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Abstract

We consider the problem of testing if a given function f : Fn
q → Fq is close to a n-variate

degree d polynomial over the finite field Fq of q elements. The natural, low-query, test for this
property would be to pick the smallest dimension t = tq,d ≈ d/q such that every function of
degree greater than d reveals this feature on some t-dimensional affine subspace of Fn

q and to
test that f when restricted to a random t-dimensional affine subspace is a polynomial of degree
at most d on this subspace. Such a test makes only qt queries, independent of n. Previous
works, by Alon et al. [AKK+05], and Kaufman and Ron [KR06] and Jutla et al. [JPRZ04],
showed that this natural test rejected functions that were Ω(1)-far from degree d-polynomials
with probability at least Ω(q−t) (the results of [KR06] hold for all fields Fq, while the results of
[JPRZ04] hold only for fields of prime order). Thus to get a constant probability of detecting
functions that were at constant distance from the space of degree d polynomials, the tests made
q2t queries. Kaufman and Ron also noted that when q is prime, then qt queries are necessary.
Thus these tests were off by at least a quadratic factor from known lower bounds. It was unclear
if the soundness analysis of these tests were tight and this question relates closely to the task
of understanding the behavior of the Gowers Norm. This motivated the work of Bhattacharyya
et al. [BKS+10], who gave an optimal analysis for the case of the binary field and showed that
the natural test actually rejects functions that were Ω(1)-far from degree d-polynomials with
probability at least Ω(1).

In this work we give an optimal analysis of this test for all fields showing that the natural test
does indeed reject functions that are Ω(1)-far from degree d polynomials with Ω(1)-probability.
Our analysis thus shows that this test is optimal (matches known lower bounds) when q is prime.
(It is also potentially best possible for all fields.) Our approach extends the proof technique of
Bhattacharyya et al., however it has to overcome many technical barriers in the process. The
natural extension of their analysis leads to an O(qd) query complexity, which is worse than
that of Kaufman and Ron for all q except 2! The main technical ingredient in our work is a
tight analysis of the number of “hyperplanes” (affine subspaces of co-dimension 1) on which the
restriction of a degree d polynomial has degree less than d. We show that the number of such
hyperplanes is at most O(qtq,d) — which is tight to within constant factors.
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1 Introduction

Testing low-degree polynomials is one of the most basic problems in property testing. It is the pro-
totypical problem in “algebraic property testing”, and has seen many applications in probabilistic
checking of proofs. In this work we focus on this basic problem and give optimal (to within large
constant factors) results for the setting of degree d multivariate polynomials over fields of constant
size. This setting has been considered before in [AKK+05, KR06, JPRZ04, BKS+10], but their
results were off by a “quadratic factor”. We remove this gap here, and in the process introduce
some algebraic results about restrictions of low-degree polynomials to affine subspaces that may be
of independent interest.

To describe our work, and the previous work more precisely, we start with some basic notation.
For integer t, we let [t] denote the set {1, . . . , t}. We let Fq denote the finite field of cardinality q.
We consider the task of testing functions mapping Fnq to Fq. Let P(n, d, q) denote the set of all
n-variate polynomial functions over Fq of total degree at most d. We let δ(f, g) = Prx[f(x) 6= g(x)]
denote the distance between f and g, where the probability is over x chosen uniformly from Fnq .
Let δd(f) = ming∈P(n,d,q){δ(f, g)} denote the distance of f from the space of degree d polynomials.
We say f is δ-far from g if δ(f, g) ≥ δ and δ-close otherwise. We say f is δ-far from the set of
degree d polynomials if δd(f) ≥ δ. The goal of low-degree testing is to design a test to distinguish
the case where δd(f) is zero from the case where it is large.

A k-query tester (for P(n, d, q)) is a probabilistic algorithm T = T (n, d, q) that makes at most
k = k(d, q) queries to an oracle for the function f : Fnq → Fq and accepts f ∈ P(n, d, q) with
probability one. It has δ-soundness ε if it rejects every function f with δd(f) ≥ δ with probability
at least ε. We say T is absolutely sound if for every q and δ > 0 there exists ε > 0 such that for
every d and n, T = T (n, d, q) has δ-soundness ε.

With the above definitions in place, we can now describe previous works. (We note that the testing
problem was studied actively for large fields and small degrees starting with [RS96] and in the
PCP literature, but we will not describe such works here.) The setting where the degree of the
polynomial is larger than the field size was first considered by Alon et al. [AKK+05] who considered
the setting of q = 2. They described a basic test that made O(2d) queries.1 Their analysis showed
that this test has δ-soundness Ω(δ2−d). Thus to get an absolutely sound test, they iterated this
test O(2d) times, getting a query complexity of O(4d). They showed no test with o(2d) queries
could test this family, thus giving a bound that was off by a quadratic factor.

The setting of general q was considered by Kaufman and Ron [KR06] and independently (for the
case of prime q) by Jutla et al. [JPRZ04]. They (in particular [KR06]) showed that there exists
an integer t = tq,d ≈ d/q (we will be more precise with this later) such that the natural test for
low-degreeness makes Ω(qt) queries. They also show that qt is a lower bound on the number of
queries if q is prime. Finally they analyzed this O(qt) query test, showing that the δ-soundness of
this test is Ω(δq−t), again leading to an absolutely sound test with query complexity O(q2t) which
is off by a quadratic factor. The proof techniques of [AKK+05] and [KR06, JPRZ04] were similar
and indeed the subsequent generalization of Kaufman and Sudan [KS08] shows how these results
fall in the very general framework of “affine-invariant” property testing, where again all known
tests are off by (at least) a quadratic factor.

1Throughout this paper we think of q as a constant and so dependence on q may some times be suppressed.
Dependence on d is crucial and complexity depending on n will be too large to be interesting.
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In a recent work, Bhattacharyya et al. [BKS+10] raised the question of getting “optimal tests” for
P(n, d, q). Again they restricted their attention to the case of q = 2 and came up with a new proof
technique that allowed them to prove that the original O(2d)-query test of [AKK+05] is absolutely
sound. This also gave the first example of a linear-invariant property with tight bounds on query
complexity.

The proof of [BKS+10] was significantly more algebraic than those of [AKK+05, KR06, JPRZ04].
(Indeed the work of [KS08] confirms that the central ingredient in the proofs in [AKK+05, KR06,
JPRZ04] are all the same and relies on very little algebra.) However, the proof of [BKS+10] seemed
very carefully tailored to the case of F2 and extensions faced several obvious obstacles. In this
work we manage to overcome these obstacles and show that the O(qt) query tester of [KR06] is
also absolutely sound (though as it turns out, the dependence of the constant on q is terrible). En
route of proving this we obtain several new results on the behavior of polynomials when restricted
to lower dimensional affine spaces, that may be of independent interest. Below we explain our main
theorem and some of the algebraic ingredients that we obtain along the way.

1.1 Our main results

To state the test of [AKK+05, KR06] and our theorem we need a few more definitions. For an affine
subspace A in Fnq , let dim(A) denote its dimension. For function f : Fnq → Fq and affine subspace A,
let f |A : A→ Fq denote the restriction of f to A. For a function f , we let deg(f) denote its degree
as a polynomial. We use the fact that f |A can be viewed as a dim(A)-variate polynomial with
deg(f |A) ≤ deg(f). A special subclass of tests for P(n, d, q) would simply pick an affine subspace
A of Fnq and verify that deg(f |A) ≤ d. We introduce the concept below of the testing dimension
which attempts to explore the minimal dimension for which such a test has positive soundness.

Definition 1.1 (Testing dimension). For prime power q and non-negative d, the testing dimension
of degree d polynomials over Fq is the smallest integer t satisfying the following: For every positive
integer n and every function f : Fnq → Fq with deg(f) > d, there exists an affine subspace A of
dimension at most t such that deg(f |A) > d. We use tq,d to denote the testing dimension.

This notion was studied in [KR06] who proved the following fact. As it also follows easily from our
results we give the proof in Section 4.3.

Proposition 1.2. The testing dimension tq,d = d d+1
q−q/pe.

The test proposed by [KR06] is the following:

t-dimensional (degree d) test: Given oracle access to f : Fnq → Fq, pick a random affine sub-
space A with dim(A) = t and accept if deg(f |A) ≤ d.

[KR06] shows that the tq,d-dimensional test, which has query complexity qtq,d and accepts f ∈
P(n, d, q) with probability one, has δ-soundness roughly Ω(δq−tq,d). We show that the test is
absolutely sound (and in fact instead of losing a q−tq,d factor we even gain it for small δ). Specifically,
if we let ρd(f, t) denote the probability which the t-dimensional test rejects a function f , then we
show:
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Theorem 1.3. For every prime power q, there exist constants ε1, ε2 > 0 such that for every d
and n and every function f : Fnq → Fq, it is the case that ρd(f, td,q) ≥ min{ε1qtd,qδ(f), ε2}. In
other words the tq,d-dimensional test rejects f with probability min{ε1qtq,dδ(f), ε2}, where tq,d is the
testing dimension for degree d polynomials over Fq.

Our analysis follows the approach of [BKS+10] who derive their analysis by first studying the
behavior of functions that are not degree d polynomials, when restricted to affine subspaces of
codimension one. Following their terminology we use the phrase hyperplane to refer to subspaces
of Fnq of codimension one (i.e., dimension n−1), and let H(q, n) denote the set of all hyperplanes in
Fnq . We highlight two key quantities of interest to this approach. The first of these asks how often
can a degree d polynomial drop in degree when restricted to hyperplanes. Formally:

Definition 1.4. For prime power q and non-negative integer d, let N = N0(q, d) be the maximum
over all n, and all functions f ∈ P(n, d, q) of the number of hyperplanes A1, . . . , AN such that
deg(f |Ai) < d. I.e.,

N0(q, d) = max
n,f∈P(n,d,q)

|{A ∈ H(n, q)|deg(f |A) < d}|.

A priori it may not be clear that N0(d, q) is even bounded (i.e., is independent of n), but an easy
argument from [BKS+10] shows this quantity is at most qd. For our purposes we need a much
tighter bound of roughly qtq,d and our first main technical theorem (of two) shows that this is
indeed the case.

Theorem 1.5. For every q, d, N0(d, q) ≤ qtq,d+1. In other words if f ∈ P(n, d, q), then |{A ∈
H(q, n)| deg(f) < d}| ≤ N0(d, q) ≤ qtq,d+1.

(We note that it follows from the definition of N0 and tq,d that N0(d, q) ≥ qtq,d .)
The above theorem gives a tight analysis (up to constant factors depending on the field size) of
the number of hyperplanes where a degree d polynomial drops in degree. However for the analysis
of the low-degree test, we need a similar theorem that talks about general functions. Extracting
the correct quantity of interest (one that can be analyzed and is useful) turns out to be somewhat
subtle. Rather than looking at general functions, or even functions that are far from polynomials,
we look only at the restrictions of functions to hyperplanes and ask “when does pairwise consistency
imply global consistency”.

Definition 1.6. For prime power q and non-negative integer d, let N = N1(q, d) be the largest
integer such that the following holds: There exists n, and N hyperplanes A1, . . . , AN ∈ H(n, q) and
N polynomials P1, . . . , PN ∈ P(n, d, q) such that the following hold:

Pairwise consistency For every i, j ∈ [N ] it is the case that Pi|Ai∩Aj = Pj |Ai∩Aj .

Global inconsistency For every Q ∈ P(n, d, q), there exists i ∈ [N ] such that Q|Ai 6= Pi|Ai.

