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Abstract

We study the communication complexity of evaluating functions when the input data is randomly allo-
cated (according to some known distribution) amongst two or more players, possibly with information
overlap. This naturally extends previously studied variable partition models such as the best-case and
worst-case partition models [34, 37]. We aim to understand whether the hardness of a communication
problem holds for almost every allocation of the input, as opposed to holding for perhaps just a few
atypical partitions.

A key application is to the heavily studied data stream model. There is a strong connection between
our communication lower bounds and lower bounds in the data stream model that are “robust” to the
ordering of the data. That is, we prove lower bounds for when the order of the items in the stream is
chosen not adversarially but rather uniformly (or near-uniformly) from the set of all permutations. This
random-order data stream model has attracted recent interest, since lower bounds here give stronger
evidence for the inherent hardness of streaming problems.

Our results include the first random-partition communication lower bounds for problems including
multi-party set disjointness and gap-Hamming-distance. Both are tight. We also extend and improve
previous results [8, 24] for a form of pointer jumping that is relevant to the problem of selection (in
particular, median finding). Collectively, these results yield lower bounds for a variety of problems in the
random-order data stream model, including estimating the number of distinct elements, approximating
frequency moments, and quantile estimation.
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1 Introduction

Since its introduction in 1979 by Yao, communication complexity [33, 43] has proven to be a powerful
technique for proving lower bounds in a variety of settings, including the cell-probe and data stream models,
circuit and decision tree complexity and VLSI design. The majority of results in this area involve a fixed-
partition model of communication complexity, where the goal is for two or more players to evaluate a
function of an input that has been partitioned between them in a particular way, e.g., computing f (x,y)
when one player holds x and the other has y. Many functions can be shown to require a large amount of
communication to evaluate when the input is partitioned between the players in this manner. These can
imply lower bounds for various models of computation, via arguments that such partitions necessarily arise
in the course of the computation.

To a lesser extent, variable-partition models, such as best-case and worst-case partition, have also been
studied: see, e.g., [2, 34, 37] and [33, Chap. 7] for a survey. For example, understanding the best-case
partition complexity, where the data is partitioned in the most advantageous manner (subject to constraints
such as each player receiving an equal amount of the input), is important for understanding various problems
in VSLI design [2]. Another kind of worst-case partition arises when the corresponding bits of two equal-
length input strings are written on opposite sides of opaque cards (the “two-sided card model” [14, 38]).
However, a natural question that, to the best of our knowledge, has not been explored to date, is what
happens when the input is partitioned amongst the players at random. In other words, does evaluating
a given function require significant communication for only a few pathological partitions or does such a
requirement apply to an overwhelming fraction of all partitions?

In this paper we initiate a study of communication complexity under random partitions of the input. In
fact, we consider more general allocations of the input to the players, possibly allowing information overlap,
where bits of data may be known to more than one player. A particularly interesting case is when each token
of data is given to a player chosen uniformly at random; this provides a convenient way to count “bad”
partitions. We consider a communication lower bound to be robust if it applies to all but a small fraction of
possible partitions. One can think of our work as a form of average-case analysis. However, it is important to
note that our work stands in contrast to the usual notion of distributional complexity: rather than considering
a random input, we consider worst-case inputs allocated randomly amongst the players.

Data Stream Computation: A strong motivation for our study is the goal of proving robust lower bounds
for problems in the data stream model. The data stream model has enjoyed significant attention in recent
years owing to some influential work in the late 1990s [3, 16, 27]. Study of this model has thrived both
because of the rich theoretical questions it raises and its applicability to numerous real world applications
such as network monitoring and query planning in databases. Consequently, it is important to understand the
complexity of problems not just in worst-case but also in “average-case” settings. To this end we prove lower
bounds in the setting that the ordering of tokens in the data stream is chosen not adversarially but randomly,
from the set of all permutations. Arguably, such a lower bound provides a stronger indication that a problem
cannot be solved efficiently in the data stream model than a “fragile” lower bound that might depend on a
clever adversarial ordering. (For further, more detailed, justification see the recent papers [8, 24]).

Random-order data streams were considered by Munro and Paterson [36] in one of the first studies of
the data stream model. In recent years there has a been a resurgence of interest in this model for a variety
of reasons [8, 13, 23–25, 42]. Uniform or near-uniform orderings can arise in a number of ways, such as
when processing a stream of samples that are drawn independently from a non-time-varying distribution.
For problems such as quantile estimation and finding frequent items it has been shown that there is a consid-
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erable difference between processing random-order stream and adversarial streams. In particular, streaming
algorithms to find the median using polylog space require exponentially fewer passes if the stream is ordered
randomly [8, 24].

In this paper, we use robust lower bounds on communication complexity in order to deduce robust data
stream lower bounds. Once the communication bounds have been shown, the data stream bounds follow
by simple reductions to appropriate instances of communication. Where such bounds were known before,
our method yields much cleaner proofs and tighter bounds. It also yields a number of new bounds for
random-order data streams.

Our Results and Overview: We begin in Section 2 with a formal definition of our model and introduce
some techniques and terminology. We prove the following results:

• Multi-Party Set Disjointess: We consider the problem of t-party set disjointness where each entry of
the relevant t×n matrix is given to one of p players chosen uniformly at random. If p = Ω(t2) then
we show that any randomized protocol requires Ω(n/t) communication. See Section 3.

• Pointer Jumping and Selection: We consider a natural variant of tree pointer jumping, called weight-
based tree pointer jumping, that is related to the problem of selection. In this problem, instead of an
explicit pointer at each node, we have a binary string at each node whose weight encodes the pointer.
We consider t-ary trees of depth p+1 and show that if the bits of these strings are distributed uniformly
between multiple players, we require about Ω(n(2+ε)−p

) bits of communication for a p-round protocol.
See Section 4.

• Hamming Distance and Index: For x,y∈ {0,1}n, let ∆(x,y) := {i∈ [n] : xi 6= yi} denote the Hamming
distance between x and y. We show that, for some constant c, any one-way protocol that can distin-
guish between the cases ∆(x,y)≤ n/2− c

√
n and ∆(x,y)≥ n/2+ c

√
n requires Ω(n) communication

if the 2n input bits are split uniformly between two players. We also show that a one-way protocol for
the index problem — INDEX(x, j) := x j, with x ∈ {0,1}n, j ∈ [n] — requires Ω(n) communication if
the n+1 tokens ( j being a single token) are split uniformly between two players. See Section 5.

The above communication lower bounds lead to a wide variety of lower bounds for data stream problems
in the random-order model. In Section 6, we deduce such bounds, many of which are tight, for approxi-
mating frequency moments, the number of distinct values, entropy, information divergences, selection, and
graph connectivity. Two of these bounds deserve particular emphasis. For the kth frequency moment, we
obtain a robust lower bound of Ω(n1−3/k), which comes close to the optimal Ω(n1−2/k) bound under adver-
sarial ordering. For the problem of median finding, our framework greatly simplifies the proof of a recent
Ω(log logn) lower bound [8] on the number of passes required to achieve polylogarithmic space. Further,
our pass-space tradeoff for this problem greatly improves the results of [8]: for instance, with two passes,
we obtain a space lower bound of Ω(n1/10) as opposed to their Ω(n3/80).

Subsequent Developments: While our results for the Multi-Party Set Disjointess problem are in a sense
tight, the lower bound for estimating the kth frequency moment of a randomly ordered stream has been
improved since the preliminary announcement of our results in STOC 2008. Andoni et al. [4] showed an
Ω(n1−2.5/k) lower bound and this was improved to Ω(n1−2/k) by Guha and Huang [21].
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2 Notation and Preliminaries

We summarize some notation that we need repeatedly. We use “log” and “ln” to denote base-2 and natural
logarithms, respectively. Define the weight |x| of a Boolean vector x ∈ {0,1}N to be |{i : xi = 1}|. Let ei

denote the vector that is 1 at location i and 0 elsewhere. For random variables X and Y : E[X ] denotes the
expectation and H(X) the entropy of X , H(X | Y ) the conditional entropy of X given Y and I(X : Y ) the
mutual information between X and Y . We use some basic results from information theory at certain points
in this paper; the textbook by Cover and Thomas [12] is a good reference for all such results. We write
X ∼ µ to indicate that X is drawn from the probability distribution µ , and X ≡ Y to indicate that X and Y
have the same distribution. We denote the product of the distributions µ and ν by µ⊗ν .

There are a large number of natural notions of “distance” between two probability distributions µ and ν .
In this paper, we use three of them: the total variation distance DTV (µ,ν) = 1

2‖µ−ν‖1, the Hellinger dis-
tance h(µ,ν) = 1√

2
‖√µ−

√
ν‖2, where “

√
·” denotes the pointwise positive square root, and the Kullback-

Leibler divergence DKL(µ‖ν), which is also known as relative entropy. Unlike the first two of these “dis-
tances,” the third is not a metric.

The Binomial distribution with parameters n (number of trials) and p (success probability) is denoted
B(n, p). The notation X ∈R S indicates that X is chosen uniformly at random from the set S. For an integer
k,
(S

k

)
denotes the set of all k-subsets of S and 2S denotes the power set of S. We say that Q′ is an (ε,δ )-

approximation for Q if Pr[|Q′−Q|> εQ]≤ δ .

