
THE COMMUNICATION COMPLEXITY OF GAP HAMMING DISTANCE
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ABSTRACT. In the gap Hamming distance problem, two parties must determine whether
their respective strings x; y 2 f0; 1gn are at Hamming distance less than n=2 �

p
n or

greater than n=2 C
p

n: In a recent tour de force, Chakrabarti and Regev (STOC ’11)
proved the long-conjectured ˝.n/ bound on the randomized communication complexity
of this problem. In follow-up work several months ago, Vidick (2010; ECCC TR11-051)
discovered a simpler proof. We contribute a new proof, which is simpler yet and a page-
and-a-half long.

1. INTRODUCTION

The gap Hamming distance problem features two communicating parties, the first of
which receives a vector x 2 f�1; C1gn and the second a vector y 2 f�1; C1gn: The
two vectors are chosen such that the Hamming distance between them is either notice-
ably smaller than n=2 or noticeably larger than n=2: The objective is to reliably determine
which is the case by exchanging as few bits of communication as possible. Throughout
this paper, communication is assumed to be randomized, and the communication proto-
col is to produce the correct answer with probability 2=3: Formally, gap Hamming dis-
tance is the communication problem that corresponds to the following Boolean function
on f�1; C1gn � f�1; C1gn:

GHDn.x; y/ D

(
�1 if hx; yi 6 �

p
n;

C1 if hx; yi >
p

n;
(1.1)

where hx; yi D
P

xi yi is the usual inner product. Note that the function is left undefined
when hx; yi is small in absolute value. The choice of

p
n for the gap is natural for reasons

of measure and represents the most difficult case from the standpoint of proof. All other
gap values reduce to this canonical case.

The gap Hamming distance problem, or GHD for short, was proposed by Indyk and
Woodruff [8] as a means to understand the complexity of several streaming tasks. More
specifically, lower bounds on the communication complexity of gap Hamming distance
imply lower bounds on the memory requirements of estimating the number of distinct ele-
ments in a data stream. Depending on the communication model used (one-way, constant-
round, or unbounded-round), one obtains a lower bound for the corresponding class of
streaming algorithms (one pass or multiple passes). Applications of GHD have been
discovered to several other streaming tasks, including the computation of frequency mo-
ments [18] and entropy [6].

The communication complexity of gap Hamming distance has been the subject of much
study over the past few years. In what follows, we will summarize the detailed chronolog-
ical account from [7]. The original paper by Indyk and Woodruff [8] proved a linear lower
bound on the one-way communication complexity of a problem closely related to GHD.
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2 A. A. SHERSTOV

A linear lower bound on the one-way communication complexity of GHD itself was ob-
tained by Woodruff [18], with shorter and more elementary proofs discovered subsequently
by Jayram, Kumar, and Sivakumar [10], Woodruff [19], and Brody and Chakrabarti [4]. A
few years ago, Brody and Chakrabarti [4] obtained a linear lower bound for constant-round
protocols solving GHD. The dependence on the number of rounds was improved by Brody
et al. [5].

The communication complexity of GHD in the canonical, unbounded-round model,
which is more compelling for streaming applications, proved to be a challenge to analyze.
A lower bound of ˝.

p
n/ is immediate by a reduction to the disjointness problem [11, 14].

Coincidentally, GHD has a quantum communication protocol with cost O.
p

n log n/; so
that the many quantum methods discovered to date were of no use in moving beyond the
p

n barrier. Finally, in a recent tour de force, Chakrabarti and Regev [7] settled the problem
definitively with a linear lower bound on the unbounded-round communication complexity
of gap Hamming distance:

THEOREM 1.1 (Chakrabarti and Regev). Any randomized communication protocol that
solves GHDn with probability 2=3 on every input has communication complexity ˝.n/:

The proof in [7] is quite involved. In follow-up work several months ago, Vidick [17]
discovered a simpler proof. This paper contributes a new proof of Theorem 1.1, which
is a page-and-a-half in length (Secs. 3–4) and simpler than the proofs of Chakrabarti and
Regev [7] and Vidick [17]. In what follows, we give a detailed overview of previous work
and our approach.

1.1. Some Terminology. Let f W X � Y ! f�1; C1g be a given communication problem.
A common starting point in proving lower bounds on randomized communication com-
plexity is Yao’s minimax theorem [20]: to rule out a randomized protocol for f with cost
c and error probability at most �; one defines a probability distribution � on X � Y and
argues that with respect to �; every deterministic protocol with cost c errs on more than
an � fraction of the inputs. This approach is complete in that one can always prove a tight
lower bound on randomized communication in this manner.

