑐 ≥ 1 and 𝑡(𝑛) = 22

22
𝑛

. Choose a polynomial 𝑝 and 𝑅 ∈ P such that 𝐵 = ∃𝑝·𝑅. Let 𝑓 =
wit𝑝·𝑅 and note that supp(𝑓) = 𝐵 ⊆ {𝑡(𝑐 · 𝑖)+𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖} ⊆ {𝑡(𝑖)+𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖}.
By Theorem 4.7.1, if 𝑓 ≡p

T 𝐴 for some 𝐴 ⊆ N, then 𝐵 = supp(𝑓) ∈ FewP, which is a contradiction.

2. Proposition 2.5.5 provides a 𝐵 ∈ (NP ∩ coNP)− (UP− coUP) such that 𝐵 ⊆ {𝑡(𝑐 · 𝑖) + 𝑘 | 𝑖 ∈
N, 0 ≤ 𝑘 < 2𝑖} for some 𝑐 ≥ 1 and 𝑡(𝑛) = 22

22
𝑛

. Choose a polynomial 𝑝 and 𝑅,𝑅′ ∈ P such that
𝐵 = ∃𝑝·𝑅 and 𝐵 = ∃𝑝·𝑅′. Let 𝑆 = {⟨𝑡(𝑖) + 𝑘, 𝑦⟩ ∈ 𝑅 ∪𝑅′ | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖} and note that 𝑆 ∈ P.
Let 𝑓 = wit𝑝·𝑆. Observe that supp(𝑓) = ∃𝑝·𝑆 = {𝑡(𝑖) + 𝑘 | 𝑖 ∈ N, 0 ≤ 𝑘 < 2𝑖}. By Theorem 4.7.2,
if 𝑓 ≡p

T 𝐴 for some 𝐴 ⊆ N, then 𝐴 ∈ UP ∩ coUP and hence 𝐵 ∈ UP ∩ coUP (since 𝐵 ≤p
T 𝑓 ≤p

T 𝐴).
The latter is a contradiction.

In Corollary 4.3 we characterized the compositions of sets 𝐴,𝐿,𝐷,𝑊 ∈ NP for which there
exist problems 𝒪 with search notions equivalent to 𝐴,𝐿,𝐷,𝑊 . Besides the trivial requirements
𝐴 ≤p

T 𝐿 ≤p
T 𝐷 and 𝐿 ≤p

T 𝑊 (they hold for all problems by Theorem 3.2) there is one additional:

𝑊 ≡p
T 𝑔 for some 𝑔 ∈ max ·𝐷 (4)

Observe that every set 𝑋 ∈ NP is equivalent to some function 𝑔 ∈ max ·𝑌 for some 𝑌 ≡p
T SAT

(define 𝑌 = {⟨𝑥, 3 + 𝑐𝑋(𝑥)⟩ | 𝑥 ∈ N} ∪ {⟨𝑥, 1 + 𝑐SAT(𝑥)⟩ | 𝑥 ∈ N}). So for a problem 𝒪 where
Val(D-𝒪) is NP-hard, the complexity of Val(W-𝒪) can be arbitrary. The easier Val(D-𝒪) gets,
the more restrictions are imposed on the complexity for Val(W-𝒪). However, this does not mean
that Val(W-𝒪) needs to have lower complexity, since Val(W-𝒪) can be NP-hard while Val(D-𝒪) is
polynomial-time solvable (take, for example, 𝐷 as a witness set for SAT).

We now further investigate the particular situation where Val(D-𝒪) is polynomial-time solvable.
Here, Val(W-𝒪) must be equivalent to some function in max ·P. Does this really restrict the
complexity of Val(W-𝒪)? Using a technique by Beigel at al. [BBFG91] we give evidence for the
existence of sets in NP that are not equivalent to functions from wit·P (resp., max ·P). More
precisely, under the assumption EE ̸= NEE there exist very sparse sets in 𝑋 ∈ NP−P and we show
that such sets cannot be equivalent to functions in wit·P. It follows that there is no multiobjective
NP optimization problem 𝒪 such that Val(W-𝒪) ≡p

T 𝑋, while Val(A-𝒪), Val(L-𝒪), and Val(D-𝒪)
are polynomial-time solvable. This is an evidence that the requirement (4) is indeed a restriction.

22

Lemma 4.9. If 𝐴 /∈ P and 𝐴 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} where 𝑐 ≥ 1, then 𝐴 ̸≡p
T 𝑓 for all 𝑓 ∈ wit·P.