2.1 The Communication Model

Traditionally, a two-party communication problem (between Alice and Bob, say) is formalised as a func-
tion, or partial function, on a domain of the form X ×Y , where the finite set X (resp. Y ) is the set of Alice’s
(resp. Bob’s) possible inputs. For our purposes, it is helpful to think of the input domain represented differ-
ently. We shall think of an input as an m-tuple of tokens, where the tokens are given to the players according
to a random allocation drawn from a known distribution. Thus, it will help to represent the input domain as
X1×X2×·· ·×Xm, where Xi is the set of possible values for the ith token. Typically, each Xi will be either
the set {0,1} or the set [N] := {1,2, . . . ,N}, for some positive integer N. An allocation amongst p players is
then a function σ : [m]→ 2[p].

A natural and interesting special case of an allocation is a split, where each token is given to exactly
one player selected at random from amongst all players. It will be convenient to think of splits as functions
σ : [m]→ [p]. A further special case is that of a uniform split, where each token is equally likely to go to
each of the players: we let Up denote the probability distribution of a uniform split amongst p players.

Definition 2.1 (Communication Problems and Protocols). A random-allocation communication problem
for p players consists of a function f : X1× ·· · ×Xm → Z and a probability distribution ν on allocations
σ : [m]→ 2[p]. A traditional communication problem is a special case, where ν is supported on a single
allocation (that is typically a split). Protocols, unless explicitly qualified otherwise, are assumed to be
randomized, with the players having access to private as well as public coins. (For a formal definition of a
“protocol,” we refer the reader to a standard textbook, such as Kushilevitz and Nisan [33].) For a random-
allocation protocol P, let P(x,σ) denote the (possibly random) transcript of P, and out(P,x,σ) the output of
P, on input x allocated according to σ . For a traditional protocol, where σ has only one possible value, we
drop σ from these notations.
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Definition 2.2 (Error, Cost, Complexity). Let P be a protocol for a random-allocation communication prob-
lem ( f ,ν). We define the error

err(P, f ,ν) := max
x

Pr[out(P,x,S) 6= f (x)] ,

where the probability is taken over S ∼ ν and the (public and private) coins used by the protocol. If µ is a
distribution on the inputs to f , we define the distributional error

errµ(P, f ,ν) := Pr[out(P,X ,S) 6= f (X)] ,

where X ∼ µ and S ∼ ν . Let cost(P) := maxx,σ |P(x,σ)| denote the communication cost of P. We define
the δ -error communication complexity of ( f ,ν) to be

Rδ ( f ,ν) := min{cost(P) : err(P, f ,ν)≤ δ}

and the δ -error µ-distributional complexity to be

Rµ,δ ( f ,ν) := min{cost(P) : errµ(P, f ,ν)≤ δ} .

Let R→ and Rk denote the restrictions of these notions to one-way and k-round protocols, respectively (the
notion of a “round” will be made precise later, when we use it). For traditional communication problems,
we drop ν from these notations.

Informally, a communication lower bound is robust if it applies to Rδ ( f ,ν) or Rµ,δ ( f ,ν) for some
high-entropy distribution ν , such as the aforementioned Up.

2.2 Technique Preliminaries

In this section we introduce some of the main techniques that we use to establish our results. These are all
based on considering random input in addition to random splits.

The notion of information complexity has been used on many occasions in the study of communication
protocols [6, 9, 11, 30]. Loosely speaking, information complexity is used to establish a direct sum result,
which reduces the problem of lower bounding the complexity of a “compound” problem (here, disjointness)
to that of lower bounding the complexity of a simpler “base” problem (here, the AND function). The direct
sum result follows from a simulation argument, where we design a protocol for the base problem that
randomly pads its input to generate an artificial input for the compound problem and then simulates a
protocol for the compound problem. Here, for our robust lower bounds for set disjointness, we need to
extend the methods of Bar-Yossef et al. [6] to handle public coin protocols. This is a subtle matter: we
must condition on the public coin to have a meaningful notion of information complexity. At the same time,
we must be careful about how the public coin is used in the simulation argument, ensuring that we do not
introduce undesirable correlations in the random padding.

Definition 2.3 (Information cost and complexity). For a traditional private coin protocol P and a distribution
µ on its inputs, we define

icostµ(P) := I(X : P(X)) , where X ∼ µ .

If D is a random variable (possibly correlated with X), we define the D-conditional µ-information cost

icostµ(P | D) := I(X : P(X) | D) .

5



We extend these notions to public coin protocols thus: if PR is a public coin protocol that uses a public
random string R, we define

icostpub
µ (PR) := I(X : PR(X) | R) , and

icostpub
µ (PR | D) := I(X : PR(X) | D,R) , where X ∼ µ .

For each information cost measure above, we define a corresponding information complexity measure in the
natural way, e.g., for a communication problem f ,

ICµ,δ ( f ) := inf{icostµ(P) : err(P, f )≤ δ} .

We write ICpub for the information complexity of public coin protocols.

We also consider random inputs X ∼ µ in another setting. Some of our lower bounds will use a reduction
from a communication problem in the fixed-partition model to one where the partition σ ∼ ν . In these
reductions, the players choose σ using public random bits, but then distributing the input tokens according to
σ would seem to necessitate communicating a large fraction of the data and this would render the reduction
useless. The solution is to use distributional lower bounds on fixed-partition problems. This suggests that
the players may “guess” data that they do not know. Unfortunately, the issue that arises is that this guessing
may be correlated to the distribution of σ . However, the following lemma connects us back to the “usual”
situation, when inputs and allocations are independent of each other, provided this correlation is sufficiently
weak.

Lemma 2.4. If a protocol P satisfies Pr(x,σ)∼ξ [out(P,x,σ) 6= f (x)]≤ δ , for some joint distribution ξ , then

errµ(P, f ,ν) ≤ δ +DTV (µ⊗ν ,ξ ) .

Proof. Simply observe that

errµ(P, f ,ν) = Pr
x∼µ,σ∼ν

[out(P,x,σ) 6= f (x)] ≤ Pr
(x,σ)∼ξ

[out(P,x,σ) 6= f (x)]+DTV (µ⊗ν ,ξ ) .

2.3 Preliminary Lemmas

We collect together a couple of basic results that we appeal to at various points in the paper. The first result
is a sharp lower bound on the communication complexity of the INDEX problem. In this problem, Alice
holds a string x ∈ {0,1}n and Bob holds j ∈ [n]. The goal is for Bob to learn x j. See, e.g., Ablayev [1] for a
proof of the following fact.

Fact 2.5. Let n > 0 be an integer and δ ∈ (0, 1
2) be a real number. Then Rpub,→(INDEX) ≥ (1−Hb(δ ))n,

where Hb(x) :=−x logx− (1− x) log(1− x) is the binary entropy function.

The second result upper bounds the total variation distance between binomial distributions with similar
parameters. The proof of this lemma is presented in Appendix A.

Lemma 2.6. For all q ∈ [1/2,1), there exist constants c1,c2 > 0 such that, for a ∈ N sufficiently large and
any w ∈ [a],

DTV (B(a,q),B(a−w,q)) ≤ c1w

√
lna

(1−q)a
,

and for q = 1/2+δ ,
DTV (B(a,1/2),B(a,q)) ≤ c2δ

2a .

6



3 Multi-Party Set Disjointness

Let DISJn,t : {0,1}nt → {0,1} denote the following problem. The input is an (nt)-tuple of bits denoted
{xi j}i∈[t], j∈[n], to be thought of as the entries of a t×n Boolean matrix. The input satisfies a unique intersec-
tion promise, namely, each column of the matrix has weight in {0,1, t} and at most one column has weight
t. The desired output is

∨n
j=1
∧t

i=1 xi j. Gronemeier [20] culminated a line of work [3, 6, 9] on this problem,
showing that Rδ (DISJn,t) = Ω(n/t) under a t-player split where each player receives one row of the matrix.

Let ANDt : {0,1}t →{0,1} be shorthand for DISJ1,t . That is, the input is a t-tuple of bits x = (x1, . . . ,xt)
that satisfies the promise |x| ∈ {0,1, t}. The desired output is

∧t
i=1 xi. Let D ∈R [t] and X ∈R {0,eD}. Denote

the resulting joint distribution of (X ,D) by λ and the marginal distribution of X by µ . The lower bound
of [20] follows by carefully analysing ICµ,δ (ANDt | D) and using the direct sum techniques of Bar-Yossef
et al. [6] to link this quantity with ICµn,δ (DISJn,t | Dn).

Here, we consider the random-partition communication problem (DISJn,t ,Up) for some suitably large
number, p, of players. We now prove a robust lower bound on its complexity by extending the earlier
techniques. We start with the following well-known fact.

Fact 3.1 (Birthday problem). For t, p ∈ N+, let α(t, p) denote the probability that t independent random
variables, each drawn uniformly from [p], do not take t distinct values. Then

1− e−t(t−1)/(2p) ≤ α(t, p) = 1−
t−1

∏
i=1

(
1− i

p

)
≤ t(t−1)

2p
.

Lemma 3.2. Let δ ′ = δ +α(t, p). Then

Rδ (DISJn,t ,Up) ≥ n · ICpub
µ,δ ′(ANDt | D) .