Note that viewed contrapositively, the definition of N1 says that if some arbitrary function f looks
like a degree d polynomial on N1(q, d) + 1 hyperplanes, then its restriction to the union of these
hyperplanes (which is typically an overwhelmingly large set) is a polynomial of degree d and hence
f is close to a polynomial of degree d. Our second main technical theorem shows that N1 is not
much larger (in a technical sense) than N0(q, d).
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Theorem 1.7. For every q, there exists a constant λq such that for every d, N1(q, d) ≤ qtq,d+λq . In
other words if A1, . . . , AK ∈ H(n, q) and P1, . . . , PK ∈ P(n, d, q) are such that Pi|Ai∩Aj = Pj |Ai∩Aj
for every i, j ∈ [K] and K > qtq,d+λq , then there exists Q ∈ P(n, d, q) such that Q|Ai = Pi|Ai for
every i ∈ [K].

1.2 Comparison to [BKS+10]

While our proof outline does follow the same one as that of [BKS+10] the technical elements are
much more complex and we point out the similarities and differences here. Both proofs work by
induction on the number of variables. Key to this induction is an ability to understand how functions
(that are not polynomials and are even far from them) behave on restrictions to hyperplanes. Once
such an understanding is obtained, the proofs are immediate given the work of [BKS+10] — and
we simply mimic their proofs. (We note that much of the novelty of [BKS+10] is in this part,
but given their work their is no novelty in ours in this part.) Their proof roughly shows that for
t̃ = logqN1(q, d) the t̃-dimensional test is absolutely sound. To make this useful, one needs two
more ingredients: (1) A good upper bound on N1(q, d) and (2) A (possibly weak) relationship
between the soundness of a t-dimensional test and the soundness of the (t− 1)-dimensional test (so
that one can eventually analyze the tq,d-dimensional test).

In [BKS+10] both of these elements turn out to be simple (once one has the right insights). N1(q, d)
is at most qd (by a simple linear algebra argument). And a t-dimensional test can be related to
a t − 1 also by similar linear algebra arguments for the case q = 2. In our case it turns out both
ingredients are non-trivial.

For (2) we prove (see Lemma 4.6) that a t − 1 dimensional test (as long as t − 1 ≥ tq,d) has
δ-soundness at least 1/q times the δ-soundness of the t-dimensional test. Even this step (though
simple in comparison to the other part) is not immediate and requires a more algebraic view of
restrictions than in previous works.

For (1), our task turns out to be much harder. We consider the simpler case of bounding N0(d, q)
first and this ends up using several algebraic features of affine transformations and restrictions
to hyperplanes (see Lemmas 4.4 and 4.8). This still leaves the question of bounding N1(d, q), for
which we build an inductive proof, where each inductive step uses the bound on N0(d, q). The most
problematic part however turns out to be the base case, where we need to show that the abundance
of hyperplanes leads to a cover of most of Fnq by q “near-parallel” hyperplanes. For this part we
resort to the “density Hales-Jewett theorem” [FK91, Pol09] which says (for our purposes) that for
every q and every ε > 0 there is a c = cq,ε such that ε · qc hyperplanes in c dimensions will contain
q “near-parallel” ones. (Unfortunately this leads to a horrendous bound on cq,ε, but fortunately ε
is independent of n and d and so this suffices for Theorem 1.3).

2 Overview of our proof

Here we give an overview of our proof and lead the reader through the technical parts of the paper.
We start by listing ingredients in order of increasing “complexity” that we prove (each of which
we argue is necessary), and then describe how these are put together to get our final analysis.
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All the novel technical ingredients talk about the behavior of some function f when restricted to
hyperplanes.

Step 0. We start by considering an m-variate function f which is not a degree d polynomial,
and ask: Does there exist a single hyperplane on which f is not a degree d polynomial? Obviously
existence of such a hyperplane is a necessary condition for any t < m dimensional test to work. By
definition this question has an affirmative answer if m > tq,d, the testing dimension. The testing
dimension was already analyzed by Kaufman and Ron [KR06], but we end up reproving this result,
since we need stronger versions of this analysis (as we describe next). Proposition 1.2 captures this
step. Its proof relies on Lemma 4.6 which is a central ingredient in our next step.

Step 1. Next we consider the same function f as above, but now ask: Is the fraction of hyperplanes
on which f has degree greater than d, a constant (independent of d)? Such a statement is necessary
to show that the q−m-soundness of the (m−1)-dimensional test is an absolute constant (independent
of d): the function f is q−m-far from degree d polynomials and so the fraction of (m−1)-dimensional
affine subspaces on which f is not of degree d better be a constant. Such a strong analysis is not
implied by our theorem statement, but is essential to the proof approach of [BKS+10]. We give an
affirmative answer to this question. Proving this turns out to be non-trivial and does not follow
from either [KR06] or [BKS+10]. Indeed our proof is new even for the case of q = 2.

We manage to give a relatively clean proof of this statement by interpreting restrictions to hyper-
planes algebraically. Since this style of analysis is central also to the next step, we give the essential
details here (though formalizing some steps ends up requiring more work). For simplicity, assume we
are restricting f to a hyperplane of the form x1 =

∑m
i=2 yixi+y0. The restriction of the function f to

this hyperplane is now given by the function fy2,...,ym,y0(x2, . . . , xm) = f(
∑m

i=2 yixi+y0, x2, . . . , xm),
which can be viewed as a polynomial in x2, . . . , xm whose coefficients are themselves polynomials
in y2, . . . , ym, y0. By the previous paragraph, it (roughly) follows that there exists a setting of
y2, . . . , ym, y0 such that fy2,...,ym,y0 is not a polynomial of degree d. In turn this implies that there
is a monomial of degree greater than d in x2, . . . , xm which is a non-zero function of y2, . . . , ym, y0.
The key now is to notice that this coefficient is a polynomial in y2, . . . , ym, y0 of degree at most
q − 1 and so is non-zero with probability at least 1/q when y2, . . . , ym, y0 are assigned randomly.

This step is performed in Section 4.3. The heart of the proof is given by Lemma 4.6, which
formalizes the above argument and extends it to general hyperplanes (which may not have support
on x1). An important ingredient of the general proof is that instead of trying to understand the
function f we apply an invertible linear transformation to the space Fmp and consider the function
f ◦ A. It is clearly enough to understand the restrictions of this function. The point is that we
can pick A in such a way that f ◦A contains a canonical monomial which is a monomial of a very
special form (see Definition 4.1). Intuitively, a canonical monomial has its degree “squeezed” to
a few variables. The notion of canonical-monomials did not appear in [KR06] and it makes our
proofs considerably simpler. Roughly, having a canonical monomial in a polynomial enables us
to focus almost entirely on this monomial instead of the whole polynomial. Furthermore, when
restricting our attention to canonical monomials, the algebraic approach, hinted at the previous
paragraph, becomes transparent and easy to use. For that reason canonical monomials will play an
important role in all our proofs. Proving the existence of a transformation A such that f ◦A has a
canonical monomial, is done in Lemma 4.4. Basically, the proof shows that a canonical monomial
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for f can be found by taking the maximal monomial, in the graded lexicographical order, among
all monomials in {f ◦ B}, when we run over all invertible linear transformations B. We discuss
canonical monomials in Section 4.1.

Step 2. We then move to the third in the series of questions. If previously we asked whether
there exists a hyperplane, or even a noticeable fraction of hyperplanes where f has degree greater
than d, we now ask: Do an overwhelming number of hyperplanes reveal that f has degree greater
than d? We analyze this question when f is a polynomial of degree d+1, thus leading to an analysis
of N0(q, d) (or N0(q, d + 1) to be precise). We show that the number of hyperplanes on which f
has degree d is O(qtq,d). So if the number of variables m is really large compared to q, d then the
fraction of hyperplanes where f drops in degree is tiny.

This bound again views the restriction of f to the hyperplanes of the form x1 =
∑m

i=2 yixi + y0 as
a polynomial in x2, . . . , xm and y2, . . . , ym, y0. We then perform an elementary, though somewhat
non-obvious, algebraic analysis of this polynomial to show that there are few hyperplanes where f
loses degree. Roughly, we show that when working with an appropriate basis for the space (i.e. when
applying the linear transformation that guarantees the existence of a canonical monomial, found
in the previous step) it is the case that for every fixing of y2, . . . , yt, where t = logqN0(q, d) ≈ tq,d,
there is at most one setting of yt+1, . . . , ym such that the degree of f decreases on the corresponding
hyperplane. Canonical monomials again play a crucial role in the proof.

This step is captured by Theorem 1.5 that is proved in Section 4.4. Lemma 4.8 is the main step in
which we give the analysis for hyperplanes of the form x1 =

∑m
i=2 yixi+ y0 that is described above.

Step 3. This leads to the final step (which unfortunately ends up getting proved in two substeps)
where we consider general functions that are Ω(q−tq,d)-far from degree d polynomials and show that
even in this case (which subsumes the case of degree d+1 polynomials), the number of hyperplanes
on which f drops in degree is bounded by O(qtq,d), thus giving a bound on N1(q, d).

This part is itself proved by induction on the number of variables (with the base case being the
hardest step; we will get to that later). And the inductive claim is somewhat different: instead of
talking about functions that are far from polynomials (in some loose sense), we explicitly ignore a
known small subset of the domain and argue f is a polynomial on the rest. Specifically, we assert
that if a function f is a degree d polynomial on a large, K > N1(q, d), number of hyperplanes
A1, . . . , AK , then there is a degree d polynomial Q that agrees with f on the union of A1, . . . , AK .
Since the union has large volume it follows that f is close to some degree d polynomial (specifically
Q).

The inductive claim is relatively easy when the number of variables is very large. In such case if
we consider the restriction of f to some generic hyperplane A then all the intersections Ai ∩A are
distinct, and we can use the inductive claim to assert that f |A∩(∪iAi) is a degree d polynomial Q0.
Since this holds with overwhelmingly high probability over A, we can claim the same holds also for
the q− 1 parallel shifts of A, and since these cover Fmq , we can claim (by interpolation) that f |∪iAi
is a degree d+q polynomial Q. Now, if K > N0(q, d+q), then this allows us to use the bound from
the previous step (the low-degree polynomial Q cannot drop in degree too often) to claim that Q
must be a degree d polynomial. This is the argument behind the induction step in the proof of
Theorem 1.7, that is given in Section 4.5.
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All this works fine when the number of variables is large. As the number of variables gets smaller,
some things break down. A ∩ Ai starts coinciding with A ∩ Aj for some pairs etc., but careful
counting (Claim 4.12) makes sure we do not lose too much in this as long as the number of variables
is sufficiently larger (by an additive constant) than logqK (the number of given hyperplanes). This
becomes our “base case”, and we resort to a different argument at this stage.