Proof. Assume there exists an 𝑓 ∈ wit·P such that 𝐴 ≡p
T 𝑓 . So 𝑓 ≤p

T 𝐴 via an oracle Turing
machine 𝑀 whose running time is bounded by some polynomial 𝑞. On inputs of length 𝑛, the

machine 𝑀 cannot ask queries longer than 𝑞(𝑛). In particular, it cannot query 𝑦 = 22
𝑥𝑐

where
𝑥 = ⌈log 𝑞(𝑛)⌉, since |𝑦| > 2𝑥

𝑐 ≥ 2𝑥 ≥ 𝑞(𝑛).

Therefore, for inputs of length 𝑛, we can replace 𝑀 ’s oracle 𝐴 by the characteristic sequence

𝑎𝑛 = 𝜒𝐴(2
20

𝑐

) 𝜒𝐴(2
21

𝑐

) 𝜒𝐴(2
22

𝑐

) · · · 𝜒𝐴(2
2⌊log 𝑞(𝑛)⌋𝑐

).

Since |𝑎𝑛| = 1 + ⌊log 𝑞(𝑛)⌋ ≤ 1 + log 𝑞(𝑛), there are at most 21+log 𝑞(𝑛) = 2𝑞(𝑛) sequences of length
|𝑎𝑛|. So on input 𝑦 where 𝑛 = |𝑦| we can simulate in polynomial time the computation of 𝑀 on
𝑦 for all characteristic sequences of length |𝑎𝑛|. If 𝑓(𝑦) ̸= ∅, then at least one simulation returns
a value from 𝑓(𝑦). Moreover, we can verify the correctness of these values in polynomial time,
since graph(𝑓) ∈ P. This shows that 𝑓 has a refinement in PF and hence 𝐴 ∈ P, which is a
contradiction.

Theorem 4.10.

1. If EE ̸= NEE, then there exists a 𝐵 ∈ NP such that 𝐵 ̸≡p
T 𝑓 for all 𝑓 ∈ wit·P.

2. If NP has P-bi-immune sets, then there exists a 𝐵 ∈ NP such that 𝐵 ̸≡p
T 𝑓 for all 𝑓 ∈ wit·P.

Proof. 1. Proposition 2.5 provides a 𝐵 ∈ NP− P such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} where 𝑐 ≥ 1. Now
apply Lemma 4.9. 2. Choose a P-bi-immune 𝐿 ∈ NP and let 𝐵 = 𝐿 ∩ {22𝑥 | 𝑥 ∈ N}. From the
P-bi-immunity of 𝐿 it follows that 𝐵 /∈ P. Now apply Lemma 4.9.

Corollary 4.11.

1. If EE ̸= NEE, then there exists an 𝐵 ∈ NP such that 𝐵 ̸≡p
T 𝑔 for all 𝑔 ∈ max ·P.

2. If NP has P-bi-immune sets, then there exists an 𝐵 ∈ NP such that 𝐵 ̸≡p
T 𝑔 for all 𝑔 ∈ max ·P.

Proof. Let 𝐵 be the set provided by Theorem 4.10. It suffices to show that for every 𝑔 ∈ max ·P
there exists some 𝑓 ∈ wit·P such that 𝑔 ≡p

T 𝑓 . Let 𝑔 ∈ max ·P and choose 𝑅′ ∈ P and a polynomial
𝑝 such that 𝑔 = max𝑝 ·𝑅′. The set 𝑅 = {⟨⟨𝑥, 𝑧⟩, 𝑦⟩ | 1 ≤ 𝑧 ≤ 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝑅′} is in P.
Let 𝑓 = wit𝑝·𝑅 and observe 𝑓 ≡p

T 𝑔.

5 Complexity of Search Notions

As opposed to the value notions from the previous section, the complexities of search notions
A-𝒪, L-𝒪, D-𝒪, and W-𝒪 do not cover all problems in NP, unless NEE = coNEE. However, the
complexities of L-𝒪, D-𝒪, and W-𝒪 exactly coincide with the complexities of wit·P-functions.
This does not hold for the complexities of A-𝒪, unless EE = NEE ∩ coNEE. They cover at least
all problems in NP ∩ coNP, but it remains a task for further research to exactly determine these
complexities.

