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Abstract

Sipser and Spielman (IEEE IT, 1996) showed that any (c, d)-regular expander code with expansion
parameter > 3

4 is decodable in linear time from a constant fraction of errors. Feldman et al. (IEEE IT,
2007) proved that expansion parameter > 2

3 + 1
3c is sufficient to correct a constant fraction of errors in

polynomial time using LP decoding.
In this work we give a simple combinatorial algorithm that achieves even better parameters. In

particular, our algorithm runs in linear time and works for any expansion parameter > 2
3 −

1
6c . We also

prove that our decoding algorithm can be executed in logarithmic time on a linear number of parallel
processors.

1 Introduction

Linear codes play an important role in numerous interconnections between the area of error-correcting codes
and complexity theory. A linear code C ⊆ Fn can be specified by its parity check matrix or in other words,
the set of linear constraints that each codeword must satisfy. These constraints can be naturally viewed in
terms of a bipartite graph with codeword positions on one side and parity checks on the other side, and
adjacency reflecting which symbols are involved in which parity check constraints. This graph is called
a parity check graph. When this graph has constant degree, the underlying codes are called low-density
parity check codes (LDPC codes). Binary as well as q-ary LDPC codes were introduced and studied in
Gallager’s amazing work more than four decades ago [10, 11]. They have been studied extensively in
information theory (cf. [3]). Binary LDPC codes motivated Margulis’ explicit construction of graphs of large
girth [19], the precursor of his construction of Ramanujan graphs [16]. The following two remarkable works
stressed the importance of LDPC codes in coding theory. Zyablov and Pinsker [34] proved that for random
LDPC codes, with high probability over the choice of the code, Gallager’s algorithm corrects a constant
fraction of worst-case errors. Tanner [30] presented an important generalization of Gallager’s construction
and his decoding algorithms, which was later used in the work on linear time decodable expander codes
[26]. A special class of LDPC codes is regular LDPC codes where the underlying parity check graph
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is both left-regular and right-regular. Regular LDPC codes were in fact the variant originally studied by
Gallager [10, 11], as well as in the works of Mackay and Neal [17, 18] and Sipser and Spielman [26, 27]
that sparked the resurgence of interest in LDPC codes after over 30 years since Gallager’s work.

We turn to mention the well-known and widely investigated class of decoding algorithms for LDPC
codes, called message passing algorithms. At each round of these algorithms the messages are passed from
codeword nodes to (parity) check nodes, and from check nodes back to codeword nodes. One important
subclass of message passing algorithms is the belief propagation algorithm. This algorithm is presented in
Gallager’s work [11], and it is also used in the Artificial Intelligence community [20]. The messages passed
along the edges in this algorithm are probabilities, or beliefs. More precisely, the message passed from a
codeword node v to a check node c is the probability that v has a certain value given the observed value of
this codeword node, and all the values communicated to v in the prior round from check nodes incident to v
other than c. On the other hand, the message passed from c to v is the probability that v has a certain value
given all the messages passed to c in the previous round from message nodes other than v.

The central algorithmic problem in coding theory is the explicit construction of error-correcting codes
with best possible parameters together with fast encoding and decoding algorithms. Recently, this area has
benefited enormously from insights and viewpoints originating in complexity theory, and numerous inter-
connections between codes and complexity theory have been discovered, which are surveyed for example in
[28, 31]. The former survey [28] focuses on a notion called list-decoding and the second survey [31] focuses
mainly on sub-linear algorithms for local testing and local decoding. Basically, there are two different kinds
of noise models: adversarial and probabilistic. In this paper we consider an adversarial noise model where
we only assume a bound on the number of errors and not how they are distributed. We refer a reader to the
seminal paper of Richardson and Urbanke [22] for details concerning probabilistic noise model .

Over the last decade, significant new developments have taken place on this problem using combinatorial
constructions that exploit the power of expander graphs. The role of expander graphs in theoretical computer
science is by now certainly well-appreciated. Expander graphs have been the subject of much study in
combinatorics and computer science, and have found applications in diverse context. There have been
significant breakthroughs in explicit construction of expanders [5, 21]. Informally, the error-correcting
codes constructed from expander graphs are called expander codes. Expander codes are the only known
construction of asymptotically good error-correcting codes which can be decoded in linear time when a
constant fraction of symbols are corrupted. In particular case, when the parity check graph of the regular
LDPC code has good expansion properties the associated code is called regular expander code. Regular
expander codes and their decoding algorithms are often (implicitly) involved as basic building blocks in the
constructions of asymptotically good codes which are linear-time decodable. Informally, a code C ⊆ Fn
(let k = dim(C)) is said to be a (c, d)-regular expander if it has a parity check matrix H ∈ Fk×n where
every row has support of size d and every column has support of size c, and moreover the matrix H has
appropriate expansion properties described by the expansion parameter. The celebrated result of Sipser
and Spielman [26] shows that regular expander codes with expansion parameter > 3/4 are decodable in
linear time from constant fraction of errors. They achieved this by defining extremely simple decoding
algorithm, called Flip Algorithm (see Section 3.1). Then Spielman [27], using the result of [26], showed
that expander code with an extremely high expansion properties can be used to construct asymptotically
good error-correcting codes which can be encoded and decoded in linear time. Since the works of [26, 27]
the (regular) expander codes have been studied extensively in the area of LDPC codes and many different
constructions and improvements have been achieved (see e.g., [1, 2, 12, 13, 14, 15, 23, 33]).

Sipser and Spielman [26] pointed out that their work leaves many natural questions opened. One of
these questions is what is the minimal expansion requirement for the regular expander codes that is sufficient
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for linear-time decoding from a constant fraction of errors. In spite of the broad research in the area this
question remained open.1 Feldman et al. [9] showed that the linear programming (LP) decoding corrects
a constant fraction of errors in polynomial time if the underlying code is a (c, d)-regular expander with
expansion parameter > 2

3 + 1
3c . While a non-trivial research effort was done to improve the running time of

LP decoding (see e.g. [4, 29, 32]) the linear time decoding of such codes was not discovered.
In Theorem 3.1 we show a simple combinatorial algorithm, called Find Erasures and Decode that

decodes regular expander codes in linear time if the expansion parameter > 2
3 from the same number of

errors as in [9]. We also explain that this algorithm can be executed in logarithmic time on a linear number
of parallel processors. Find Erasures and Decode algorithm converts some “suspicious bits” to erasures
and then decode the underlying word from the erasures, and this is possibly a midway between “hard belief
propagation” (Flip Algorithm) and the full belief propagation (BP), which has resisted analysis in the case
of adversarial noise model.2 Then, in Theorem B.1 we show that the expansion parameter > 2/3− Ω(1) is
sufficient for the linear-time decoding from a constant fraction of errors.

We also show in Theorem A.1 that all regular expander codes with expansion parameter > 1/2, decod-
able by Flip Algorithm, are linear-time decodable by our algorithm (Find Erasures and Decode), and
hence this paper presents (arguably) a better algorithm (Find Erasures and Decode) than the famous
Flip Algorithm with respect to linear time decoding of regular expander codes (see Section 3.1.1 for full
comparison). Furthermore, we show in Theorem 3.4 that the expansion parameter > 1/2 is sufficient to
correct a sublinear number (nΩ(1)) of errors and the expansion parameter ≤ 1/2 is insufficient (for any
decoding algorithm) to correct even 1 error. Given the importance of analyzing BP for decoding, we believe
that Find Erasures and Decode algorithm takes an important step.

Organization of the paper. We begin with some quick background on codes and expanders in Section 2.
In Section 3 we present our main results. We prove our main theorem (Theorem 3.1) in Section 4. We end
by raising Conjecture 5.1 in Section 5.

The rest of the material is postponed to Appendix. In particular, in Section A we show that all regular
expander codes with expansion parameter > 1/2, decodable by Flip Algorithm, are linear-time decodable
by our algorithm Find Erasures and Decode (presented in Section 4). We continue in Section B and show
that expansion parameter > 2/3− Ω(1) is sufficient for the linear-time decoding. Then we prove Theorem
3.4 in Section C. The tightness of Theorem 3.4 is discussed in Section D.

2 Preliminaries

Let F be a finite field and [n] be the set {1, . . . , n}. In this work, we consider only linear codes. We start
with a few definitions.

Let C ⊆ Fn be a linear code over F. The dimension of C is denoted by dim(C). For w ∈ Fn, let
supp(w) = {i ∈ [n] | wi 6= 0} and |w| = | supp(w)|. We define the distance between two words x, y ∈ Fn

to be ∆(x, y) = |{i | xi 6= yi}| and the relative distance to be δ(x, y) = ∆(x,y)
n . The distance of a code

is denoted by ∆(C) and defined to be the minimal value of ∆(x, y) for two distinct codewords x, y ∈ C.
Similarly, the relative distance of the code is denoted δ(C) = ∆(C)

n . For x ∈ Fn and C ⊆ Fn, let δ(x,C) =

1Best to our knowledge, since the result of [26] the minimal known expansion parameter required for the linear-time decoding
of regular expander codes was 3/4.

2The idea of conversion errors to erasures was used before in the coding theory (see e.g., [24, 25]). However, this approach has
not been applied to the regular expander codes and our proposed algorithm Find Erasures and Decode demonstrates a progress
for this family of codes.
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min
y∈C
{δ(x, y)} denote the relative distance of x from the code C. We note that ∆(C) = min

c∈C\{0}
{|c|}. If

δ(x,C) ≥ ε, we say that x is ε-far fromC and otherwise x is ε-close toC. The vector inner product between
u1 and u2 is denoted by 〈u1, u2〉. The dual code C⊥ is defined as C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0}.
In a similar way we define C⊥≤t =

{
u ∈ C⊥ | |u| ≤ t

}
and C⊥t =

{
u ∈ C⊥ | |u| = t

}
. For T ⊆ Fn we

say that w ⊥ T if for all t ∈ T we have 〈w, t〉 = 0.
Forw ∈ Fn and S = {j1, j2, . . . , jm} ⊆ [n], where j1 < j2 < . . . < jm, letw|S = (wj1 , wj2 , . . . , wjm)

be the restriction of w to the subset S. Let C|S = {c|S | c ∈ C} denote the restriction of the code C to the
subset S.

2.1 Expander Codes

Now we define expanders and expander codes. Informally, expanders are sparse graphs with excellent
connectivity properties. We start from the definition of expanders and then proceed to the definition of
expander codes.

