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Abstract

We show that two complexity classes introduced about two decades ago are equal.
ReachUL is the class of problems decided by nondeterministic log-space machines which
on every input have at most one computation path from the start configuration to any
other configuration. ReachFewlL, a natural generalization of ReachUL, is the class of prob-
lems decided by nondeterministic log-space machines which on every input have at most
polynomially many computation paths from the start configuration to any other configu-
ration. We show that ReachFewlL = ReachUL.

1 Introduction

A nondeterministic machine is said to be unambiguous if for every input there is at most
one accepting computation. UL is the class of problems decided by unambiguous log-space
nondeterministic machines. Is this restricted version of log-space nondeterminism powerful
enough to capture general log-space nondeterminism (the complexity class NL)? Recent
research gives ample evidence to believe that the conjucture NL = UL is true [ARZ99, RA02,
BTV09,TW09]. However, researchers are yet to find a proof of this equality.

This paper considers a restricted version of log-space unambiguity called reach-unambiguity.
A nondeterministic machine is reach-unambiguous if, for any input and for any configuration
¢, there is at most one path from the start configuration to c¢. (The prefix ‘reach’ in the
term indicates that the property should hold for all configurations reachable from the start
configuration). ReachUL is the class of languages that are decided by log-space bounded
reach-unambiguous machines [BJLRI1].

ReachUL is a natural and interesting subclass of UL. As defined, ReachUL is a ‘se-
mantic’ class. However, unlike most other semantic classes, ReachUL has a complete prob-
lem [Lan97]. In particular, Lange showed that the directed graph reachability problem as-
sociated with reach-unambiguous computations is ReachUL-complete. Subsequently Allender
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and Lange showed that this reachability problem can be solved deterministically in space
O(log? n/loglogn) which is asymptotically better than the Savitch’s O(log? n) bound for the
general reachability problem [AL98|. ReachUL is also known to be closed under complement.

The notion of fewness is a natural generalization of unambiguity that is of interest to
researchers [BJLRQl,BDHM92,AJ93,BH893,A1106,PTV10]. Since an unrestricted log-space
nondeterministic machine can have exponential number of accepting computations, few here
means polynomially many. FewL is the class of problems decided by nondeterministic log-space
machines which on any input have at most polynomial number of accepting computations.
Thus FewlL extends the class UL in a natural way. The analogus extension of ReachUL is
the class ReachFewl — the class of problems decided by nondeterministic log-space machines
which on any input have at most polynomial number of computation paths from the start
configuration to any configuration (not just the accepting configuration). Can fewness be
simulated by unambiguity? In particular, is FewL = UL? This is an interesting open question
and a solution is likely to have implications on the NL versus UL question.

In this paper we show that for reach-unambiguity, it is indeed the case that fewness does
not add any power to unambiguity for log-space computations.

Theorem 1 (Main Theorem). ReachFewlL = ReachUL

This theorem improves a recent upper bound that ReachFewL C UL N coUL shown in
[PTV10]. We combine several existing techniques to prove our main result. In Section 2, we
prove certain necessary results to prove the Theorem 1. In Section 3, we prove Theorem 1.

2 Definitions and Necessary Results

We begin by defining graph properties which characterize the configuration graphs of reach-
unambiguous computations. Given a Turing machine M and an input x of M, let Gy,
denote the configuration graph of M on z. Let M (z) denote the computation of M on x.

Definition 1. Let G be a graph, s be a vertex in G and k be an integer. We say that G is
k-reach-unambiguous with respect to s if for all vertices z € V(G), there are at most k paths
from s to x. If k =1, we say GG is reach-unambiguous with respect to s.

Definition 2. A language L is in ReachUL if L is accepted by a nondeterministic log-space
Turing machine M such that, on any input x, G, is reach-unambiguous with respect to the
start configuration.

Definition 3. A language L is in ReachFewl if L is accepted by a nondeterministic log-
space Turing machine M such that, for some polynomial ¢ and for any input =, G, is
q(|z|)-reach-unambiguous with respect to the start configuration.