23

Theorem 5.1. Let 𝑘 ≥ 1 and ℎ be a multivalued function. The following statements are equivalent:

1. There is some 𝑔 ∈ wit·P such that ℎ ≡p
T 𝑔.

2. There is some 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) such that ℎ ≡p
T L-𝒪.

3. There is some 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) such that ℎ ≡p
T D-𝒪.

4. There is some 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) such that ℎ ≡p
T W-𝒪.

Proof. “1 ⇒ 2, 3, 4”: Define the 𝑘-objective problem 𝒪 = (𝑆, 𝑓,≥) with 𝑆𝑥 = 𝑔(𝑥) and 𝑓𝑥(𝑠) =
(0, 0, . . . , 0) for all 𝑠 ∈ 𝑆𝑥. It holds that D-𝒪 ≡p

T W-𝒪 ≡p
T L-𝒪 = 𝑔 ≡p

T ℎ.

“2 ⇒ 1”: Let 𝒪 = (𝑆, 𝑓,≥) be a 𝑘-objective problem such that ℎ ≡p
T L-𝒪. We assume that the

order of objectives for L-𝒪 is 1, 2, . . . , 𝑘. Let 𝑋 = {⟨⟨𝑥, 𝑐1, . . . , 𝑐𝑘⟩, 𝑠⟩ | 𝑠 ∈ 𝑆𝑥, 𝑐1, . . . , 𝑐𝑘 ∈ N, there
is some 1 ≤ 𝑖0 ≤ 𝑘 + 1 such that 𝑓𝑥

𝑖 (𝑠) = 𝑐𝑖 for all 𝑖 < 𝑖0 and (if 𝑖0 ≤ 𝑘) 𝑓𝑥
𝑖0
(𝑠) > 𝑐𝑖0} ∈ P and

𝑔 = wit𝑝·𝑋 for a large enough polynomial 𝑝.
𝑔 ≤p

T L-𝒪: On input ⟨𝑥, 𝑐1, . . . , 𝑐𝑘⟩ we query L-𝒪(𝑥). If the answer is ⊥, we return ⊥, since in
this case 𝑆𝑥 = ∅. Otherwise, let the answer be 𝑠 ∈ 𝑆𝑥. If there is some 1 ≤ 𝑖0 ≤ 𝑘 + 1 such that
𝑓𝑥
𝑖 (𝑠) = 𝑐𝑖 for all 𝑖 < 𝑖0 and 𝑓𝑥

𝑖0
(𝑠) > 𝑐𝑖0 , return 𝑠, otherwise return ⊥. We have to show that

the reduction is correct if this 𝑖0 does not exist. In this case, there is some 1 ≤ 𝑗0 ≤ 𝑘 such that
𝑓𝑥
𝑖 (𝑠) = 𝑐𝑖 for all 𝑖 < 𝑗0 and 𝑓𝑥

𝑗0
(𝑠) < 𝑐𝑗0 . Assume our answer is incorrect. Then there is some

𝑠′ ∈ 𝑆𝑥 such that 𝑓𝑥
𝑖 (𝑠
′) = 𝑓𝑥

𝑖 (𝑠) = 𝑐𝑖 for all 𝑖 < 𝑗0 and 𝑓𝑥
𝑗0
(𝑠′) ≥ 𝑐𝑗0 > 𝑓𝑥

𝑗0
(𝑠). This contradicts the

optimality of 𝑠 with respect to the 𝑗0-th objective.
L-𝒪 ≤p

T 𝑔: Start with the constraint vector (𝑐1, 𝑐2, . . . , 𝑐𝑘) = (0, 0, . . . , 0) and successively determine
the highest value for each constraint using binary search (leaving the constraints with lower index
at their highest value and setting the constraints with higher index to zero). The obtained solution
is lexicographically optimal.

“3⇒ 1”: Let 𝒪 = (𝑆, 𝑓,≥) be a 𝑘-objective problem such that ℎ ≡p
T D-𝒪. Define 𝑋 = {⟨⟨𝑥, ⟨𝑐⟩⟩, 𝑦⟩ |

𝑦 ∈ 𝑆𝑥, 𝑐 ∈ N𝑘, 𝑓𝑥(𝑦) ≥ 𝑐} ∈ P and note that D-𝒪 ∈ wit·𝑋 ⊆ wit·P.

“4 ⇒ 3”: Note that by Proposition 2.7, W-𝒪 = A-𝒪′ for some single-objective problem 𝒪′ and
A-𝒪′ ≡p

T D-𝒪′ since 𝒪′ is a single-objective problem.

The search notion A-𝒪 is missing in Theorem 5.1. Here we show that each function in wit·P is
equivalent to (even equals) some A-𝒪 and we provide evidence against the converse (Corollary 5.5).

Proposition 5.2. For every 𝑘 ≥ 1 and every function 𝑔 ∈ wit·P there is some 𝑘-objective NP
optimization problem 𝒪 such that 𝑔 = A-𝒪.