In the base case, we have that a constant fraction of all hyperplanes are “good” - i.e., f restricted to
these form a degree d polynomial. It seems intuitive that at this stage f ought to be a degree d poly-
nomial on the union of these (huge) number of hyperplanes, yet there seems to be no obvious way
to conclude this intuitive fact. Furthermore, the density of hyperplanes is so high that restricting
our attention to any lower dimensional hyperplane would not maintain the number of hyperplanes
on the restriction (namely, for every hyperplane A there are i, j ∈ [K] such that A∩Ai collides with
A ∩ Aj). However we now use the density in our favor by finding q hyperplanes, say A1, . . . , Aq,
that have the same intersection. I.e., Ai ∩ Aj = Aj ∩ Ak for every triple of distinct i, j, k ∈ [q].
To show that q such hyperplanes exist we use the “density Hales-Jewett theorem” [FK91, Pol09]
— a somewhat heavy hammer with a high associated cost (see Theorem 3.4). The high cost is
the base case dimension has to be lower bounded by a very large constant, albeit a constant —
specifically it is some sort of Ackerman function of some polynomial in q (in the improved proof of
the density Hales-Jewett theorem [Pol09]). Nevertheless it does imply that if logN1(q, d) is suffi-
ciently large as a function of q (a constant we label λq,4), then this allows to conclude that q such
“near-parallel” hyperplanes do exist. Now, with a linear change of basis, we can assume that the
Ai∩Aj is contained in the hyperplane x1 = 0, and that none of the hyperplanes A1, . . . , Aq is equal
to the hyperplane x1 = 0. The crux of the idea is that now, on all the q − 1 hyperplanes, x1 = α,
α ∈ Fq − {0}, the hyperplanes A1 ∩ {x1 = α}, . . . , Aq ∩ {x1 = α} are parallel. The situation is
perhaps better explained by Figure 1 (for the case q = 5). This allows us to prove (using arguments

{x1 = 0}
{x1 = 1}
{x1 = 2}
{x1 = 3}
{x1 = 4}

�
�
�
�
�
�

A1

�
�
�
�
�
�

A2A3

@
@
@

@
@
@

A4

A
A
A
A
A
A

A5

Ai ∩ {x1 = 0}
r

r r r r r
We think of the horizontal line {x1 = α} as a description of the corresponding
hyperplane. The diagonal lines correspond to the different Ai’s. The intersec-
tion of all Ai’s, depicted by the black circle, is an affine subspace of co-dimension
1 inside {x1 = 0}. Focusing on the subspace {x1 = 2}, we have the q different
intersections Ai∩{x1 = 2}, captured by the red circles. Furthermore, all those
subspaces are parallel to each other and cover all of {x1 = 2} (which is not
evident from the picture).

Figure 1: Near parallel hyperplanes

similar to the inductive step) that f on these hyperplanes is a degree d polynomial, and roughly
tells us what Q mod (xq−1

1 −1) is (where Q is the desired polynomial of degree d that agrees with f
on the union ∪i∈[K]Ai). Pushing our luck further, we note that if logN1(q, d) = t+λq,4 then we can

find t independent variables x1, . . . , xt such that we know the polynomial Q mod
∏t
i=1(xq−1

i − 1).
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If t > d/(q−1) this should tell us exactly what Q is, and with some careful examination we confirm
this intuition, and show that this polynomial Q agrees with f on every one of the given hyperplanes,
thus concluding the analysis in the base case. The base case is given in Lemma 4.11.

Putting things together. Once we have the upper bound on N1(q, d) (tight to within constant
factors that depends only on q), it is straightforward to mimic the work of [BKS+10] to derive
an analysis of the (roughly) logqN1(q.d)-dimensional test, which shows that this test is absolutely
sound. We then use the fact from Step 2 (for every m > tq,d an m-dimensional non-degree d
polynomial f is of degree greater than d on at least 1/q fraction of the hyperplanes) to conclude
that the soundness of the (m− 1)-dimensional test is at least a 1/q-fraction of the soundness of the
m-dimensional test, as long as m > tq,d. After a constant number of such steps, we end up with a
soundness analysis of tq,d-dimensional test also!

Organization of this paper. Section 3 contains some notations and basic facts regarding poly-
nomial. We discuss the density Hales-Jewett theorem in Section 3.2. The main body of the paper
is Section 4. The section is organized as follows. In Section 4.1 we give the definition of canonical
monomials and shows how to “rotate” the space in order to find one (Lemma 4.4). Section 4.2
shows the basic and simple fact that the rejection probability of the `-dimensional test is monotone
in ` and in Section 4.3 we prove that although the rejection probability is monotone, it does not
decrease too fast when we go from ` to `−1 (Lemma 4.6). We then give the proofs of our two main
technical contributions. Theorem 1.5, in which we bound N0(q, d), is proved in Section 4.4 and
Theorem 1.7 is proved in Section 4.5. Section 4.6 contains a strengthening of Theorem 1.7 (given as
Theorem 4.16), that is proved in a relatively direct manner from Theorem 1.7. Finally, we analyze
the tq,d-dimensional test in Section 5, giving a proof of Theorem 1.3 – our main theorem.

3 Preliminaries

Throughout the paper q = pk is a power of a prime number p and Fq is the field of characteristic
p with q elements. We denote by ≡p equality modulo p. Recall that for every 0 6= α ∈ Fq it holds
that αq−1 ≡p 1. For an integer t we denote [t] = {1, . . . , t}.

Recall that H(q, n) is the set of hyperplanes in Fnq . Similarly, we denote Aff(q, n) the set of affine
linear functions in Fnq . We will often use the fact that every hyperplane is the set of zeros of an
affine linear function. We will also use the term flat to denote an affine subspace (of dimension
possibly lower than n− 1). When L =

∑n
i=1 αixi +α0 is a linear function, we call α0 the free term

of L.

Let d, e ∈ N be integers and denote by d =
∑

i dip
i and e =

∑
i eip

i their base p expansion. Namely,
∀i 0 ≤ di, ei < p. We denote d ≤ e if d is not larger than e as integers and d ≤p e if for every i it
holds that di ≤ ei. We recall Lucas’ theorem.

Theorem 3.1 (Lucas’ theorem). In the notations above,
(
e
d

)
≡p
∏
i

(
ei
di

)
, where

(
ei
di

)
= 0 if ei < di.
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In particular,
(
e
d

)
6= 0 if and only if d ≤p e. It follows that for e < q the expansion of (y+ z)e in Fq

has the form

(y + z)e ≡p
∑
d≤pe

(
e

d

)
ye−dzd. (1)

We will represent functions f : Fnq → Fq as n-variate polynomials, with individual degrees at most
q − 1. Whenever we have a polynomial that has a variable of degree larger than q − 1 we will use
the identity xq − x ≡p 0 to reduce its degree.

3.1 The Distance Between Polynomials

A basic fact that is required for understanding the testing dimension for polynomials of degree d
is the minimal distance between any two such polynomials. It is well known (cf. [DK00]) that if
d = r(q − 1) + s where 0 ≤ s < q − 1 then the relative minimal distance is (q − s)q−r−1. However,
for completeness we provide an easy proof of a slightly weaker claim that still suffices for our needs.

Lemma 3.2. Let q = pk, where p is a prime number. Let f 6= g ∈ Fq[x1, . . . , xn] be two distinct
polynomials of degree at most d and individual degrees at most q − 1. Then δ(f, g) ≥ q−d/(q−1).

Proof. By linearity it is enough to lower bound the distance of a non-zero f from the zero polyno-
mial. In other words, we have to bound from below the number of non-zeros of f . We do so by
induction on n. When n = 1, since f has degree at most d < q, it has at most d zeros and therefore
δ(f, 0) ≥ (q − d)/q = 1− d/q ≥ q−d/(q−1), where the last inequality follows from Claim 3.3 proved
below. For the induction step, we express f as a polynomial in xn

f(x1, . . . , xn) =

q−1∑
e=0

xen · ge(x1, . . . , xn−1).

Let emax be the degree of f as a polynomial in xn. As deg(gemax) ≤ d − emax, the induction
hypothesis implies that the number of non-zeros of gemax is at least q−(d−emax)/(q−1) · qn−1. For any
such non-zero (a1, . . . , an−1) ∈ Fn−1

q we get that f(a1, . . . , an−1, xn) is a non-zero polynomial in xn
of degree emax and therefore has at least q − emax non-zeros. Consequently,

δ(f, 0) ≥ (q − emax) · q−(d−emax)/(q−1) · qn−1/qn = (1− emax/q) · q−(d−emax)/(q−1)

≥(∗) q−emax/(q−1) · q−(d−emax)/(q−1) = q−d/(q−1),

where inequality (∗) follows from Claim 3.3.

Claim 3.3. For any 0 ≤ x ≤ q − 1 it holds that 1− x/q ≥ q−x/(q−1).

Proof. Consider the function F (x) = 1−x/q−q−x/(q−1). It is easy to see that F (0) = F (q−1) = 0
and that the second derivative of F is always negative. It immediately follows that F ≥ 0 for
0 ≤ x ≤ q − 1.
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3.2 Density Hales-Jewett Theorem

We will need to use the following version of the density Hales-Jewett theorem. The theorem was
first proved by Furstenberg and Katznelson [FK91]. A more recent prove with explicit bounds on
the density parameters was obtained in [Pol09].

Before stating the theorem we need to define the notion of a combinatorial line. Let Σ = {a1, . . . , aq}
be an alphabet of size q. E.g., one can think of Σ as being Fq. A set L = {v1, . . . , vq} ⊂ Σn is a
combinatorial line if we can partition the coordinates [n] to two disjoint sets [n] = I ∪ J , I ∩ J = ∅
such that: (1) For all i ∈ I and k, k′ ∈ [q], (vk)i = (vk′)i. Namely, for all i ∈ I, the i’th coordinate
of all elements in L is fixed. (2) For j ∈ J and k ∈ [q], (vk)j = ak. I.e., the j’th coordinates
advances with k.

It is not hard to see that if we set Σ = Fq then a combinatorial line in Fnq corresponds to a set
of the form {v + tu | t ∈ Fq} where v ∈ Fnq , u ∈ {0, 1}n \ {0̄} and v, u have disjoint supports. In
particular, a combinatorial line in Fnq is a line in the geometric sense.

Theorem 3.4 ([FK91, Pol09]). For any integer q and any 0 < c ∈ R there exists an integer λq,c,
such that if n ≥ λq,c then any set A ⊆ Fnq , of size |A| ≥ qn/qc, contains a combinatorial line.

We now state an easy corollary of the theorem. We say that u is the direction of the line {v+tu | t ∈
Fq}. Notice that, say, 2u is also the direction of the line but since u and 2u are linearly dependent
we ignore this small issue.

Corollary 3.5. Let 1 ≤ t be an integer. If n ≥ λ(q, c) + t − 1 then any set A ⊆ Fnq , of size
|A| ≥ qn/qc, contains t combinatorial lines whose directions are linearly independent.

Proof. The proof is by induction on t. For t = 1, Theorem 3.4 implies that A contains a line and
the claim follows.

Assume that we proved the statement for all t′ ≤ t − 1 and consider t′ = t. By the induction
hypothesis we can find t−1 lines in linearly independent directions inside A. To simplify notations
assume that those directions are e1, . . . , et−1 where ei ∈ {0, 1}n is zero everywhere except for the
i’th coordinate (by applying an invertible linear transformation to A this can be assumed w.l.o.g.).
By the pigeonhole principle there is some u ∈ Ft−1

q such that the number of elements v ∈ A that
identify with u on their first t− 1 coordinates is large. Namely,

#{v ∈ A | (v1, . . . , vt−1) = u} ≥ |A|/qt−1 ≥ (qn/qc) /qt−1 = qn−t+1/qc.

In other words, the number of elements of A that belong to the (n− t+ 1)-dimensional flat

M = {v ∈ Fnq | (v1, . . . , vt−1) = u}

is at least |M|/qc. As the dimension of M is n− t+ 1 ≥ λq,c, we can apply Theorem 3.4 and get
that A ∩M contains a line. It is immediate that the direction of this line is linearly independent
of e1, . . . , et−1.
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4 Restrictions to Hyperplanes

In this section we will study the behavior of polynomials when restricted to hyperplanes. Recall
that a hyperplane A ⊂ Fnq is an (n− 1)-dimensional affine subspace. For each hyperplane there is
a linear function L such that

A = {x | L(x) = 0}.