Proof. Let P be an optimal δ -error protocol for (DISJn,t ,Up), i.e., a protocol that achieves cost(P) =
Rδ (DISJn,t ,Up). Consider n independent pairs of random variables (X1,D1), . . . ,(Xn,Dn), each drawn from
λ . Then X := X1X2 . . .Xn ∼ µn is a suitable random input for DISJn,t . Let S ∼Up be a random split. Then,
by standard information theoretic arguments, we have

cost(P) = max
x,σ
|P(x,σ)| ≥ H(P(X ,S))

≥ I(X : P(X ,S) | D1D2 . . .Dn,S)

≥ ∑
j∈[n]

I(X j : P(X ,S) | D1D2 . . .Dn,S) (1)

= ∑
j∈[n]

Ed [I(X j : P(X ,S) | D j,S,D− j = d)] ,

where (1) holds because the X js are independent even after conditioning on D1D2 . . .Dn and S. Here, D− j

denotes the vector (D1, . . . ,D j−1,D j+1, . . . ,Dn) and the final expectation is over d drawn uniformly from
[t][n]\{ j}. To finish the proof, it suffices to show that

c j,d := I(X j : P(X ,S) | D j,S,D− j = d) ≥ ICpub
µ,δ ′(ANDt | D) ,

for each j ∈ [n] and each d ∈ [t][n]\{ j}. To this end, we shall design a certain δ ′-error t-party traditional
protocol QS

j,d for ANDt , parametrised by j and d, that uses S as a public random string. Further, for each
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possible value σ of S, the transcript Qσ

j,d(X j) is either constant or distributed identically to (P(X ,σ) |D− j =
d). Then, as required, we shall have

ICpub
µ,δ ′(ANDt | D) ≤ icostpub

µ (QS
j,d | D j) = I(X j : QS

j,d(X j) | D j,S) ≤ c j,d .

The protocol Qσ

j,d works as follows. On input x = (x1, . . . ,xt) ∈ {0,1}t , the players create a random virtual
input {Zik}i,k ∈ {0,1}t×n for DISJn,t , pretend that this input has been split according to σ amongst p virtual
players, and then, if possible, simulate the behaviour of these virtual players when they execute P on the
virtual input. The virtual input is obtained by embedding x into the jth column of a random Boolean matrix
drawn from (µn|D− j = d). To wit:

Zik ∈R


{xi} , if k = j ,
{0} , if k 6= j and d(k) 6= i ,
{0,1} , if k 6= j and d(k) = i .

Therefore, the simulation is possible iff σ assigns each of the inputs (Z1 j, . . . ,Zt j) to a distinct virtual
player; we shall say that σ ramifies if this condition is met. If σ does not ramify, the players abort, leading
to a constant empty transcript and an error probability of 1. If σ does ramify, then Player i plays the role of
that virtual player who is assigned Zi j by σ . The crucial observation that makes this role-playing possible
is that all the other bits assigned to that virtual player are available to Player i, because they are either set
to 0 or can be drawn uniformly at random from {0,1} using Player i’s private coin. All virtual players
who are not assigned any of the inputs {Zi j}i∈[t] are simulated by Player 1 (say). Thus, if σ ramifies, then
Qσ

j,d(X j)≡ (P(X ,σ) | D− j = d). Finally, QS
j,d is indeed a δ ′-error protocol, because

err(QS
j,d ,ANDt) ≤ Pr[σ does not ramify]+ err(P,DISJn,t ,Up) = α(t, p)+δ = δ

′ .

Lemma 3.3. If δ ≤ 1/20, then ICpub
µ,δ (ANDt | D) = Ω(1/t).

Proof. From the work of Gronemeier [20] we can deduce that for a private coin traditional protocol P such
that err(P,ANDt)≤ 1/10, we have icostµ(P |D) = Ω(1/t). Now, consider a public coin δ -error protocol QS

for ANDt that uses a public random string S. For each possible value σ of S, define cσ := icostµ(Qσ |D), so
that Eσ [cσ ] = icostpub

µ (QS | D) and Eσ [err(Qσ ,ANDt)]≤ δ .
Suppose δ ≤ 1/20. Call a particular split σ “good” if

err(Qσ ,ANDt) ≤ 2δ ≤ 1/10 .

By Markov’s inequality, Pr[σ is good] ≥ 1/2. For each good σ , considering the private coin protocol Qσ

shows cσ = Ω(1/(t log t)). Thus, Eσ [cσ ] = Ω(1/(t log t)). We conclude that

ICpub
µ,δ (ANDt | D) = Ω(1/t) .

Putting together Fact 3.1, Lemma 3.2 and Lemma 3.3 yields the following theorem.

Theorem 3.4. For δ ≤ 1/40 and p≥ 20t2, we have the robust lower bounds Rδ (DISJn,t ,Up) = Ω(n/t).

We note that in order to get this kind of robust lower bound for DISJn,t under Up that increases linearly
with n, we must make p, the number of players, as large as Ω(t2). This is because when an input x such that
DISJn,t(x) = 1 is allocated to p players, with probability α(t, p) there exists a player that receives at least
two tokens from the all-ones column. Therefore, a simple O(p)-communication protocol, where each player
announces whether or not they have received two 1s from the same column, has error probability at most
1−α(t, p). By Fact 3.1, we now have Rδ (DISJn,t ,Up) = O(p) for p≤ t(t−1)/(2ln(1/δ )) = O(t2).
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4 Pointer Jumping and Selection

We now consider the tree pointer jumping problem TPJk,t , defined as follows. (In reading this section, it will
help to think of t as growing and k as fixed.)

Definition 4.1 (The tree pointer jumping function). Consider a complete k-level t-ary tree, T , rooted at v0.
The input is a function φ : V (T )→ [t], with φ(v) ∈ {0,1} if v is a leaf of T . We shall call such an input a
“k-input” and shall sometimes view it as a labelling of V (T ). Define g(v) to be the φ(v)-th child of v if v is an
internal node, and φ(v) if v is a leaf. The desired output is TPJk,t(φ) := g(k)(v0) = g(g(· · ·g(v0) · · ·))∈ {0,1}.

There are at least two natural ways to make a traditional communication problem out of TPJk,t , both of
which are of interest to us. The first way is to have two players, Alice and Bob, with Alice (resp. Bob)
receiving the values of φ(v) for odd-level (resp. even-level) vertices v; we use the convention that leaves
are at level 1. The second way is to have k players, with Player i receiving the values of φ(v) for vertices
v on level i. When speaking of communication problems, we shall use TPJk,t to denote the former, and
M-TPJk,t to denote the latter (“M” for “multi-player”). For k = 2, the two definitions coincide and we obtain
the well-studied INDEX problem, for which strong one-way lower bounds are known [1], with numerous
implications for stream computation. In particular, Guha and McGregor [24] use a reduction from INDEX to
obtain a tight (up to logarithmic factors) space lower bound for estimating the median of a randomly ordered
stream of numbers in one pass. This lower bound was recently extended to multiple passes by Chakrabarti,
Jayram and Pǎtraşcu [8] via a rather different (and intricate) proof.

As a consequence of the robust communication lower bounds we prove in this section, we obtain a con-
siderably simpler proof of a multi-pass streaming lower bound for median finding,1 and in fact improve upon
previous bounds. The five theorems in this section can be organized into two parallel chains of implications,
each consisting of three stages and culminating in a lower bound for the MEDIAN problem, as follows.

Stage 1: We prove a multi-round lower bound on the communication complexity of an appropriate “source
problem,” which is either M-TPJk,t , as in Theorem 4.4 or TPJk,t , as in Theorem 4.9.

Stage 2: We reduce the source problem to an intermediate problem that we call weight-based tree pointer
jumping, or W-TPJk,n, defined below. At this stage, we have a robust lower bound for W-TPJk,n, under
an allocation distribution that depends on the source problem we started with. These reductions appear
as Theorems 4.8 and 4.10 below.

Stage 3: Finally, we reduce W-TPJk,n to the MEDIAN problem, as in Theorem 4.3, obtaining a robust lower
bound for the latter. This reduction does not depend on the choice of the source problem.

The precise notion of a “round” is crucial here, and is different for the two parallel chains of implications.
When using the two-player problem TPJk,t as the source, a round consists of a single message, from either
Alice or Bob. The player that does not know φ(v0) speaks first. When using the multi-player problem
M-TPJk,t as the source, a round consists of one message from each of the k players, speaking in the fixed
order Player 1, . . ., Player k (recall that Player 1 holds the labels of the leaf nodes).

Definition 4.2 (Cost and Complexity, Multi-Round). Fix one of the two notions of a “round,” as described
above. We define the notations Rk

µ,δ ( f ,ν), etc., as in Definition 2.2, with protocols restricted to k rounds.
The cost of a round is the maximum possible total number of bits communicated by the players who speak
in that round. The cost of a protocol is the maximum cost of a single round.

1Our results, like the earlier ones [8, 24], apply to the more general problem of selection.
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The next three subsections are organized thus. We first present the Stage 3 reduction, then the Stage 1
and Stage 2 theorems for the implication chain that starts with M-TPJk,t , and then deal with the chain that
starts from TPJk,t . We choose to present the M-TPJ chain first, and in greater detail, because it ultimately
implies stronger lower bounds for data stream computation. Furthermore, the Stage 1 theorem in this chain
(Theorem 4.4) is a fundamental and interesting result in communication complexity in its own right that, to
the best of our knowledge, has not been proven before.