Proof. Define the 𝑘-objective problem 𝒪 = (𝑆, 𝑓,≥) with 𝑆𝑥 = 𝑔(𝑥) and 𝑓𝑥(𝑠) = (0, 0, . . . , 0) for all
𝑠 ∈ 𝑆𝑥 and observe that 𝑔(𝑥) = A-𝒪.

The proposition raises the question of whether every A-𝒪 is equivalent to some function in wit·P.
We show that the answer is no, unless EE = NEE ∩ coNEE. For this purpose, we first prove that
the complexities of the A-𝒪 cover at least all problems in NP ∩ coNP.

24

Theorem 5.3. For every 𝐿 ∈ NP ∩ coNP there is a two-objective NP optimization problem 𝒪 such
that A-𝒪 ≡p

T 𝐿.

Proof. Let 𝐿 ∈ NP ∩ coNP. Hence there are witness sets 𝐿1, 𝐿2 ∈ P and a polynomial 𝑝 such that
𝐿 = ∃𝑝·𝐿1 and 𝐿 = ∃𝑝·𝐿2, which means that

𝑥 ∈ 𝐿 ⇐⇒ ∃𝑦 with 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝐿1

𝑥 /∈ 𝐿 ⇐⇒ ∃𝑦 with 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝐿2

for all 𝑥 ∈ N. Note that 𝐿1 and 𝐿2 are disjoint. Let 𝒪 = (𝑆, 𝑓,≤), where 𝑆𝑥 = wit𝑝·𝐿1(𝑥) ∪
wit𝑝·𝐿2(𝑥) ∪ {2𝑝(|𝑥|), 2𝑝(|𝑥|) + 1} and

𝑓𝑥(𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1, 0) if 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝐿1

(2, 0) if 𝑦 = 2𝑝(|𝑥|)

(0, 1) if 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝐿2

(0, 2) if 𝑦 = 2𝑝(|𝑥|) + 1

for all 𝑥 ∈ N and 𝑦 ∈ 𝑆𝑥. Observe that 𝒪 is a 2-objective NP optimization problem. We have the
following reductions.

1. 𝐿 ≤p
T A-𝒪: For all 𝑥 ∈ N we have

𝑥 ∈ 𝐿 ⇐⇒ ∃𝑦 with 𝑦 < 2𝑝(|𝑥|) and ⟨𝑥, 𝑦⟩ ∈ 𝐿1 and

∀𝑦′ with 𝑦′ < 2𝑝(|𝑥|) we have ⟨𝑥, 𝑦′⟩ /∈ 𝐿2

⇐⇒ A-𝒪(𝑥) = wit𝑝·𝐿2(𝑥) ∪ {2𝑝(|𝑥|) + 1}

and 𝑥 /∈ 𝐿 ⇐⇒ A-𝒪(𝑥) = wit𝑝·𝐿2(𝑥) ∪ {2𝑝(|𝑥|)} analogously. If we get an arbitrary element
from A-𝒪(𝑥) we can distinguish the two cases in polynomial time and thus 𝐿 ≤p

T A-𝒪.

2. A-𝒪 ≤p
T 𝐿: For 𝑥 ∈ N, observe that {2𝑝(|𝑥|), 2𝑝(|𝑥|) + 1} ⊆ 𝑆𝑥. We will argue that one of those

solutions is optimal and, furthermore, this solution can be determined by a single query to
𝐿. For that purpose, observe that if 𝑥 ∈ 𝐿, then for all 𝑦 < 2𝑝(|𝑥|) we have ⟨𝑥, 𝑦⟩ /∈ 𝐿2, hence
there is no 𝑦 whose value dominates (0, 2), and we can return 𝑦 = 2𝑝(|𝑥|) + 1 as solution for
A-𝒪(𝑥). On the other hand, if 𝑥 /∈ 𝐿, then for all 𝑦 < 2𝑝(|𝑥|) we have ⟨𝑥, 𝑦⟩ /∈ 𝐿1, hence there
is no 𝑦 whose value dominates (2, 0), and we can return 𝑦 = 2𝑝(|𝑥|) as solution for A-𝒪(𝑥). In
all cases we compute a refinement of A-𝒪 and thus have A-𝒪 ≤p

T 𝐿 as claimed.

Theorem 5.4.

1. If EE ̸= NEE ∩ coNEE, then there exists a 𝐵 ∈ (NP ∩ coNP)− P such that 𝐵 ̸≡p
T 𝑓 for all

𝑓 ∈ wit·P.