Definition 2.1 (Regular Expander Codes). Let C ⊆ Fn2 be a linear code and let G = (L,R,E) be its parity
check graph, where L = [n] represents the codeword positions and R ⊆ C⊥ represents the parity check
constraints. Note that for every x ∈ Fn2 we have x ⊥ R if and only if x ∈ C. For l ∈ L and r ∈ R it holds
that {l, r} ∈ E if and only if l ∈ supp(r).

The graphG is called (c, d)-regular if every vertex l ∈ L has degree c and every vertex r ∈ R has degree
d. For L0 ⊆ L and x ∈ L0, let

• N(L0) = {r ∈ R | {l, r} ∈ E for some l ∈ L0} be the set of neighbors of L0,

• N(x) = N({x}) be the set of neighbors of the node x,

• N1(L0) = {r ∈ R | {l, r} ∈ E for a unique l ∈ L0} be the set of unique neighbors of L0,

• N≥2(L0) = N(L0) \N1(L0),

• N1
L0

(x) = N1(L0) ∩N(x), i.e., the unique neighbors of L0, which are neighbors of x.

Let ε, δ > 0 be constants. Then,

• G is called a (c, d, ε, δ)-expander if G is (c, d)-regular and for all subsets S ⊆ L s.t. |S| ≤ δn we
have |N(S)| ≥ ε · c|S|;

• G is called a (c, d, ε, δ)-unique expander3 ifG is (c, d)-regular and for all subsets S ⊆ L s.t. |S| ≤ δn
we have |N1(S)| ≥ ε · c|S|.

We say that a code C is a (c, d, ε, δ)-(unique) expander code if it has a parity check graph that is a
(c, d, ε, δ)-(unique) expander. Throughout the paper we let SC = R be a set of d-weight constraints in the
parity check graph of the expander code C.

3Usually such expanders are called unique neighbor expanders, but to shorten the notation we call them unique expanders.
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3 Main Results

In this section we state our main results. In Section 3.1 we discuss and compare our results to the related
works. The results presented in this paper are stated over the binary field but can be easily extended to any
finite field.

The main result of this paper is stated in the following theorem (Theorem 3.1) and improves the result of
Sipser and Spielman [26] (see Section 3.1 for discussion). In particular, we show that expansion parameter
2
3 is sufficient for linear-time decoding.

Theorem 3.1. Let c, d, ε, δ > 0 be constants and let C ⊆ Fn2 be a (c, d, ε, δ)-expander code. Assume that
ε > 1/2 and εc+ h− c > 0, where h = d(2ε− 1)ce. Then C is decodable in linear time from εc+h−c

h bδnc
errors. Moreover, C is decodable in logarithmic time on a linear number of processors from εc+h−c

h bδnc
errors.

The proof of the theorem is postponed to Section 4.

Remark 3.2. If ε > 2/3 then εc+ h− c > 0 and hence C is decodable in linear time from εc+h−c
h bδnc ≥

3ε−2
2ε−1bδnc errors.

Remark 3.3. Corollary E.3 shows that if C is a (c, d, ε, δ)-expander code, where ε > 1/2 then ∆(C) ≥
2εδn and this is the best distance bound one can achieve based only on the expansion property of C. Hence
the value 2εδn is called a design distance of the code C.

We notice that when ε converges to 1 the design distance converges to 2δn and the number of corrected
errors

(
3ε−2
2ε−1bδnc

)
converges to δn, i.e., a half of the design distance of C.

Expansion parameter< 2
3 Looking at Theorem 3.1 one might conjecture that 2/3 is a minimal expansion

required for the linear time decoding. In Section B we refute such conjecture and prove that even if the
expansion parameter is more than 2/3 − 1/(6c) = 2/3 − Ω(1) then C is linear time decodable from the
constant fraction of errors.

Let us mention briefly the motivation for breaking the 2/3-expansion barrier. Assume C ⊆ Fn2 is
a (c, d, ε, δ)-expander code, SC is a set of constraints from the parity check graph of C and w ∈ Fn2
is an input word such that δ(w, x) < δ for some x ∈ C (think about the decoding of w to the clos-
est codeword x). Let corr = supp(x − w) be the subset of corrupted variables. Let N sat(corr) =
{u ∈ SC | 〈u,w〉 = 0 and u ∈ N(corr)} and Nunsat(corr) = {u ∈ SC | 〈u,w〉 6= 0 and u ∈ N(corr)} be
the satisfied and unsatisfied constraints of SC touching corr.

An interesting point is that when ε > 2/3 we have |Nunsat(corr)| ≥ |N1(corr)| > |N≥2(corr)| ≥
|N sat(corr)|. To see this, note that |N1(corr)|+ 2 ·N≥2(corr) ≤ c|corr| and |N1(corr)| ≥ (2ε− 1)c|corr|
(by Proposition E.1). This implies that

|N≥2(corr)| ≤ c|corr| − |N1(corr)|
2

≤ c|corr| − (2ε− 1)c · |corr|
2

= (1− ε)c|corr|.

If ε > 2/3 we have that |N≥2(corr)| < (1/3)c|corr| < |N1(corr)|, i.e., |Nunsat(corr)| > |N sat(corr)|.
That means when ε > 2/3 the number of unsatisfied constraints touching the corrupted variables is larger the
the number of satisfied constraints touching them. This fact was implicit in different decoding algorithms
since, implicitly, this helps to detect the corrupted region. However, when ε < 2/3 this property is not
necessary occurs. In this way, it is more difficult to understand which variables are corrupted. Thus we
believe that breaking the 2/3-expansion barrier carries some conceptual message.
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Expansion parameter > 1
2 We want to determine the minimal expansion parameter ε > 0 such that for

all constants c, d, δ > 0 it holds that a (c, d, ε, δ)-expander code is linear time decodable from Ωc,d,δ,ε(n)
errors. Section D shows that ε ≤ 1

2 is insufficient for the decoding even from 1 error. In Theorem 3.4 we
show that the expansion parameter ε > 1/2 is sufficient for the linear time decoding from nΩ(1) errors.

Theorem 3.4. Let c, d, δ > 0 and ε > 1/2 be constants. Then there exists α > 0 which depends only on
c, d, ε, δ, such that if C ⊆ Fn2 is a (c, d, ε, δ)-expander code then C is linear-time decodable from nα errors.

Proof. We have 2ε− 1 > 0. Proposition E.1 implies that C is a (c, d, 2ε− 1, δ)-unique expander code. The
theorem follows from Theorem 3.5, stated next.

Theorem 3.5. Let c, d, ε, δ > 0 be constants. Then there exists α > 0 which depends only on c, d, ε, δ, such
that if C ⊆ Fn2 is a (c, d, ε, δ)-unique expander code then C is linear-time decodable from nα errors.

The proof of Theorem 3.5 is postponed to Section C. We prove the tightness of Theorem 3.4 in Section
D, i.e., we show that the expansion parameter 1/2 is insufficient for decoding even from 1 error.

In Section A we prove Theorem A.1 which states that regular expander codes with expansion parameter
> 1/2 and decodable by Flip Algorithm of [26], are linear-time decodable by Find Erasures and Decode.

3.1 Related works

We start from recalling the result of Sipser and Spielman [26]. For w ∈ Fn and S ⊆ Fn let us define

N sat
S,w(i) = {u ∈ S | 〈u,w〉 = 0 and i ∈ supp(u)},

and similarly, we define Nunsat
S,w (i) = {u ∈ S | 〈u,w〉 6= 0 and i ∈ supp(u)}.

The Flip Algorithm from [26] is defined as follows.

Flip Algorithm

• Input: w ∈ Fn and SC ⊆ C⊥d

• While there exists i ∈ [n] such that
∣∣N sat

SC ,w
(i)
∣∣ < ∣∣Nunsat

SC ,w
(i)
∣∣:

– Flip bit i of w.

It can be easily verified that the Flip Algorithm achieves the following result (it is stated in a more
general form than in [26]). For the sake of completeness we give a proof sketch of their result.

Theorem 3.6 ([26]). Let C be a (c, d, ε, δ)-expander, where ε > 3
4 . Then C is decodable in linear time by

Flip Algorithm from less than (2ε− 1)bδnc errors.

Proof Sketch: Let w ∈ Fn2 be an input word such that ∆(w,C) < (2ε − 1)bδnc and let SC ⊆ C⊥d be a
set of constraints from the parity check graph of C. The observation made in [26] said that if ε > 3

4 then

while ∆(w,C) ≤ δn but w /∈ C there exists i ∈ [n] such that
∣∣∣N sat

SC ,w
(i)
∣∣∣ < ∣∣∣Nunsat

SC ,w
(i)
∣∣∣. Hence, while

the underlying word is δ-close to the code C, every iteration of Flip Algorithm decreases the number of
unsatisfied constraints from S.

Hence the only possible bad scenario is that during the run of Flip Algorithm there exists an iteration
where the number of the corrupted codeword symbols is bδnc. So, in this iteration the number of un-
satisfied constraints from SC is at least (2ε − 1) · c · bδnc (see Proposition E.1). However, initially the
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number of unsatisfied constraints from SC was at most c ·∆(w,C) < (2ε− 1) · c · bδnc, and by definition
of Flip Algorithm, the number of the unsatisfied constraints from SC is decreased (at least by one) each
iteration. Contradiction.

Feldman et al. [9] proved the following result using the linear programming (LP) decoding [6, 7, 8].

Theorem 3.7 ([9]). If C ⊆ Fn2 is a (c, d, ε, δ)-expander, where ε > 2
3 + 1

3c . Then C is decodable in
polynomial time from 3ε−2

2ε−1bδnc errors.

Again, in spite of some improvements in the run-time of LP decoding (see [4, 29, 32]) the linear time
decoding of such codes was not obtained.

3.1.1 Comparison to the previous works

In this section we summarize the improvements made in this paper over two previous results: [26] and [9].
We take into consideration the following aspects: a minimal required expansion parameter, a number of
errors that the decoding algorithm is able to correct and the running time of the decoding algorithm.

We notice that the number of errors Theorem 3.1 deals with is εc+h−c
h ≥ 3ε−2

2ε−1 , recalling that h = d(2ε−
1)ce. Note also that for ε > 3/4 it holds that 3ε−2

2ε−1 > 2ε−1. Thus the algorithm Find Erasures and Decode,
presented in the proof of Theorem 3.1, corrects at least as many errors as in Theorem 3.7, and strictly more
errors than in Theorem 3.6.