4.1 Weight-Based TPJ and a Reduction to Selection

We now define the problem W-TPJk,n mentioned above. It is closely related to TPJk,t and M-TPJk,t (with n
determined by k and t); as before, the input can be thought of as a labelling of a complete k-level t-ary tree.
However, the labels are presented differently: instead of specifying φ(v) directly, the input specifies a binary
string xv ∈ {0,1}ai for each level-i node of T , where the lengths ai are parameters to be fixed later, and the
weight of xv implicitly determines φ(v). If v is a leaf (i = 1), then ai = 1 and φ(v) = xv = |xv|. Otherwise,
|xv| uniquely determines φ(v) via the following equation:

|xv| =
ai

2
+

(
φ(v)− t +1

2

)
bi−1 , (2)

where bi is the total length of all strings associated with nodes in the subtree rooted at a level-i node,
i.e., bi = ai + tbi−1 and b1 = 1. We will only define W-TPJk,n on inputs such that each |xv| determines a
value φ(v) in the range {1, . . . , t}. In particular, each ai will need to be “large enough” so that Eq. (2)
is feasible. Let x ∈ {0,1}n be the concatenation of all the strings xv. We then define the partial function
W-TPJk,n(x) := TPJk,t(φ), where φ is determined by x as just described.

The next theorem completes Stage 3 in the above proof outline. The reduction from W-TPJ to MEDIAN

used in its proof is along similar lines to one by Guha and McGregor [24].

Theorem 4.3. Let MEDIANm,N denote the random-partition communication problem where the input con-
sists of m tokens (x1, . . . ,xm) ∈ [N]m and the desired output is the median of this collection of tokens. For
any δ > 0, any allocation distribution ν , and any number p ≥ 1 of rounds of communication, we have
Rp

δ
(MEDIANn,Θ(n),ν)≥ Rp

δ
(W-TPJk,n,ν).

Proof. We reduce W-TPJ to MEDIAN. Let T be a complete k-level t-ary tree as usual, and let x = {xv}v∈V (T )
be an input to W-TPJk,n. Our reduction will associate a pair of integers (α(v),β (v)) with each v∈V (T ) such
that the following properties are satisfied.

1. For each leaf v, we have α(v)≡ 0 (mod 2) and β (v)≡ 1 (mod 2).

2. For each strict descendant v of each internal node u, we have α(u)< α(v)< β (v)< β (u).

3. If vi and v j are the ith and jth children of u, with i < j, then β (vi)< α(v j).

Further, it will associate a multiset A(v) with each v ∈ V (T ) as follows. If v is a level-i node, then A(v)
consists of ai− |xv| copies of α(v) and |xv| copies of β (v). The properties above, together with Eq. (2),
ensure that

median
( ⋃

v∈V (T )

A(v)
)
≡ W-TPJ(x) (mod 2) ;

this can be justified by a straightforward induction on k. The reduction itself works by having each player
generate one element of

⋃
v∈V (T ) A(v) per bit of x allocated to her. This is done in the natural way: if the bit
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in question corresponds to a node v, then she generates the element α(v) if the bit’s value is 0 and β (v) if
the bit’s value is 1.

It remains to demonstrate that suitable values (α(v),β (v)) satisfying the above properties exist. Here is
an explicit construction. We use the notation v[ik, . . . , i j] to denote the i j-th child of v[ik, . . . , i j−1], with v[ ] be-
ing the root of T . Set B= 2d(t +2)/2e and let 〈hk,hk−1, . . . ,h1〉B denote the quantity ∑

k
i=1 Bi−1hi, i.e., a base-

B representation. We now set α(v) = 〈ik, . . . , i j+1,0,0, . . . ,0〉B and β (v) = 〈ik, . . . , i j+1, t + 1,0, . . .0〉B, for
each internal node v = v[ik, . . . , i j+1] at level j. For each leaf node v = v[ik, . . . , i2], let α(v) = 〈ik, . . . , i2,0〉B
and β (v) = 〈ik, . . . , i2,1〉B. One can easily verify that this construction has the properties claimed.

4.2 A Robust Multi-Player Lower Bound

We now fill in Stages 1 and 2 of our proof outline, using M-TPJ as our source problem, and deriving a robust
lower bound for W-TPJ. Both problems involve (p+1) players, for p≥ 1. Recall that, in this case, a “round”
consists of one message from each player, in the order Player 1, . . . , Player (p+1). We start by obtaining
the following traditional (i.e., “fragile”) bounded-round lower bound for M-TPJ.

Theorem 4.4. Let µk denote the uniform distribution over k-inputs (as introduced in Definition 4.1). Then,
for each fixed p≥ 1, we have Rp

µp+1,1/3(M-TPJp+1,t) = Ω(t/p2).

To prove this, we define an appropriate notion of information cost that is concerned only with the infor-
mation revealed in the first round of a multi-round protocol’s execution. We then use this notion to establish
an appropriate round elimination lemma, à la Miltersen et al. [35] and Sen [39], which in turn implies the
above theorem.

Definition 4.5 (First-round information cost). Let P be a multi-round, multi-player, private-coin protocol
and µ an input distribution for P. Let P1(x,R) denote the concatenation of all messages sent by the players
during the first round of P, where R denotes the concatenation of the random strings used by the players.
Then, we define the first round µ-information cost of P as follows.

icost1µ(P) = I(X : P1(X ,R)) , where X ∼ µ .

As a precursor to our round elimination lemma, we prove the following multi-round analogue of a lemma
of Sen [39, Lemma 1].

Lemma 4.6 (Uninformative round lemma). Suppose a k-input Boolean function f has an r-round k-player
private-coin protocol P, in which each round costs at most c. Then, for any input distribution µ , f has an
(r−1)-round k-player deterministic protocol Q such that

errµ(Q, f ) ≤ errµ(P, f )+

√
ln2
2
· icost1µ(P) ≤ errµ(P, f )+

√
icost1µ(P) ,

and where each round costs at most c.

Proof. By a standard transformation, we may assume that each player uses two independent random strings
in P: one to generate his first-round message, and another to generate all subsequent messages. We pro-
ceed under this assumption. Let Qm denote the (r− 1)-round protocol obtained by fixing the first round’s
communication in P to m. Define the function g by

g(x,m) = Pr[out(Qm,x) 6= f (x)] , (3)

11



where the probability is over the collection of second random strings used the players.
Define random variables X and M, where X ∼ µ , and M is generated from X according to P; let λ denote

the resulting joint distribution of (X ,M). Let β denote the distribution of M. We then have

DTV (λ ,µ⊗β ) ≤
√

ln2
2
·DKL(λ‖µ⊗β ) =

√
ln2
2
· I(X : M) =

√
ln2
2
· icost1µ(P) , (4)

where the first two steps are basic information theory (the inequality is often credited to Pinsker).
We can express the distributional errors of P and Qm in terms of g, by averaging Eq. (3) in two ways:

errµ(P, f ) = E(X ,M)∼λ [g(X ,M)] ; errµ(Qm, f ) = EX∼µ [g(X ,m)] .

Thus, we have

Em∼β [errµ(Qm, f )] = E(X ,M)∼µ⊗β [g(X ,M)]

≤ E(X ,M)∼λ [g(X ,M)]+DTV (λ ,µ⊗β )

≤ errµ(P, f )+

√
ln2
2
· icost1µ(P) ,

where the first inequality holds because |g(x,m)| ≤ 1 for all x amd m, and the second inequality uses Eq. (4).
Choose m to minimize errµ(Qm, f ), and fix the random strings used by the players in Qm so as to minimize
the µ-distributional error of the resulting deterministic protocol, Q. Then errµ(Q, f ) is upper-bounded as
desired.

Lemma 4.7 (Round elimination for M-TPJ). Let p ≥ 2 be an integer, let K and ε be positive reals. Let
A (p,K,ε) denote the statement “M-TPJp+1,t has a deterministic p-round protocol in which each round
uses at most t/(K p)2 bits of communication in total, and whose distributional error under µp+1 is at most
ε .” Then A (p,K,ε)⇒A (p−1,K,ε +1/(K p)).

Proof. Let P be a protocol whose existence is asserted by A (p,K,ε). Based on P, we shall construct t
private-coin protocols Q1, . . . ,Qt , each for M-TPJp,t . Let T be a (p+ 1)-level t-ary tree, and let T1, . . . ,Tt

denote the p-level subtrees hanging off the root, v0. Recall, from Definition 4.1 that a (p+ 1)-input can
be thought of as a function from V (T ) to [t], or equivalently, as a labelling of V (T ) using labels from [t].
Given a p-input φ and an integer i ∈ [t], let φ (i) denote the random (p+1)-input obtained as follows. Treat
φ as a function from V (Ti) to [t]. Choose independent random inputs ψ j : V (Tj)→ [t], for j ∈ [t]\{i}, each
distributed according to µp. Then put

φ
(i)(v) =


i , if v = v0 ,

φ(v) , if v ∈V (Ti) ,

ψ j(v) , if v ∈V (Tj) where j 6= i .

Let ξi denote the distribution of Φ(i), where Φ ∼ µp. Notice that ξi is identical to µp+1 conditioned on the
label of the root being i.

