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Abstract

We obtain the first deterministic extractors for sources generated (or sampled) by
small circuits of bounded depth. Our main results are:

(1) We extract k(k/nd)O(1) bits with exponentially small error from n-bit sources
of min-entropy k that are generated by functions f : {0, 1}` → {0, 1}n where each
output bit depends on ≤ d input bits. In particular, we extract from NC0 sources,
corresponding to d = O(1).

(2) We extract k(k/n1+γ)O(1) bits with super-polynomially small error from n-bit
sources of min-entropy k that are generated by poly(n)-size AC0 circuits, for any γ > 0.

As our starting point, we revisit the connection by Trevisan and Vadhan (FOCS
2000) between circuit lower bounds and extractors for sources generated by circuits. We
note that such extractors (with very weak parameters) are equivalent to lower bounds
for generating distributions (FOCS 2010; with Lovett, CCC 2011). Building on those
bounds, we prove that the sources in (1) and (2) are (close to) a convex combination
of high-entropy “bit-block” sources. Introduced here, such sources are a special case
of affine ones. As extractors for (1) and (2) one can use the extractor for low-weight
affine sources by Rao (CCC 2009).

Along the way, we exhibit an explicit boolean function b : {0, 1}n → {0, 1} such that
poly(n)-size AC0 circuits cannot generate the distribution (Y, b(Y )), solving a problem
about the complexity of distributions.

Independently, De and Watson (ECCC TR11-037) obtain a result similar to (1) in
the special case d = o(lg n).
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1 Introduction

Access to a sequence of uniform and independent bits (or numbers) is crucial to efficient
computation, but available sources of randomness appear to exhibit biases and correlations.
So a significant amount of work is put into “purifying” such sources, by applying a determin-
istic function, known as extractor, that given as input a weak, n-bit source of randomness
outputs m bits that are close to uniform over {0, 1}m (in statistical distance).

The theoretical investigation of this problem goes back to von Neumann [vN51]. Since
then, many researchers have been analyzing increasingly complex sources, modeled as prob-
ability distributions D with high min-entropy k (i.e., Pr[D = a] ≤ 2−k for every a), see
e.g. [Blu86, CG88, SV86].

In 2000, Trevisan and Vadhan [TV00] consider sources that can be generated, or sampled,
efficiently. That is, the n-bit source is the output of a small circuit C : {0, 1}` → {0, 1}n on a
uniform input. As they write, “one can argue that samplable distributions are a reasonable
model for distributions actually arising in nature.” They point out that even extracting
1 bit from from such sources of min-entropy k = n − 1 entails a circuit lower bound for
related circuits. On the other hand, assuming the existence of a function computable in
time 2O(n) that requires Σ5 circuits of size 2Ω(n), Trevisan and Vadhan obtain extractors (for
min-entropy k = (1− Ω(1))n). The gap between their positive and negative result prevents
one from obtaining unconditional results even for “restricted” classes of circuits for which we
do have lower bounds, such as the class AC0 of unbounded fan-in circuits of constant depth.

The word “restricted” is in quotes because seemingly crippled circuits such as AC0 or
DNF turn out to have surprising power when it comes to sampling as opposed to computing
[Vio10]. In fact, until this work it was an open problem to exhibit any explicit distribution
on n bits with min-entropy n − 1 that cannot be sampled in AC0! The solution to this
problem is obtained in this paper as a corollary to our main results: extractors for sources
sampled by restricted classes of circuits, which we simply call circuit sources.

A main difficulty in obtaining such extractors is that circuit sources are not easily broken
up in independent blocks, a property that is heavily exploited to obtain extractors for various
sources, including independent sources (see e.g. [Li11a] and the references therein), bit-fixing
sources [CGH+85, KZ07, GRS06, Rao09], and small-space sources [KRVZ11].

A type of sources that escaped this “independence trend,” and that is especially important
for this work, is the affine one over the field with two elements, i.e., distributions that are
uniform over an affine sub-space of {0, 1}n of dimension k. Here a line of works exploits
the algebraic structure to obtain extractors [BKS+10, Bou07, Rao09, BSK09, Yeh10, Li11b].
But again, algebraic structure does not seem present in circuit sources, at first sight.

1.1 Our results

We obtain the first extractors for sources generated by various types of circuits, such as
AC0. This is achieved by exhibiting new reductions that show that those sources are (close
to) a convex combination of (a special case of) affine sources. Depending on which affine
extractor is used, one extracts from circuit sources with various parameters. We state next
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some extractors obtained using Rao’s extractor for low-weight affine sources [Rao09].
The following theorem extracts from local sources, i.e., n-bit sources that are the output

distribution of a function f : {0, 1}` → {0, 1}n where each bit fi depends on ≤ d input bits.
We extract m ≥ k(k/n)O(1) bits. The theorem and the discussion below give a more refined
bound on m. The notation Ω̃ hides logarithmic factors; all logarithms are in base 2.

Theorem 1.1 (Extractor for local sources). For some ρ > 0, any d = d(n), k = k(n):
There is an explicit function Ext : {0, 1}n → {0, 1}m that extracts m bits with error

ε ≤ 2−m
Ω(1)

from any d-local source with min-entropy k, provided 2dn/k < mρ, for:
(1) m = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3) = Ω̃(k(k/n)2d3), or
(2) m = Ω(k(k/n)/d22d).

Note that Theorem 1.1.(1) extracts from some sublinear entropy k = n1−Ω(1) and simul-
taneously polynomial locality d = nΩ(1). Also, from NC0 sources (d = O(1)) of min-entropy

k = Ω(n), Theorem 1.1 (either setting) extracts Ω(n) bits with error 2−n
Ω(1)

. The error can
be improved to 2−Ω(n) using Bourgain’s extractor [Bou07] (cf. [Yeh10, Li11b]).

We also obtain extractors for AC0 sources, with output length m ≥ k(k/n1+γ)O(1).

Theorem 1.2 (Extractor for AC0 sources). For some ρ > 0, any γ > 0, d = O(1), k = k(n):
There is an explicit extractor Ext : {0, 1}n → {0, 1}m with output length m = k(k/n1+γ)

and error 1/nω(1) for sources with min-entropy k that are generated by AC0 circuits C :
{0, 1}nd → {0, 1}n of depth d and size nd, provided n1+γ/k < mρ.