Required expansion Run Time Number of corrected errors
Our Result (Theorem 3.1) ε > 2

3 linear 3ε−2
2ε−1bδnc

Feldman et al. [9] ε > 2
3 + 1

3c polynomial 3ε−2
2ε−1bδnc

Sipser and Spielman [26] ε > 3
4 linear (2ε− 1)bδnc

Finally, we notice that the algorithm Find Erasures and Decode (Theorem 3.1) and the Flip Algorithm
of [26] can be executed in logarithmic time on a linear number of parallel processors, while the LP decoding
algorithm of [9] (Theorem 3.7) is not known to achieve this feature.

4 Expansion > 2/3 — Proof of Theorem 3.1

We start this section by presenting our Find Erasures and Decode algorithm, which receives an input
word w ∈ Fn2 and a constraints set SC ⊆ C⊥d from the parity check graph of C and is required to return the
closest codeword x ∈ C to w. Find Erasures and Decode is composed from two sub-algorithms defined
later in Sections 4.1 and 4.2, respectively.

Find Erasures and Decode

• Input: w ∈ Fn2 and SC ⊆ C⊥d

• L′ := Find Erasures (w, SC)

• x′ := Decode From Erasures (w, L′, SC)

• Return x′
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We recall that C ⊆ Fn2 is a (c, d, ε, δ)-expander code, where c, d, δ > 0 are constants, ε > 1/2 and
εc + h − c > 0 for h = d(2ε − 1)ce. For the rest of this section we assume that the (fixed) input word is
w ∈ Fn2 and the closest codeword to w is x ∈ C such that ∆(w, x) ≤ εc+h−c

h bδnc. Let corr = supp(w− x)

be the subset of corrupted variables and note that |corr| ≤ εc+h−c
h bδnc ≤ bδnc.

In the rest of the paper we prove Lemmas 4.1 and 4.2.

Lemma 4.1. The algorithm Find Erasures (defined in Section 4.1) returns L′ ⊆ [n] such that corr ⊆ L′

and |L′| ≤ δn. Moreover, the algorithm Find Erasures runs in linear time. Furthermore, Find Erasures
can be executed in logarithmic time on a linear number of parallel processors.

Lemma 4.2. If for L′ ⊆ [n] we have corr ⊆ L′ and |L′| ≤ δn then the algorithm Decode From Erasures
(defined in Section 4.2) on the inputw,L′ and SC returns x. Moreover, the algorithm Decode From Erasures
runs in linear time. Furthermore, Decode From Erasures can be executed in logarithmic time on a linear
number of parallel processors.

The proofs of Lemmas 4.1 and 4.2 are postponed to Sections 4.1 and 4.2, respectively. The proof of
Theorem 3.1 follows immediately from Lemmas 4.1 and 4.2.

Proof of Theorem 3.1. Lemma 4.1 proves that Find Erasures returns L′ such that corr ⊆ L′ and |L′| ≤
bδnc. Lemma 4.2 implies that the codeword x will be returned by Decode From Erasures. Moreover,
Find Erasures and Decode algorithm runs in linear (logarithmic) time since Lemmas 4.1 and 4.2 imply
that Find Erasures and Decode From Erasures run in linear (logarithmic) time.

4.1 How to find erasures — Proof of Lemma 4.1

In this section we present an algorithm Find Erasures and then prove Lemma 4.1. Roughly we maintain
at each iteration sets R′ = R′(t) and L′ = L′(t) which grow slowly. For analysis it is better to denote sets
separately, but later we will suppress it, to get an efficient implementation.

Find Erasures

• Input: w ∈ Fn2 and SC ⊆ C⊥d

• Initialize:

– h := d(2ε− 1) · ce
– R0 := {u ∈ SC | 〈u,w〉 6= 0}
– R′(0) := R0

– L′(0) := {i ∈ [n] | |N(i) ∩R0| ≥ h}
– t := 0

• While there exists i ∈ [n] \ L′(t) such that |N(i) ∩R′(t)| ≥ h do

– L′(t+ 1) := L′(t) ∪ {i}
– R′(t+ 1) := R′(t) ∪N(i)

– t := t+ 1

• return L′(t)
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Intuition behind the Algorithm The intuition behind the algorithm Find Erasures is as follows. As we
have already mentioned, during the algorithm we maintain R′ = R′(t) and L′ = L′(t). We think of R′(t)
as a subset of untrustful constraints and of L′(t) as a subset of untrustful indices (erasures). Initially, R′(0)
contains all unsatisfied constraints (i.e., u ∈ SC such that 〈u,w〉 6= 0) and L′(0) is a set of bits that “see” at
least h constraints from R′(0). Each iteration t, an index i /∈ L′(t− 1) is declared as untrustful (erasure) if
it is touched by “many” untrustful constraints (i.e., those from R′(t− 1)) and then all constraints that touch
i are declared untrustful. We repeat until we see no new untrustful indices. Finally, the algorithm returns a
set of all untrustful indices (erasures).

Now we present Propositions 4.3 and 4.4. The proof of Lemma 4.1 will follow from these propositions.

Proposition 4.3 (L′ includes all corrupted bits). Assume the algorithm Find Erasures returns L′(t) for
some t ≥ 0. Then corr ⊆ L′(t).

Proposition 4.4 (L′ is small). For all t ≥ 0 we have |L′(t)| < bδnc.

The proofs of Propositions 4.3 and 4.4 are postponed to Sections 4.1.2 and 4.1.1, respectively. We are
ready to prove Lemma 4.1.

Proof of Lemma 4.1. Correctness follows from Propositions 4.4 and 4.3. The linear runtime is shown in
Section 4.1.3. The logarithmic runtime on a linear number of parallel processors is explained in Section
4.1.4.

4.1.1 Proof of Proposition 4.3

Proof of Proposition 4.3. Assume the contrary, i.e., the algorithm stops and returns L′(t) for some t ≥ 0
such that corr \ L′(t) 6= ∅. Let good = corr ∩ L′(t) and bad = corr \ L′(t). Then corr = bad ∪ good,
good ⊆ L′(t), bad ∩ L′(t) = ∅ and bad 6= ∅. Note that |bad| ≤ |corr| ≤ δn. We claim that there exists
i ∈ bad such that |N1

bad(i)| ≥ h. This is true since by Proposition E.1 we have |N1(bad)| ≥ (2ε−1)·c·|bad|
and hence at least one index i ∈ bad sees at least h = d(2ε − 1) · ce unique neighbor constraints, i.e.,
|N1

bad(i)| ≥ h.
Next we claim that for all u ∈ N1

bad(i) we have u ∈ R′(t). Let u ∈ N1
bad(i) and note that there are two

cases: 〈u,w〉 6= 0 or 〈u,w〉 = 0. If 〈u,w〉 6= 0 then u ∈ R0 ⊆ R′(t) and we are done. Otherwise, we have
〈u,w〉 = 0 and thus u /∈ N1(corr)4 but u ∈ N1(bad). Hence supp(u) ∩ good 6= ∅, i.e., u ∈ N(good).
By definition of Find Erasures and the fact that good ⊆ L′(t)5 it follows that N(good) ⊆ R′(t) and thus
u ∈ R′(t).

We conclude that there exists i ∈ [n] \L′(t) such that |N(i)∩R′(t)| ≥ h. Contradiction to the fact that
the algorithm was stopped.

4.1.2 Proof of Proposition 4.4

Recall that ε > 1/2, h = d(2ε − 1)ce and εc + h − c > 0. Let corr0 = {i ∈ corr | |N(i) ∩R0| ≥ h}
and conf = {i ∈ [n] \ corr | |N(i) ∩R0| ≥ h}. By definition of corr0 we have corr0 ⊆ L′(0) ⊆ L′(t) for
every t ≥ 0. Note that corr0 ⊆ corr and |corr| < ε·c+h−c

h · bδnc.
4Note that for all u′ ∈ N1(corr) we have 〈u′, w〉 6= 0.
5Find Erasures is defined such that for every t ≥ 0 it holds that N(L′(t)) ⊆ R′(t).
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Overview of the proof. Proposition 4.4 is the main technical proposition in this paper. In this paragraph
we explain the intuition behind the proof. First of all, note that in the algorithm Find Erasures every index
i that is added to L′ has the property that |R′(·) ∩ N(i)| ≥ h (including the initialization), i.e., at least
h neighbor constraints of i already belong to R′(·). Recall that |N(i)| = c. Hence when the algorithm
Find Erasures executes R′(t+ 1) := R′(t) ∪N(i) the set R′(·) grows at most by (c− h).

By contradiction we assume that |L′(t)| = bδnc for some iteration t (Claim 4.5 shows that L′(0) <
bδnc). We have εc|L′(t)| ≤ |N(L′(t))| ≤ |R′(0)| + (c − h)|L′(t)|, where the first inequality follows
due to the expansion property and the second follows from the above explanation about the growth rate
of |R′(·)|. This implies that |L′(t)| ≤ |R′(0)|

(εc+h−c) ≤
c|corr|

(εc+h−c) , where the last inequality follows because
|R′(0)| ≤ c|corr|, i.e., the number of unsatisfied constraints of SC is bounded by c|corr|. Now, if we assume
that |corr| < (εc+h−c)

c bδnc we conclude that |L′(t)| < bδnc. So, if the aim is to show that Find Erasures
works as claimed for number of errors bounded by (εc + h − c)bδnc then even this simple explanation
reaches this goal.

However, our goal is to show that Find Erasures works for the larger number of errors, i.e., up to
ε·c+h−c

h · bδnc. Let us reconsider the above argument and think whether the inequality |R′(0)| ≤ c|corr| is
tight. Indeed, if we could better upper-bound |R′(0)| this would lead immediately to the better upper-bound
on |L′(t)| and as a consequence, we would prove that Find Erasures works for the larger number of errors.

On the one side, the inequality |R′(0)| ≤ c|corr| is tight and it is easy to demonstrate a case where
|R′(0)| = c|corr|. However, on the other side, if |R′(0)| = c|corr| then all neighbor constraints of corr
belongs to R′(0). In this case, the algorithm stops immediately with corr ⊆ L′(0) and it is easy to prove
that |L′(0)| < bδnc even if the number of the corrupted variables is larger (see Claim 4.5). Thus there is an
implicit tradeoff between how large is |R′(0)| and how much will the set L′(·) grow, and we analyze this in
the claims below.

We first present Claims 4.5, 4.6 and 4.7. Then we prove Proposition 4.4 using these claims.

Claim 4.5. It holds that |L′(0)| < bδnc.

Claim 4.6. It holds that |N(corr0) \R0| ≤ (c− h) |corr0| − |R0|+ h |corr|.

Claim 4.7. For every t ≥ 0 it holds that |N(L′(t) \ corr0) \ (R0 ∪N(corr0))| ≤ (c−h)(|L′(t)| − |corr0|).