We now state certain critical properties of ReachUL that we use in the proof of Theorem 1.
Lange proved that the associated graph reachability problem is complete for ReachUL [Lan97].
Define,

L., = {(G,s,t)| G is a directed graph, there is a path from s to ¢,

G is reach-unambiguous with respect to s}.



Theorem 2 ([Lan97]). L, is complete for ReachUL.

The difficult part in the completeness proof is to show that L,, is in ReachUL. Lange
designed a clever ReachUL-algorithm that checks whether a graph is reach-unambiguous with
respect to the start vertex.

We also need the fact that ReachUL is closed under complement [BJLRI1].

Proposition 3 ([BJLRI1]). ReachUL is closed under complement.

2.1 ReachUL as an Oracle

We first show that a log-space algorithm that queries a ReachUL language can be simulated
in ReachUL. Given the fact that ReachUL is closed under complement, this is easy to prove.
We give a sketch of the proof here.

Lemma 4. LReachUL — ReachUL

Proof. The containment ReachUL C LReachUL i immediate. Let L be a language in LReachUL

decided by a log-space oracle Turing machine M with access to a ReachUL oracle O. Since
ReachUL is closed under complement, we can assume without loss of generality that O is
accepted by a reach-unambiguous Turing machine N (a Turing machine whose configuration
graph on any input is reach-unambiguous) with three types of halting configurations: ‘accept’,
‘reject’, and ‘7" so that for any input y (1) if y € O then there is a unique computation
path that leads to an ‘accept’ configuration and all other computation paths lead to a ‘7’
configuration and (2) if y € O then there is a unique computation path that leads to a ‘reject’
configuration and all other computation paths lead to a ‘?’ configuration. Moreover, since
O € ReachUL, on any input, there is at most one path from the start configuration to any
other configuration of N.

Consider the nondeterministic machine M’ which on an input z, simulates M (z) until a
query configuration is reached with a query, say y. At this point M’ will save the current
configuration of M and simulate N(y) until it halts. If N(y) accepts y, then M’ continues
with the simulation of M with YES as the answer to the query y; if N(y) rejects y, then M’
continues with the simulation of M with NO as the answer the query y; and if N(y) reaches
a ‘?” halting configuration then, M’ rejects the computation and halts. Finally M’ accepts x
if and only if M accepts x.

It is straightforward to verify that M’(z) accepts if and only if M (z) accepts and Gy,
is reach-unambiguous with respect to the start configuration. O

2.2 Converting Graphs with a Few Paths to Distance Isolated Graphs

Definition 4. Let G be a graph on n vertices and s be a vertex of G. We say that G is
distance isolated with respect to s, if for every vertex v € V(G) and weight d € {1,...,n},
there is at most one path of weight d from s to v.

It is straight forward to extend this definition to graphs with positive integer weights on
its edges. We use the well known hashing result due to Fredman, Komlés and Szemerédi to
convert a graph with polynomially many paths to a distance isolated graph.

Theorem 5 ([FKS84]). For every constant ¢ there is a constant ¢ so that for every set S of
n-bit integers with |S| < n® there is a ¢ logn-bit prime number p so that for any x #y € S
x Zy (mod p).



The next lemma follows easily from Theorem 5.

Lemma 6. Let G be a graph on n vertices and s be a vertex of G. Let E(G) = {ey,ea,... ¢4}
be the set of edges of G. Let q be a polynomial. If G is q(n)-reach-unambiguous with respect
to s, then there is a prime p < nF, for some constant k, such that the weight function
wy, : B(G) = {1,...,p} given by wy(e;) = 2° (mod p) defines a weighted graph Gy, which is
distance isolated with respect to s.

The graph Gy, in Lemma 6 can be converted to an unweighted, distance isolated graph
by replacing an edge having weight ¢ by a path of length £.

2.3 Converting Distance Isolated Graphs to Unambiguous Graphs

Given a distance isolated graph, we can form a reach-unambiguous graph by applying a
standard layering transformation.