The unspecified constant ρ in the “provided” sentences in the above theorems arises from
a corresponding unspecified constant in Rao’s work [Rao09]. Later in §2.3 we sketch how
this constant can be made ρ = 1−α for any constant α > 0. This makes Theorem 1.2 apply
provided just k > n2/3+Ω(1), while if d = no(1) Theorem 1.1.(1) applies provided k > n3/4+Ω(1),
and if d = o(lg n) Theorem 1.1.(2) applies provided k > n2/3+Ω(1).

Assuming a sufficiently good affine extractor, the “provided” sentences are dropped alto-
gether. For example, in the case d = O(1), Theorem 1.1.(2) always extracts Ω(k(k/n)) bits.
This is interesting for k ≥ c

√
n, and we do not know how to handle smaller values of k even

for d = 2.

Rao’s extractor, and hence the extractor in Theorem 1.1 and 1.2, is a somewhat elaborate
algorithm. It is natural to try to obtain simpler extractors. For affine sources, this is
investigated in the recent works [BSK09, Li11b]. For local sources, in this paper we show
that the majority function extracts one bit, albeit with worse parameters than the previous
theorems. More bits can be obtained by truncating the hamming weight of the source,
resulting in a simple, symmetric extractor.

Theorem 1.3. There is a symmetric, explicit, deterministic extractor Ext : {0, 1}n →
{0, 1}m that extracts m = Ω(lg lg n − lg d) bits with error ε = (d/ lg n)Ω(1) from any n-bit
source with shannon entropy k ≥ n− n0.49 whose bits are each computable by a decision tree
of depth d. To extract m = 1 bit, one can take Ext := majority.
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For example setting d =
√

lg n we extract Ω(lg lg n) bits with error (1/ lg n)Ω(1).
While the parameters of Theorem 1.3 are much weaker than those of the previous extrac-

tors, we remark that any symmetric extractor for (d = ω(1))-local sources needs min-entropy
k ≥ n(1 − O(lg d)/d) = n(1 − o(1)), as can be seen by breaking the source in chunks of d
bits and generating a balanced string in each. Also note that the extractor in Theorem
1.3 extracts from shannon entropy, as opposed to min-entropy. It can be shown that any
extractor needs shannon entropy k ≥ n(1− o(1)) to extract even 1 bit with error o(1).

Extractors vs. the complexity of distributions. As our starting point, we revisit
the aforementioned connection between extractors and circuit lower bounds by Trevisan and
Vadhan [TV00]: We observe that obtaining extractors (with very weak parameters) for circuit
sources is equivalent to proving sampling lower bounds for the same circuits [Vio10, LV10].
For example we record the following no-overhead incarnation of this equivalence. Let Ext :
{0, 1}n → {0, 1} be any function, and assume for simplicity that Ext is balanced. Then
Ext is an extractor with error < 1/2 (a.k.a. disperser) for sources of min-entropy k = n− 1
generated by circuits of size s if and only if for every b ∈ {0, 1} circuits of size s cannot
generate the uniform distribution over Ext−1(b). For general k and possibly unbalanced
Ext, we have that Ext is such an extractor if and only if for every b ∈ {0, 1} circuits of size
s cannot generate a distribution of min-entropy k supported in Ext−1(b).

By the “if” direction, the sampling bounds in [Vio10] yield extractors with very weak
parameters (d < lg n, k = n− 1,m = 1, ε < 1/2).

The “only if” direction is a slight variant of [TV00, Prop. 3.2]. We use it next in combi-
nation with our extractors to address the challenge of exhibiting a boolean function b such
that small AC0 circuits cannot sample (Y, b(Y )), raised in [Vio10] (cf. [LV10]). (Actually
we use another slight variant of [TV00, Prop. 3.2] which has some overhead but more easily
gives a polynomial-time samplable distribution.)

Theorem 1.4. There is an explicit map b : {0, 1}∗ → {0, 1} such that for every d = O(1):
Let C : {0, 1}nd → {0, 1}n+1 be an AC0 circuit of size nd and depth d. The distribution

C(X) for uniform X has statistical distance ≥ 1/2n
1−Ω(1)

from the distribution (Y, b(Y )) for
uniform Y ∈ {0, 1}n.

For b one can take the first bit of the extractor in Theorem 1.2 for k = n1−Ω(1).

This theorem is also interesting in light of the fact that small AC0 circuits are able to
generate the distribution (x,Ext(x)) where Ext is some affine extractor for min-entropy
≥ (1/2 + Ω(1))n. Specifically, for Ext one can choose the inner product function, which has
been shown by several researchers to be an extractor, and whose corresponding distribution
(x,Ext(x)) can be sampled by small AC0 circuits [IN96] (cf. [Vio05]). Thus the above
theorem is an explanation for the fact that affine extractors for sub-linear min-entropy are
more complicated.
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1.2 Techniques

A main technical contribution is to show that local sources are (close to) a convex combi-
nation of a special case of affine sources which we call “bit-block.” A bit-block source is a
source in which each output bit is either a constant or a literal (i.e., Xi or 1−Xi), and the
number of occurrences of each literal is bounded by a parameter we call “block-size.”

Definition 1.5 (Bit-block source). A random variable Y over {0, 1}n is a bit-block source
with block-size w and entropy k if there exist:

(1) a partition of [n] into k + 1 sets B0, B1, . . . , Bk such that |Bi| ≤ w for every i ≥ 1,
(2) a string b0 ∈ {0, 1}|B0|, and
(3) k non-constant functions fi : {0, 1} → {0, 1}|Bi| for any i ≥ 1,
such that Y can be generated as follows: let (X1, . . . , Xk) be uniform over {0, 1}k, set

YB0 = b0, and for i ≥ 1 set YBi = fi(Xi). (Where YS denotes the bits of Y indexed by S.)

The next theorem shows that local sources Y are a convex combination of bit-block
sources, up to an error ε. That is, there is an algorithm to sample Y that, except for an
error probability of ε, outputs a sample from a bit-block source.

Theorem 1.6 (Local is convex combo of bit-block). Let f : {0, 1}` → {0, 1}n be a d-local
function such that for uniform X ∈ {0, 1}`, f(X) has min-entropy ≥ k.

Then, letting s := 10−5k(k/n)2 lg(d)/ lg(4n/k)d3 = Ω̃(k3/n2d3), we have that f(X) is
2−s-close to a convex combination of bit-block sources with entropy k′ = s and block-size
≤ 2dn/k.