The challenge in Yao’s program is establishing the hardness of a given distribution �

for deterministic communication protocols. By far the most common solution since the
1980s is given by the corruption method, pioneered by Yao himself [20]. In more detail,
a deterministic communication protocol with cost c gives a partition X � Y D

�2c

iD1 Ri ;

where each set Ri is the Cartesian product of a subset of X and a subset of Y: The sets
Ri are called rectangles, and the output of the deterministic protocol is constant on each
rectangle. To prove a lower bound on communication, one defines a probability measure
� on X � Y and argues that every rectangle R with nontrivial measure is �-corrupted by
elements of f �1.C1/; in the sense that

�.R Z f �1.C1// > ��.R Z f �1.�1// (1.2)

for some constant � > 0: Provided that f �1.�1/ has reasonable measure, (1.2) bounds
from below the total number of rectangles in any partition of X �Y: By symmetry, the roles
of C1 and �1 can be interchanged throughout this argument. Furthermore, the argument
applies unchanged to partial functions f; whose domain is a proper subset of X � Y:

Over the years, many approaches have been used to prove (1.2). For product measures
�; a particularly general method was discovered by Babai, Frankl, and Simon [2] almost
thirty years ago. It plays a key role in several subsequent papers and this work. In detail, let
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� be the uniform measure on X �Y: For the sake of contradiction, suppose that R D A�B

is a large rectangle that is not �-corrupt, A � X; B � Y: We may assume that no row of
R is 2�-corrupt because any offending rows can discarded without affecting the size of R

much. The proof is completed in two steps.

STEP 1: IDENTIFYING A HARD CORE.
Using the hypothesis that A is large, one identifies elements x1; x2; : : : ; xk 2 A

that are “very dissimilar” and collectively “representative” of X: Naturally, what
those words mean depends on context but one gets the right idea by thinking
about k random elements of X: Typically k is tiny, exponentially smaller than
jAj: We will call fx1; x2; : : : ; xkg a hard core of A because at an intuitive level,
these few elements capture the full complexity of A:

STEP 2: CORRUPTION.
Using the hypothesis that B is large and x1; x2; : : : ; xk are representative, one
shows that the rectangle fx1; x2; : : : ; xkg � B is 2�-corrupt, a contradiction to the
fact that no row of R D A � B is 2�-corrupt.

This program is successful in practice because it is much easier to analyze the corrup-
tion of a rectangle fx1; x2; : : : ; xkg � B for a small and highly structured collection ele-
ments x1; x2; : : : ; xk : Babai, Frankl, and Simon [2] used this approach to establish, with
an exceedingly elegant and short proof, an ˝.

p
n/ lower bound on the communication

complexity of set disjointness. In that work, X and Y both referred to the family of subsets
of f1; 2; : : : ; ng of cardinality

p
n; and the hard core used in Step 1 was a collection of

k D �
p

n subsets that are mostly disjoint.

1.2. Previous Work. We are now in a position to outline the proofs of Theorem 1.1 due
to Chakrabarti and Regev [7] and Vidick [17]. Both works study a continuous version of
gap Hamming distance, in which the parties receive inputs x; y 2 Rn drawn according
to Gaussian measure and need to determine whether their inner product is less than �

p
n

or greater than
p

n: It was shown earlier [5] that the discrete and continuous versions of
gap Hamming distance are essentially equivalent from the standpoint of communication
complexity. The proof in [7] has two steps. Let R D A � B be rectangle of nonnegligible
Gaussian measure. For reasons of measure, we may assume that the vectors in A; B have
Euclidean norm

p
n; up to a multiplicative factor 1 ˙ �:

STEP 1: IDENTIFYING A HARD CORE.
Using the hypothesis that A has nontrivial measure, one identifies ˝.n/ vectors
x1; x2; : : : ; xi ; : : : 2 A that are almost orthogonal. Precisely, the Euclidean norm
of the projection of xi onto spanfx1; : : : ; xi�1g is a small constant fraction of the
norm of xi :

In retrospect, a system of near-orthogonal vectors is a natural choice for a hard core because
GHD is defined in terms of inner products. That such a system of vectors can always
be chosen from A was proven by Raz [13], who used this fact to obtain a lower bound
for another linear-algebraic communication problem (deciding subspace membership). In
light of the program of Babai, Frankl, and Simon [2], it is tempting to proceed to Step 2
and argue that the rectangle fx1; x2; : : : ; xi ; : : : ; g � B is heavily corrupted. Unfortunately,
gap Hamming distance does have rectangles that are large and almost uncorrupted, and one
cannot apply the corruption method directly. Instead, Chakrabarti and Regev [7] prove the
following.