We are ready to prove Proposition 4.4.

Proof of Proposition 4.4. Assume the contrary. Then there exists t > 0 such that |L′(t)| = bδnc since by
Claim 4.5 we have |L′(0)| < bδnc and for all t′ > 0 we have |L′(t′)| = |L′(t′ − 1)|+ 1. It holds that

ε · c ·
∣∣L′(t)∣∣ ≤ ∣∣N(L′(t))

∣∣ ≤ |R0|+
∣∣N(L′(t)) \R0

∣∣ ≤
|R0|+ |N(corr0) \R0|+

∣∣N(L′(t) \ corr0) \ (R0 ∪N(corr0))
∣∣ ≤

|R0|+ ((c− h)|corr0| − |R0|+ h|corr|) + (|L′(t)| − |corr0|)(c− h) = |L′(t)| · (c− h) + |corr| · h,

where the last inequality follows from Claims 4.6 and 4.7. We conclude that
ε ·c · |L′(t)| ≤ |L′(t)| · (c−h)+ |corr| ·h and |L′(t)|(ε ·c−c+h) ≤ |corr| ·h. Since |corr| < ε·c+h−c

h · bδnc
it holds that |L′(t)| < h

ε·c−c+h · |corr| < bδnc. Contradiction.

Now we prove Claims 4.5, 4.6 and 4.7.
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Proof of Claim 4.5. We show that |corr ∪ conf| < bδnc and this will imply that |L′(0)| ≤ |corr ∪ conf| <
bδnc. Assume the contrary, i.e., |corr∪ conf| ≥ bδnc. Let conf ′ ⊆ conf be such that |corr∪ conf ′| = bδnc.
It holds that

ε · c · bδnc ≤ |N(corr ∪ conf ′)| ≤ c · |corr|+ (c− h)|conf ′| = c · |corr|+ (c− h)(bδnc − |corr|).

This implies that bδnc·(εc+h−c) ≤ |corr|(c−c+h) and hence |corr| ≥ εc+h−c
h ·bδnc. Contradiction.

Proof of Claim 4.6. We first prove that
∑

j∈corr0

|N(j) ∩R0| ≥ |R0|+ h|corr0| − h|corr|. We have

 ∑
j∈corr0

|N(j) ∩R0|

− h|corr0| =

 ∑
j∈corr0

|N(j) ∩R0|

+

 ∑
j∈(corr\corr0)

|N(j) ∩R0|

−
 ∑
j∈(corr\corr0)

|N(j) ∩R0|

− h|corr0| ≥

 ∑
j∈corr

|N(j) ∩R0|

− h(|corr| − |corr0|)− h|corr0| ≥ |R0| − h|corr|,

where we used
∑
j∈corr

|N(j)∩R0| ≥ |R0| since for all u ∈ R0 we have supp(u)∩corr 6= ∅ and u ∈ N(corr).

We conclude that
∑

j∈corr0
|N(j) ∩ R0| − h|corr0| ≥ |R0| − h|corr| and

∑
j∈corr0

|N(j) ∩ R0| ≥ |R0|+
h|corr0|−h|corr|. Thus |N(corr0)\R0| ≤

∑
j∈corr0

(N(j) \R0) ≤ c|corr0|−
(∑

j∈corr0
(N(j) ∩R0)

)
≤

(c− h)|corr0| − |R0|+ h|corr|.

Proof of Claim 4.7. For all t ≥ 0 we have corr0 ⊆ L′(0) ⊆ L′(t) and hence (c − h) |L′(t) \ corr0| =
(c − h) (|L′(t)| − |corr0|). Thus, it is sufficient to prove that |N(L′(t) \ corr0) \ (R0 ∪ N(corr0))| ≤
(c− h)|L′(t) \ corr0| and we prove this by induction on t. Note that conf = L′(0) \ corr0.

We first prove the base case: |N(L′(0) \ corr0) \ (R0 ∪N(corr0))| ≤ |L′(0) \ corr0| (c− h). By defi-
nition of conf it holds that

∑
i∈conf |N(i) \R0| ≤ |conf|(c− h) = |L′(0) \ corr0| (c− h) and hence∣∣N(L′(0) \ corr0) \ (R0 ∪N(corr0))

∣∣ ≤ |N(conf) \R0| ≤
∑
i∈conf

|N(i) \R0| ≤
∣∣L′(0) \ corr0

∣∣ (c− h).

For the induction step, assume the correctness for t, and let us prove that∣∣N(L′(t+ 1) \ corr0) \ (R0 ∪N(corr0))
∣∣ ≤ (c− h)|L′(t+ 1) \ corr0|.

The definition of the algorithm implies that L′(t + 1) = L′(t) ∪ {i} for some i ∈ [n] \ L′(t) such that
|N(i) ∩N(L′(t))| ≥ h. Recalling that |N(i)| = c we have |N(L′(t+ 1))| ≤ |N(L′(t))| + |N(i)| −
|N(i) ∩N(L′(t))| ≤ |N(L′(t))|+ (c− h).

We know that L′(t) ⊂ L′(t+1) andN(L′(t)) ⊆ N(L′(t+1)). Hence |N(L′(t)) ∩ (R0 ∪N(corr0))| ≤
|N(L′(t+ 1)) ∩ ((R0 ∪N(corr0))|. It follows that∣∣N(L′(t+ 1)) \ (R0 ∪N(corr0))

∣∣ =
∣∣N(L′(t+ 1))

∣∣− ∣∣N(L′(t+ 1)) ∩ ((R0 ∪N(corr0))
∣∣ ≤
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∣∣N(L′(t))
∣∣+ (c− h)−

∣∣N(L′(t)) ∩ (R0 ∪N(corr0))
∣∣ =

∣∣N(L′(t)) \ (R0 ∪N(corr0))
∣∣+ (c− h).

But ∣∣N(L′(t+ 1)) \ (R0 ∪N(corr0))
∣∣ =

∣∣N(L′(t+ 1) \ corr0) \ (R0 ∪N(corr0))
∣∣

and ∣∣N(L′(t)) \ (R0 ∪N(corr0))
∣∣ =

∣∣N(L′(t) \ corr0) \ (R0 ∪N(corr0))
∣∣ .

We conclude that∣∣N(L′(t+ 1) \ corr0) \ (R0 ∪N(corr0))
∣∣ ≤ ∣∣N(L′(t) \ corr0) \ (R0 ∪N(corr0))

∣∣+ (c− h) ≤

≤ (c− h)|L′(t) \ corr0|+ (c− h) = (c− h)|L′(t+ 1) \ corr0|,

where the last inequality follows from the induction assumption and the last equality holds since L′(t+1) =
L′(t) ∪ {i} for i /∈ corr0 ⊆ L′(t). This completes the induction step and proves the Claim.

4.1.3 Find Erasures runs in Linear Time

It can be readily verified that the following algorithm is equivalent to Find Erasures defined in Section 4.1.
The only difference is that we do not maintain the variable t indicating the iteration number.

Algorithm Find Erasures

• Input: w ∈ Fn and SC ⊆ C⊥d

• Initialize:

– h := d(2ε− 1) · ce
– R0 := {u ∈ SC | 〈u,w〉 6= 0}
– R′ := R0

– L′ := {i ∈ [n] | |N(i) ∩R0| ≥ h}

• While there exists i ∈ [n] \ L′ such that |N(i) ∩R′| ≥ h do

– L′ := L′ ∪ {i}
– R′ := R′ ∪N(i)

• return L′

Note that |SC | = c·n
d ≤ O(n) and |R0| ≤ |SC |. The data structures used in the algorithm are as follows.

The set L′ can be maintained by a boolean array of size n, where initially all cells are set to 0 and a cell i
is set to 1 when the element i is added to L′ (by L′ := L′ ∪ {i}. Hence, the initialization of L′ takes linear
time and every element i ∈ [n] can be added to L′ in time O(1).

Now we turn to the constraints of weight d and the sets SC , R0 and R′. Every constraint u ∈ SC will
be stored as array of size d whose elements contain all numbers from supp(u) (recall that | supp(u)| = d =
O(1)). The set SC is stored as array of size |SC | = O(n), where every cell contains a d-weight constraint.
Clearly, SC can be initialized in O(n) time. In this way, every constraint in SC has its unique number in
[|SC |]. Note that given a constraint u ∈ SC and i ∈ [n] the check whether i ∈ supp(u) takes O(1) time.
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Moreover, we hold an auxiliary array of size n (call it Hash : [n] → Array of Constraints) that maps
an index i ∈ [n] to the array (of size c) of all constraints that have index i in their support. I.e., Hash[i] =
{u ∈ SC | i ∈ supp(u)}. Every constraint in a constraints array will be stored by its number. Obviously,
this structure can be initialized in linear time and given i ∈ [n] it takes O(c) = O(1) time to retrieve an
array of constraints that “see” the index i.

The sets R′ and R0 are stored as boolean arrays of size |SC |, where a cell i is set to 1 if and only if the
constraint number i belongs to the corresponding set. So, R0 and R′ can be initialized in linear time.

During the run of the algorithm each “while” iteration can be executed in O(1) time since the search
for the index i such that i ∈ [n] \ L′ and |N(i) ∩ R′| ≥ h can be implemented in time O(1) using the
auxiliary array described above, and R′ := R′ ∪N(i) can be implemented in O(1) time since |N(i)| = c.
The “while” loop stops after at most n iteration since L′ ⊆ [n] and each iteration its size grows by 1. Thus
the run time of the algorithm is O(n).

4.1.4 Find Erasures in Logarithmic Time

In this section we explain that the same algorithm from Section 4.1.3 can be executed in logarithmic time
on a linear number of parallel processors. The data structures used for this purpose can be the same to the
data structures in Section 4.1.3.

First of all, the sets L′, SC , R0 and R′ can be initialized in O(1) time on a linear number of parallel
processors. We know that εc+h− c > 0, where h = d(2ε− 1)ce and ε > 1/2 is a fixed constant. We recall
the proof of Proposition 4.3 and observe that while corr \ L′ 6= ∅ we have that for at least Ω(|corr \ L′|)
indices i ∈ corr \ L′ it holds that |N(i) ∩R′| ≥ h.