It will be convenient to express L as L(x) = xk −
∑n

i=k+1 αixi − α0, where k is the first non-zero
coefficient in L (the coefficient of xk is not necessarily 1, but scaling L by a constant does not change
the definition of A so we can assume this w.l.o.g.). For such an L we will express the restriction of
f to A as

f |A = f(x1, . . . , xn)|L=0 = f(x1, . . . , xk−1,
n∑

i=k+1

αixi + α0, xk+1, . . . , xn),

since setting L = 0 is equivalent to substituting
∑n

i=k+1 αixi + α0 to xk.

4.1 Canonical Monomials

The notion of canonical monomial will play an important role in our proofs. Intuitively, the reason
for defining canonical monomials is because they decrease in degree on any hyperplane, and thus
give an extremal example that is useful to study.

Definition 4.1. A canonical monomial of degree d in m ≤ n variables over Fq is a monomial∏m
i=1 x

ei
i such that (1)

∑m
i=1 ei = d. (2) For all 1 ≤ i < m, q − q/p ≤ ei < q. (3) If pi ≤p em then

for every j < m, pi + ej > q − 1. (4) em < q.

Note that Property 3 implies Property 2, but for clarity we keep both.

The following simple lemma shows that whenever we have a bivariate polynomial over Fq there
exists an invertible linear transformation A : F2

q → Fnq , such that f ◦ A contains a canonical
monomial of maximal degree.

Lemma 4.2. Let f(x1, x2) be a degree d ≤ 2(q − 1) polynomial over Fq. Then, there exists α ∈ Fq
such that f(x1, x2 + αx1) contains a canonical monomial of degree d.

Proof. Assume w.l.o.g. that f(x1, x2) =
∑

e:0≤e,d−e<q αex
e
1x
d−e
2 (we can ignore monomials of degree

smaller than d). Let emax be the maximal degree of x1 in f . If f already has a canonical monomial
then we are done (i.e. we can take α = 0). Otherwise, consider the monomial containing xemax

1 and
let i be such that pi ≤p d− emax and emax + pi < q. Consider the polynomial f(x1, x2 + zx1). By
(1) it follows that

f(x1, x2 + zx1) ≡p
∑
e≤d

αex
e
1

∑
r≤pd−e

(
d− e
r

)
(zx1)rxd−e−r2 .
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The coefficient of xemax+pi

1 x
d−(emax+pi)
2 in the expression above is equal to

∑
r≤emax+pi

αemax+pi−r

(
d− (emax + pi − r)

r

)
zr =

αemax

(
d− emax

pi

)
zp

i
+

∑
r≤emax+pi

r 6=pi

αemax+pi−r

(
d− (emax + pi − r)

r

)
zr,

where some of the binomials
(
d−(emax+pi−r)

r

)
may be zero modulo p. However, by our choice of pi

it follows that the coefficient of zp
i

in the above expression is non-zero. Hence, since emax + pi < q,

the coefficient of xemax+pi

1 x
d−(emax+pi)
2 is a non-zero polynomial in z. It follows that there is some

α ∈ Fq such that the coefficient of xemax+pi

1 x
d−(emax+pi)
2 in f(x1, x2 + αx1) is non-zero. In this way

we can gradually increase the maximal degree of x1 until we obtain a canonical monomial. Here
we use the simple fact that composition of maps of the form (x1, x2)→ (x1, x2 +αx1) has the same
form.

The next lemma generalizes the above claim to n-variate polynomials. In fact, we will prove a
slightly stronger property. For that end we will need the following definition.

Definition 4.3 (Graded Lexicographical Order). We denote
∏n
i=1 x

ei
i >m

∏n
i=1 x

ri
i if

∑n
i=1 ei >∑n

i=1 ri or if
∑n

i=1 ei =
∑n

i=1 ri and the first i for which ei 6= ri satisfies ei > ri. Note that we only
consider monomials in which all individual degrees are smaller than q (we can reduce the degree of
other monomials). The max-monomial of a polynomial g is the maximal monomial appearing in g
(with a non-zero coefficient of course).

Lemma 4.4. Let f(x1, . . . , xn) be a degree d ≤ n(q − 1) polynomial over Fq. Let

A = argmax
invertible B

max-monomial of (f ◦B)(x1, . . . , xn).

In words, A : Fnq → Fnq is an invertible linear transformation such that the max-monomial of (f ◦A)
is maximal, in the graded lexicographical order, among all monomials of all polynomials of the form
f ◦B, for invertible B. Then, the max-monomial of f ◦A is a canonical monomial of degree d.

Proof. Indeed, since composition with an invertible transformation does not affect the degree, the
max-monomial of f ◦ A is of degree d. Assume that it is the monomial M =

∏m
i=1 x

ei
i , where

e1, . . . , em > 0. If M is not a canonical monomial then there must exist i < m with ei < q − q/p
(recall that we only consider monomials in which all individual degrees are smaller than q). Assume
w.l.o..g. that2 i = m − 1. Consider the sum of all monomials of degree d in f ◦ A that involve
only the variables x1, . . . , xm and that are divisible by

∏m−2
i=1 xeii . Clearly, the sum is a nonzero

polynomial f̃ of the form

f̃ =

m−2∏
i=1

xeii · g(xm−1, xm).

2In fact, by the choice of A it must be the case that i = m− 1.
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Let d′ = em−1 + em. It follows that g is a nonzero bivariate polynomial of degree d′. Thus, by
Lemma 4.2 there is α ∈ Fq such that g(xm−1, xm+αxm−1) contains a canonical monomial of degree
d′. It follows that the max-monomial of f̃(x1, . . . , xm−1, xm + αxm−1) is larger than M (since we
‘pushed’ degree from xm to xm−1). Let A′ = B ◦ A where B(v1, . . . , vn) = (v1, . . . , vm−1, vm +
αvm−1, vm+1, . . . , vn). It is clear that A′ is an invertible transformation and that the sum of all
monomials of degree d in f ◦A′ that involve only the variables x1, . . . , xm and that are divisible by∏m−2
i=1 xeii is equal to f̃(x1, . . . , xm−1, xm+αxm−1). It is also clear that the max-monomial of f ◦A′

is equal to the max-monomial of f̃ . This, however, contradicts the choice of A. Hence, it follows
that the max-monomial in f ◦A is a canonical monomial.

A fact that we will use implicitly throughout our proofs, is that if M =
∏m+1
i=1 xeii is a canonical

monomial of degree d = e1+. . .+em+1, then for any linear function L(x1, . . . , xm+1), deg(M |L=0) ≤
d− em+1. Indeed, assume for simplicity that L(x) = xm −

∑m
i=1 αixi − α0 and let em+1 =

∑
j rjp

j

be the base p expansion of em+1. We have that

M |L=0 =

(
m∏
i=1

xeii

)
·

(
m∑
i=1

αixi + α0

)em+1

=

(
m∏
i=1

xeii

)
·

(
m∑
i=1

αixi + α0

)∑
j rjp

j

=

(
m∏
i=1

xeii

)
·

∏
j

(
m∑
i=1

αp
j

i x
pj

i + αp
j

0

)rj .

Thus, M |L=0 contains the monomial
∏m
i=1 x

ei
i which is of degree d− em+1 and any other monomial

contains a variable xi of degree at least ei+rjp
j . However, by the definition of canonical monomials,

it must be the case that if rj 6= 0 then ei + pj ≥ q so, when after reducing modulo xqk − x = 0, the
degree of the monomial drops by q − 1 ≥ em+1.

In fact, we will usually apply this simple observation for a monomial M that is both a canonical
monomial and the max-monomial in some polynomial f (i.e. the max-monomial that is found in
Lemma 4.4). Then, by the maximality of M , it follows that the same conclusion will be true for
any linear function L, and not just L that is supported on xm+1.

4.2 Monotonicity

Here we prove that ρd(f, k) is monotone in k. This is a simple fact that has an easy proof.

Lemma 4.5. Let k > k′ be two integer and f : Fnq → Fq a function. Then ρd(f, k) ≥ ρd(f, k′).

Proof. Consider the following way to randomly sample a k′-dimensional flat: Choose uniformly at
random a k dimension flat A ⊆ Fnq . Then, choose uniformly at random a k′-dimensional flat B ⊆ A.
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We have that

ρd(f, k
′) = Pr

B:dim(B)=k′
[deg(f |B) > d]

= Pr
A:dim(A)=k

[deg(f |A) > d] · Pr
B⊆A:dim(B)=k′

[deg(f |B) > d | deg(f |A) > d]

= ρd(f, k) · Pr
B⊆A:dim(B)=k′

[deg(f |B) > d | deg(f |A) > d]

≤ ρd(f, k).

4.3 Relating Different Dimensions

The first lemma in this section shows that if a (k + 1)-variate function f has degree larger than d
(when k is not too small relatively to d) then ρd(f, k) ≥ 1/q. Notice that we need to lower bound

k as, for example, when k = d/(q − q/p), the degree of x
q−q/p
1 · . . . · xq−q/pk decreases by q − q/p on

any subspace. Proposition 1.2 is an (almost) immediate consequence of this lemma.

Lemma 4.6. Let k ≥ (d + 1)/(q − q/p) and let f : Fk+1
q → Fq have degree larger than d. Then

ρd(f, k) ≥ 1/q.

Proof. Let A be the invertible linear transformation guaranteed by Lemma 4.4. To simplify nota-
tions, assume w.l.o.g. that A is the identity transformation. Let M be the max-monomial of f . By
the choice of A, M is a canonical monomial. Denote, M =

∏m
i=1 x

ei
i , where

∑m
i=1 ei = deg(f) > d.

Roughly, we will show that in every linear function L, we can either tweak the coefficient of xk+1,
or the free term, so that deg(f |L=0) = deg(f). This will prove the claim as it will map at most q
different functions to one ‘good’ function. Formally, we analyze two cases.

Case m ≤ k. Notice that if L(xm+1, . . . , xk+1) is a linear function then deg(f |L=0) =
∑m

i=1 ei > d.
Indeed, M is still a canonical monomial in f |L=0 as L does not involve x1, . . . , xm. Any other linear
transformation has the form (after a possible rescaling) L = xi−(

∑k+1
j=i+1 αjxj+α0), where 1 ≤ i ≤

m. Given ᾱ = (αi+1, . . . , αk, α0) consider the function Lᾱ,z(xi, . . . , xk+1) = xi − (
∑k

j=i+1 αjxj +
zxk+1 + α0). Note, that L and Lᾱ,z only differ in the coefficient of xk+1. We will show that for
any ᾱ there is β ∈ Fq such that deg(f |Lᾱ,β=0) > d, which is sufficient to establish the claim. To

ease notations and w.l.o.g., assume that i = 1. Namely, Lᾱ,z(x1, . . . , xk+1) = x1 − (
∑k

j=2 αjxj +

zxk+1 + α0). Observe that the function f |Lᾱ,z=0 has the same degree as f(
∑k

j=2 αjxj + zxk+1 +
α0, x2, . . . , xk+1), when both are considered as polynomials in x2, . . . , xk+1.