4 A. A. SHERSTOV

STEP 20: ANTICONCENTRATION.
With probability ˝.1/; a random pair .x; y/ 2 fx1; x2; : : : ; xi ; : : : g � B has
jhx; yij D ˝.

p
n/:

The two steps above immediately give the following statement: for any sets A; B � Rn

of nonnegligible measure, random vectors x 2 A; y 2 B obey jhx; yij D ˝.
p

n/

with constant probability. This anticoncentration result is the technical centerpiece of
Chakrabarti and Regev’s proof. The authors actually derive a much stronger statement,
giving a detailed characterization of the distribution of hx; yi: To complete the proof, they
use a criterion for high communication complexity due to Jain and Klauck [9], known as
the smooth rectangle bound. Specifically, Chakrabarti and Regev use their anticoncentra-
tion result to argue that in any partition of Rn � Rn; only a small constant measure of
inputs can be covered by large uncorrupted rectangles. Settling this claim requires the
introduction of a second measure, call it �; to account for covering by large rectangles.
The smooth rectangle bound [9] was discovered very recently and overcomes limitations
of Yao’s corruption bound—at the expense of being more challenging to use.

In follow-up work, Vidick [17] discovered a simpler proof of the anticoncentration
property for hx; yi; by taking a matrix-analytic view of the problem as opposed to the
purely measure- and information-theoretic treatment in [7]. Vidick first shows that for any
A � Rn of nonnegligible Gaussian measure, the matrix M D Ex2AŒxxT� has a relatively
spread out spectrum, with a constant fraction of singular values on the order of ˝.1/:

Since Ex2A;y2B Œhx; yi2� D Ey2B ŒyTMy�; the author of [17] is able to use this spectral
property of M to prove anticoncentration for hx; yi: Vidick’s proof ingeniously exploits the
rotation-invariance of Gaussian measure and requires just the Bernstein inequality and the
Berry-Esseen theorem for independent Gaussian variables. With anticoncentration estab-
lished, Vidick uses the Jain-Klauck criterion to prove the lower bound on communication
complexity.

1.3. Our Proof. This paper contributes a new proof of Theorem 1.1, which is a page-
and-a-half in length (Secs. 3–4) and simpler than the proofs of Chakrabarti and Regev [7]
and Vidick [17]. Our approach departs from previous work on two counts. First, we use
Yao’s original corruption method for proving communication lower bounds, rather than
the recent and more involved criterion of Jain and Klauck. Second, the authors of [7, 17]
work with an extension of the problem to Gaussian space, whereas we are able to give a
direct argument for the hypercube. As we show, the discrete setting allows for a treatment
that is much simpler both in formalism and in substance; contrast the proofs of Lemma 4.4
in [13] and Lemma 3.1 in this paper to get an idea.

Our main technical tool is Talagrand’s concentration inequality [15, 1, 16]. It states
that for any given subset S � f�1; C1gn of constant measure, nearly all the points of
the hypercube lie at a short Euclidean distance from the convex hull of S: Talagrand’s
concentration inequality has yielded results whose range and depth are out of proportion
to the inequality’s easy proof [1, 16]. We use the following well-known consequence of
Talagrand’s inequality: the projection of a random vector x 2 f�1; C1gn onto a given
linear subspace V � Rn has Euclidean norm

p
dim V ˙ O.1/ almost surely.

We now give a more detailed description of the proof. What we actually obtain is an
˝.n/ lower bound on the communication complexity of gap orthogonality, a problem in
which the two parties receive vectors x; y 2 f�1; C1gn and need to reliably tell whether
they are nearly orthogonal or far from orthogonal. Formally, gap orthogonality is the partial
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Figure 1: Reduction from gap orthogonality to gap Hamming distance (T = “true,” F = “false”).

Boolean function on f�1; C1gn � f�1; C1gn given by

ORTn.x; y/ D

(
�1 if jhx; yij 6

p
n;

C1 if jhx; yij > 2
p

n:
(1.3)

Gap orthogonality readily reduces to gap Hamming distance, as suggested pictorially in
Figure 1. Hence, it suffices to prove an ˝.n/ lower bound for gap orthogonality.

It seems at first that nothing of substance is gained by switching from gap Hamming
distance to gap orthogonality. In actuality, the latter is preferable in that it allows the use
of Yao’s corruption method. Indeed, the corruption property for ORTn is equivalent to
the anticoncentration of jhx; yij: Thus, we just need to establish the anticoncentration: for
some absolute constant � > 0 and any sets A; B � f�1; C1gn of uniform measure at
least 2��n; the inner product hx; yi for random x 2 A; y 2 B cannot be too concentrated
around zero. We give a short proof of this result, which combines selected ideas of [7] and
[17] with some new elements.