Bit-block sources with block-size w are a special case of affine sources of weight w. The
latter sources, defined in [Rao09], are generated as a0 +

∑k
i=1 Xibi, where a0, b1, . . . , bk ∈

{0, 1}n, (X1, . . . , Xk) is uniform in {0, 1}k, and the bi are independent vectors of hamming
weight ≤ w. To write a bit-block source as in Definition 1.5 as a low-weight affine one, define
each vector bi as 0 except for bi|Bi := fi(1)− fi(0), and vector a0 as a0|B0 = b0, a0|Bi = fi(0).

Rao [Rao09] extracts m = k(1 − o(1)) bits from affine sources of weight w < kρ. So we
obtain the extractor for local sources in Theorem 1.1.(1) by combining Theorem 1.6 with
[Rao09]. To obtain Theorem 1.1.(2) we prove a corresponding variant of Theorem 1.6.

Intuition behind the proof of Theorem 1.6. We now explain the ideas behind the proof
of Theorem 1.6.(1). Let f : {0, 1}nd → {0, 1}n be a d-local map, whose output distribution
Y = f(X) has min-entropy k. We describe an algorithm to sample Y such that with high
probability the algorithm outputs a sample from a high-entropy bit-block source. For the
description it is useful to consider the bipartite graph associated to f , where an output
variable yi is adjacent to the ≤ d input variables xj it depends on.

The algorithm.
Note there at most k/2 input variables xj with degree ≥ 2dn/k. Fix those uniformly at

random, and consider the random variable X where the other bits are chosen uniformly at
random. Note the output min-entropy is still ≥ k − k/2 = Ω(k).
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Now the idea is to iteratively select high-influence input variables, and let their neighbor-
hoods be a block in the bit-block source. (Recall the influence of a variable x on a function
is the probability over the choice of the other variables that the output still depends on x.)

Iterate while H∞(Y ) ≥ Ω(k): Since H∞(Y ) ≥ Ω(k), there is an output random variable
Yi with shannon entropy ≥ Ω(k/n). Otherwise, the overall shannon entropy of the output
is ≤ o(k/n)n = o(k). Since shannon entropy is larger than min-entropy, this would violate
H∞(Y ) ≥ Ω(k).

Consequently, Yi has high variance: min{Pr[Yi = 0],Pr[Yi = 1]} ≥ Ω̃(k/n).
Now, Yi only depends on d input variables Xj. By the edge isoperimetric inequal-

ity [Har64, Har76], there is an input variable Xj that has influence ≥ Ω̃(k/nd).
Set uniformly at random N(N(xj)) \ {xj}, where N(.) denotes “neighborhood,” and add

xj to a set V of variables.
Go to the next iteration.

Finally, set uniformly at random the variables collected in V , and output f(X).

We now analyze this algorithm. First note each iteration fixes ≤ |N(N(xj))| ≤ 2d2n/k
variables. Since we iterate as long as H∞(Y ) ≥ Ω(k), we do so t = Ω(k(k/nd2)) times.

Also, when we set N(N(xj)) \ {xj} with probability at least the influence which is
Ω̃(k/nd), the value of xj influences the output variables in N(xj). Those variables cor-
respond to a block, which note has size |N(xj)| ≤ 2dn/k.

Fixing N(N(xj)) \ {xj} ensures that future actions of the algorithm will not alter the
distribution of N(xj) over the choice of xj.

Hence out of t iterations we expect tΩ(k/nd) blocks to be non-constant, corresponding
to the entropy of the bit-block source. By a chernoff bound we indeed have tΩ(k/nd) such
blocks with high probability. This concludes the overview of the proof of Theorem 1.6.(1).

The above argument can be implemented in various ways depending what influence bound
one uses. For example one obtains Theorem 1.6.(2) using the simple bound that any non-
constant function on d bits has a variable with influence ≥ 1/2d.

Finally, we mention that a decomposition of local sources into bit-block ones also appears
in [Vio10]. However that decomposition is tailored for a different type of results, and is
incomparable with the present decomposition. In particular, it is still an open problem if
the negative results in [Vio10] about generating the uniform distribution over n-bit strings
with hamming weight αn can be improved to handle d ≥ lg n or larger statistical distance.

Handling AC0 sources. To handle AC0 sources we use the previous extractor for local
sources in combination with random restrictions [FSS84, Ajt83, Yao85, H̊as87]. The switch-
ing lemma [H̊as87] guarantees that after fixing all but a small fraction q of the input bits to
constant, the AC0 source collapses to a source with small locality.

The problem we face is that the restriction may have destroyed the min-entropy of the
source. We show that, in fact, with high probability a random restriction that leaves free a
q fraction of the input variables decreases the entropy by a factor Ω(q) at most. This is the
best possible up to constant factors as can be seen by considering the identity map.
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Lemma 1.7 (Restrictions preserve min-entropy). Let f : {0, 1}` → {0, 1}n be a function
such that H∞(f(X)) = k. Let ρ be a random restriction that independently sets variables to
?, 1, and 0 with probabilities q, (1− q)/2, and (1− q)/2. For every ε > 0:

Pr
ρ

[
H∞(fρ(X)) ≥ kq/4− lg(1/ε)/2

]
≥ 1− ε.

Note the only restriction this lemma puts on f is entropy.
The proof of this lemma builds on [LV10]. Specifically, we use an isoperimetric inequal-

ity for noise, that was highlighted in that work, to bound the collision probability of the
restriction of f . The lemma then follows from the fact that the logarithm of the collision
probability equals min-entropy up to constant factors.

Putting everything together, we arrive at the following result stating that any high-
entropy AC0 map is close to a convex combination of high-entropy bit-block sources.

Corollary 1.8 (AC0 is convex combo of bit-block). For every d = O(1), γ > 0:
Any n-bit distribution generated by an AC0 circuit of depth d and size nd is 1/nω(1)-close

to a convex combination of affine sources with entropy k(k/n1+γ). (In fact, bit-block sources
with block-size n1+γ/k.)

Intuition behind the proof of Theorem 1.3. We now explain how we prove that the
majority function extracts one bit with error o(1) from sources with locality d = O(1) and
min-entropy k = n− o(

√
n).

First, we use an information-theoretic argument from [Raz98, EIRS01, SV10] to argue
that for all but o(

√
n) bits in the output, any w bits are close (error o(1)) to being uniform,

for some w = ω(1).
Then we use the following key idea: since the distribution is local, if w bits are close

to being uniform, then they are exactly uniform. This is because the granularity of the
probability mass of those w bits is 2−wd, which we can set to be larger than the error.