To see this let good = corr∩L′ and bad = corr\L′. Then corr = bad∪good, good ⊆ L′, bad∩L′ = ∅
and bad 6= ∅. Note that |bad| ≤ |corr| ≤ δn. We claim that there exists a constant fraction of indices
i ∈ bad such that |N1

bad(i)| ≥ h.
By Proposition E.1 we have |N1(bad)| ≥ (2ε − 1) · c · |bad|, i.e., an average index i ∈ bad has

|N1
bad(i)| = (2ε − 1) · c. Moreover, for all i ∈ bad we have 0 ≤ |N1

bad(i)| ≤ c. So, if (2ε − 1)c = h =
d(2ε − 1)ce then for at least (1/c)-fraction of indices i ∈ bad we have |N1

bad(i)| ≥ h. On the other hand,
if (2ε − 1)c < h = d(2ε − 1)ce then, letting a = h − b(2ε − 1)cc, we have a = Ω(1) since ε is a fixed
constant. Similarly, for at least (a/c)-fraction of indices i ∈ bad it holds that |N1

bad(i)| ≥ h.
Hence a constant fraction of indices from corr \ L′ can be selected and added to L′ at each “while”

iteration. This results in the logarithmic running time on O(n) parallel processors.

4.2 Decoding Expander Codes From Erasures — Proof of Lemma 4.2

First let us recall that Proposition E.1 implies that for any ε′ > 1/2 a (c, d, ε′, δ)-expander code is a
(c, d, 2ε′− 1, δ)-unique expander code. To prove Lemma 4.2 it is sufficient to assume that C is a (c, d, ε, δ)-
unique expander code for some ε > 0, i.e., we prove even a stronger claim than needed for Lemma 4.2.

Hence for the rest of this section we assume that C ⊆ Fn2 is a (c, d, ε, δ)-unique expander code, where
c, d, δ, ε > 0 are constants and SC ⊆ C⊥d is an associated set of local constraints from the parity check
graph of C. Let us define the algorithm Decode From Erasures that on the input word w ∈ Fn2 , a set of
constraints SC and a subset L′ ⊆ [n] such that |L′| ≤ δn and supp(w− x) ⊆ L′ for some codeword x ∈ C,
outputs the codeword x.
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Decode From Erasures

• Input: w ∈ Fn, L′ ⊆ [n] and SC ⊆ C⊥d

• Unique := {u ∈ SC | |L′ ∩ supp(u)| = 1}.

• While there exists i ∈ L′ and u ∈ Unique such that supp(u) ∩ L′ = {i}:

– If 〈u,w〉 6= 0 then flip bit i of w

– L′ := L′ \ {i}
– For all u′ ∈ N({i}) do

∗ If | supp(u′) ∩ L′| = 1 then Unique := Unique ∪ {u′}
∗ Otherwise, Unique := Unique \ {u′}.

– (Note that now we have Unique := {v ∈ SC | |L′ ∩ supp(v)| = 1})

• Return w.

Remark 4.8. The algorithm Decode From Erasures can be viewed as a modular linear-time algorithm
that corrects up to δn erasures. This is true since one can think of L′ as a subset of erasures, assign 0 to all
bits in w|L′ and execute the algorithm Decode From Erasures.

Intuition behind the algorithm Decode From Erasures. Let corr = supp(w−x) be a set of corrupted
bits and note that initially corr ⊆ L′. We notice that it might be that L′ \ corr 6= ∅. Since C is a unique
expander, there exists (at least one) constraint u ∈ SC such that supp(u) ∩ L′ = {i} for some i ∈ L′. This
constraint u can be used to determine (in time O(1)) whether wi is corrupted, i.e., i ∈ corr and it is needed
to flip this bit. After the algorithm handled the bit i (and flipped it, if needed) this bit is removed from L′

since it is not corrupted more, and the decoding is continued recursively on L′ \ {i}.
Now we prove Lemma 4.2. In Section 4.2.1 we explain that Decode From Erasures can be executed

in logarithmic time on a linear number of parallel processors.

Proof of Lemma 4.2. Let corr = supp(w−x) and think of corr as a set of corrupted bits. Note that initially
corr ⊆ L′. The algorithm constructs Unique = {u ∈ SC | |L′ ∩ supp(u)| = 1}, i.e., the set of unique
neighbor constraints for the set L′.

Each iteration the algorithm selects some u ∈ Unique and i ∈ L′ such that supp(u) ∩ L′ = {i}. Note
that the fact that | supp(u)∩L′| = 1 implies that | supp(u)∩corr| ≤ 1. We argue that supp(u)∩corr = ∅ iff
〈u,w〉 = 0, or in words, supp(u) does not contain a corrupted bit iff the constraint u is satisfied. This is true
since if supp(u)∩corr = ∅ then 〈u,w〉 = 〈u, x〉 = 0, but if | supp(u)∩corr| = 1 then 〈u,w〉 6= 〈u, x〉 = 0.
Hence i ∈ corr if and only if 〈u,w〉 6= 0, and thus the algorithm flips i only if this bit is corrupted. After that
the algorithm removes i from L′, since i is not corrupted more and updates the set Unique to contain the
unique neighbor constraints of the modified L′. Hence the Decode From Erasures algorithm flips only
the corrupted bits (i ∈ corr) and finally outputs x.

We turn to explain that the run-time of the algorithm Decode From Erasures isO(n). The appropriate
data structure containing the set SC can be constructed in O(n) time since |SC | = c·n

d = O(n). For every
u ∈ SC it is possible to check in time O(1) whether |L′∩ supp(u)| = 1, by checking for every j ∈ supp(u)
whether j ∈ L′ since | supp(u)| = d = O(1). E.g., this can be done by maintaining a boolean array of
size n, where a cell i is set to 1 iff i ∈ L′. Note also that the set Unique is modified in each “while”
iteration in time O(1), since the algorithm reconsiders only c constraints of SC , and for every such u ∈ SC
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checks whether |L′ ∩ supp(u)| = 1. So, each “while” iteration can be executed in time O(1). Since the
number of “while” iterations is upper-bounded by the blocklength n we conclude that the total run-time of
Decode From Erasures is O(n).

Remark 4.9. We notice that every linear code C ⊆ Fn can be decoded from erasures in cubic time. To do
that one need to solve a system of linear equations over F. The expander code is a special kind of a linear
code and Lemma 4.2 demonstrates how the expansion property is used to provide a linear time decoding
from erasures.

4.2.1 Decode From Erasures in Logarithmic Time

Let us explain that Decode From Erasures can be easily implemented to run in logarithmic time on O(n)
parallel processors, using similar data structures to Section 4.2. First of all, the sets SC , Unique and L′ can
be initialized in time O(1) using O(n) parallel processors.

Consider some iteration, where L′ 6= ∅. By Proposition E.1 we have |N1(L′)| ≥ (2ε − 1)c|L′|. Hence
at least (2ε − 1)|L′| indices i ∈ L′ have u ∈ Unique such that supp(u) ∩ L′ = {i}. We conclude that
every “while” iteration at least (2ε − 1)|L′| indices from L′ can be selected in parallel and then they are
removed from L′ in the same iteration. I.e., after every “while” iteration the new size of L′ becomes at most
(1− (2ε− 1)) = (2− 2ε) of its previous size. This means that the number of iterations will be bounded by
log(2−2ε)

1
|L′| ≤ log(2−2ε)

1
|n| = Ω(log n), where the last equality holds since ε > 1/2 is a fixed constant.

Every “while” iteration, where all appropriate indices i ∈ L′ will be selected in parallel, can be executed
in time O(1) on O(n) parallel processors. We conclude that the total runtime of Decode From Erasures
is logarithmic.

5 Open Questions

The main open question which remains unsolved after this work is following.

Conjecture 5.1. Let c, d, δ > 0 and ε > 1/2 be constants. Then there exists a constant α > 0, which
depends only on c, d, ε, δ, such that if C ⊆ Fn2 is a (c, d, ε, δ)-expander code then C is decodable in linear
time from αn errors.

Recall that our suggested algorithm Find Erasures and Decode is composed from Find Erasures and
Decode From Erasures algorithms, where Decode From Erasures works for every expansion parameter
ε > 1/2. So, Find Erasures algorithm remains to be the bottleneck in this sense.

We feel that a more tight analysis or improvement of Find Erasures algorithm would play a crucial role
in proving Conjecture 5.1, however in this paper we were unable to do it.
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A Find Erasures and Decode Algorithm extends Flip Algorithm

In this section we prove Theorem A.1, which says that all regular expander codes with expansion parameter
ε > 1/2, decodable by Flip Algorithm, are decodable by Find Erasures and Decode algorithm. Recall
that in Section D we show that the expansion parameter ε ≤ 1/2 is insufficient for the decoding even from
2 errors.

To prove Theorem A.1 we consider the following version of Find Erasures algorithm which is identical
to Find Erasures, defined in Section 4.1, with a single change that the threshold h is set to c/2+1/2. For the
rest of this section C ⊆ Fn2 denotes a (c, d, ε, δ)-expander code and SC ⊆ C⊥d denotes a set of low-weight
constraints from the parity check graph of C.
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Find Erasures

• Input: w ∈ Fn2 and SC ⊆ C⊥d

• Initialize:

– h := c/2 + 1/2

– R′(0) := {u ∈ SC | 〈u,w〉 6= 0}
– L′(0) := {i ∈ [n] | |N(i) ∩R′(0)| ≥ h}
– t := 0

• While there exists i ∈ [n] \ L′(t) such that |N(i) ∩R′(t)| ≥ h do

– L′(t+ 1) := L′(t) ∪ {i}
– R′(t+ 1) := R′(t) ∪N(i)

– t := t+ 1

• return L′(t)

We stress that the algorithm Decode From Erasures remains the same as it was defined in Section 4.2
and the algorithm Find Erasures and Decode remains the same as it was defined in Section 4, i.e., the
combination of Find Erasures, defined above, and Decode From Erasures.

Theorem A.1. Let C ⊆ Fn2 be a (c, d, ε, δ)-expander code, where ε > 1/2. Assume C is decodable from
m errors using Flip Algorithm. Then C is linear time decodable from min{m, (ε − 1/2 + 1/(2c))bδnc}
errors using algorithm Find Erasures and Decode.

Before proving this theorem, we first present Proposition A.2 which will be used in the proof of the
Theorem A.1.

Proposition A.2. All instances of the algorithm Find Erasures on the same input output the same subset
L′. 6

We are ready to prove Theorem A.1.

Proof of Theorem A.1. Let w ∈ Fn2 such that δ(w, x) ≤ min{m, (ε − 1/2 + 1/(2c))bδnc}, where x ∈ C
is the closest codeword to w. Let corr = supp(w − x) and think of corr as a subset of corrupted variables.
By assumption w can be decoded to x using Flip Algorithm. Consider a run of Flip Algorithm on w and let
I = {i1, ..., ik} ⊆ [n] be a multiset of bits indices of w which were flipped during the run of Flip Algorithm
on w. Note that it might be the case that for some j1 < j2 we have ij1 = ij2 , i.e., the same bit was flipped
more than once. Since w is decoded to x we know that corr ⊆ I .