Here is how the protocol Qi works. On input φ , the players use private randomness to construct φ (i)

(note that this is possible because of an appropriate product structure of φ (i)), and then simulate P on this
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input, using a virtual “Player (p+1),” who can be locally simulated by each real player, because his input,
i, is common knowledge. Clearly, Qi only errs when its call to P errs. Therefore, we have

1
t

t

∑
i=1

errµp(Qi,M-TPJp,t) =
1
t

t

∑
i=1

errξi(P,M-TPJp+1,t) = errµp+1(P,M-TPJp+1,t) ≤ ε . (5)

Let M denote the concatenation of the messages generated in the first round by Players 1, . . . , p when
the protocol P runs on input X ∼ µp+1, defined on the tree T . For i ∈ [t], let Xi denote the portion of X that
corresponds to the labelling of the subtree Ti. Then, we have

t
(K p)2 ≥ |M| ≥ I(X : M) ≥

t

∑
i=1

I(Xi : M) =
t

∑
i=1

icost1µp
(Qi) , (6)

where the rightmost inequality uses the independence of {Xi}i∈[t]. Combining (5) and (6), we have

1
t

t

∑
i=1

errµp(Qi,M-TPJp,t)+

√
1
t

t

∑
i=1

icost1µp
(Qi) ≤ ε +

1
K p

.

Using the concavity of the square root function, plus an averaging argument, we now conclude that

∃ i ∈ [t] : errµp(Qi,M-TPJp,t)+
√

icost1µp
(Qi) ≤ ε +

1
K p

.

Applying Lemma 4.6 to this particular Qi gives us the desired protocol, thereby establishing the truth of
A (p−1,K,ε +1/(K p)).

We now have the tools we need to prove Theorem 4.4.

Proof of Theorem 4.4. Suppose that Rp
µp+1,1/3(M-TPJp+1,t) is not lower bounded as stated. Specifically, us-

ing a standard error-reduction argument, we may assume that Rp
µp+1,1/6(M-TPJp+1,t) ≤ t/(6p)2. By the

easy direction of Yao’s minimax lemma, we have A (p,6,1/6), where the predicate A is as defined in
Lemma 4.7. Applying that lemma repeatedly, we conclude A (1,6,1/6 + (p− 1)/6p), which implies
A (1,6,1/3). Notice that M-TPJ2,t is just the INDEX problem with a t-bit input, and we have just shown
that this problem has a one-round protocol with error at most 1/3 under the uniform distribution, and com-
munication cost at most t/36. Since Hb(1/3)< 12/13, this contradicts Fact 2.5.

Now that we have the desired Stage 1 lower bound, we move on to Stage 2, proving the following robust
lower bound. In our proof, we use a reduction from TPJ that introduces a slight correlation between input
and split, and then appeal to Lemma 2.4 to correct for this.

Theorem 4.8. Let Vp+1 be the (non-uniform) split distribution that gives each token to Player 1 with prob-
ability 1

2 and to Player i with probability γ := 1/(2p) for each i ∈ {2, . . . , p+1}. Then, we have

Rp
1/24(W-TPJp+1,n,Vp+1) = Ω

(
n

1
(p−1)2p+1+2 · (logn)

−1
2(p−1) · p−2

)
.

Thus, for any constant ε > 0, for n and p large enough with p = O(log logn), we have

Rp
1/24(W-TPJp+1,n,Vp+1) = Ω

(
n(2+ε)−p)

.
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Proof. Let P be a protocol for (W-TPJ,Vp+1) such that err(P,W-TPJ,Vp+1)≤ 1
24 . We will use P to construct

a protocol Q for M-TPJ such that errµ(Q,M-TPJp+1,t) ≤ 1/3, where µ is an arbitrary distribution with the
property that, for an instance φ ∼ µ , we have φ(v) ∈R {0,1} for each leaf node v. Note that, in particular,
this will imply errµp+1(Q,M-TPJp+1,t)≤ 1/3.

In Q, the players first use public randomness to transform an input φ for M-TPJ into an input x for W-TPJ

together with a random split of its tokens. They then proceed to simulate P on this instance. We put

ai := (cp2t2(p+2) logn)2i−1−1t−2(3·2i−1−i−2)

for some large constant c to be determined. For each node v, the players use the following public coin
randomized procedure to determine a bit string xv and an allocation of its bits to the players in P.

If v is an internal node at level i: Choose random integers d1v ∼B
(ai

2 ,1− γ
)

and d0v ∼B
(ai

2 ,1− γ
)
, as

well as a set S−i
v ∈R

( [ai]
d1v+d0v

)
. Let S−i

v = S1
v ∪ . . .∪Si−1

v ∪Si+1
v ∪ . . .∪Sp+1

v be a random partition where,
for each k ∈ S−i

v ,

Pr
[
k ∈ S j

v
]
=

{
γ/(1− γ) , if j 6= 1 ,
1/(2(1− γ)) , if j = 1 ,

and put Si
v = [ai]\S−i

v . Player j will be allocated the values {xv,k : k ∈ S j
v}. Randomly set d1v of the bits

{xv,k : k ∈ S−i
v } to 1 and the remaining d0v bits to 0. Notice that all of this is done without reference to

the input φ .

Player i uses φ to determine a target weight |xv| for the string xv, based on Eq. (2). Notice that many
of the bits of xv have already been fixed by the construction so far. Player i sets the free bits in such
a way as to achieve this target weight, i.e., she randomly sets |xv|−d1v of the bits {xv,k : k ∈ Si

v} to 1
and the remaining bits to 0. Note that this requires d1v ≤ |xv| ≤ ai−d0v; if this condition fails to hold,
the protocol aborts and outputs a uniform random bit.

If v is a leaf node: In this case xv is a single bit. Allocate this bit to a random player, with Player 1 being
chosen with probability 1

2 and every other player being chosen with probability γ . If the bit is allocated
to Player 1, she sets xv = φ(v). Otherwise, the players set xv ∈R {0,1}.

This completes the description of Q. Because Vp+1 allocates each token to the first player with probability
1/2, and φ assigns a uniformly random bit to each leaf, we have

Pr[W-TPJ(x) = TPJ(φ) | the protocol does not abort] =
1
2
+

1
2
· 1

2
=

3
4
.

It remains to show that x and σ are sufficiently close to being independent. Note that the marginals are
correct: we do have σ ∼ Vp+1 and, for each leaf v, the value of xv is indeed chosen according to a uniform
setting of φ(v). The issue is that the joint distribution is not a product distribution. However, note that had
d1v and d0v been chosen according to B(|xv|,1−γ) and B(ai−|xv|,1−γ), respectively, then σ and x would
have been independent, and furthermore, the protocol would not abort. For each internal node v at level i,
let

Ãv := B
(ai

2 ,1− γ
)
, B̃v := B

(ai
2 ,1− γ

)
, Av := B (|xv|,1− γ) , Bv := B (ai−|xv|,1− γ) .

Then it suffices to show that the product of the distributions Ãv and B̃v, over all internal nodes v, is sufficiently
close to the corresponding product of Av and Bv. Using Lemma 2.6, we can bound the total variation distance
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in terms of ai and bi as follows,

DTV

(⊗
v
(Ãv⊗ B̃v),

⊗
v
(Av⊗Bv)

)
≤ ∑

v
DTV

(
Ãv,Av

)
+∑

v
DTV

(
B̃v,Bv

)
≤ O(

√
logn)

p+1

∑
i=2

t p+2−ibi−1√
ai

,

where the first inequality follows from the triangle inequality. Noting that bi−1 ≤ 2ai−1 and substituting in
the value for ai, the distance can be made less than 1

24 for sufficiently large constant c. By Lemma 2.4,

errµ(Q,M-TPJp+1,t) ≤
1
4
+

1
24

+ err(P,W-TPJp+1,n,Vp+1) ≤
1
3
.

As noted above, this implies the same upper bound on errµp+1(Q,M-TPJp+1,t). Therefore, by Theorem 4.4,

Rp
1/24(W-TPJp+1,n,Vp+1) = Ω(t/p2) .

Note that

n = bp+1 ≤ 2(cp2t2(p+2) logn)2p−1t−2(3·2p−p−3) = 2(cp2 logn)2p−1t(p−1)2p+1+2 ,

and hence,

t = Ω

(
n

1
(p−1)2p+1+2

/(
cp2 logn

) 2p−1
(p−1)2p+1+2

)
≥ Ω

(
n

1
(p−1)2p+1+2

/
(c logn)

1
2(p−1)

)
.

where the last line follows using the fact that p
1

2(p−1) = O(1) for p≥ 2.

4.3 A Robust Two-Player Lower Bound

Finally, we revisit Stages 1 and 2 of our proof outline, this time using the 2-player problem TPJk,t as our
source problem. Now a “round” consists of one message from either Alice or Bob. The traditional (fragile)
lower bound that we need for Stage 1 can be deduced from the work of Klauck et al. [32], who in fact studied
the problem in the more general quantum communication setting. The underlying intuition is, once again,
round elimination.

Theorem 4.9. We have Rp
µ,1/3(TPJp+1,t) = Ω(t/p2), where µ is the uniform distribution over inputs.

For Stage 2, we obtain the following robust lower bound for W-TPJ, using a proof that closely parallels
that of Theorem 4.8: as before, our reduction from TPJ introduces a slight correlation between input and
split, and we use Lemma 2.4 to correct for this.

Theorem 4.10. We have

Rp
1/24(W-TPJp+1,n,U2) = Ω

(
n

1
(p−1)2p+1+2 · (logn)

−1
2(p−1) · p−2

)
.

Thus, for any constant ε > 0, for n and p large enough with p = O(log logn), we have

Rp
1/24(W-TPJp+1,n,U2) = Ω

(
n(2+ε)−p)

.
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Proof. Let P be a protocol for (W-TPJ,U2) such that err(P,W-TPJ,U2) ≤ 1
24 . We will use P to construct a

protocol Q for TPJ that works with probability at least 2/3 on any instance φ when φ(v) ∈R {0,1} for each
leaf node v. In Q, Alice and Bob first use public randomness to construct an input x for W-TPJ together with
a random split of its tokens. They then proceed to simulate P on this instance. We first define

ai := (ct2(p+2) logn)2i−1−1t−2(3·2i−1−i−2)

for some large constant c. For each node v, the players use the following public coin randomized procedure
to determine a bit string xv and an allocation of its bits to the players in P.