Let f̃ be the sum of all monomials, of maximal degree in f , that involve only the variables x1, . . . , xm.
Clearly M is such a monomial and therefore f̃ is not zero. Let emax be the maximal degree of x1

in f̃ . As M is a max-monomial we have that emax = e1. We can express f̃ as

f̃ = xemax
1 · hemax(x2, . . . , xm) +

∑
e<emax

xe1 · he(x2, . . . , xm),
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where hemax 6= 0. Let f̂ be such that f = f̃ + f̂ . Hence, f(
∑k

j=2 αjxj + zxk+1 +α0, x2, . . . , xk+1) =

f̃(
∑k

j=2 αjxj + zxk+1 + α0, x2, . . . , xk+1) + f̂(
∑k

j=2 αjxj + zxk+1 + α0, x2, . . . , xk+1). Consider all

monomials of degree deg(f) in f(
∑k

j=2 αjxj + zxk+1 + α0, x2, . . . , xk+1) that have degree exactly
emax in both z and xk+1 and that only involve, besides z and xk+1, the variables x2, . . . , xm. Notice
that the sum of those monomials is exactly zemaxxemax

k+1 hemax(x2, . . . , xm). Furthermore,

deg(xemax
k+1 hemax(x2, . . . , xm)) = deg(xemax

1 hemax(x2, . . . , xm)) = deg(f̃) = deg(f).

Therefore, if we look at all monomials (in x2, . . . , xk+1) of maximal degree in f(
∑k

j=2 αjxj +
zxk+1 + α0, x2, . . . , xk+1), and think of their coefficients as polynomials in z, then at least one of
those monomials, call it M ′, has a coefficient which is a non-zero polynomial in z. Hence, there is
some value β ∈ Fq such that if we substitute z = β then the coefficient of M ′ will not be zero. In
particular deg(f |Lᾱ,β=0) = deg(f) as required. This completes the proof of this case.

Case m = k+ 1. The analysis of this case is of a similar spirit to the previous case, only now we
show that, with high probability, the degree cannot go down by too much. Again we consider M =∏k+1
i=1 x

ei
i . By the choice of A it follows that e1 ≥ e2 ≥ . . . ≥ ek+1. For this case we will only focus

on linear functions that are supported on xk+1. Given ᾱ = (α1, . . . , αk) consider the linear function
Lᾱ,z =

∑k
i=1 αixi−xk+1 +z (we consider the case that the coefficient of xk+1 is −1, but the analysis

of other cases is the same). Consider the coefficient of
∏k
i=1 x

ei
i in f(x1, . . . , xk,

∑k
i=1 αixi + z). It

is not hard to see that this coefficient is a polynomial of degree ek+1 in z. Thus, there are at least
q − ek+1 values of z for which the coefficient of

∏k
i=1 x

ei
i in f |Lᾱ,z=0 is nonzero. Thus, there are

at least q − ek+1 values of z for which deg(f |Lᾱ,z=0) ≥ e1 + . . . + ek ≥ k(q − q/p) ≥ d + 1. Thus

the probability that Lᾱ,z is ‘good’ is at least q−1
q ·

q−ek+1

q , where the first multiplicand comes from
choosing a non-zero coefficient for xk+1 and the second comes from picking z. We consider two cases.
If ek+1 < q−1 then the probability is at least q−1

q ·
q−ek+1

q ≥ 2(q−1)/q2 ≥ 1/q. On the other hand,
if ek+1 = q− 1 then we also have e1 = . . . = ek+1 = q− 1 and thus deg(f) = (k+ 1)(q− 1). In this
case however, it is not hard to show, using similar arguments, that for any non-zero linear function
L =

∑k+1
i=1 αixi+z there is a choice of z such that deg(f |L=0) = deg(f)− (q−1) = k(q−1) ≥ d+1.

Thus, in this case as well we get that with probability at least 1/q the function L is such that
deg(F |L=0) > d.

This completes the proof of the lemma.

We now use this lemma iteratively to obtain the following.

Lemma 4.7. Let n ≥ k ≥ (d+ 1)/(q − q/p) and let f : Fnq → Fq have degree larger than d. Then

ρd(f, k) ≥ q−(n−k). Moreover, if n ≥ k′ ≥ k then ρd(f, k) ≥ ρd(f, k′) · q−(k′−k).

Proof. The proof follows immediately from Lemma 4.6 by induction on n. For n = k the result is
trivial as deg(f) > d and hence ρd(f, n) = 1. So assume that n ≥ k+1. Consider the following way
for sampling a random k-dimensional flat. First we choose at random a hyperplane A and then we
choose a random k-dimensional flat B ⊆ A. By Lemma 4.6 the probability that f |A has degree
larger than d is at least 1/q. Conditioning on deg(f |A) > d we get by the induction hypothesis that
PrB[deg((f |A)|B) > d] ≥ q−((n−1)−k) = q · q−(n−k). Thus, ρd(f, k) ≥ ρd(f, n − 1) · (q · q−(n−k)) ≥
q−(n−k).
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To prove the ‘moreover’ part we use a similar argument. Let A be a random k′-dimensional flat
and let B ⊆ A be a random k-flat. The probability that f |A has degree larger than d is exactly
ρd(f, k

′). Conditioning on this event, we get by the first part of the claim that ρd(f |A, k) ≥ q−(k′−k).
Combining the two results we obtain ρd(f, k) ≥ ρd(f, k′) · q−(k′−k).

We now give the proof of Proposition 1.2.

Proof of Proposition 1.2. The fact that tq,d ≤ d(d+ 1)/(q − q/p)e follows easily from Lemma 4.6.
To see that tq,d ≥ (d + 1)/(q − q/p) we let t be such that d + 1 = (t − 1)(q − q/p) + r, where

0 < r ≤ q − q/p. Consider the function f(x1, . . . , xt) =
(∏t−1

i=1 x
q−q/p
i

)
· xrt . Observe that f has

degree (t−1)(q− q/p) + r = d+ 1 but when we restrict f to any (t−1)-dimensional affine subspace
its degree drops to at most (t − 1)(q − q/p) = d + 1 − r ≤ d (it is not hard to check that the
smallest decrease in degree is obtained for some substitution xt = α). Thus, the testing dimension
is at least t = (d + 1 − r)/(q − q/p) + 1 ≥ (d + 1)/(q − q/p). Since t is an integer it follows that
tq,d ≥ t ≥ d(d+ 1)/(q − q/p)e.

4.4 The Case of Polynomials of Degree d+ 1

In this section we show that the number of hyperplanes on which a degree d polynomial has degree

at most d− 1 is not too large, namely, it is at most N0(q, d) = q

⌊
d−q/p
q−q/p

⌋
+1

. Observe that

qtq,d−1 ≤ N0(q, d) = q

⌊
d−q/p
q−q/p

⌋
+1

< qtq,d−1+1 ≤ qtq,d+1.

As a first step we will bound the number of such hyperplanes that ‘depend’ on x1.

Lemma 4.8. Let f be a polynomial of degree d. Assume that f has a monomial of degree d that
contains x1 and at most t− 1 other variables. Then there are at most (q − 1)qt−1 linear functions
L of the form L(x1, . . . , xn) = x1 +

∑n
i=2 αixi + α0 such that deg(f |L=0) ≤ d− 1.

In words, if the minimal number of variables that appear with x1 in a monomial of degree d in
f is t − 1, then there are at most (q − 1)qt−1 linear functions, that depend on x1, such that
the degree of f decreases on the hyperplanes defined by them. The proof is similar in spirit to
the proof of Lemma 4.6. We will show that after fixing some coefficients in a linear function,
the number of completions to linear functions L that have those fixed coefficients and such that
deg(f |L=0) < deg(f) is small.

Proof. Consider all monomials of degree d in f that involve x1 and contain at most t − 1 other
variables. By our assumption, there is at least one such monomials. Let emax be the maximal
degree of x1 in those monomials. W.l.o.g. assume that M = xemax

1 ·
∏t
i=2 x

ei
i is such a monomial in

f . For a linear function L(x1 . . . , xn) = x1 +
∑n

i=2 αixi + α0 denote L0(x2 . . . , xt) = −(
∑t

i=2 αixi)
and L1(xt+1, . . . , xn) = −(

∑n
i=t+1 αixi + α0). Clearly, L = x1 − (L0 + L1). We would like to ‘fix’

L0 and count how many different L1 are there so that the degree of f decreases when we set L = 0.

Consider the polynomial g(x1, . . . , xn) = f(x1 + L0, x2, . . . , xn). Notice that

g|x1−L1=0 = g(L1, x2, . . . , xn) = f(L1 + L0, x2, . . . , xn) = f |x1=L0+L1 = f |L=0.
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Furthermore, observe, that M also appears in g (because it is of maximal degree in x1 among all
monomials with only t variables). We now express g as a polynomial in x2, . . . , xt with coefficients
in Fq[x1, xt+1, . . . , xn]. Namely,

g(x1, . . . , xn) =
∑

r̄∈{0,...,q−1}t−1

(
t∏
i=2

xrii

)
· gr̄(x1, xt+1, . . . , xn).

As L1 does not involve any variable among x2, . . . , xt it holds that

deg(g|x1−L1=0) < d ⇐⇒ deg(g|x1=L1) < d ⇐⇒ ∀r̄ deg(gr̄|x1=L1) < d−
t∑
i=1

ri.

Let ē = (e2 . . . , et). Consider gē, recalling that the monomial M = xemax
1 ·

∏t
i=2 x

ei
i appears in g.

In particular, deg(gē) = deg(M) = emax ≤ q − 1. Thus, if deg(g|x1−L1=0) < d then it must be the
case that

deg(gē|x1−L1=0) < emax ≤ q − 1.

Consider the homogeneous part of degree emax of gē, denoted g
(emax)
ē . It clearly contains xemax

1

as a monomial. Observe further that deg(gē|x1=L1) < emax ⇐⇒ deg(g
(emax)
ē |x1=L1) < emax.

However, since g
(emax)
ē is homogeneous of degree strictly smaller than q, this happens if and only

if g
(emax)
ē |x1=L1 = 0. Indeed, substituting a linear function to a homogeneous polynomial of degree

D < q either makes it zero, or does not affect its degree. However, since deg(g
(emax)
ē ) ≤ q − 1, this

means that, if we think of it as a polynomial in x1 with coefficients in Fq[xt+1, . . . , xn], then it has
L1 ∈ Fq[xt+1, . . . , xn] as a root. In particular, there are at most q − 1 different L1’s that are roots

of g
(emax)
ē .

Concluding, we just proved that for every L0 there are at most q − 1 different L1’s such that
deg(f |x1−L0−L1=0) < d. Hence, there are at most (q−1) · qt−1 different linear functions L involving
x1 such that deg(f |L=0) < d, as required.

The following lemma extends the argument to functions that do not necessarily depend on x1.

Lemma 4.9. Let f be a polynomial that has a max-monomial containing only t variables. Then
there are at most qt linear functions L such that deg(f |L=0) ≤ deg(f)− 1.

Proof. The proof is by induction on t. The case t = 0 is trivial. Assume that we proved it for t− 1
and let f be a degree d polynomial that contains a max-monomial with t variables. Assume w.l.o.g.
that the monomial is M =

∏t
i=1 x

ei
i . Lemma 4.8 implies that there are at most (q− 1) · qt−1 linear

functions L, involving x1, such that deg(f |L=0) < d.