We argue that Find Erasures and Decode algorithm on the input w will output x, and note that the
run-time of Find Erasures and Decode is linear as was explained in Section 4.1.3 and Lemma 4.2. It is
sufficient to prove that an algorithm Find Erasures on w will output L′(t) ⊆ [n] such that |L′(t)| ≤ δn
and corr ⊆ L′(t). In this case, Lemma 4.2 implies that Decode From Erasures (on the input w, L′(t) and
SC) will output x and so Find Erasures and Decode succeeds.

6The proposition is correct regardless of the initialization of the threshold h.
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We first argue that Find Erasures outputs L′ such that |L′| < bδnc. Assume the contrary, but then there
exists an iteration, where |L′(t)| = bδnc since |L′(0)| < bδnc (see Claim 4.5) and L′(·) grows by 1 each
iteration. We know that ε · c · |L′(t)| ≤ |N(L′(t))| because of the expansion properties of C. Note that for
every iteration t′ + 1 if the algorithm Find Erasures executes L′(t′ + 1) := L′(t′) ∪ {i} then it holds that
|N(i) ∩ R′(t′)| ≥ h, i.e., |N(i) \ R′(t′)| ≤ (c − h). Recall that R′(t′ + 1) = R′(t′) ∪ N(i) and hence
|R′(t′ + 1)| ≤ |R′(t′)| + (c − h), i.e., every iteration R′(·) grows at most by (c − h). We conclude that
|N(L′(t))| ≤ |R′(0)|+ (c− h)|L′(t)|. Hence ε · c · |L′(t)| ≤ |N(L′(t))| ≤ |R′(0)|+ (c− h)|L′(t)|. Then,

(ε · c− (c/2− 1/2))|L′(t)| ≤ |R′(0)| ≤ |corr| · c and

|L′(t)| ≤ |corr|
ε− 1/2 + 1/(2c)

< bδnc since |corr| < (ε− 1/2 + 1/(2c))(bδnc)

Contradiction.
It is remained to prove that Find Erasures on the input w and SC will output L′ ⊆ [n] such that corr ⊆

L′. By Proposition A.2 it is sufficient to show at least one such instance of the algorithm Find Erasures.
We show that there exists an instance of Find Erasures that on the input w and SC outputs L′ such that
I ⊆ L′.7 Recall that corr ⊆ I .

We argue that there exists an instance of Find Erasures such that each iteration when Flip Algorithm
flips a bit ij , the algorithm Find Erasures executes L′(t+ 1) := L′(t) ∪ {ij} for some t ≥ 0 (of course, if
ij /∈ L′(t)). Recall that Flip Algorithm modifies the underlying word w (by flipping its bits) and so, let us
denote w0 = w and for every j ≥ 0 let wj be a word after jth iteration of Flip Algorithm, i.e., after flipping
bit ij . Note that for all j ≥ 1 we have supp(wj − wj+1) = {ij+1}. We prove by induction on the iteration
number j that there exists an instance of the algorithm Find Erasures such that for every j ≤ |I| = k it
holds that {i1, ..., ij} ⊆ L′(j) and for all u ∈ SC such that 〈u,wj〉 6= 0 we have u ∈ R′(j).

This is true for L′(0) and w0, i.e., ∅ ⊆ L′(0) and for all u ∈ SC such that 〈u,w0〉 6= 0 we have
u ∈ R′(0). Assume the correctness for j, i.e., {i1, ..., ij} ⊆ L′ and for all u ∈ SC such that 〈u,wj〉 6= 0 we
have u ∈ R′(j). By assumption, Flip Algorithm flips the bit ij+1 in the iteration j + 1 and thus it follows
that there are more than c/2 of u ∈ SC such that ij+1 ∈ supp(u) and 〈u,wj〉 6= 0.8

We first prove that ij+1 ∈ L′(j + 1). If ij+1 ∈ L′(j) we are done since L′(j) ⊆ L′(j + 1). Thus
assume that ij+1 /∈ L′(j). By the inductive assumption, for all u ∈ SC such that 〈u,wj〉 6= 0 we have
u ∈ R′(j), hence there are more than c/2 of u ∈ R′(j) such that ij+1 ∈ supp(u). This implies that
|N(ij+1) ∩ R′(j)| > c/2 and |N(ij+1) ∩ R′(j)| ≥ c/2 + 1/2 = h. We conclude that Find Erasures can
execute L′(j + 1) := L′(j) ∪ {ij+1} and R′(j + 1) := R′(j) ∪N(ij+1) in the iteration j + 1.

We argue that for every u ∈ SC such that 〈u,wj+1〉 6= 0 we have u ∈ R′(j+ 1). To see this, note that if
〈u,wj+1〉 6= 0 then either (〈u,wj〉 6= 0 and u ∈ R′(j) ⊆ R′(j + 1)) or (〈u,wj〉 = 0 and 〈u,wj+1〉 6= 0).
In the last case, where 〈u,wj〉 = 0 and 〈u,wj+1〉 6= 0 we have ij+1 ∈ supp(u) since supp(wj − wj+1) =
{ij+1} and thus u ∈ R′(j + 1).

Hence we showed that corr ⊆ I ⊆ L′ and this completes the proof of Theorem A.1.

Now we prove Proposition A.2.

Proof of Proposition A.2. Let w ∈ Fn2 be an input word. Recall that Find Erasures maintains subsets L′(·)
and R′(·).

7Note that L′ is a set but not a multiset.
8Recall that since C is (c,d)-regular we have |{u ∈ SC | ij+1 ∈ supp(u)}| = c.
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Assume two different instances of Find Erasures: the instanceA1 which maintains subsetsL′1(·),R′1(·)
and the instance A2 which maintains L′2(·), R′2(·), respectively. Assume also that A1 outputs L′1 and A2

outputs L′2. We have R′1(0) = R′2(0) and L′1(0) = L′2(0). We know that for every i ≥ 0 it holds that
L′1(i) ⊆ L′1, L′2(i) ⊆ L′2, R′1(i) ⊆ R′1, R′2(i) ⊆ R′2.

We prove by induction that for every i ≥ 0 we have L′1(i) ⊆ L′2, L′2(i) ⊆ L′1, R′1(i) ⊆ R′2 and
R′2(i) ⊆ R′2. This will imply that L′1 = L′2.

It holds that R′1(0) = R′2(0) and L′1(0) = L′2(0), and hence L′1(0) ⊆ L′2, L′2(0) ⊆ L′1, R′1(0) ⊆ R′2 and
R′2(0) ⊆ R′1. Assume by induction that L′1(i) ⊆ L′2, L′2(i) ⊆ L′1, R′1(i) ⊆ R′2 and R′2(i) ⊆ R′2. Consider
the iteration i+ 1 of the first instance A1 and assume that it executes L′1(i+ 1) := L′1(i) ∪ {j}. It follows
that |N(j)∩L′2| ≥ |N(j)∩L′1(i)| ≥ h and hence |N(j)∩L′2(t)| ≥ h for some t ≥ 0. Then j ∈ L′2(t′) for
some t′ ≥ t since otherwise the instance A2 would not stop. Hence L′1(i + 1) ⊆ L′2 and R′1(i + 1) ⊆ R′2
due to the same reason. Similarly, L′2(i+ 1) ⊆ L′1 and R′2(i+ 1) ⊆ R′1. This completes the induction and
the proof of the proposition.

B Decoding below the expansion 2/3

We show that 2/3 was not a principle barrier and a similar algorithm to Find Erasures and Decode can be
applied for the regular expander codes with expansion parameter > 2/3− 1/(6c) = 2/3− Ω(1) to correct
Ω(n) errors. 9

Theorem B.1. Let C ⊆ Fn2 be a (c, d, ε, δ)-expander code such that c, d, δ > 0 are constants and ε >
2/3− 1/(6c). Then C is linear-time decodable from Ωc,d,ε,δ(n) errors.

First we explain that in the following cases we have already done, by Theorem 3.1.

• If ε > 2/3 − 1(6c) and c mod 3 = 2 then ε > 1/2 and h = d(2ε − 1)ce ≥ c/3 − 1/3 + 2/3 =
c/3 + 1/3, where the inequality follows due to ceiling. Hence εc + h − c > (2/3)c − 1/6 + c/3 +
1/3− c = 1/6 > 0 and we are done by Theorem 3.1.

• If ε > 2/3 − 1(6c) and c mod 3 = 1 then h = d(2ε − 1)ce > c/3 − 1/3. But c/3 − 1/3 is an
integer and h is an integer by definition. Hence h ≥ c/3 − 1/3 + 1 = c/3 + 2/3. So ε > 1/2 and
εc+ h− c > (2/3)c− (1/6) + (c/3) + (2/3)− c = 1/2 > 0 and we are done by Theorem 3.1.

• If ε > 2/3− 1(6c), c mod 3 = 0 (so c ≥ 3) and h = d(2ε− 1)ce > c/3 then h ≥ c/3 + 1 since c/3
and h are integers. So, we have εc+ h− c > 1/2 and we are done by Theorem 3.1.

So, to prove Theorem B.1 it is remained to consider a case, where ε > 2/3− 1(6c), c mod 3 = 0 and
h = d(2ε− 1)ce = c/3.10 We prove this case of Theorem B.1 in Section B.1.

B.1 Proof of Theorem B.1

In this section we assume thatC ⊆ Fn2 is a (c, d, ε, δ)-expander code, where ε > 2/3−1/(6c), c mod 3 = 0
and h = d(2ε− 1)ce = c/3. We prove that C is decodable in linear time from Ω(n) errors.

Now, we (re)define an algorithm Find Erasures. The only difference between this version of the algo-
rithm and the version defined in Section 4 is that in the current version of Find Erasures each iteration an
erasure subset L′ can grow by 1 or 2.

9We do not try to optimize the number of errors the algorithm will correct.
10Note that for ε > 2/3− 1(6c) and c mod 3 = 0 we have d(2ε− 1)ce ≥ c/3.
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Find Erasures

• Input: w ∈ Fn and SC ⊆ C⊥d

• Initialize:

– h := d(2ε− 1)ce
– R0 := {u ∈ SC | 〈u,w〉 6= 0}
– R′ := R0

– L′ := ∅

• While true do

– Temp := {i ∈ [n] \ L′ | |N(i) ∩R′| ≥ h}
– If Find Subset(Temp, h, SC , R′) == Failure then return L′

– Otherwise:

∗ Subset := Find Subset(Temp, h, SC , R′)
∗ L′ := L′ ∪ Subset
∗ R′ := R′ ∪N(Subset)

Now we define the algorithm Find Subset.