Hence, we have a distribution where all but o(
√
n) bits are w-wise independent. We

show how to extract from such distributions using the bounded-independence central limit
theorem [DGJ+10]. Indeed, this theorem guarantees that the sum of the w-wise independent
bits behaves like a binomial distribution, up to some error. In particular, it has standard
deviation Ω(

√
n), and so the o(

√
n) “bad” bits over which we do not have control are unlikely

to be able to influence the value of majority, which will be roughly unbiased.

Concurrent work. De and Watson (ECCC TR11-037) independently obtain extractors
for sources with locality d = o(lg n). Their result is similar to our Theorem 1.1.(2). Their
proof also uses Rao’s extractor, but is otherwise different.

Organization. In §2 we prove Theorem 1.6 that local sources are a convex combination of
bit-block sources, and then obtain extractors for local sources, proving Theorem 1.1. We also
discuss various ways to optimize the parameters. In §3 we prove our Lemma 1.7 bounding the
entropy loss when applying a restriction, and obtain our extractor for AC0 sources, proving
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Theorem 1.2. We also prove Theorem 1.4, the negative result for generating (Y, b(Y )) in
AC0. In §4 we obtain the simpler extractor, proving Theorem 1.3. Finally, in §5 we discuss
open problems.

2 From local to bit-block

In this section we prove Theorem 1.6, restated next, that local sources are a convex combi-
nation of bit-block sources. We then use this to obtain extractors for local sources, proving
Theorem 1.1. We then discuss various ways to improve the parameters.

Theorem 1.6 (Local is convex combo of bit-block). Let f : {0, 1}` → {0, 1}n be a d-local
function such that for uniform X ∈ {0, 1}`, f(X) has min-entropy ≥ k.

Then, letting s := 10−5k(k/n)2 lg(d)/ lg(4n/k)d3 = Ω̃(k3/n2d3), we have that f(X) is
2−s-close to a convex combination of bit-block sources with entropy k′ = s and block-size
≤ 2dn/k.

We start with some preliminaries for the proof. First we need a few basic results regarding
entropy, both the shannon entropy H and the min-entropy H∞.

Claim 2.1. For any x, y ∈ (0, 1/2], if H(x) ≥ y then x ≥ 0.06y/ lg(1/y).

Proof. Since y ≤ 1/2 we have y/ lg(1/y) ≤ 1/2. Hence if x ≥ 0.03 then we are done.
Otherwise, it can be verified that 2 lg(1/x) ≤ 1/x2/3. It also holds for any x ≤ 1/2 that
H(x) ≤ 2x lg(1/x), and so our assumption implies 2x lg(1/x) ≥ y. Combining these two
facts we get that x1/3 ≥ y, and so 2 lg(1/x) ≤ 6 lg(1/y). Using again that x ≥ y/2 lg(1/x),
we get x ≥ y/6 lg(1/y) ≥ 0.06y/ lg(1/y).

Claim 2.2. For any distribution X, H(X) ≥ H∞(X).

Proof. Immediate from the definition.

Claim 2.3. Let f : {0, 1}` → {0, 1}n be a function, and let X be uniform over {0, 1}`. Let
X ′ be a distribution over {0, 1}` where s bits are constant and the other ` − s are uniform
and independent. Then H∞(f(X ′)) ≥ H∞(f(X))− s.

Proof. The claim holds because, for every a, Pr[f(X) = a] ≥ 2−s · Pr[f ′(X) = a].

Then we need the notion of influence of a variable xi on a boolean function f : {0, 1}d →
{0, 1}. Recall this is the probability over the choice of a uniform input X ∈ {0, 1}d that
flipping the value of the variable xi changes the output of f . Kahn, Kalai, and Linial
show that a near-balanced f has a variable with influence Ω(lg(d)/d), improving on the
lower bound Ω(1/d) which follows from the edge isoperimetric inequality over the hyper-
cube [Har64, Har76]. This improvement is not essential to our results; it makes the final
bound a bit better, and cleaner in the case d = nΩ(1).

Lemma 2.4 ([KKL88]). Let f : {0, 1}d → {0, 1} be a function that equals one (or zero) with
probability p ≤ 1/2. Then there is a variable with influence at least 0.2p lg(d)/d.
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2.1 Proof of Theorem 1.6

Consider the bipartite graph with input side {x1, . . . , x`} and output side {y1, . . . , yn}, where
each variable yi is connected to input variables it depends on. We call the xi and yi both
nodes and variables. By assumption each variable yi has degree ≤ d. For a node v we
denote by N(v) the neighborhood of v; for a set V we denote by N(V ) the union of the
neighborhoods of the nodes in V . In particular N(N(v)) is the two-step neighborhood of v.

Let
r := k/n ∈ [0, 1].

Note that there are ≤ k/2 input nodes with degree > 2dn/k = 2d/r, for else we would have
> dn edges.

Now we devise an algorithm to generate f(X), and then we analyze it to prove the
theorem. The algorithm works in stages. At stage i we work with a function fi : {0, 1}Li ×
{0, 1}Wi → {0, 1}n. These functions are obtained from f by fixing more and more input
variables. Li and Wi are disjoint sets of input variables, and we use the notation {0, 1}Li
instead of {0, 1}|Li| to maintain the variable names throughout the algorithm. The sets Wi

and Li will satisfy the invariant N(Li)
⋂
N(Wi) = ∅.

Algorithm

1. Set L0 := ∅,W0 := {x1, . . . , x`}.

2. Let f0 : {0, 1}L0 × {0, 1}W0 → {0, 1}n be the function obtained from f by setting
uniformly at random the ≤ k/2 input variables with degree > 2dn/k. Remove those
variables from W0.

3. For stage i = 0 to t− 1, where t := k
4

r
2d2 :

(a) Pick a variable x ∈ Wi with maximal influence on fi, that is, the probability over
uniform input to fi that flipping the value of x changes the output;

(b) Let Li+1 := Li
⋃
{x}; Wi+1 := W \ N(N(x)); let fi+1 : {0, 1}Li+1 × {0, 1}Wi+1 →

{0, 1}n be the function obtained from fi by setting uniformly at random the input
variables in N(N(x)) \ {x}.

4. Set uniformly at random the variables in Wt. Let f ′ : {0, 1}Lt → {0, 1}n be the
resulting function

5. Set uniformly at random the variables in Lt and output the value of f ′.

First, note that the algorithm generates the same distribution as f(X) for uniform X ∈
{0, 1}`, because each bit is set uniformly at random independently of the others.