We now bound the number of linear functions that decrease the degree of f and that do not involve
x1. For that end, express f as a polynomial in x1. f =

∑q−1
e=0 x

e
1ge(x2, . . . , xn). As before, we have

that deg(f |L=0) < d if and only if ∀0 ≤ e ≤ q − 1, deg(ge|L=0) < d − e. In particular for g = ge1 ,
where e1 is the degree of x1 in M , it must be the case that deg(g|L=0) < d− e1.

At this point we use the fact that ge1 has a max-monomial with only t − 1 variables, M1 =∏t
i=2 x

ei
i , and conclude from the induction hypothesis that the number of linear functions L such

that deg(ge1 |L=0) < deg(ge1) is at most qt−1. Hence, overall there are at most (q−1)·qt−1+qt−1 = qt

linear functions L such that deg(f |L=0) < deg(f).
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We are now ready to prove Theorem 1.5. For sake of readability we repeat it here (in a slightly
different form).

Theorem 1.5 restated. Let f : Fnq → Fq be a polynomial of degree d. Then there are at most

N0(q, d) = q

⌊
d−q/p
q−q/p

⌋
+1

linear functions L such that deg(f |L=0) < d.

Proof. Notice that it is enough to prove the theorem for the polynomial f ◦A where A : Fnq → Fnq is
an invertible linear transformation. Let A be the linear transformation guaranteed by Lemma 4.4.
Namely, it is such that f ◦ A contains a canonical monomial. To simplify notations we assume
from now on that f has a canonical monomial. Let M =

∏t
i=1 x

ei
i be some canonical monomial

in f . Since M is a canonical monomial, it must be the case that et−1 + et ≥ q. Therefore,

d =
∑t

i=1 ei = (e1+. . .+et−2)+(et−1+et) ≥ (t−2)(q−q/p)+q and hence, t ≤ d−q
q−q/p+2 = d−q/p

q−q/p+1.

Since t is an integer we actually get that t ≤
⌊
d−q/p
q−q/p

⌋
+ 1. Invoking Lemma 4.9 we conclude that

there are at most qt ≤ q
⌊
d−q/p
q−q/p

⌋
+1

= N0(q, d) linear functions L such that deg(f |L=0) < d.

Corollary 4.10. Let n, d, q,K be integers such that K > N0(q, d). Let f be an n-variate polynomial
of degree at most d over Fq. If there exist K hyperplanes A1, ..., AK , such that for all i ∈ [K]
deg f |Ai ≤ d′ < d, then deg f ≤ d′.

Proof. Assume for contradiction that d′ < deg(f) = d̃ ≤ d. Then, by Theorem 1.5 there are at most
N0(q, d̃) ≤ N0(q, d) < K hyperplanes A on which deg(f |A) < d̃. This contradicts our assumption
that there are at least K hyperplanes {Ai} on which deg(f |Ai) ≤ d′.

4.5 Interpolating from Exact Agreement

In this section we prove Theorem 1.7 that shows that if we have enough ‘pairwise consistent’
polynomials then it is possible to obtain ‘global’ consistency. We first restate the theorem.

Theorem 1.7 restated. Let A1, . . . , AK be distinct hyperplanes in Fnq and P1, . . . , PK be polyno-
mials of degree d satisfying Pi|Ai∩Aj = Pj |Ai∩Aj for every pair i, j ∈ [K]. If

K ≥ N1(q, d) = 2N0(q, d+ q) · qλq,4 = 2q

⌊
d

q−q/p

⌋
+2+λq,4 ,

where λq,4 is the constant λq,c from Theorem 3.4 for c = 4, then there exists a polynomial Q, of
degree d, such that Q|Ai = Pi|Ai for every i ∈ [K].

Proof. In fact, we prove a slightly stronger statement. Specifically, we show that the conclusion
holds when

K ≥ Ñ1(q, d, n) ,
N1(q, d)

2
∏n−logq N1(q,d)−3

i=1

(
1− N1(q,d)

qn−i−1

) .
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This is indeed a stronger statement as the denominator above

2

n−logq N1(q,d)−3∏
i=1

(
1− N1(q, d)

qn−i−1

)
≥ 2

1−
n−logq N1(q,d)−3∑

i=1

N1(q, d)

qn−i−1


= 2− 2N1(q, d)

qn−1

n−logq N1(q,d)−3∑
i=1

qi > 2− 2N1(q, d)

qn−1
qn−logq N1(q,d)−2 = 2− 2q−1 ≥ 1,

namely, Ñ1(q, d, n) < N1(q, d) for all n, and so the requirement on K is weaker.

The proof is by induction on the number of variables n. The idea of the proof is to find a linear
function L and restrict our attention to the different hyperplanes BL,γ . We show that we can find
an L such that the induction assumption holds for every BL,γ . By the induction hypothesis, for each
BL,γ there is a polynomial Pγ , of degree d, that is defined over BL,γ and is consistent there with the
Pi’s. Then we ‘glue’ the Pγ ’s together and use Theorem 1.5 to claim that the resulting polynomial
has degree d. This is indeed the idea, but what is swept under the rug here is the base case which
is technically challenging. The base of the induction for us is the case n ≤ logqN1(q, d) + 3. For

such n it holds that Ñ1(q, d, n) = 1
2N1(q, d). The analysis of this case, which is the technical heart

of the proof, is given in the next lemma.

Lemma 4.11 (Main Lemma). Let n ≤ logq(N1(q, d)/2) + 3 and K ≥ Ñ1(q, d, n) = N1(q, d)/2.
Let A1, ..., AK be distinct hyperplanes in Fnq and let P1, ..., PK be polynomials of degree d satisfying
Pi|Ai∩Aj = Pj |Ai∩Aj for every i, j ∈ [K]. Then there exists a degree d polynomial P such that for
every i ∈ [K], P |Ai = Pi.

We defer the proof of Lemma 4.11 and continue with the proof of the theorem. Let Li ∈ Affnq be
an affine linear function such that Ai =

{
u ∈ Fnq | Li(u) = 0

}
. For the rest of the proof we denote

L = {L1, . . . , LK}. We will abuse notations and denote, for L ∈ L, PL = Pi and AL = Ai when
L = Li. Another important notation is the following. For L ∈ Affnq and γ ∈ Fq we denote

BL,γ ,
{
v ∈ Fnq | L(v) = γ

}
and Ai,L,γ , Ai ∩BL,γ .

Note that for γ1, γ2, the hyperplanes BL,γ1 and BL,γ2 are shifts of each other (they can also be
empty sets if L is a constant function). The following lemma shows that we can find a hyperplane
such that if we restrict our attention to any coset of that hyperplane, then the induction assumption
continues to hold.

Claim 4.12. There is linear function L ∈ Affnq such that for every γ ∈ Fq the number of the

distinct affine subspaces Ai,L,γ ⊆ BL,γ, such that Ai,L,γ 6= ∅, is at least Ñ1(q, d, n− 1).

Note that this claim is not trivially true as different hyperplanes may have the same intersection
with BL,γ .

Proof. It is clearly sufficient to prove the claim for K such that Ñ1(q, d, n) ≤ K ≤ N1(q, d). Observe
that Ai ∩ BL,γ = Aj ∩ BL,γ , for linearly independent Li and Lj , only if there are α, β ∈ F∗q such
that L = αLi + βLj + γ. Further, observe that Ai ∩BL,γ = ∅ only if L = Li + γ′, for some γ′ ∈ Fq.
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Using these two observations we perform a simple counting argument that shows that there is some
L ∈ Affnq such that for every γ, the number of distinct Ai∩BL,γ , that are not empty, is as required.

Clearly, there are exactly qn+1 affine linear functions over Fnq . For each affine linear function L
consider the number of ways that L can be represented as L = αL1 + βL2 + γ where3 α, β, γ ∈ Fq
and L1, L2 ∈ L. Since there are q3K2 such possible representations, there exists L ∈ Affnq that can

be represented in at most q3K2

qn+1 = K2

qn−2 different ways.

It follows, that for the L that we found and any γ ∈ Fq, there are at least K ′ = K − K2

qn−2 different
non empty flats of the form Ai∩BL,γ . Indeed, for every such representation of L we throw away one
of the functions in the representation. As L cannot be represented using the remaining functions,
we get the desired bound on K ′. Calculating we get

K ′ = K − K2

qn−2
= K

(
1− K

qn−2

)
≥ Ñ1(q, d)

(
1− N1(q, d)

qn−2

)
=

(
1− N1(q, d)

qn−2

)
N1(q, d)

2
∏n−logq N1(q,d)−3

i=1

(
1− N1(q,d)

qn−i−1

)
=

N1(q, d)

2
∏n−logq N1(q,d)−3

i=2

(
1− N1(q,d)

qn−i−1

)
=

N1(q, d)

2
∏n−logq N1(q,d)−4

i=1

(
1− N1(q,d)

qn−i−2

)
= Ñ1(q, d, n− 1).

We proceed with the proof of Theorem 1.7. Let L ∈ Affnq be as promised by Claim 4.12. Notice

that L cannot be the constant function, as each constant function has at most K2 > K2

qn−2 different

representations. Fix γ ∈ Fq and let A′i = Ai,L,γ = Ai ∩ BL,γ and P ′i = Pi|A′i , for i ∈ [K]. It
follows, by the choice of L, that the A′i and P ′i satisfy the inductive assumption (as there are at

least Ñ1(q, d, n−1) distinct A′i). Hence, the induction hypothesis implies that there is a polynomial
of degree d, PL=γ , such that PL=γ |A′i = P ′i |A′i for every i ∈ [K].

We are not done yet, as we may have a different polynomial for every γ ∈ Fq. So now we show that
by combining the different PL=γ we get a degree d polynomial P that is consistent with P1, ..., Pk.
Define

P (x) ,
∑
γ∈Fq

∏
α 6=γ

L(x)− α
γ − α

 · PL=γ(x) .

By construction, the degree of P is at most d + q − 1. It is easy to verify that for any γ ∈ Fq,
P agrees with PL=γ on BL,γ =

{
v ∈ Fnq | L(v) = γ

}
. As the hyperplanes {BL,γ}γ∈Fq cover all of

3We could have taken α, β ∈ F∗q , but we use this counting to also include the case that L is a shift of some Li.
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Fnq , it follows that for every i ∈ [K] and u ∈ Ai, P (u) = Pi(u). Indeed, if we let γ = L(u) then

Pi(u) =(∗) PL=γ(u) = P (u), where (*) holds since, by the induction hypothesis, Pi and PL=γ agree
on A′i = Ai ∩BL,γ .

We are still not done as we only showed that deg(P ) ≤ d+ q − 1. However, as

K ≥ Ñ1(q, d, n) = N1(q, d)/2 > N0(q, d+ q),

Corollary 4.10 implies that the degree of P is, in fact, at most d. This complete the proof of
Theorem 1.7 modulo the proof of Lemma 4.11 that we give next.

Proof of Lemma 4.11 As before, we let Li ∈ Affnq be an affine linear function such that
Ai =

{
u ∈ Fnq | Li(u) = 0

}
and denote L = {L1, . . . , LK}. Again we abuse notations and denote,

for L ∈ L, PL = Pi and AL = Ai when L = Li.

We will first use the assumption that n ≤ logq(N1(q, d)/2) + 3 and K ≥ Ñ1(q, d, n) = N1(q, d)/2 =

N0(q, d + q) · qλq,4 to show that the set L contains at least logq(N0(q, d + q)) lines in linearly
independent directions. Indeed, we can think of L as a set of points in Affnq which is an (n + 1)-
dimensional space over Fq. By our setting of parameters it follows that

|L|
|Affnq |

=
K

qn+1
≥ K

qlogq(N1(q,d)/2)+4
=

K

N1(q, d)/2
· q−4 ≥ q−4.