2. If NP ∩ coNP has P-bi-immune sets, then there exists a 𝐵 ∈ (NP ∩ coNP) − P such that
𝐵 ̸≡p

T 𝑓 for all 𝑓 ∈ wit·P.

Proof. 1. Proposition 2.5 provides a 𝐵 ∈ (NP ∩ coNP)− P such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} for some
𝑐 ≥ 1. Now apply Lemma 4.9. 2. Choose a P-bi-immune 𝐿 ∈ NP∩coNP and let𝐵 = 𝐿∩{22𝑥 | 𝑥 ∈ N}.
From the P-bi-immunity of 𝐿 it follows that 𝐵 /∈ P. Now apply Lemma 4.9.

25

Corollary 5.5.

1. If EE ̸= NEE ∩ coNEE, then there exists a two-objective NP optimization problem 𝒪 such
that A-𝒪 ̸≡p

T 𝑓 for all 𝑓 ∈ wit·P.

2. If NP∩ coNP has P-bi-immune sets, then there exists a two-objective NP optimization problem
𝒪 such that A-𝒪 ̸≡p

T 𝑓 for all 𝑓 ∈ wit·P.

Proof. Let 𝐵 be the set provided by Theorem 5.4. By 𝐵 ∈ NP ∩ coNP and Theorem 5.3, there
exists a 2-objective NP optimization problem 𝒪 such that A-𝒪 ≡p

T 𝐵.

The Theorems 5.1 and 5.3 raise the following questions: Is every set in NP equivalent to some A-𝒪
(resp., L-𝒪, D-𝒪, W-𝒪)? With Theorem 5.7 we show that the answer is no, unless NEE = coNEE.
There we use the following idea by Beigel et al. [BBFG91]: If NEE ̸= coNEE, then NP − coNP
contains very sparse sets. Such sets cannot be equivalent to some A-𝒪 and hence (by Lemma 4.9)
they cannot be equivalent to functions in wit·P.

Lemma 5.6. If 𝐵 /∈ coNP and 𝐵 ⊆ {22𝑧
𝑐

| 𝑧 ∈ N} where 𝑐 ≥ 1, then 𝐵 ̸≡p
T A-𝒪 for all

multiobjective NP optimization problems 𝒪.

Proof. Assume there exists a 𝑘-objective NP optimization problem 𝒪 = (𝑆, 𝑓,←) such that 𝐵 ≡p
T

A-𝒪. Without loss of generality we may assume that A-𝒪(𝑥) ̸= ∅ for all 𝑥. Choose a polynomial 𝑝
and oracle Turing machines 𝑀1 and 𝑀2 such that 𝐵 ≤p

T A-𝒪 via 𝑀1, A-𝒪 ≤p
T 𝐵 via 𝑀2, and the

running times of 𝑀1 and 𝑀2 are bounded by 𝑝.

Let 𝑀 be the following polynomial-time oracle Turing machine: 𝑀 on input 𝑥 simulates the
computation of 𝑀1 on 𝑥 such that each inquiry 𝑞 to the oracle is replaced by the computation 𝑀2

on 𝑞 (where the queries caused by 𝑀2 on 𝑞 are passed to 𝑀 ’s oracle). Note that 𝐵 ≤p
T 𝐵 via 𝑀

and hence 𝐿(𝑀𝐵) = 𝐵.

Consider 𝑀 on input of some 𝑥 of length 𝑛. The queries 𝑞 generated by the simulation of 𝑀1

on 𝑥 cannot be longer than 𝑝(𝑛). Each such 𝑞 causes a computation of 𝑀2 on 𝑞 whose running
time is bounded by 𝑝(|𝑞|) ≤ 𝑝(𝑝(𝑛)). Therefore, all oracle queries asked by 𝑀 on 𝑥 are of length

at most 𝑝(𝑝(𝑛)). In particular, 𝑀 on 𝑥 cannot query 𝑞 = 22
𝑧𝑐

where 𝑧 = ⌈log 𝑝(𝑝(𝑛))⌉, since
|𝑞| > 2𝑧

𝑐 ≥ 2𝑧 ≥ 𝑝(𝑝(𝑛)). So for inputs of length at most 𝑛, we can replace 𝑀 ’s oracle 𝐵 by the
characteristic sequence

𝑎𝑛 = 𝜒𝐵(2
20

𝑐

) 𝜒𝐵(2
21

𝑐

) 𝜒𝐵(2
22

𝑐

) · · · 𝜒𝐵(2
2⌊log 𝑝(𝑝(𝑛))⌋𝑐

).