Note that throughout the execution of the algorithm, the invariant N(Li)
⋂
N(Wi) = ∅

is maintained. This is because when we move a variable x into Li at Step (3b) we remove
N(N(x)) from Wi.

8



Claim 2.5. At every stage i < t, the variable x picked at Step (3a) has influence q ≥
0.003r lg(d)/ lg(4/r)d.

Proof. First note H∞(f0) ≥ k/2 (cf. Claim 2.3). Let i < t be an arbitrary stage.
Write fi(X)|A for the restriction of fi(X) to the output variables in set A.
At every stage we set < 2d(d− 1)/r variables. So

H∞(fi(X)) = H∞(fi(X)|N(Li)) +H∞(fi(X)|N(Wi)) ≥ k/2− t2d(d− 1)/r.

Since H∞(fi(X)|N(Li)) ≤ |Li| ≤ t, we obtain

H∞(fi(X)|N(Wi)) ≥ k/2− t2d(d− 1)/r − t ≥ k/2− t2d2/r ≥ k/4,

by our choice of t = k
4

r
2d2 .

Let p ∈ [0, 1/2] be the number such that the maximum Shannon entropy of an output
variable y ∈ N(Wi) is H(p). Bounding min-entropy from above by Shannon entropy, and
using the sub-additivity of Shannon entropy, we see

k/4 ≤ H∞(fi(X)|N(Wi)) ≤ H(fi(X)|N(Wi)) ≤ |N(Wi)|H(p) ≤ nH(p). (1)

Hence,

H(p) ≥ k

4n
.

By Claim 2.1, we get

p ≥ 0.06
k

4n lg(4n/k)
.

Now let y ∈ N(Wi) be a variable such that Pr[y = b] = p for some b ∈ {0, 1}.
By Lemma 2.4 there is an input variable x that has influence at least 0.2p lg(d)/d ≥

0.003r lg(d)/ lg(4/r)d on y. Note x ∈ Wi, since y ∈ N(Wi). This concludes the proof of the
claim.

Claim 2.6. The source f ′(X) at Step 5 is a bit-block source with block-size ≤ 2d/r. Its
blocks are B0 = N(Lt), and for Lt = {xj1 , . . . , xjt} and h ≥ 1, Bh = N(xjh).

Proof. By the invariant that N(Li)
⋂
N(Wi) = ∅, and since Li+1 is obtained by moving a

variable from Wi to Li, we have that for any x, x′ ∈ Lt, N(x)
⋂
N(x′) = ∅. Hence the

neighborhoods of variables in Lt form a partition of N(Lt). Each set in the partition has
size at most ≤ 2d/r by the bound on the degree of each input variable.

It remains to bound the entropy of f ′. Say that stage i is good if, letting x be the variable
picked at Step 5, after the choice for the variables in N(N(x)) \ {x}, the output variables in
N(x) take two distinct values over the choice of x. Note that if the latter is the case then
it is also the case for f ′ in Step 5, because after we set the variables in N(N(x)) \ {x}, the
output variables in N(x) depend only on x, and x is not set until Step 5.

Hence, the entropy of the bit-block source f ′ is the number of good stages. By Claim
2.5 each stage is good with probability q ≥ 0.003r lg(d)/ lg(4/r)d. Note that although the
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stages are not independent, the claim guarantees that each stage is good with probability
≥ q regardless of the outcomes of the previous stages. This is sufficient to apply the standard
chernoff bound.

For example, one can use a bound by Panconesi and Srinivasan [PS97], with a compact
proof by Impagliazzo and Kabanets [IK10]. Letting Zi be the indicator variable of a stage
being bad, the claim guarantees that for any S ⊆ [t], Pr[∧i∈SZi = 1] ≤ (1− q)|S|. Theorem
1.1 in [IK10] implies that the probability of having more than t(1 − q/2) bad stages is at
most

2−tD(1−q/2||1−q) = 2−tD(q/2||q) ≤ 2−tq/5,

where D denotes relative entropy with logarithms in base 2, and the inequality can be verified
numerically.

Hence we have ≥ tq/2 good stages, except with probability 2−tq/5. Noting that

tq = 0.000375 · kr2 lg(d)/ lg(4/r)d3

concludes the proof.

We now discuss how to improve the parameters in Theorem 1.6 in special cases.

Small locality. When the locality d is small, it is beneficial to use the following simple
bound on influence: any non-constant function f : {0, 1}d → {0, 1} has a variable with
influence ≥ 2/2d. Using this, the bound in Claim 2.5 can be replaced with q := 2/2d.
(In the proof of Claim 2.5, after we guarantee H∞(fi(X)|N(Wi)) ≥ k/4 > 0 we know there
is a non-constant output variable.) Following the proof of Theorem 1.6, this guarantees
tq/2 ≥ Ω(k(k/n)/d22d) good stages except with probability 2−tq/5.

Large locality but small-depth decision tree. If the locality is large, but we have
the additional guarantee that each output bit of the source is a decision tree of depth d′

(e.g., d′ = lg d), then we can use the fact that every decision tree has an influential variable
[OSSS05] (cf. [Lee10]). This replaces a factor (lg d)/d with Ω(1/d′), guaranteeing tq/2 =
Ω(k(k/n)/ lg(4n/k)d2d′).

This improvement using [OSSS05] actually gives hope for a more dramatic improvement
on Theorem 1.6; see §5.

2.2 Extractor for local sources

In this section we complete the proof of the extractor for local sources, restated next.

Theorem 1.1 (Extractor for local sources). For some ρ > 0, any d = d(n), k = k(n):
There is an explicit function Ext : {0, 1}n → {0, 1}m that extracts m bits with error

ε ≤ 2−m
Ω(1)

from any d-local source with min-entropy k, provided 2dn/k < mρ, for:
(1) m = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3) = Ω̃(k(k/n)2d3), or
(2) m = Ω(k(k/n)/d22d).
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As we mentioned, we obtain it using Rao’s extractor for low-weight affine sources. We
now define these sources, observe that bit-block sources are a special case of them, and finally
state Rao’s extractor and prove Theorem 1.1.

Definition 2.7 ([Rao09]). A distribution (or source) Y over {0, 1}n is n-bit affine with en-
tropy k and weight w if there are k linearly independent vectors b1, b2, . . . , bk each of hamming
weight ≤ w, and a vector a0, such that Y can be generated by choosing uniform X ∈ {0, 1}k
and outputting a0 +

∑
iXibi ∈ {0, 1}n.