Thus, in order to apply Corollary 3.5 we just need to bound dim(Affnq ) from below. As we have K
different hyperplanes over Fnq it must be the case that logq(K) ≤ n+ 1. Therefore,

dim(Affnq ) = n+ 1 ≥ logq(K) ≥
⌊

d

q − q/p

⌋
+ 2 + λq,4 =

⌊
d+ q − q/p
q − q/p

⌋
+ 1 + λq,4.

Corollary 3.5 now implies that there are at least
⌊
d+q−q/p
q−q/p

⌋
+ 2 combinatorial lines inside L whose

directions are linearly independent. In particular, there are

t ≥
⌊
d+ q − q/p
q − q/p

⌋
+ 1 (2)

such lines that their direction is not a constant linear function. By applying an invertible linear
transformation, we can assume w.l.o.g. that those direction are the linear functions x1, ..., xt. I.e
we can assume that there exist t linear functions L1, ..., Lt such that for any i ∈ [t] and α ∈ Fq
the linear function Li − αxi belongs to L. Intuitively, the line whose direction is x1 is depicted in
Figure 1 on page 7.

We will use these lines to construct a polynomial P , of degree d, that is consistent with P1, ..., PK .

The construction of P is done in three steps. First we construct, for every i ∈ [t] and γ ∈ F∗q , a

polynomial Pxi=γ which is defined on the hyperplane Bxi,γ ,
{
v ∈ Fnq | vi = γ

}
and is consistent

with all the Pj ’s. In the second step we construct, for every i ∈ [t], a polynomial Pxi 6=0, over the
set ∪γ 6=0Bxi,γ =

{
v ∈ Fnq | vi 6= 0

}
, by a simple interpolation of

{
Pxi=γ | γ ∈ F∗q

}
. The last step

consists of combining the different {Pxi 6=0}i∈[t] to a single polynomial P .
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Step 1 Fix i ∈ [t] and γ ∈ F∗q . Denote

Pxi=γ ,
∑
β∈Fq

∏
α 6=β

Li − α
β − α

 · PLi−γ−1βxi .

Clearly, P is a polynomial of degree at most d+ q− 1. We now show that Pxi=γ is a polynomial of
degree at most d which is consistent with {P1, . . . , PK} on Bxi,γ . Fix j ∈ [K] and u ∈ Aj ∩ Bxi,γ .
In particular, ui = γ. Let β′ = Li(u). We have

Pxi=γ(u) =
∑
β∈Fq

∏
α 6=β

Li(u)− α
β − α

 · PLi−γ−1βxi(u) =
∑
β∈Fq

∏
α 6=β

β′ − α
β − α

 · PLi−γ−1βxi(u)

=

∏
α 6=β′

β′ − α
β′ − α

 · PLi−γ−1β′xi(u) = PLi−γ−1β′xi(u) =(∗) Pj(u) ,

where (∗) follows from the fact that

Li(u)− γ−1β′ui = Li(u)− γ−1β′γ = Li(u)− β′ = 0.

Indeed, this implies that u ∈ ALi(u)−γ−1β′xi and now (∗) follows as PLi−γ−1β′xi and Pj agree on
u ∈ Aj ∩ ALi−γ−1β′xi (recall that for any i ∈ [t] and α ∈ Fq the linear function Li − αxi belongs
to L). To conclude, Pxi=γ is a degree d+ q − 1 polynomial that agrees with degree d polynomials
on at least K > N0(q, d + q) flats. Corollary 4.10 now implies that deg(Pxi=γ) ≤ d on Bxi,γ . The
same argument also shows that {Pxi=γ}i∈[t],γ∈F∗q

are consistent with each other.

Step 2 Fix i ∈ [t]. Denote

Pxi 6=0 ,
∑
γ∈F∗q

 ∏
α∈F∗q\{γ}

xi − α
γ − α

 · Pxi=γ .
By construction, Pxi 6=0, is a polynomial of degree at most d + q − 2 (recall, α ∈ F∗q \ {γ}). It is
not hard to verify that Pxi 6=0 is consistent with P1, ..., Pk on the set

{
v ∈ Fnq | vi 6= 0

}
. Moreover,

{Pxi 6=0}ti=1 are consistent with each other. I.e, for every v = (v1, ..., vn) ∈ Fnq such that vi, vj 6= 0,
the polynomials Pxi 6=0 and Pxj 6=0 satisfy Pxi 6=0(v) = Pxj 6=0(v). Indeed, this follows immediately
from the consistency of {Pxi=γ}i∈[t],γ∈F∗q

among themselves.

Step 3 This step is slightly more involved than the first two steps. Intuitively, we will show
that if a monomial M appears in both Pxi 6=0 and Pxj 6=0 then it has the same coefficient in both.
Hence, we can construct a unique polynomial P as the sum of all monomials, with the appropriate
coefficients, that appear in any of the Pxi 6=0. While this is indeed the argument, for the proof we
will need to work with slightly less natural basis for the space of polynomials.
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For a degree 0 ≤ e ≤ q − 1 define

Me(xi) ,


1 e = 0

xei e 6= 0, q − 1

xq−1
i − 1 e = q − 1

.

Notice that M0(xi), . . . ,Mq−1(xi) form a basis to the space of polynomials in xi. For ē =
(e1, . . . , en), 0 ≤ e1, ..., en ≤ q − 1, define the ē-monomial4 Mē(x) to be

Mē(x) ,
n∏
i=1

Mei(xi) .

Clearly, deg(Mē) =
∑n

i=1 ei. We say that Mē is of full degree in xi if ei = q−1. As with the standard
basis, it is not hard to see that every f : Fnq → Fq has a unique representation as f(x) =

∑
cēMē(x),

where cē ∈ Fq. We will heavily rely on this simple fact in the rest of the proof. The next lemma
gives some motivation for working with this less ordinary basis.

Lemma 4.13. Let X be a set of variables. Denote SX =
{
v ∈ Fnq | ∀xi ∈ X : vi 6= 0

}
. Let g, h :

Fnq → Fq be two polynomials that agree on SX , namely, ∀v ∈ SX , g(v) = h(v). Then, the coefficient
of any ē-monomial M that is not of full degree in any xi ∈ X, is the same in both g and h.

Proof. Consider f = g−h. Clearly, f(v) = 0 for all v ∈ SX . We will show that when we represent f
in our basis we have that f =

∑
xi∈X(xq−1

i −1)fi. The lemma will immediately follow by uniqueness
of representation, as any monomial in f = g − h has full degree in some xi ∈ X.

The lemma follows from a standard counting argument. First, the number of functions that vanish
on SX is equal to the number of functions over Fnq \ SX which is

q|F
n
q \SX | = q|{v∈Fnq |∃xi∈X|vi=0}|.

Secondly, let us count the number of polynomials of the form∑
ē: ∃xi∈X s.t. ei=q−1

cēMē(x).

This number is equal to q|{ē|∃xi∈X, ei=q−1}|. Clearly,

#
{
v ∈ Fnq | ∃xi ∈ X, vi = 0

}
= # {ē ∈ {0, ...., q − 1}n | ∃xi ∈ X, ei = q − 1} .

Hence, the number of functions that vanish on SX is exactly as the number of polynomials of the
form

∑
ē:∃xi∈X,ei=q−1 cēMē(x). Furthermore, any such polynomial

∑
ē:∃xi∈X,ei=q−1 cēMē(x) vanishes

on SX . By uniqueness of representation it follows that any f that vanish on SX is a polynomial of
the form

∑
ē:∃xi∈X,ei=q−1 cēMē(x).

4We use ē-monomials to denote monomial in the new basis. Note, that in the standard basis, an ē-monomial may
have more than one monomial.
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We continue with the proof of Lemma 4.11. By uniqueness of representation, for any m ∈ [t],
Pxm 6=0 can be expressed as

Pxm 6=0(x) ,
∑
J⊆[t]

QmJ (x)
∏
i∈J

(xq−1
i − 1) ,

where, for any J ⊆ [t] and m ∈ [t], the polynomial QmJ contains only xi’s for i 6∈ J and is not of
full degree in any variable xi, i ∈ [t]. Moreover, we note that deg(QmJ ) ≤ deg(Pxm 6=0)− (q − 1)|J |.
Our next goal is showing QkJ = QmJ for any k,m ∈ [t] \ J .

Claim 4.14. For every k,m /∈ J it holds that QkJ = QmJ

Proof. Recall that Pxk 6=0 and Pxm 6=0 agree on
{
v ∈ Fnq | vk, vm 6= 0

}
. Lemma 4.13 implies that they

have the same coefficient for any ē-monomial which is not of full degree in neither xk nor xm. I.e∑
J⊆[t]\{k,m}

QkJ
∏
i∈J

(xq−1
i − 1) =

∑
J⊆[t]\{k,m}

QmJ
∏
i∈J

(xq−1
i − 1).

The result now follows from uniqueness of representation.

We continue with the proof of the main lemma. For every J ( [t] define QJ = QmJ , where m ∈ [t]\J
is arbitrary. By Claim 4.14, QJ is well define. Now we can define a polynomial P that is consistent
with {P1, . . . , PK} on all of Fnq .

P ,
∑
J([t]

QJ
∏
i∈J

(xq−1
i − 1).

We first show that deg(P ) ≤ d+q−2. Indeed, for J ( [t] let m ∈ [t]\J . Since QJ = QmJ , it follows
that

deg

(
QJ
∏
i∈J

(xq−1
i − 1)

)
= deg

(
QmJ

∏
i∈J

(xq−1
i − 1)

)
≤ deg(Pxm 6=0) ≤ d+ q − 2.

As this holds for every J ( [t] we get that deg(P ) ≤ d+ q−2. Later we will show that deg(P ) = d,
but first we show that P is consistent with the Pi’s.

Claim 4.15. Every k ∈ [K] and every u ∈ Ak satisfy P (u) = Pk(u).

Proof. We will first prove the claim when for some m ∈ [t], um 6= 0. For such u, uq−1
m − 1 = 0.

Therefore,

P (u) =
∑
J([t]

QJ
∏
i∈J

(uq−1
i − 1) =

∑
J⊆[t]\{m}

QJ
∏
i∈J

(uq−1
i − 1) =

∑
J⊆[t]\{m}

QmJ
∏
i∈J

(uq−1
i − 1)

=
∑
J⊆[t]

QmJ
∏
i∈J

(uq−1
i − 1) = Pxm 6=0(u) = Pk(u) ,

where in the last equality we used the consistency of Pxm 6=0 and Pk on Ak. It remains to show that
P (u) = Pk(u) for u such that (u1, ..., ut) = (0, ..., 0). Assume for a contradiction that this is not the
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case. I.e that there is v ∈ F[n]\[t]
q such that P (0, v) 6= Pk(0, v). Denote α = P (0, v) − Pk(0, v) 6= 0.

We have that

(P − Pk) (x, v) =

{
0 x 6= (0, ..., 0)

α x = (0, ..., 0)
.

Hence, as a polynomial in x1, . . . , xt,

(P − Pk) (x, v) = α
∏
i∈t

(
1− xq−1

i

)
.