If v is an internal node at level i: Choose random integers d1v ∼ B
(ai

2 ,1/2
)

and d0v ∼ B
(ai

2 ,1/2
)
, as

well as a set Sv ∈R
( [ai]

d1v+d0v

)
. First assume i is even. Alice determines {xv,k : k ∈ Sv} and, uniformly at

random, sets d1v of these tokens to 1 and the remaining d0v tokens to 0. Notice that all of this is done
without reference to the input φ . Bob then uses φ to determine a target weight |xv| for the string xv,
based on Eq. (2). Notice that many of the bits of xv have already been fixed by the construction so far.
Bob sets the free bits in such a way as to achieve this target weight, i.e., he randomly sets |xv|− d1v

of the bits {xv,k : k ∈ Sv} to 1 and the remaining bits to 0. Note that this requires d1v ≤ |xv| ≤ ai−d0v;
if this condition fails to hold, the protocol aborts and outputs a uniform random bit. If i is odd then
Alice and Bob’s roles are reversed.

If v is a leaf node: In this case xv is a single bit. Allocate this bit to a random player, with Alice and Bob
being chosen with equal probability. If the bit is allocated to Alice, she sets xv = φ(v). Otherwise,
Bob sets xv ∈R {0,1}.

This completes the description of Q. Because U2 allocates each token to Alice with probability 1/2, and φ

assigns a uniformly random bit to each leaf, we have

Pr[W-TPJ(x) = TPJ(φ) | the protocol does not abort] =
1
2
+

1
2
· 1

2
=

3
4
.

It remains to show that x and σ are sufficiently close to being independent. As in the proof of The-
orem 4.8, we note that the marginals are correct: we do have σ ∼ U2 and, for each leaf v, the value of
xv is indeed chosen according to a uniform setting of φ(v). The issue, as before, is that the joint dis-
tribution is non-product. However, note that had d1v and d0v been chosen according to B(|xv|,1/2) and
B(ai− |xv|,1/2), respectively, then σ and x would have been independent, and furthermore, the protocol
would not abort. For each internal node v at level i, let

Ãv := B
(1

2 ai,
1
2

)
, B̃v := B

(1
2 ai,

1
2

)
, Av := B

(
|xv|, 1

2

)
, Bv := B

(
ai−|xv|, 1

2

)
.

Hence, we need to show that the product of the distributions Ãv and B̃v, over all internal nodes v, is suffi-
ciently close to that of all Av and Bv. Using Lemma 2.6, we can bound the total variation distance in terms
of ai and bi as follows,

DTV

(⊗
v
(Ãv⊗ B̃v),

⊗
v
(Av⊗Bv)

)
≤ ∑

v
DTV

(
Ãv,Av

)
+∑

v
DTV

(
B̃v,Bv

)
≤ O(

√
logn)

p+1

∑
i=2

t p+2−ibi−1√
ai

where the first inequality follows from the triangle inequality. Noting that bi−1 ≤ 2ai−1 and substituting in
the value for ai, the distance can be made less than 1

24 for sufficiently large constant c. By Lemma 2.4,

errµ(Q,TPJp+1,t) ≤
1
4
+

1
24

+ err(P,W-TPJp+1,n,U2) ≤
1
3
.
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Therefore, by Theorem 4.9,
Rp

1/24(TPJp+1,n,U2) = Ω(t/p2) .

Note that
n = bp+1 ≤ 2(ct2(p+2) logn)2p−1t−2(3·2p−p−3) = 2(c logn)2p−1t(p−1)2p+1+2 ,

and hence,

t = Ω

(
n

1
(p−1)2p+1+2

/
(c logn)

2p−1
(p−1)2p+1+2

)
≥ Ω

(
n

1
(p−1)2p+1+2

/
(c logn)

1
2(p−1)

)
.

5 Hamming Distance and Index

In this section, we prove robust lower bounds for the fundamental communication problems INDEX and
GAP-HAMMING-DISTANCE, in the one-way communication model.

5.1 Hamming Distance

The GAP-HAMMING-DISTANCE problem (henceforth, GHD) was first formally stated in the context of data
stream lower bounds [28, 31, 41]: the central goal is to determine whether the Hamming distance between
two binary strings is “low” or “high,” with a certain gap (given by a parameter, G) between the demarcations
of “low” and “high.” To be precise, define the function ∆ : {0,1}2n→ Z by

∆(x) := |{i ∈ [2n] : x2i 6= x2i−1}| , for x ∈ {0,1}2n .

For G ∈ R+, we then define

GHDG(x) :=


0 , if ∆(x)≥ n/2+G ,

1 , if ∆(x)≤ n/2−G .

? , otherwise,

where “?” can be interpreted as “undefined.” Equivalently, a computation problem corresponding to the
function GHDG can be thought of as a promise problem, where we are promised that ∆(x) does not fall
between n/2−G and n/2+G. Traditional (i.e., “fragile”) communication lower bounds for this problem,
where Alice receives x1,x3, . . . ,x2n−1 and Bob receives x2,x4, . . . ,x2n, have been heavily studied recently. In
particular, Chakrabarti and Regev [10] show that R(GHDG(x)) = Ω(min{n,n2/G2}).

For a number of reasons (in particular, the data stream applications) the problem is most interesting
when we set G = Θ(

√
n). We shall prove an optimal robust lower bound for the problem in this setting.

The main idea is to create an instance of GHD in the fixed partition model, and then pad this with carefully
chosen random bits so that the resulting split appears almost uniform.

Theorem 5.1. There exists a constant c3 > 0 such that

R→1/4(GHDc3
√

n,U2) = Ω(n) .

Proof. We reduce the traditional one-way INDEX problem to our GHD problem. Suppose Alice holds a
string x ∈ {0,1}n′ with n′ = c2n and Bob holds j ∈ [n′], where c2 < 1 will be a constant to be fixed later. By
Fact 2.5, we know Rpub,→

0.49 (INDEX) = Ω(n).
Suppose there exists a one-way protocol P such that

errµ(P,GHDc3
√

n,U2) ≤ 1/4 ,
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where µ is the uniform distribution over inputs. Let r ∈R {−1,1}n′ be determined by public random bits.
Define the indicator random variables Ti1 and Ti2 for the events “∑

n′
i=1 rixi > 0” and “r j > 0,” respectively. It

can be shown (see [31] for a proof) that, for some constant c1 > 0,

Pr [Ti1 = Ti2] =

{
1/2− c1/

√
n′, if INDEX(x, j) = 0 ,

1/2+ c1/
√

n′, if INDEX(x, j) = 1 .

The players now generate an instance y of GHD using shared randomness. They first pick a split σ ∼U2.
For each i such that σ(2i) 6= σ(2i−1), with probability p = c1/4

2 , the players set (y2i,y2i−1) based on Ti1 and
Ti2: since Ti1 is known to Alice, she sets whichever input bit was allocated to her as Ti1, and Bob similarly
uses Ti2. Otherwise, set (y2i,y2i−1) ∈R {0,1}2. Define ∆ = ∆(y) = |{i : y2i 6= y2i−1}|.

Claim 5.2. For sufficiently small c2,

(x j = 0)⇒ Pr
[

∆

n
>

1
2
+

c1

5
√

n′

]
≥ 0.99, and (x j = 1)⇒ Pr

[
∆

n
<

1
2
− c1

5
√

n′

]
≥ 0.99.

Proof. Let t be the number of times Alice and Bob insert bits from T into their constructed strings. Note
that E [t] = pn and, by an application of the Chernoff bound, for sufficiently large n, we have Pr [t ≤ np/2]≤
1/1000. Now,

x j = 1 =⇒ Pr
[

∆

n
≤ 1

2
− c1

5
√

n′

]
= Pr

[
∆

n
−E

[
∆

n

]
≤− c1

5
√

n′

]
≤ exp

(
−c2

1

25c1/4
2

)
, and

x j = 0 =⇒ Pr
[

∆

n
≥ 1

2
− 2c1

5
√

n′

]
= Pr

[
∆

n
−E

[
∆

n

]
≥+

c1

5
√

n′

]
≤ exp

(
−c2

1

25c1/4
2

)
.

Hence the claim holds true for sufficiently small c2.

While σ is not fully independent of y, it has sufficient independence, as shown by the following claim:

Claim 5.3. For sufficiently small c2, with probability at least 5/8, P answers GHDc3
√

n correctly on y.

Proof. Let µp be the distribution over y ∈ {0,1}2n. For p = 0 both y and the partition are uniformly and
independently chosen. We argue that |µp− µ0| ≤ 1/8 for sufficiently small c2 and so by Lemma 2.4, P
would answer GHDc3

√
n with probability at least 3/4−1/8 = 5/8 as required.

Define I = {i : σ(2i) 6= σ(2i− 1)}. For i /∈ I, (y2i−1,y2i) ∈R {0,1}2 under both µ0 and µp. For i ∈ I,
define the probability that a pair of bits differ as

q = Pr
µp
[y2i 6= y2i−1 | i ∈ I] =

1
2
− pc1√

n′
.