Remark 2.8. A bit-block source with min-entropy k and block-size w (cf. Definition 1.5)
is affine with entropy k and weight w (with the additional restrictions that the vectors bi in
Definition 2.7 have disjoint support). Indeed, one can define each vector bi as 0 except for
bi|Bi := fi(1)− fi(0), and vector a0 as a0|B0 = b0, a0|Bi = fi(0).

Theorem 2.9 ([Rao09], Theorem 1.3). There exist constants c, ρ such that for every k(n) >

lgc n there is an explicit extractor Ext : {0, 1}n → {0, 1}k(1−o(1)) with error 1/2k
Ω(1)

for affine
sources with weight w < kρ and min-entropy k.

By Remark 2.8, Theorem 2.9 applies as stated to bit-block sources of entropy k and
weight w < kρ.

Proof of Theorem 1.1. Theorem 1.6 guarantees that any d-local source with min-entropy
k is 2−s close to a convex combination of bit-block sources with entropy s and block-size
≤ 2dn/k, where s = Ω(k(k/n)2 lg(d)/ lg(4n/k)d3).

For a sufficiently small ρ > 0, Rao’s extractor (Theorem 2.9) extracts m := s/2 bits with

error 1/2s
Ω(1)

from any such bit-block source, as long as 2dn/k ≤ sρ ⇐ 2dn/k ≤ mρ. Thus

the overall error is ≤ 1/2s
Ω(1)

+ 2−s = 1/2m
Ω(1)

.
This proves Theorem 1.1.(1).
To prove Theorem 1.1.(2) we reason similarly, using the improvement on Theorem 1.6

for small locality discussed in the paragraph “Small locality” above.

2.3 Optimizing Rao’s extractor

In this section we sketch how to optimize Rao’s extractor (Theorem 2.9) to obtain ρ = 1− ε
for any fixed ε > 0. This improvement can be obtained using the same steps as in Rao’s
proof, but optimizing a few results used there. We are grateful to Rao for his help with the
material in this section.

First, Rao uses a parity check function P : {0, 1}n → {0, 1}t for a code of distance wkα,
with output length t = O(w2k2α lg2 n). The parameter w corresponds to the weight (or
block-size) of the source, and the squaring turns out to be problematic to the optimization.
However using better codes (e.g., [ABN+92]) one can make t = O(wkα lg n).

Second, Rao uses the strong, linear, seeded extractor obtained in [RRV02] building on
Trevisan’s extractor [Tre01]. The dependence on n in the seed length of this extractors
if O(lg n), and for the current improvement it is important to reduce to one the constant
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hidden in O(.). This for example can be achieved using an extractor in [GUV09] to condense
entropy before applying [RRV02].

Finally, one needs to observe that Theorem 3.1 in [Rao09] although being stated for fixed
constants 0.7 and 0.9, can actually be obtained for constants arbitrarily close to 1.

3 From AC0 to local

In this section we obtain extractors for AC0 sources, proving Theorem 1.2, restated next.
Then we prove the negative result for generating (Y, b(Y )) in AC0, Theorem 1.4.

Theorem 1.2 (Extractor for AC0 sources). For some ρ > 0, any γ > 0, d = O(1), k = k(n):
There is an explicit extractor Ext : {0, 1}n → {0, 1}m with output length m = k(k/n1+γ)

and error 1/nω(1) for sources with min-entropy k that are generated by AC0 circuits C :
{0, 1}nd → {0, 1}n of depth d and size nd, provided n1+γ/k < mρ.

To prove this theorem we bound the entropy loss associated to random restrictions, and
then recall the switching lemma.

The effect of restrictions on min-entropy. Recall that a restriction ρ on n variables
is a map ρ : [n]→ {0, 1, ?}. We denote by fρ the function obtained from f by applying the
restriction.

We now state and prove a lemma that bounds the entropy loss incurred when applying
a random restriction to a function.

Lemma 1.7 (Restrictions preserve min-entropy). Let f : {0, 1}` → {0, 1}n be a function
such that H∞(f(X)) = k. Let ρ be a random restriction that independently sets variables to
?, 1, and 0 with probabilities q, (1− q)/2, and (1− q)/2. For every ε > 0:

Pr
ρ

[
H∞(fρ(X)) ≥ kq/4− lg(1/ε)/2

]
≥ 1− ε.

The proof of this lemma relies on the following isoperimetric inequality for noise, see
[LV10] for a proof.

Lemma 3.1. Let A ⊆ {0, 1}` and α := |A|/2`. For any 0 ≤ p ≤ 1/2, let E be a noise vector
of i.i.d. bits with Pr[1] = p; let X be uniform in {0, 1}`:

α2 ≤ Pr
X,E

[X ∈ A ∧ X + E ∈ A] ≤ α1/(1−p) ≤ α1+p.

Proof of Lemma 1.7. The idea is to boundH∞(fρ(X)) using the collision probability PrX,Y [fρ(X) =
fρ(Y )] of fρ, which in turn can be analyzed via Lemma 3.1.

Specifically, note that the joint distribution (fρ(X), fρ(Y )) where ρ is a random restric-
tion with parameter q as in the statement of the lemma, and X and Y are uniform and
independent, is the same as the joint distribution (f(X), f(X +E)) where X is uniform and
E is noise vector where each bit is set to 1 independently with probability p := q/2 ≤ 1/2.
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For any a ∈ {0, 1}n, let Aa := f−1(a); also denote by Xρ the result of applying the
restriction ρ to X. By Lemma 3.1:

Pr
ρ,X,Y

[fρ(X) = fρ(Y )] =
∑
a

Pr
ρ,X,Y

[Xρ ∈ Aa ∧ Yρ ∈ Aa] ≤
∑
a

(|Aa|/2`)1+p

≤ max
a

(|Aa|/2`)p ≤ 2−pk,

where the last inequality is the assumption that H∞(f(X)) ≥ k.
And so

Pr
ρ

[
Pr
X,Y

[fρ(X) = fρ(Y )] ≤ 2−pk/ε

]
≥ 1− ε.

To conclude, note that for any ρ

max
a

(
Pr
X

[fρ(X) = a]
)2

≤ Pr
X,Y

[fρ(X) = fρ(Y )],

and so with probability ≥ 1− ε over ρ we have

max
a

(
Pr
X

[fρ(X) = a]
)2

≤ 2−pk/ε⇒ H∞(fρ(X)) ≥ pk/2− lg(1/ε)/2.