For 𝑤 ∈ {0, 1}*, let 𝑀𝑤(𝑥) denote the computation of 𝑀 on 𝑥, where 𝑀 ’s oracle is replaced by
𝑤 (i.e., 𝑀 interprets 𝑤 as the characteristic sequence 𝑎𝑛 and answers oracle queries accordingly).
Since |𝑎𝑛| = 1+ ⌊log 𝑝(𝑝(𝑛))⌋ ≤ 1+ log 𝑝(𝑝(𝑛)), there are at most 21+log 𝑝(𝑝(𝑛)) = 2𝑝(𝑝(𝑛)) sequences
of length |𝑎𝑛|. Therefore, on input 𝑥 where 𝑛 = |𝑥| we can simulate in polynomial time the
computations 𝑀𝑤(𝑥) for all 𝑤 ∈ {0, 1}* of length |𝑎𝑛|.

26

Recall that during the computation 𝑀𝑤(𝑥) (more precisely in the simulation of 𝑀1 on 𝑥), each
query 𝑞 is replaced by the computation 𝑀2 on 𝑞, which in turn computes an answer to the query 𝑞.
We combine all these queries 𝑞 and their answers 𝑎 in the following set.

𝑄𝑤(𝑥) = {(𝑞, 𝑎) | 𝑀𝑤(𝑥) simulates 𝑀2 on 𝑞 and this simulation results in the answer 𝑎}

Let 𝑊𝑛 = {𝑤 ∈ {0, 1}* | |𝑤| = |𝑎𝑛|}. We claim that for all 𝑥 where 𝑛 = |𝑥| it holds that

𝑥 ∈ 𝐵 ⇐⇒ ∃𝑤 ∈𝑊𝑛[𝑀
𝑤(𝑥) = 1 ∧ ∀(𝑞, 𝑎) ∈ 𝑄𝑤(𝑥) [𝑎 ∈ A-𝒪(𝑞)]]. (5)

Assume 𝑥 ∈ 𝐵. Let 𝑤 = 𝑎𝑛 and note that 𝑀𝑤(𝑥) = 1, since 𝐵 ≤p
T 𝐵 via 𝑀 and 𝑀𝐵(𝑥) = 𝑀𝑎𝑛(𝑥).

Let (𝑞, 𝑎) ∈ 𝑄𝑤(𝑥), i.e., 𝑀𝑤
2 (𝑞) returns 𝑎. From 𝑀𝑤

2 (𝑞) = 𝑀𝑎𝑛
2 (𝑞) = 𝑀𝐵

2 (𝑞) and A-𝒪 ≤p
T 𝐵 via 𝑀2

it follows that 𝑎 ∈ A-𝒪.

Assume that the right-hand side of (5) holds. In particular, 𝑎 ∈ A-𝒪(𝑞) for all (𝑞, 𝑎) ∈ 𝑄𝑤(𝑥).

Therefore, 𝑀𝑤(𝑥) correctly simulates 𝑀A-𝒪
1 on 𝑥, since all queries 𝑞 are answered appropriately,

i.e., according to a partial function that is a refinement of A-𝒪. Hence 𝑀A-𝒪
1 (𝑥) = 𝑀𝑤(𝑥) = 1.

From 𝐵 ≤p
T A-𝒪 via 𝑀1 it follows that 𝑥 ∈ 𝐵. This proves the equivalence (5).

If we negate both sides of (5), we obtain the following for all 𝑥 where 𝑛 = |𝑥|.

𝑥 ∈ 𝐵 ⇐⇒ ∀𝑤 ∈𝑊𝑛[𝑀
𝑤(𝑥) ̸= 1 ∨ ∃(𝑞, 𝑎) ∈ 𝑄𝑤(𝑥) [𝑎 /∈ A-𝒪(𝑞)] (6)

Recall that |𝑊𝑛| ≤ 2𝑝(𝑝(𝑛)). Moreover, for all 𝑤 ∈ 𝑊𝑛 it holds that |𝑄𝑤(𝑥)| ≤ 𝑝(𝑛), since the
running time of 𝑀1 on 𝑥 is bounded by 𝑝(𝑛). So the ranges of both quantifiers at the right-hand
side of (6) have polynomial size. Hence, in order to verify 𝑥 ∈ 𝐵, we have to check only a polynomial
number of conditions of the form [𝑎 /∈ A-𝒪(𝑞)]. The latter can be tested in nondeterministic
polynomial time, since

𝑎 /∈ A-𝒪(𝑞) ⇐⇒ 𝑎 /∈ 𝑆𝑞 ∨ ∃𝑏 ∈ 𝑆𝑞 such that 𝑏 dominates 𝑎.