Find Subset

• Input: Temp ⊆ [n], h ,SC and R′

• If there exists i ∈ Temp such that |N(i) ∩R′| ≥ h+ 1 then return {i}

• Otherwise, if there exists u ∈ SC \R′ such that for some i1 6= i2 ∈ supp(u)
we have |N(i1) ∩R′| ≥ h and |N(i2) ∩R′| ≥ h, then return {i1, i2}

• Otherwise, return Failure

For the rest of this section let w ∈ Fn2 be a (fixed) input word such that for some (fixed) x ∈ C
it holds that ∆(w, x) < (3ε − 2 + 1/(2c))b(δ/2)nc. Let corr = supp(w − x) and note that |corr| <
(3ε− 2 + 1/(2c))b(δ/2)nc.

Lemma B.2. Find Erasures algorithm runs linear time and returns L′ ⊆ [n] such that corr ⊆ L′ and
|L′| < δn.

We postpone the proof of Lemma B.2 to Section B.1.1 and turn to prove Theorem B.1.

Proof. It can be easily verified that Find Erasures and Decode algorithm, defined in Section 4 with the
only difference that it invokes the current version of Find Erasures algorithm, obtains the desired results.
This is true since by Lemma B.2 the algorithm Find Erasures returns L′ such that corr ⊆ L′ and |L′| <
δn. Then by Lemma 4.2 the algorithm Decode From Erasures returns x. The linear runtime follows
immediately from the Lemmas B.2 and 4.2.
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B.1.1 Proof of Lemma B.2

We present Propositions B.3 and B.4. The proof of Lemma B.2 will follow from these propositions.

Proposition B.3. Algorithm Find Erasures returns L′ such that |L′| < bδnc − 1.

We now prove that when algorithm returns L′ we have corr ⊆ L′.

Proposition B.4. Algorithm Find Erasures returns L′ such that corr ⊆ L′.

We are ready to prove Lemma B.2.

Proof of Lemma B.2. Proposition B.3 implies that |L′| < δn. Proposition B.4 implies that corr ⊆ L′. It can
be verified that the runtime of Find Erasures is linear because of the similar reasons discussed in Section
4.1.3.

Now we prove Propositions B.3 and B.4.

Proof of Proposition B.3. We first prove an auxiliary claim.

Claim B.5. If Algorithm Find Subset returns subset T ⊆ [n] then |N(T ) \R′| ≤ |T |(c− h− 1/2).

Proof. Recall that |N(i)| = c. If Find Subset returns {i} then |N(i) ∩ R′| ≥ h + 1 and hence |N({i}) \
R′| ≤ (c − h − 1) ≤ |{i}|(c − h − 1/2). Otherwise, Find Subset returns {i1, i2} such that for some
u ∈ SC \R′ we have i1 6= i2 ∈ supp(u), |N(i1)∩R′| ≥ h and |N(i2)∩R′| ≥ h. Then |N({i1, i2})\R′| ≤
(2c− 2h− 1) = |{i1, i2}|(c− h− 1/2).

We continue to prove the proposition. Assume the contrary. Since L′ grows at most by 2 in each iteration
this means for some iteration we have bδnc − 1 ≤ |L′| ≤ bδnc. Claim B.5 implies that each iteration R′ is
increased at most by (c− h− 1/2) per index in L′, i.e., R′ is bounded by |R′| ≤ |R0|+ |L′|(c− h− 1/2).
It holds that εc|L′| ≤ |N(L′)| ≤ |R′| ≤ |R0| + |L′|(c − h − 1/2) and |R0| ≤ c|corr|. Thus |L′|(εc − c +

h + 1/2) ≤ c|corr|. We conclude that |L′| ≤ c|corr|
εc−c+h+1/2 ≤

|corr|
3ε−2+1/(2c) . Note that if ε > 2/3 − (1/(6c))

and |corr| < (3ε− 2 + 1/(2c))b(δ/2)nc then |L′| ≤ (δ/2)n < bδnc − 1. Contradiction.

Proof of Proposition B.4. Assume the contrary, i.e., Find Erasures returns L′ but corr \ L′ 6= ∅. Let
bad = corr \ L′ and good = corr ∩ L′. Note that corr = good ∪ bad and good ∩ bad = ∅. Since the
algorithm Find Erasures was stopped it follows that for all i ∈ bad we have |N(i) ∩ bad| ≤ h. Let
badh = {i ∈ bad | |N(i) ∩ bad| = h} and badl = {i ∈ bad | |N(i) ∩ bad| < h}. It is sufficient to show
that there exists u ∈ SC \ R′ such that | supp(u) ∩ badh| ≥ 2. This comes in contradiction to the fact that
the algorithm Find Erasures was stopped.

So, we argue that there exists u ∈ SC \ R′ such that | supp(u) ∩ badh| ≥ 2. Recall that Temp =
{i ∈ [n] \ L′ | |N(i) ∩R′| ≥ h}, c mod 3 = 0 (so c ≥ 3) and h = c/3. We have |N(Temp)| ≥ εc|Temp|
that implies N1(Temp) ≥ (2ε − 1)c|Temp| > (c/3 − 1/3) (Proposition E.1). Hence an average index
i ∈ Temp sees more than (c/3− 1/3) unique neighbors. Moreover, we know that for all i ∈ Temp it holds
that |N1

Temp(i)| ≤ h = c/3. We conclude that |badh| > (2/3)|bad|.
However, for all i ∈ badh we have c−h = (2/3)c vectors u ∈ S such that i ∈ supp(u) and u /∈ N1

bad(i).
This implies that for all i ∈ badh we have at least (2/3)c vectors u ∈ S such that i ∈ supp(u) and
| supp(u) ∩ bad| ≥ 2. Assume by contradiction that for all these vectors u we have | supp(u) ∩ badh| = 1
but then | supp(u) ∩ badl| ≥ 1 since u /∈ N1

bad(i). We conclude that
∑

i∈badl |N(i)| ≥ (2/3)c|badh| >
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(4/9)c|bad|. Hence |badl| > 4/9|bad| with contradiction to the fact that |badh| > (2/3)|bad| and |badl| +
|badh| = |bad|.

This completes the proof of the proposition.

C Proof of Theorem 3.5

Assume that C ⊆ Fn2 is a (c, d, ε, δ)-unique expander code, where c, d, ε, δ > 0 and SC ⊆ C⊥d is a
set of local constraints from the parity check graph of C. In this section, for T ⊆ [n] we let N(T ) =
{u | supp(u) ∩ T 6= ∅} be the neighbors of T . With some abuse of notation, for U ⊆ C⊥d let suppε(U) =
{i ∈ [n] | |N(i) ∩ U | ≥ εc}.

Now we define an algorithm Simple Find Erasures, which is an instance of the algorithm Find Erasures.
Simple Find Erasures is very simple to analyze and works for all unique expander codes but corrects only
a sublinear number of errors.

Simple Find Erasures

• Input: w ∈ Fn, integer i and SC ⊆ C⊥d

• Nunsat := {u ∈ SC | 〈u,w〉 6= 0}

• L′(1) := suppε(N
unsat)

• For j = 2, . . . i do:

– L′(j) = L′(j − 1) ∪ suppε(N(L′(j − 1)))

• Return L′(i)

We turn to analyze this algorithm and prove Theorem 3.5. We let α > 0 be such that log1−ε n
−α <

blog(d/ε) δn
1−αc. Clearly, such α exists and it depends only on d, ε, δ.

For the rest of this section let w ∈ Fn such that ∆(w, x) ≤ nα for some x ∈ C and corr = supp(w−x).
Note that |corr| ≤ nα and we have the following inequality.

log(1−ε)
1

|corr|
<

⌊
log(d/ε)

δn

|corr|

⌋
(1)

First of all we present the following lemma. Then we prove Theorem 3.5.

Lemma C.1. If i = blog(d/ε) δn
1−αc then algorithm Simple Find Erasures on the input (w, i, SC) runs

linear time and outputs L′(i) ⊆ [n] such that corr ⊆ L′(i) and |L′(i)| ≤ δn.

The proof of the lemma is postponed to Section C.1. We are ready to prove Theorem 3.5.

Proof of Theorem 3.5. The following algorithm runs linear time and decodes w to the closest codeword
x ∈ C.
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Decoding Algorithm

• Input: w ∈ Fn2 , SC ⊆ C⊥d

• L′ := Simple Find Erasures (w, i, S)

• x := Decode From Erasures (w, L′, SC)

• Return x

Lemma C.1 says that corr ⊆ L′ and |L′| ≤ δn. Lemma 4.2 implies that Decode From Erasures
returns x.

C.1 Proof of Lemma C.1

We first prove Claim C.2 and Proposition C.3. Then we prove Lemma C.1.

Claim C.2. If Algorithm Find Erasures outputs L′(i), where i ≤ log(d/ε)
δn
nα , then |L′(i)| ≤ δn.

Proof. We prove by induction on i that for every i ≥ 1 we have |L′(i)| ≤ (d/ε)i|corr|. It holds for i = 1
since |Nunsat| ≤ c|corr| and hence |L′(1)| ≤ (c|corr|) · d/(εc) = (d/ε)|corr|. Assume the correctness for
i − 1. Then |L′(i)| ≤ |L′(i − 1)| · (d/ε) ≤ (d/ε)i|corr|, where last inequality follows from the induction
assumption, and the first inequality follows since |L′(i)| ≤ |suppε(N(L′(i− 1)))| ≤ |L′(i−1)| · (cd/(εc)).

We conclude that |L′(i)| ≤ (d/ε)i · nα, and in particular, if i ≤ log(d/ε)
δn
nα then |L′(i)| ≤ δn.

Proposition C.3. If Algorithm Simple Find Erasures outputs L′(i), where i > log(1−ε) n
−α, then corr ⊆

L′(i).

Proof. Let i > log(1−ε) n
−α ≥ log(1−ε) |corr|−1 then Algorithm returns L′(i) such that corr ⊆ L′(i). We

have |corr| ≤ δn. The proposition follows by examining the unique neighbor structure of the expander
code.

For all j = 1, . . . , i let corrj = L′(j) ∩ corr. Note that corrj ⊂ corrj+1.
For j = 1, . . . , i we prove by induction that sets corrj satisfy

• if corr \ corrj 6= ∅ then |corr \ corrj+1| ≤ (1− ε) · |corr \ corrj |.