The switching lemma. We also need to collapse an AC0 source to a local source, which
can be accomplished via the following standard corollary to the switching lemma [H̊as87].

Lemma 3.2. Let f : {0, 1}` → {0, 1} be a function computable by a depth-d AC0 circuit
with s gates. Let ρ be a random restriction with Pr[?] = q < 1/9d. The probability over ρ
that fρ cannot be written as a decision tree of depth t is ≤ s(9q1/dt)t.

This lemma can be proved using [Tha09, Lemma 1] (cf. [Bea94]). The restriction is seen
as the successive application of d restrictions with Pr[?] = q1/d.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Let t be a slowly growing function, such as t = lg o(lg n). Let Ext
be the extractor in Theorem 1.1 for locality t and min-entropy 0.1k/nγ.

By Lemma 3.2 a random restriction with Pr[?] = 1/nγ will collapse all n circuits (com-
puting the n output bits) to decision trees of depth t – in particular, 2t-local functions –
except for an error 1/nω(1). (Here we use that t = ω(1).)

By Lemma 1.7, except for an error 1/nlgn, the restricted source has min-entropy

k′ ≥ 0.25k/nγ − lg2 n ≥ 0.1k/nγ.

The theorem now follows from Theorem 1.1.(2). The theorem extractsm = Ω(k′(k′/n)/2O(2t)) ≥
Ω(k(k/n1+3γ)) bits (since 2O(2t) ≤ nγ), provided mρ > 2n2t/k′ which is implied by mρ >
n1+2γ/k. The error is dominated by the error incurred by the restriction step, which is
1/nω(1).
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Appealing to Theorem 1.1.(1) instead allows to improve the error from 1/nω(1) to 1/nΩ(lgn),
at the price of requiring larger k.

Finally, we mention that Corollary 1.8, claiming that any high-entropy AC0 distribution
is close to a convex combination of high-entropy bit-block sources, can be proved along the
same lines. Namely we can generate the distribution by first selecting a random restriction,
and then the rest, and invoke Lemmas 3.2 and Lemma 1.7 and Theorem 1.6 (the “Small
locality” version, see §2).

3.1 Negative result for generating (Y, b(Y ))

We now prove Theorem 1.4.

Theorem 1.4. There is an explicit map b : {0, 1}∗ → {0, 1} such that for every d = O(1):
Let C : {0, 1}nd → {0, 1}n+1 be an AC0 circuit of size nd and depth d. The distribution

C(X) for uniform X has statistical distance ≥ 1/2n
1−Ω(1)

from the distribution (Y, b(Y )) for
uniform Y ∈ {0, 1}n.

For b one can take the first bit of the extractor in Theorem 1.2 for k = n1−Ω(1).

Proof of Theorem 1.4. Define b to be the first output bit of the extractor in Theorem 1.2 for
n-bit distributions of some min-entropy k = n1−Ω(1) generated by circuits of size nd+a and
depth d+ a for a universal constant a to be set later.

Assume towards a contradiction that there is a circuit C(X) = (Y, Z) ∈ {0, 1}n × {0, 1}
as in the theorem such that the relevant statistical distance is ≤ 1/2n

δ
. Then for every a,

Pr[C(X) = a] ≤ 1/2n + 1/2n
δ ≤ 2/2n

δ
. So H∞(C(X)) ≥ nδ − 1. Note that on uniform

input U , b(U) = 1 with probability p = 1/2 ± o(1), and so Z = 1 also with probability
p′ = 1/2± o(1).

Consider the circuit C ′ that runs C(X) to generate (Y, Z), and then if Z = 1 it outputs
Y , otherwise outputs a uniform n-bit string. For a suitable choice of a, C ′ is implementable
in size nd+a and depth d+ a.

Note that the min-entropy of C ′(X) is ≥ nδ − O(1), and that b(C ′(X)) = 1 with prob-
ability p′ + (1 − p′)p = 1/2 + Ω(1). For a large enough δ < 1, this contradicts Theorem
1.2.

4 A worse, simpler extractor

In this section we prove Theorem 1.3, restated next.

Theorem 1.3. There is a symmetric, explicit, deterministic extractor Ext : {0, 1}n →
{0, 1}m that extracts m = Ω(lg lg n − lg d) bits with error ε = (d/ lg n)Ω(1) from any n-bit
source with shannon entropy k ≥ n− n0.49 whose bits are each computable by a decision tree
of depth d. To extract m = 1 bit, one can take Ext := majority.

The proof combines several lemmas discussed next.
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Lemma 4.1. [Raz98, EIRS01, SV10] Let V = (V1, . . . , Vn) be a random variable over {0, 1}n
such that H(V ) ≥ n − a. Then for any ε > 0 and integer q there exists a set G ⊆ [n] such
that |G| ≥ n− 16 · q · a/ε2, and for any distinct i1, . . . , iq ∈ G the distribution (Vi1 , . . . , Viq)
is ε-close to uniform.

Proof sketch. By the chain rule, H(V1)+H(V2|V1)+ · · ·+H(Vn|V1 . . . Vn−1) = H(V ) ≥ n−a.
Picking i uniformly in [n], we see E[1−H(Vi|V1 . . . Vi−1)] ≤ a/n. Let b := ε2n/(16q · a). By
Markov’s inequality, Pri[1−H(Vi|V1 . . . Vi−1) ≥ b · a/n] ≤ 1/b = 16q · a/(ε2n).

That means there are at most 16q · a/ε2 “bad” values for i for which H(Vi|V1 . . . Vi−1) ≤
1−b ·a/n = ε2/16q. Hence for any q “good” values for i, the entropy of the joint distribution
of the corresponding variables is at least q(1 − ε2/16q) = q − ε2/16, which implies that the
joint distribution is ε-close to uniform.

Lemma 4.2 (Bounded independence central limit theorem [DGJ+10]). There is C > 0 such
that the following holds for every n, ε, and q ≥ C lg2(1/ε)/ε2:

Let U = (U1, . . . , Un) be the uniform distribution over {0, 1}n, and let X = (X1, . . . , Xn)
be any q-wise independent distribution over {0, 1}n. Then for any t ≥ 0:∣∣∣∣∣Pr

[∑
i

Ui ≥ t

]
− Pr

[∑
i

Xi ≥ t

]∣∣∣∣∣ ≤ ε.