Then

|µp−µ0| = ∑
y

∣∣∣∣Pr
µp
[y]−Pr

µ0
[y]
∣∣∣∣ ≤ ∑

y

∣∣2−nq∆(1−q)n−∆−2−2n
∣∣ = ∑

d∈[n]

(
n
d

)∣∣qd(1−q)n−d−2−n
∣∣ .

By appealing to Lemma 2.6, we can make this smaller than 1/8 by choosing c2 sufficiently small.

Hence, if c3
√

n ≤ nc1/(5
√

n′), i.e., if c3 ≥ c1/(5
√

c2), then the desired robust linear lower bound on
R→1/4(GHDc3

√
n,U2) must hold. For otherwise, by Claim 5.2, GHDc3

√
n on y reveals INDEX(x, j) with proba-

bility at least 5/8−1/100 > 51/100. This completes the proof of Theorem 5.1.
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5.2 Index

For our purposes, we define the INDEX problem over inputs x ∈ [n]×{0,1}n as follows: INDEX(x) := x j

where j := x0. Traditionally, one considers the worst-case partition where Alice (the player who speaks)
holds x1 . . .xn and Bob holds j. The resulting problem is one of the most basic in communication complexity,
and strong randomized lower bounds are known for it in this setting [1]. In this fixed-partition model, INDEX

can be thought of as a special case of DISJn,2, where one string is of the form ei. This is no longer the case
under uniform splits, since the zeros in ei get spread between the players, and leak information about which
indices are not of interest.

We prove a robust lower bound for INDEX that allocates multiple copies of the tokens (x0, . . . ,xn)
amongst two players. This generalization is needed for proving subsequent data stream bounds. For positive
integers a and b, let INDEXa,b denote the problem where the input consists of a copies of each xi (for i ∈ [n])
and b copies of x0, with x = (x0, . . . ,xn) being an input for INDEX. The (partial) function INDEXa,b takes the
value INDEX(x) on such an input. Let νp denote the distribution of a random split obtained by independently
giving each input token to Player 1 with probability p, and to Player 2 otherwise.

Theorem 5.4. Let a and b be constants. We have R→
δ
(INDEXa,b,νp) = Ω(n), where δ = (1− p)b pa/4.

Proof. The proof is by reduction from INDEX when Alice holds x1 . . .xn ∈ {0,1}n and Bob holds index
x0 = j. Let µ be the uniform distribution over all possible inputs. By Fact 2.5, any one-way protocol
succeeding with probability 1

2 +(1− p)b pa/4 (for a, b, p positive constants) for instances of INDEX drawn
from µ requires Ω(n) bits to be communicated.

Suppose there exists a one-way protocol P with the property that err(P, INDEXa,b,νp) ≤ (1− p)b pa/4.
We use P to create the following (traditional) protocol Q for INDEX. Let x = (x0, . . . ,xn) denote the input
given to Alice and Bob in Q, and let x̂ denote the corresponding input to the players in INDEXa,b. Alice and
Bob agree on a split σ ∼ νp, of the tokens in x̂, using a public coin. Consider the events

B0 = “a copy of x0 is allocated to Player 1”, and

Bi = “a copy of xi is allocated to Player 2”, for some i ∈ [n] .

Alice and Bob behave as follows in the protocol Q. If B0 occurs, then Bob outputs a uniform random bit.
Otherwise, for each i ∈ [n] such that Bi occurs, they jointly choose a (public) random bit ri ∈R {0,1} and set
all bits of x̂ that are copies of xi equal to ri. The remaining bits of x̂ (i.e., those that are copies of xi such that
Bi does not occur) are left unchanged. Alice and Bob then simulate P on this updated input x̂, playing the
roles of Player 1 and Player 2 respectively. Clearly, cost(Q)≤ cost(P).

Let B = B0∨B j (recall that j = x0). If B occurs, then the output of Q is a random bit. Otherwise, Q is
correct whenever P is. Note that Pr [B] = 1− (1− p)b pa. Thus, the correctness probability of Q is

Pr [B]
2

+Pr [¬B∧ (P is correct)] ≥ Pr [B]
2

+Pr [P is correct]−Pr [B] ≥ 1
2
+

(1− p)b pa

4
,

which implies cost(Q) = Ω(n), and hence, cost(P) = Ω(n).

6 Robust Lower Bounds for Data Stream Computation

We use our results on communication complexity from the previous sections to derive robust lower bounds
for a number of problems in the data stream model. The connection between random-allocation commu-
nication complexity and robust bounds in the data stream model is a natural extension of the connection
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between fixed-partition communication complexity and the basic data stream model where the data is or-
dered adversarially. In particular, an r-pass, s-space data stream algorithm for evaluating a function f on
a set S of tokens presented in random order yields an r-round, p-player communication protocol for eval-
uating f (S) when S is randomly partitioned into p subsets S1, . . . ,Sp and the ith player receives Si: the ith
player randomly permutes Si to generate stream si and the players emulate the algorithm on the concate-
nated stream 〈s1|s2| . . . |sp〉. The emulation requires O(rps) bits of communication. Given a lower bound on
the complexity of the communication problem, this allows us to deduce a lower bound for the data stream
problem.

6.1 Frequency Moments

The (estimations of) various frequency moments are some of the most well-studied problems in the data
stream model [3]. Suppose the stream comprises a sequence of m values a j ∈ [n]. Define fi = |{ j : a j = i}|.
The kth frequency moment is

Fk := ∑
i∈[n]

f k
i .

We consider constant k≥ 3. It is known that any O(1)-pass algorithm that returns a (1/2,1/4)-approximation
of Fk requires Ω̃(n1−2/k) space2 and that this is tight under worst-case orderings [9, 29]. However, it was
observed that for random orderings and m = Ω̃ε(an) there exists a single pass Õ((n/a)1−2/k)-space algo-
rithm that (ε,δ )-approximates Fk [23]. The following theorem shows a lower bound on the space usage in
the random-order case. The proof combines Theorem 3.4 with a variation of the reduction used in [3, The-
orem 3.2].

Theorem 6.1. Any constant pass (1/10,1/10)-approximation for Fk of a randomly ordered stream requires
Ω(n1−3/k) space. If we assume that m = Ω(an) then Ω(n1−3/k/a3) space is required.

Proof. Suppose there exists an r-pass, (1/10,1/10)-approximation algorithm for Fk that uses s bits of
space. Let x = {xi j}i∈[t], j∈[n] be an instance for DISJn,t that satisfies the unique intersection promise. Set
t = (5n/4)1/k and consider a uniform random split of the nt tokens between p = 20t2 players. Let the player
who receives the token for xi j, generate the value j if xi j = 1 and define S j to be the multi-set of values
generated by the jth player. Note that the sets S1, . . . ,Sp are a random partition of S = S1∪ . . .∪Sp. Further-
more Fk(S)≥ tk = 5n/4 if DISJn,t(x) = 1 and Fk(S)≤ n if DISJn,t(x) = 0. Using the template at the start of
Section 6 and appealing to Theorem 3.4, we can deduce that rps = Ω(n/t) and therefore s = Ω(n1−3k) as
required.

To prove the second part of the theorem, the reduction from DISJn,t proceeds as before but we also
add a copies of [n] randomly distributed between the p players. This is achieved using public randomness.
Now, if DISJn,t(x) = 1, then Fk ≥ tk, but if DISJn,t(x) = 1, then Fk ≤ (a+ 1)kn. If we now choose t =
(5n/4)1/k/(a+ 1), a (1/10,1/10)-approximation to Fk distinguishes the two cases. The resulting lower
bound on the space is Ω(n/t3) = Ω(n1−3/k/a3).

6.2 Distinct Elements and Entropy

The number of distinct elements in a stream is F0 := |{i ∈ [n] : fi 6= 0}|, and the empirical entropy is
H := ∑i∈[n]( fi/m) log(m/ fi). One-pass, Õ(ε−2)-space, (ε,δ )-approximation algorithms are known for both

2The Õ(·) and Ω̃(·) notations used in this section suppress logarithmic dependencies on the stream length, m, the universe size,
n, and the inverse error probability, δ−1.
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problems [5, 7, 17, 18, 26]. We prove that the known algorithms are essentially tight even under random
order. These results follow from Theorem 5.1 and the reductions in [7, Theorem 2] and [41, Section 3.2].

Theorem 6.2. Let k ≥ 0 be a constant, and suppose k 6= 1. Then, a one-pass (ε,δ )-approximation for Fk
of a randomly ordered stream requires Ω(ε−2) space. Also, a one-pass (ε,δ )-approximation for H of a
randomly ordered stream requires Ω(ε−2/ log2

ε−1) space.