Definition 5. Let G be a directed graph on n vertices. The layered graph lay(G) induced
by G is the graph on vertices V(G) x {0,1,...,n} and for all edges (z,y) of G and i €
{0,1,...,n — 1}, the edge (z,i) = (y,7+ 1) is in lay(G).

Lemma 7. If G is an acyclic and distance isolated graph with respect to a verter s, then
lay(QG) is reach-unambiguous with respect to (s,0), and there is a path of length d from s to
v in G if and only if there is a path from (s,0) to (v,d) in lay(G).

Proof. Since all edges in lay(G) pass between consecutive layers, paths of length d from s to
v in G are in bijective correspondence with paths from (s,0) to (v,d) in lay(G). Since there
exists at most one path of each length from s to any vertex v in G, there exists at most one
path from (u,0) to any other vertex (v,d) in lay(G). O

3 ReachFewlL = ReachUL

We have sufficient tools to prove Theorem 1.
Theorem 8. ReachFewlL C ReachUL.

Proof. Let L be a language in ReachFewL. Then there is a constant ¢ and a nondeterministic
log-space machine M deciding L, so that G/, has at most n® paths from the start configura-
tion to any other configuration. Let s be the vertex corresponding to the start configuration
and t be the vertex corresponding to the accepting configuration (without loss of generality
we can assume that there is a single accepting configuration for a ReachFewlL computation)
in G- We need to decide whether there is a path from s to ¢.

The algorithm ReachFewSearch(G, s, t) given in Algorithm 1 is a log-space algorithm that
queries the ReachUL complete languages L, defined in Section 2 and decides whether there
is a path from s to ¢. This gives the inclusion ReachFewlL C LReachUL Gipce |ReachUL oqyuals
ReachUL by Lemma 4, the theorem follows. For the constant ¢, let ¢ be the constant given
by Theorem 5.

We say that a prime p is good if G, is distance isolated. By Lemma 6, there exists a good
prime p € {1,...,n¢}. For this good prime, lay(G.w,) is reach-unambiguous with respect to
(s,0) by Lemma 7. Moreover, there is a path from s to ¢ in G, if and only if there is a d such



Input: (G, s,t) such that G has at most n° paths from s to any other vertex.
Output: If there is a path from s to ¢ in G output True, else output False.
foreach p € {1, ..., nc/} such that p is a prime do

Define wy(e;) = 2" (mod p);

Construct Gu,;

Construct lay(Gu,);

foreach d € {1,...,n(Gy,)} do
‘ if (lay(Guw,), (5,0),(t,d)) € Ly, then return True;

end

return False;
end

return False;

Algorithm 1: ReachFewSearch(G, s, t)

that there is a path from (s, 0) to (¢,d). So for this good prime (lay(Guw,), (s,0), (t,d)) € Ly,
and the algorithm accepts. Note that for a prime p that is not good, lay(Gy,) will not be
reach-unambiguous and (lay(Guw,), (s,0), (t,d)) & Ly, for any d.

O

4 Discussion

Allender and Lange showed that ReachUL € DSPACE(log? n/ loglogn) [AL9S]. Tt is not clear
how to directly extend this upper bound to ReachFewlL. However our main result implies the
same upper bound for the reachability problem associated with ReachFewlL.

Corollary 9. The s-t reachability problem over graphs with a promise that there are at most
polynomially many paths from s to any other vertexr can be solved in deterministic space
O(log®n/ loglogn).

Can we show that FewL = UL? Reinhardt and Allender [RA02] showed that the reacha-
bility problem for graphs where there is a unique minimum length path from the source to any
other vertex can be solved in UL. Given the configuration graph G of a FewL computation,
the hashing lemma implies that there exists a small prime p so that in Gy, all the paths
from the start configuration to the accepting configuration will be of distinct weights. This
implies that G, have a unique minimum length path between this pairs of configurations.
However, the UL algorithm mentioned above requires that the input graph has a unique min-
imum length path from the start vertex to any other vertex; not just the terminating vertex.
Managing this gap appears to be a serious technical difficulty for showing FewlL=UL.
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