This shows that the right-hand side of (6) can be tested in nondeterministic polynomial time.
Therefore, 𝐵 ∈ NP and hence 𝐵 ∈ coNP. This contradicts the assumption.

Theorem 5.7. If NEE ̸= coNEE, then there exists a 𝐵 ∈ NP − coNP such that for every multi-
objective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) it holds that 𝐵 ̸≡p

T A-𝒪, 𝐵 ̸≡p
T L-𝒪, 𝐵 ̸≡p

T D-𝒪,
and 𝐵 ̸≡p

T W-𝒪.

Proof. Proposition 2.5 provides a 𝐵 ∈ NP − coNP such that 𝐵 ⊆ {22𝑥
𝑐

| 𝑥 ∈ N} for some 𝑐 ≥ 1.
By Lemma 5.6, 𝐵 ̸≡p

T A-𝒪 for all multiobjective NP optimization problems 𝒪. Moreover, by
Lemma 4.9, 𝐵 ̸≡p

T 𝑓 for all 𝑓 ∈ wit·P. This implies the theorem, since by Theorem 5.1, the search
notions L-𝒪, D-𝒪, and W-𝒪 are equivalent to some function in wit·P.

The proof shows that if we drop the condition 𝐵 ̸≡p
T A-𝒪, then the theorem can be shown under

the weaker assumption EE ̸= NEE (Theorem 4.10).

We complete this section by showing that the complexities of the search notion A-𝒪 are covered by
the complexities of the value notions Val(A-𝒪′).

27

Proposition 5.8. For every multiobjective NP optimization problem 𝒪 = (𝑆, 𝑓,≥) there is a
multiobjective NP optimization problem 𝒪′ = (𝑆, 𝑔,≥) such that A-𝒪 = A-𝒪′ ≡p

T Val(A-𝒪′).

Proof. Let 𝒪 = (𝑆, 𝑓,≥) be a 𝑘-objective problem and assume 𝑘 ≥ 2 (use the same objective
function twice for 𝑘 = 1). Let 𝑝 be a polynomial such that for all 𝑥 and all 𝑠 ∈ 𝑆𝑥 it holds that
𝑠 < 2𝑝(|𝑥|) and 𝑓𝑥

𝑖 (𝑠) < 2𝑝(|𝑥|) for all 1 ≤ 𝑖 ≤ 𝑘. Define the 𝑘-objective problem 𝒪′ = (𝑆, 𝑔,≥) where

𝑔𝑥𝑖 (𝑠) = 𝑓𝑥
𝑖 (𝑠) 𝑘 2

3 𝑝(|𝑥|) +

𝑘∑︁
𝑗=1

𝑓𝑥
𝑗 (𝑠) 2

𝑝(|𝑥|) +

{︃
2𝑝(|𝑥|) − 1− 𝑠 for 𝑖 = 1

𝑠 for 𝑖 ≥ 2.

Claim 5.8.1. The following statements are equivalent for all 𝑥 ∈ N and 𝑠1, 𝑠2 ∈ 𝑆𝑥:

1. 𝑓𝑥(𝑠1) ̸= 𝑓𝑥(𝑠2) and 𝑓𝑥(𝑠1) ≤ 𝑓𝑥(𝑠2)

2. 𝑔𝑥(𝑠1) ̸= 𝑔𝑥(𝑠2) and 𝑔𝑥(𝑠1) ≤ 𝑔𝑥(𝑠2)

Proof. “1 ⇒ 2”: Assume 𝑓𝑥(𝑠1) ̸= 𝑓𝑥(𝑠2) and 𝑓𝑥(𝑠1) ≤ 𝑓𝑥(𝑠2) and let 1 ≤ 𝑗 ≤ 𝑘 such that
𝑓𝑥
𝑗 (𝑠1) < 𝑓𝑥

𝑗 (𝑠2). Since 𝑓𝑗 occurs in each 𝑔𝑖 with a factor of at least 2𝑝(|𝑥|) and 𝑠1, 𝑠2, 2
𝑝(|𝑥|) − 1−

𝑠1, 2
𝑝(|𝑥|) − 1− 𝑠2 < 2𝑝(|𝑥|), we have 𝑔𝑥𝑖 (𝑠1) < 𝑔𝑥𝑖 (𝑠2) for each 𝑖.