Proof. Suppose there exists a single pass, (1/10,1/10)-approximation algorithm for H that uses s bits of
space. Let x∈ {0,1}2n be an instance of GHDG and consider a uniform random split of the 2n tokens between
two players. Let the player who receives the token for xi generate the value (di/2e ,xi). Define SA and SB

to be the multisets of values generated by Alice and Bob respectively. Note that SA and SB are a random
partition of S := SA∪SB. Furthermore,

H =
∆

n
lg(2n)+

n−∆

n
lgn =

∆

n
+ lgn ,

where ∆ = ∆(x) = |{i ∈ [2n] : x2i 6= x2i−1}|. Hence, any algorithm which can (ε,δ )-approximate H can also
distinguish the cases ∆(x) ≤ n/2−G and ∆(x) ≥ n/2+G, provided ε = O(G/(n logn)). For a fixed ε , we
set n = O(ε−2/ log2

ε−1) and G = Θ(
√

n). This ensures ε = O(G/(n logn)). Using the template at the start
of Section 6 and appealing to Theorem 5.1, we can deduce that s = Ω(n) = Ω(ε−2/ log2

ε−1).
The distinct elements case is similar: the same reduction ensures that F0 = n+∆(x), so either F0 ≤

3n/2−G or F0 ≥ 3n/2+G. Setting ε = O(G/n) and G = Θ(
√

n) means that the communication lower
bound of Ω(n) entails a space lower bound of Ω(ε−2). This extends to all Fk, since we have Fk = 2k(n−
∆(x))+1k∆(x). Choosing ε = O(G/n) and G = Θ(

√
n) is again sufficient to force a space lower bound of

Ω(ε−2) for any algorithm which can (ε,δ ) approximate Fk for any constant k 6= 1.

6.3 Selection

Selection, including median-finding, is one of the earliest-studied problems in the data stream model [36]
and been the focus of several recent works [8,19,24]. The following result improves upon the previous best
single and multi-pass lower bounds [8, 24]. As an example, our theorem implies a Ω̃(m1/10) space lower
bound for 3-pass algorithms whereas the best previous result was Ω̃(m3/80) [8].

Theorem 6.3. Any p-pass algorithm to return the median of a length-m randomly ordered stream which
succeeds with probability at least 3/4 requires Ω

(
m1/((p−1)2p+1+2) · (logm)−1/(2(p−1)) · p−2

)
space.

Proof. Using the template at the start of Section 6, the theorem is immediate from Theorem 4.8.

We note that a weaker bound follows from Theorem 4.10. The reason that a reduction from the two-
player result is weaker (despite the apparent similarity between Theorem 4.10 and Theorem 4.8) stems
from the different definition of communication rounds. In the multi-player setting, p streaming passes
corresponds to p rounds, whereas in the two-player setting, p streaming passes corresponds to 2p−1 rounds.
Hence, a reduction from the two-party setting would result in occurrences of p in the above theorem being
replaced by occurrences of 2p−1.

6.4 Graph Streaming

We now consider bounds on solving graph problems given a stream of edges in random order. Using
Theorem 3.4 and Theorem 5.4 and reductions from [15, 27] it is possible to show the following results.
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Theorem 6.4. Given a stream of edges in random order, Ω(n) space is required by any constant pass
algorithm that determines if the resulting graph is connected. Furthermore, any single pass algorithm that
returns a t-approximation of the distance between two nodes requires O(ex(n−2,C3, . . . ,Ct+1)) space where
ex(n−2,C3, . . . ,Ct+1) is the maximum size of a of graph on n−2 nodes that does not include any cycles of
length strictly less than t +2.

A well-known result in extremal graph theory is that ex(n,C3, . . . ,Ct+1) = Ω(n1+1/t), and it has long
been conjectured that ex(n,C3, . . . ,Ct+1) = Ω(n1+2/t); see, e.g., [40].

Proof. For the first part of the theorem we consider a reduction from DISJn/2,2 where tokens corresponding
to each bit are uniformly distributed between p players. We present a lower bound on the communication
required between p players to determine whether a graph is connected when the edges of the graph are ran-
domly partitioned between the p players. The stream lower bound follows immediately from the comments
at the start of Section 6. Let x = {xi j}i∈[2], j∈[n/2] be an instance of DISJn/2,2. Based on x we define the
following bipartite graph Gx = (L∪R,E1∪E2∪E3) where L = {l1, . . . , ln/2}, R = {r1, . . . ,rn/2} and the edge
set includes

E1 = {(li,ri) : i ∈ [n/2]} ,
E2 = {(l j, l j+1) : i ∈ [n/2],x1, j = 0} ,
E3 = {(r j,r j+1) : i ∈ [n/2],x2, j = 0} ,

where ln/2+1 = l1 and rn/2+1 = r1. It is easy to see that Gx is disconnected iff there exists j such that x1, j =
x2, j = 1. To perform the reduction, the players replaces the token corresponding to each xi, j if appropriate.
Note that the edges of E2 ∪E3 are randomly partitioned between the players because the relevant tokens
were randomly partitioned. Using public randomness, the players can decide on a random partition of E1.
In this way the entire edge set of Gx is randomly partitioned between the p players. Setting p = 80 and
appealing to Theorem 3.4 gives the required result.

For the second part of the result, let G= (V,E) be a graph on n−2 nodes with m= ex(n−2,C3, . . . ,Ct+1)
nodes such that the shortest cycle has length at least t +2. Let e1, . . . ,em be some arbitrary ordering of the
edges in G. Let s, t be two nodes not in V . Consider an instance x ∈ {0,1}m+1 of INDEX where one copy of
each xi (i ∈ [m]) and two copies of x0 are distributed uniformly between two players. Consider the reduction
in which, for i ≥ 1, each xi is ignored if xi = 0 and replaced an edge ei with unit weight if xi = 1. Suppose
x0 = j and that e j = (u j,v j). With probability 1/2 replace the first copy of x0 by (s,u j) and the second copy
by (t,v j). These edges have zero weight. Otherwise replace them in the reverse order. In this way we define
a graph G′ on nodes V ∪{s, t}where the distance between s and t is 1 if x j = 1 and at least t if x j = 0. Hence,
any protocol that distinguishes between the distance being 1 and at least t also determines the value of x j.
Appealing to Theorem 5.4 gives the required result.

6.5 Information Divergences

The next theorem extends a result by Guha et al. [22] on the approximation of information divergences. The
results follows from Theorem 5.4 using a variant of the reduction from [22].

Theorem 6.5. Given a randomly ordered stream defining two empirical distributions p and q on [n], Ω(n)
space is required to find an

√
1/2+a/2 multiplicative approximation to the squared Hellinger distance

h2(p,q) with probability at least 1−2−a−3 (for some even a ∈ N+.)
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Proof. We consider a reduction from INDEX. Let j ∈ [n], x1 . . .xn ∈ {0,1}n be an instance of INDEX. Con-
sider the random allocation where a copies of each xi are uniformly distributed between the two players and
x0 is revealed to a player chosen uniformly at random. The players transform this input into a set of tokens
〈p, i〉 and 〈q, i〉 as follows:

1. Using public randomness, the players generate n random binary strings y1, . . . ,yn ∈ {0,1}a where
each string has weight exactly a/2. Suppose Alice and Bob receives d1 and d2 = a− d1 copies
of the token for xi for i ∈ [n]. If xi = 1, Alice generates |{ j ≤ d1 : yi

j = 1}| copies of 〈p, i〉 and
|{ j ≤ d1 : yi

j = 0}| copies of 〈q, i〉. If xi = 1, Bob generates |{a−d2 < j ≤ a : yi
j = 1}| copies of 〈p, i〉

and |{a−d2 < j ≤ a : yi
j = 0}| copies of 〈q, i〉. Note that if d1 or d2 is zero, then the relevant player

does not need to know the value of xi to perform this reduction.

2. The player receiving the token for j generates a copy of 〈q, j〉.

3. Additionally, the players generate a+ 1 copies of 〈p,n+ 1〉 and a copies of 〈q,n+ 1〉. These are
uniformly distributed between the players.

In this way, for each i ∈ [n] such that xi = 1, a/2 copies of 〈p, i〉 and a/2 copies of 〈q, i〉 have been
generated. Additionally, one copy of 〈q, j〉, a+ 1 copies of 〈p,n+ 1〉 and a copies of 〈q,n+ 1〉 have been
generated. Therefore,

h2(p,q) =


1
m

((√
a/2−

√
a/2+1

)2
+1
)
, if x j = 0 ,

2
m

(√
a/2−

√
a/2+1

)2
, if x j = 1 ,

where m = a+a|{i ∈ [n] : xi = 1}|. Furthermore,(√
a/2−

√
a/2+1

)2
+1

2
(√

a/2−
√

a/2+1
)2 =

1
2
+

1

2
(√

a/2−
√

a/2+1
)2 ≥

1
2
+

a
2
.

Hence, a
(√

1/2+a/2
)
-approximation would be sufficient to solve the instance of INDEX. Therefore,

by Theorem 5.4, any stream algorithm that returns such an estimate requires Ω(n) space.
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A Variational Distance between Binomial Distributions

Proof of Lemma 2.6. Let γ = 1−q. For the first part of the lemma we may assume that w=O(
√

aγ ln(a/w))
because otherwise the bound is trivial. Then, by an application of the Chernoff bounds, there exists a
constant c′1 such that

max
(

Pr
[
|B(a,q)−aq| ≥ c′1

√
aγ ln(a/w)

]
,Pr
[
|B(a−w,q)−aq| ≥ c′1

√
aγ ln(a/w)
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≤ w√

a
.

Let t = c′1
√

aγ ln(a/w). Then,
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a
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a
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= O(1) ·w
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ln(a)/(γa) .

For the second part of lemma, we proceed in a similar fashion. By Chernoff bounds, there exists a
constant c′2 such that

max
(

Pr
[
|B(a,1/2)−a/2| ≥ c′2

√
a ln(δa)−1

]
, Pr
[
|B(a,q′)−a/2| ≥ c′2

√
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])
≤ δ

2a ,

where we have assumed that δa = O(
√

a ln(δ−1a−1)), since otherwise the bound is trivial. Let s =
c′2
√

a ln(δa)−1. Then,
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a
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.
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