Therefore,

deg(P − Pk)(x, v) = (q − 1)t ≥(∗) (q − 1) ·
(⌊

(d+ q)− q/p
q − q/p

⌋
+ 1

)
≥ (q − 1) ·

(
d

q − q/p
+ 1

)
≥ d+ q − 1,

where (∗) follows from Equation (2). On the other hand,

deg(P − Pk)(x, v) ≤ deg(P − Pk) ≤ max {deg(P ), deg(Pk)} ≤ d+ q − 2

which is a contradiction. We thus conclude that for every k ∈ [K] and u ∈ Ak, P (u) = Pk(u).

We finish the proof of Lemma 4.11 by the following observation. P is a polynomial of degree at
most d+ q− 2 that is equal to degree d polynomials on at least K > N0(q, d+ q) hyperplanes. So,
by Corollary 4.10, deg(P ) ≤ d as required.

4.6 Interpolating from Approximate Agreement

We use Theorem 1.7 to prove a version which applies to functions which are close to degree d
polynomials. Specifically, we consider a function f whose restriction on many hyperplanes is close
to some degree d polynomial, and show that such a function is close to a degree d polynomial. This
proof is essentially from [BKS+10]; we merely verify it extends to general q (using our bounds on
N1(q.d)). As a result, the description is terse and we skip the proof development.

Theorem 4.16. Let δ1 < 1
2q
−(1+(d/(q−1)) and K ≥ N1(q, d). If the function f : Fnq → Fq and

hyperplanes A1, . . . , AK are such that δd(f |Ai) ≤ δ1 for every i ∈ [K], then δd(f) ≤ 2δ1+4(q−1)/K.

Proof. We prove the theorem in four steps. Let Pi, defined on Ai, denote the polynomial (which,
by Lemma 3.2, is unique on Ai) of degree at most d that satisfies δ(f |Ai , Pi) ≤ δ1.

First, we claim that for every pair of hyperplanes Ai and Aj , we have Pi|Ai∩Aj = Pj |Ai∩Aj .
If Ai and Aj are parallel, then there is nothing to prove. Else note that |Ai ∩ Aj | = 1

q |Ai|
and so δ(f |Ai∩Aj , Pi|Ai∩Aj ) ≤ qδ1. Similarly, δ(f |Ai∩Aj , Pj |Ai∩Aj ) ≤ qδ1. We conclude that

δ(Pi|Ai∩Aj , Pj |Ai∩Aj ) ≤ 2qδ1 < q−d/(q−1). But since both Pi and Pj are degree d polynomials
on Ai ∩Aj , they must be identical if their distance is so small (by Lemma 3.2).
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Next, we use Theorem 1.7, to claim that there is a degree d polynomial Q that agrees with all the
given Pi’s. Specifically, we have Q|Ai = Pi|Ai for every i ∈ [K]. Note that to use Theorem 1.7, we
need K ≥ N1(q, d), which is true from our hypothesis.

The third claim we make is that there is a large fraction of points that are contained in a noticeable
fraction of the K hyperplanes. Specifically, if we say that x ∈ Fnq is bad if |{i ∈ [K] | x ∈
Ai}| ≤ K/(2q), then the probability that a uniformly chosen x ∈ Fnq is bad is at most τ =
4(q − 1)/K. To prove this claim, let x ∈ Fnq be chose uniformly at random and let Yi be the
indicator random variable that is 1 if x ∈ Ai and 0 otherwise. Note that we need to show that the
probability that

∑
i Yi ≤ K/(2q) is at most 4(q− 1)/K. Let Zi = Yi −Exp[Yi] = Yi − 1/q. Clearly,

Exp[Z2
i ] = Exp[Y 2

i ] − Exp[Yi]
2 = 1/q − 1/q2. Furthermore, the expectation of Yi · Yj ≤ 1/q2 (it is

zero if the hyperplanes are parallel and 1/q2 otherwise). Thus we have Exp[Zi · Zj ] ≤ 0, and so
Exp[(

∑
i∈[K] Zi)

2] ≤
∑

i Exp[Z2
i ] = K(q − 1)/q2. We thus conclude that

Pr

[∑
i

Yi ≤ K/(2q)

]
= Pr

[∑
i

Zi ≤ −K/(2q)

]

≤ Pr

[
(
∑
i

Zi)
2 ≥ K2/(2q)2

]

≤ 4q2

K2
· K(q − 1)

q2
≤ 4(q − 1)

K
.

Finally, we claim that δ(f,Q) can be bounded by τ + 2δ1. To see this, we consider the following
experiment: Pick x ∈ Fnq and i ∈ [K] uniformly and independently and consider the event that
“x ∈ Ai and f(x) 6= Pi(x)”. On the one hand we have this event happens with probability at
most δ1/q, since probability x ∈ Ai is exactly 1/q and Prx∈Ai [f(x) 6= Pi(x)] ≤ δ1. On the other
hand, this probability can also be seen to be at least (δ(f,Q)− τ)/(2q), since the probability that
x is not bad and satisfies f(x) 6= Q(x) is at least δ(f,Q) − τ and for every x that is not bad, the
probability that Ai 3 x for random i is at least 1/(2q). The upper bound δ(f,Q) ≤ 2δ1 + τ follows
immediately.

Putting the above claims together we get that if K ≥ N1(q, d) and δ1 < 1
2q
−(1+d/(q−1)), then

δd(f) ≤ 2δ1 + 4(q − 1)/K.

5 Analysis of the low-degree tests

Lemma 5.1. Let t ≥ d/(q−1) be an integer. Then, if δd(f) ≤ 1
2q
−d/(q−1) then ρd(f, t) ≥ min{ 1

4q ,
1
2 ·

qt · δd(f)}.

Proof. We will use the monotonicity of the rejection probability ρd(f, ·) (Lemma 4.5) and give a
lower bound on the rejection probability ρd(f, `) for some ` ≤ t.

Let δ = δd(f) and let g be a polynomial of degree at most d satisfying δ(f, g) = δ.

For every integer `, d/(q − 1) ≤ ` ≤ t, we claim that the probability that on a randomly chosen `-
dimensional affine subspace A, f |A and g|A disagree on exactly one point is at least q` ·δ ·(1−(q`−1)·
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δ). Indeed, the argument is quite routine so we only sketch it. Let x be a point on the `-dimensional
flat A. Consider the event that f(x) 6= g(x) but f(y) = g(y) for any other y ∈ A. Clearly its
probability is at least Pr[f(x) 6= g(x)]−

∑
y∈A,y 6=x Pr[f(y) 6= g(y) and f(x) 6= g(x)] = δ−(q`−1)δ2,

where we have used the fact that the points in A are pairwise independent. Thus, taking the union
bound over all x ∈ A we get that the probability that f and g disagree in exactly one point is at
least q` · δ · (1− (q` − 1) · δ).

The fact above allows us to analyze ρd(f, `) as follows: Since the `-dimensional test rejects whenever
it picks an A where f |A and g|A disagree on exactly one point, we conclude that ρd(f, `) ≥ q` · δ ·
(1− (q` − 1) · δ).

Now if δ ≤ 1
2q
−t, then we immediately get ρd(f, t) ≥ 1

2 · q
t · δ. Else, let ` be the largest integer such

that δ ≤ 1
2q
−` (and so δ > 1

2q q
−`). We then get ρd(f, t) ≥ ρd(f, `) ≥(∗) 1

2 · q
` · δ > 1

4q as desired,
where (∗) follows by the previous argument.

Lemma 5.2. For every q, there exists ε > 0 and c such that for every d, t ≥ tq,d + c and n, the
following hold: Let f : Fnq → Fq be a function with δd(f) ≥ q−t. Then ρd(f, t) ≥ ε+ 1

8q
t ·
∑∞

i=n+1 q
−i.

Proof. We prove the lemma for ε = 1
32q and c = logqN1(q, d)−tq,d+logq 128. Recall by Theorem 1.7

that

N1(q, d) = 2N0(q, d+ q) · qλq,4 = 2q

⌊
d

q−q/p

⌋
+2+λq,4 ≥ 2qtq,d+1+λq,4 ,

where λq,4 is defined in Theorem 3.4, and so c is indeed bounded independent of d.

The proof is by induction on n. For the base case, we use n = t. In this case note that ρd(f, t) = 1
and

∑∞
i=t+1 q

−i = q−t/(q−1) and so 1
8 · q

t ·
∑∞

i=t+1 q
−i < 1

2 and so the lemma holds for every ε ≤ 1
2 .

We now move to the inductive case. Let A1, . . . , AK be all the distinct hyperplanes for which
δd(f |Ai) < q−t. If K is small, then we are easily done by induction since ρd(f, t) = ExpA[ρd(f |A, t)]
and the inductive hypothesis says that ρd(f |A, t) is usually large. When K is large, we use Theo-
rem 4.16 to show that δd(f) is small, and this allows us to use Lemma 5.1 to claim ρd(f, t) is large
in this case also. Details below.

Case 1: K < 1
8q
t. For a hyperplane A such that δd(f |A) ≥ q−t we have, by the induction

hypothesis, ρd(f |A, t) ≥ ε + 1
8q
t
∑∞

i=n q
−i. Using the fact that the number of hyperplanes in Fnq is

at least qn, we get that PrA[δd(f |A) < q−t] ≤ 1
8q
t/qn. Combining the two we get

ρd(f, t) = ExpA(ρd(f |A, t))

≥ ε+
1

8
qt
∞∑
i=n

q−i − 1

8
qt/qn

= ε+
1

8
qt

∞∑
i=n+1

q−i

as desired.

Case 2: K ≥ 1
8q
t. Note that

K ≥ 1

8
qt ≥ 1

8
qtq,d+c =

1

8
qlogq N1(q,d)+logq 128 > N1(q, d).
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We thus have by Theorem 4.16, δd(f) ≤ 2q−t + 4(q − 1)/K. Using 2q−t ≤ 1
4q
−d/(q−1) and 4(q −

1)/K ≤ 32·q−t+1 ≤ 1
4q
−d/(q−1) (by our choice of t ≥ logqN1(q, d)+logq 128 ≥ d/(q−1)+logq 128+1)

we conclude in this case that δd(f) ≤ 1
2q
−d/(q−1). This allows us to use Lemma 5.1 in this case and

conclude that ρd(f) ≥ min{ 1
4q ,

1
2 · q

t · δd(f)}. It now follows from the choice of parameters that
1
4q ≥ ε+ 1

8q
t
∑∞

i=n+1 q
−i and 1

2 · q
t · δd(f) ≥ 1

2 ≥ ε+ 1
8q
t
∑∞

i=n+1 q
−i.

We now give the proof of our main theorem.

Proof of Theorem 1.3 We analyze two cases depending on δd(f).

1. δd(f) ≤ 1
2q
−d/(q−1): Since tq,d = d(d+ 1)/(q− q/p)e ≥ d/(q− 1) we get from Lemma 5.1 that

ρd(f, tq,d) ≥ min{ 1
4q ,

1
2 · q

tq,d · δd(f)}.

2. δd(f) > 1
2q
−d/(q−1): In this case we can apply Lemma 5.2 and conclude that there exists

constants c, ε > 0 such that for t = tq,d + c it holds that ρd(f, t) ≥ ε + 1
8q
t ·
∑∞

i=n+1 q
−i > ε.

Applying Lemma 4.7 we obtain that

ρd(f, tq,d) ≥ ρd(f, t) · q−(t−tq,d) ≥ ε · q−c.

Set ε1 = 1/2 and ε2 = min{ 1
4q , ε · q

−c}. Note that, by Lemma 5.2, ε2 depends only on q. Combining
the two cases we conclude that

ρd(f, tq,d) ≥ min{ε2, ε1 · qtq,d · δd(f)}

as claimed.
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