“2⇒ 1”: Assume 𝑔𝑥(𝑠1) ̸= 𝑔𝑥(𝑠2) and 𝑔𝑥(𝑠1) ≤ 𝑔𝑥(𝑠2). It is not possible that 𝑓𝑥(𝑠1) = 𝑓𝑥(𝑠2), since
in this case, 0 ̸= 𝑠1 − 𝑠2 = 𝑔𝑥1 (𝑠2) − 𝑔𝑥1 (𝑠1) = −(𝑔𝑥2 (𝑠2) − 𝑔𝑥2 (𝑠1)), which contradicts the fact that
𝑔𝑥(𝑠1) ≤ 𝑔𝑥(𝑠2). Hence we have 𝑓𝑥(𝑠1) ̸= 𝑓𝑥(𝑠2). Finally, assume that there is some 1 ≤ 𝑗 ≤ 𝑘
such that 𝑓𝑥

𝑗 (𝑠1) > 𝑓𝑥
𝑗 (𝑠2). Then we would also have 𝑔𝑥𝑗 (𝑠1) > 𝑔𝑥𝑗 (𝑠2) because of the large factor

𝑘 23 𝑝(|𝑥|).

From the claim it follows that a solution is not optimal in 𝒪 if and only if it is not optimal in 𝒪′
and thus the set of optimal solutions coincide, i.e. A-𝒪 = A-𝒪′. Furthermore, since the solution is
encoded into the value for 𝒪′, we obtain A-𝒪′ ≡p

T Val(A-𝒪′).

References

[Bal89] J. L. Balcázar. Self-reducibility structures and solutions of NP problems. Revista
Matematica de la Universidad Complutense de Madrid, 2(2-3):175–184, 1989.

[BBFG91] R. Beigel, M. Bellare, J. Feigenbaum, and S. Goldwasser. Languages that are easier
than their proofs. In IEEE Symposium on Foundations of Computer Science, pages
19–28, 1991.

[BD76] A. B. Borodin and A. J. Demers. Some comments on functional self-reducibility and the
NP hierarchy. Technical Report TR76-284, Cornell University, Department of Computer
Science, 1976.

[BLS84] R. V. Book, T. Long, and A. L. Selman. Quantitative relativizations of complexity
classes. SIAM Journal on Computing, 13:461–487, 1984.

28

[BS85] J. L. Balcázar and U. Schöning. Bi-immune sets for complexity classes. Mathematical
Systems Theory, 18(1):1–10, 1985.

[FGH+99] S. Fenner, F. Green, S. Homer, A. L. Selman, T. Thierauf, and H. Vollmer. Complements
of multivalued functions. Chicago Journal of Theoretical Computer Science, 1999. Article
3 of volume 1999.

[FHOS97] S. Fenner, S. Homer, M. Ogihara, and A. L. Selman. Oracles that compute values.
SIAM Journal on Computing, 26:1043–1065, 1997.

[GRSW10] C. Glaßer, C. Reitwießner, H. Schmitz, and M. Witek. Approximability and hardness
in multi-objective optimization. Number 6158 in Lecture Notes in Computer Science,
pages 180–189. Springer-Verlag, 2010.

[HNOS96] L. Hemaspaandra, A. Naik, M. Ogihara, and A. L. Selman. Computing solutions
uniquely collapses the polynomial hierarchy. SIAM Journal on Computing, 25:697–708,
1996.

[HW00] H. Hempel and G. Wechsung. The operators min and max on the polynomial hierarchy.
International Journal of Foundations of Computer Science, 11(2):315–342, 2000.

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of Computer and
System Sciences, 36:490–509, 1988.

[MA78] K. L. Manders and L. Adleman. NP-complete decision problems for binary quadratics.
Journal of Computer and System Sciences, 16(2):168 – 184, 1978.

[PY82] C. H. Papadimitriou and M. Yannakakis. The complexity of restricted spanning tree
problems. J. ACM, 29(2):285–309, 1982.

[Sel92] A. L. Selman. A survey of one-way functions in complexity theory. Mathematical
Systems Theory, 25:203–221, 1992.

[Sel94] A. L. Selman. A taxonomy on complexity classes of functions. Journal of Computer
and System Sciences, 48:357–381, 1994.

[Sel96] A. L. Selman. Much ado about functions. In Proceedings 11th Conference on Computa-
tional Complexity, pages 198–212. IEEE Computer Society Press, 1996.

[Val76] L. G. Valiant. Relative complexity of checking and evaluating. Information Processing
Letters, 5(1):20–23, 1976.

29

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