In particular, the classical central limit theorem for the sum of independent Bernoulli
trials holds for q-wise independent trials up to error ε.

Claim 4.3. Let f : {0, 1}n → {0, 1}q be a function such that each output bit is computed by
a depth-d decision tree. Then for any event A ⊆ {0, 1}q, the probability that f(X) ∈ A for a
uniform X in {0, 1}n equals a/2qd for some integer a.

Proof. We can compute the whole q-bit output of the function by a decision tree of depth
q · d whose leaves are labeled with q-bit strings. The decision tree simply simulates in turn
the q decision trees of the q output bits of f . Since the events over X of outputting different
leaves are disjoint, and each event has probability 2−qd, the result follows.

A denominator larger than 2−qd would reflect in improved parameters for the extractor.
But the following claim shows that no improvement is possible, even for the case in which
each output bit is d-local.

Claim 4.4. For any d ≥ q and n ≥ d(q− 1) there is a d-local function f : {0, 1}n → {0, 1}q
whose output is not uniform but is 1/2d(q−3) close to uniform.

Proof. Let D := 2d. For simplicity we think of the output of f as {−1, 1}q instead of {0, 1}q.
Consider the function g : {0, 1}d → {−1, 1} that is 1 on D/4+1 of the D/2 inputs where the
last bit is 1 and on D/4−1 of the D/2 inputs where the last bit is 0. Notice PrY [g(Y ) = 1] =
1/2. If Yd is the last bit of Y , notice PrY [Yd = 1|g(Y ) = ±1] = (D/4±1)/(D/2) = 1/2±2/D.
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Now let f1, . . . , fq−1 be the function g applied to disjoint d-bit inputs Y 1, . . . , Y q−1 (which
is possible since n ≥ d(q− 1)); and let fq equal to the product (XOR over {0, 1}) of the last
bits of Y 1, . . . , Y q−1 (which is possible since d ≥ q − 1).

Now we show that for any a ∈ {−1, 1}q, |Pr[f(X) = a]− 1/2q| ≤ 2q−1/2d(q−1). From this
the claim about statistical distance follows by a union bound over all {0, 1}q values a, which
yields a bound 22q−1/2d(q−1) ≤ 22d−d(q−1) since d ≥ q.

Indeed, the probability that the first q − 1 bits of f agree with a is equal to 1/2q since
these output bits are uniform and independent. Condition on this happening. By the
previous observation, the last bits of Y 1, . . . , Y q−1 are independent bits with Pr[Y i = 1] =
1/2± 2/D. Hence, E[Y i] = ±4/D. By independence, E[fq(X)] = ±(4/D)q−1, which means
Pr[fq(X) = 1] = 1/2 ± (4/D)q−1. Therefore, Pr[f(X) = a] = (1/2q−1)(1/2 ± (4/D)q−1) =
1/2q + (2/D)q−1.

4.1 Proof of Theorem 1.3

Let the entropy be n− n0.5−γ. Set

q := α

(
lg n

d

)
,

for a sufficiently small α depending on γ. We are going to extract Ω(lg q) bits.
Apply Lemma 4.1 with ε := 0.5/2dq. For a small enough α, this gives that, except for at

most
O(n0.5−γq2dq) = n0.5−γ2O(α lgn) = n0.5−γ/2

“bad” variables, any q “good” variables have a joint distribution that is ≤ 0.5/2dq close to
uniform.

By Claim 4.3, the joint distribution of those q variables is exactly uniform.
To summarize, the output distribution is q-wise independent, except for t := n0.5−γ/2 bits

that, we are going to think, are arbitrarily correlated with the output.
We are going to show how to extract from such sources.
Let X ∈ [0, n− t] be the hamming weight of the q-wise independent part, and Y ∈ [0, t]

be the hamming weight of the rest. Let B be the sum of n− t i.i.d. coin tosses (the binomial
distribution).

By Lemma 4.2, there is an absolute constant η such that for any interval [i, j], |Pr[X ∈
[i, j]]− Pr[B ∈ [i, j]]| ≤ β := (1/q)η.

Now, for a δ ∈ (0, 1) to be determined later, partition [0, n − t] into s = qδ intervals
whose measure w.r.t. B is 1/s ± O(1/

√
n− t), which is possible because B takes any fixed

value with probability at most O(1/
√
n− t) and because s ≤ lg n = (n− t)o(1) (so the greedy

approach of collecting intervals won’t stop before collecting s).
Now we bound the probability that X + Y , the hamming weight of the source, lands in
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any fixed interval [i, j]:

Pr[X + Y ∈ [i, j]] ≥ Pr[X ∈ [i, j]]− Pr[X ∈ [j − t, j]] (Since Y ≥ 0)

≥ Pr[B ∈ [i, j]]− Pr[B ∈ [j − t, j]]− 2β

≥ 1/s−O(1/
√
n− t)−O(t/

√
n− t)− 2β

≥ 1/s−O(β).

Repeating the argument for the upper bound, we get |Pr[X+Y ∈ [i, j]]−1/s| = O(β) =
O(1/qη).

Since we took s = qδ intervals, for a sufficiently small δ we get that the statistical distance
between X + Y and the uniform distribution over intervals is 1/qΩ(1).

Assuming w.l.o.g. that s is a power of 2, we have extracted lg s = Ω(lg q) bits at distance
1/qΩ(1) from uniform.

5 Open problems

Can one handle sources where each bit is a decision tree of depth lg n (ambitiously, nΩ(1))?
Handling decision tree of depth ≥ lg n would also allow to handle AC0 circuits of size larger
than nlgn, the limit of current techniques. The fact that every decision tree has an influential
variable [OSSS05, Lee10] seems promising, but at the moment we are unable to carry through
the proof in this case. On the other hand, the fact that depth lg n is sufficient for a decision
tree to select a random variable from the input may also be used in a counterexample.

Can we extract from lower min-entropy in Theorems 1.1? Note one always needs k > d,
since any distribution with min-entropy k can be obtained in a d = k local fashion. So if
d is polynomial then k must be polynomial as well. However for say d = O(1) one may be
able to handle k = no(1).

Another question is whether we can extract with better parameters from an n-bit source
where n−t bits are k-wise independent. Say we want to extract one bit. We handled t ≈

√
n

in the proof of Theorem 1.3 using majority. If the n − t bits were uniform, we could allow
for greater entropy deficiency t by using Ben-Or and Linial’s recursive-majority-of-3 function
[BL90]. Can a similar improvement be obtained for bounded independence?
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