Therefore |corr \ L′(i)| = |corr ⊆ corri| ≤ (1 − ε)i |corr| < 1, where i > log(1−ε) |corr|−1. We
conclude that corr ⊆ L′(i). This will complete the proof of the proposition.

For the base case, we argue that |corr ∩ L′(1)| ≥ ε|corr|. To see this note that |N1(corr)| ≥ εc|corr|
because of the expansion properties ofC and since |corr| ≤ δn. But for every index l ∈ corr we have at most
c constraints u ∈ N1(corr) such that i ∈ supp(u). Hence for at least ε-fraction of indices i ∈ corr we have
|
{
u ∈ Nunsat | i ∈ supp(u)

}
| ≥ εc. We also know that for all u ∈ N1(corr) we have 〈u,w〉 6= 0 and hence

u ∈ Nunsat. So, for at least ε-fraction of indices i ∈ corr we have |
{
u ∈ Nunsat | i ∈ supp(u)

}
| ≥ εc.

Thus |corr \ corr1| =
∣∣corr \ suppε(N

unsat)
∣∣ ≤ (1− ε)|corr|. This completes the base case.

Assume correctness up to j − 1 and let us prove it for j, where j ≥ 1. Assume corr \ corrj−1 6= ∅. We
know that |corr \ corrj−1| ≤ |corr| ≤ δn and hence |N1(corr \ corrj−1)| ≥ εc|corr \ corrj−1|.

So, for at least ε-fraction of indices i ∈ corr\corrj−1 we have |
{
u ∈ N1(corr \ corrj−1) | i ∈ supp(u)

}
| ≥

εc. Moreover, for every u ∈ N1(corr \ corrj−1) we have u ∈ N(L′(j − 1)).
We conclude that |corr \ corrj | ≤ ε|corr \ corrj−1|. This completes the induction and the proof of

Proposition C.3.

25



Now we prove Lemma C.1.

Proof of Lemma C.1. It holds that log(1−ε) |corr|−1 < i =
⌊
log(d/ε) δn

1−α
⌋
≤ log(d/ε)

δn
|corr| .

We have |corr| ≤ nα. Proposition C.3 implies that corr ⊆ L′(i). Claim C.2 implies that |corr| ≤ δn.
Moreover, it can be readily verified that Algorithm Find Erasures runs time O(n).

D Tightness of Theorem 3.4

We show that for sufficiently large constants c, d ≥ 2 there exists a (c, d, 1/2, δ)-expander code (where
δ > 0 is a constant) with distance 2.11 We conclude that the expansion parameter 1/2 is insufficient for the
decoding, even from 1 error.

Proposition D.1. There exist constants c, d ≥ 2, constant 0 < δ < 1 and infinitely many n such that there
exists a (c+ 1, d, 1

2 , 0.9δ)-expander code C ′ ⊆ Fn+2
2 but ∆(C ′) = 2. Hence C ′ can not be decodable even

from 1 error.

Proof. Take any (c, d, 3
4 , δ)-expander code C ⊆ Fn2 , where c + 1 < d (e.g., a random expander code

will have these parameters). Let SC ⊆ Fn2 be a set of d-weight constraints from the parity check graph
(which is a (c, d, 3

4 , δ)-expander) of C and note that |SC | = c · n/d. Since C is (c, d)-regular it holds
that for every u ∈ SC we have |u| = d and for every i ∈ [n] we have |{u ∈ SC | i ∈ supp(u)}| =
c. The fact that C is a (c, d, 3

4 , δ)-expander code implies that for every L0 ⊆ [n], |L0| ≤ δn we have

|{u ∈ SC | supp(u) ∩ L0 6= ∅}| ≥ 3
4 · c · |L0|. Let S(00)

C = {u� 00 | u ∈ SC} be a set of vectors obtained

from SC by appending 00 to every vector in SC . Note that S(00)
C ⊆ Fn+2

2 , S(00)
C |[n] = SC and for every

u ∈ S(00)
C we have |u| = d.

In the rest of the proof we will define C ′ ⊆ Fn+2
2 by defining the d-weight constraints set SC′ ⊆ Fn+2

2 ,
i.e., C ′ = (span(SC′))

⊥. Let U = {u1, . . . , uc, uc+1} ⊆ Fn+2
2 be a set of constraints such that for every

i ∈ [c+ 1] we have

supp(ui) = {(i− 1)(d− 2) + 1, (i− 1)(d− 2) + 2, . . . , (i− 1)(d− 2) + d− 2} ∪ {n+ 1, n+ 2}.12

In particular, it holds that for every i ∈ [c + 1] we have |ui| = d, and for every i1 6= i2 ∈ [c + 1] we have
supp(ui1) ∩ supp(ui2) = {n+ 1, n+ 2}.

Let t = n−(d−2)·(c+1)
d (assume w.l.o.g. that t is an integer) and U ′ = {u′1, . . . , u′t} such that for every

u′i ∈ U ′ we have u′i ∈ Fn+2
2 and

supp(u′i) = {(d− 2) · (c+ 1) + (i− 1) · d+ 1, . . . , (d− 2) · (c+ 1) + (i− 1) · d+ d}.

Note that for every u′ ∈ U ′ we have |u′| = d.
We let SC′ = S

(00)
C ∪ U ∪ U ′ and the code C ′ ⊆ Fn+2

2 is defined by its constraint set SC′ , i.e.,
C ′ = (span(SC′))

⊥. Note that for all u ∈ SC′ we have |u| = d and for all i ∈ [n + 2] it holds that
|{u ∈ SC′ | i ∈ supp(u)}| = c+ 1. We conclude that C ′ is a (c+ 1, d)-regular code.

For the rest of the proof, given a set T ⊆ [n+ 2] we define (with some abuse of notation)

NC(T ) =
{
u ∈ S(00)

C | supp(u) ∩ T 6= ∅
}

11This statement might be folklore. We did not verify this.
12Note that the support of a vector defines the vector since the field is binary.
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be the neighborhood of T regarding the constraints set S(00)
C and

NC′(T ) = {u ∈ SC′ | supp(u) ∩ T 6= ∅}

be the neighborhood of T regarding the constraints set SC′ .
We argue that for all L0 ⊆ [n + 2] such that |L0| ≤ (0.9δ) · (n + 2) ≤ δn it holds that |NC′(L0)| ≥

1/2 · (c+ 1) · |L0|. Let part1 = L0 ∩ [n] and part2 = L0 ∩ {n+ 1, n+ 2}. Note that L0 = part1 ∪ part2
and part1 ∩ part2 = ∅. It follows that |part1| ≤ δn and hence |NC(part1)| ≥ 3/4c|part1| by definition of
S

(00)
C . Hence |NC(part1)| ≥ 3/4c|part1| = (c/2+c/4)|part1| ≥ (c/2+1/2)|part1| = 1/2(c+1)|part1|,

where the second inequality holds since c ≥ 2.
Note that |part2| ≤ 2. By definition of C ′ we conclude that if |part2| = 0 then |NC′(part2)| = 0 and

if |part2| ≥ 1 then |NC′(part2)| = c+ 1. Thus it holds that |NC′(part2)| ≥ 1/2(c+ 1)|part2|.
Note that by construction of C ′ and SC′ it holds that NC(part1) ∩NC′(part2) = ∅ and NC(part1) ⊆

NC′(part1). We conclude that

|NC′(L0)| = |NC′(part1 ∪ part2)| ≥ |NC(part1)|+ |NC′(part2)| ≥

1/2 · (c+ 1) · |part1|+ 1/2 · (c+ 1) · |part2| = 1/2 · (c+ 1) · |L0|.

Thus we showed that C ′ is a (c + 1, d, 1/2, 0.9δ)-expander code. However, it holds that 0n11 ⊥ SC′ by
construction of SC′ . Hence 0n11 ∈ C ′ and ∆(C ′) = 2 (by construction ∆(C ′) > 1).

E Expander Codes — Auxiliary Statements

The following folklore proposition says that high expansion implies unique neighbor expansion.

Proposition E.1 (Folklore). If C ⊆ Fn2 is a (c, d, ε, δ)-expander code then C is a (c, d, 2ε − 1, δ)-unique
expander code.

Proof. Let L0 ⊂ [n] such that |L0| ≤ δn. We show that |N1(L0)| ≥ (2ε− 1) · c|L0|.
We know that εc|L0| ≤ |N(L0)| = |N1(L0)|+ |N≥2(L0)| and hence |N≥2(L0)| ≥ εc|L0|− |N1(L0)|.

But |L0| · c ≥ |N1(L0)|+ 2|N≥2(L0)| which implies that |L0| · c ≥ |N1(L0)|+ 2(εc|L0| − |N1(L0)|) =
−|N1(L0)|+(2ε)c|L0|). We conclude that |L0|·c ≥ 2εc|L0|−|N1(L0)| and |N1(L0)| ≥ (2ε−1)·c|L0|.

The following simple claim bounds an expansion of subsets larger that δn.

Claim E.2 (Expansion beyond δn). Let C ⊆ Fn2 be a (c, d, ε, δ)-expander code, where ε > 1/2 and let
S ⊆ [n]. Then,

• if |S| ≤ δn then |N1(S)| ≥ (2ε− 1)c|S|,

• if δn < |S| ≤ 2εδn then |N1(S)| ≥ (2εδ) · c · n− |S| · c.

Proof. The first item follows from Proposition E.1. Hence we assume that δn < |S| ≤ 2εδn and prove the
second item.

Let S0 ⊆ S such that |S0| = δn. By Proposition E.1 we have |N1(S0)| ≥ (2ε− 1) · c · |S0|. For every
u ∈ N1(S0) it holds that either u ∈ N(S \ S0) or u ∈ N1(S). Hence we have

|N1(S)| ≥ |N1(S0)| − |N(S \ S0)| ≥ (2ε− 1) · c · |S0| − c · (|S| − |S0|) = (2εδ) · c · n− |S| · c.
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We show that Claim E.2 implies the bound on the distance of the expander code.

Corollary E.3. Let C ⊆ Fn2 be a (c, d, ε, δ)-expander code, where ε > 1/2. Then δ(C) ≥ 2εδ.

Proof. Assume the contrary. Then there exist c1 6= c2 ∈ C such that δ(c1, c2) < 2εδ. Let c = c1 − c2.
Note that c ∈ C and | supp(c)| < 2εδn. Claim E.2 implies the existence of u ∈ C⊥d such that | supp(u) ∩
supp(c)| = 1. Hence 〈u, c〉 6= 0 and thus c /∈ C. Contradiction.
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