STEP 1: IDENTIFYING A HARD CORE.
One can select a family of ˝.n/ near-orthogonal vectors x1; x2; : : : ; xi ; : : : 2 A:

Formally, the projection of xi onto spanfx1; x2; : : : ; xi�1g has Euclidean norm
no greater than a third of the norm of xi :

STEP 2: ANTICONCENTRATION & CORRUPTION.
Fix the vectors so constructed. Then with probability exponentially close to 1; a
random y 2 f�1; C1gn will have nonnegligible inner product (absolute value at
least

p
n=4) with one or more of the vectors xi :

Step 1 is a trivial consequence of Talagrand’s concentration inequality; earlier works by
Raz [13] and Chakrabarti and Regev [7] used an analogue of this claim for the sphere Sn�1

with Haar measure, whose proof was more involved. To prove Step 2, we switch to the
matrix-analytic view of Vidick [17] but give a simpler and more direct argument. Specif-
ically, we consider the matrix M with rows x1; x2; : : : ; xi ; : : : ; which by construction is
close in norm to an orthogonal matrix. It follows that a constant fraction of M ’s singular
values are large, on the order of ˝.

p
n/: Applying Talagrand a second time, we get that

a random vector y 2 f�1; C1gn will have a constant fraction of its Euclidean norm in
the linear subspace corresponding to the large singular values of M; except with proba-
bility exponentially small. This completes Step 2. The sought anticoncentration property
falls out as a corollary, for purely combinatorial reasons. This proves corruption for gap
orthogonality.

2. PRELIMINARIES

Notation. The symbol Œk� stands for the set f1; 2; : : : ; kg: The inner product of x; y 2 Rn

is denoted hx; yi D
P

xi yi : Likewise, hA; Bi D
P

Aij Bij for matrices A D ŒAij � and
B D ŒBij �: The Boolean values “true” and “false” are represented in this paper by �1 and
C1; respectively. In particular, Boolean functions take on values ˙1: A partial function on
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X is a function whose domain of definition, dom f; is a proper subset of X: For a Boolean
string x; the symbol xk stands for the concatenation xx : : : x (k times).

Linear algebra. The Frobenius norm of a real matrix M D ŒMij � is given by kMkF D

.
P

M 2
ij /1=2: We denote the singular values of M by �1.M/ > �2.M/ > � � � > 0: Very

precise estimates are known of the r th singular value, including the Hoffman-Wielandt
inequality. For us, the following very crude bound is all that is needed.

FACT 2.1. For all real matrices M; QM and all r;

�rC1.M/ >
1

rk M � r

�
hM; QM i

�1. QM/
� kMkF

p
r

�
:

Proof. Abbreviate �i D �i .M/: The r largest singular values of M sum to �1 C� � �C�r 6
.�2

1 C� � �C�2
r /1=2

p
r 6 kM kF

p
r; and the remaining ones sum to at most .rk M �r/�rC1:

At the same time,
P

�i > hM; QM i=�1. QM/ by the singular value decomposition.

The Euclidean norm of a vector is denoted kxk D .
P

x2
i /1=2: The dimension of a linear

subspace V is denoted dim V: For a linear subspace V � Rn and a vector x; we let projV x

denote the projection of x onto V: The following fact is immediate from Talagrand’s con-
centration inequality [1, Thm. 7.6.1].

FACT 2.2 (Talagrand). Let V � Rn be a linear subspace. Let c > 1 be a suitably large
absolute constant. Then for a random vector x 2 f�1; C1gn and all t > 0;

PŒjk projV xk �
p

dim V j > t C c� < 4 exp
�

�
t2

c

�
:

The short derivation of Fact 2.2 can be found in [16] or in Appendix A of this paper.

Communication complexity. Fix finite sets X; Y and let f be a (possibly partial) Boolean
function on X �Y: A randomized communication protocol is said to compute f with error
� if for all .x; y/ 2 dom f; the output of the protocol on .x; y/ is f .x; y/ with probability
at least 1 � �: The least communication cost of such a protocol is known as the �-error
communication complexity of f; denoted R�.f /: For all constants � 2 .0; 1=2/; one has
R�.f / D �.R1=3.f //:

A rectangle of X � Y is any set of the form A � B; where A � X; B � Y: One of the
earliest and best known criteria for high randomized communication complexity is Yao’s
corruption bound [20, 2, 12].

THEOREM 2.3 (Corruption bound). Let f be a .possibly partial/ Boolean function on
X � Y: Given �; ı > 0; suppose that there is a distribution � on X � Y such that

�.R Z f �1.C1// > ��.R Z f �1.�1//

for every rectangle R � X � Y with �.R/ > ı: Then

2R� .f / >
1

ı

�
�.f �1.�1// �

�

�

�
:

We gave an informal proof of Theorem 2.3 in the Introduction. For a rigorous treatment,
see, e.g., [3, Lem. 3.5].
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3. CORRUPTION OF GAP ORTHOGONALITY

We start by showing that any subset of f�1; C1gn of nontrivial size contains n=10 near-
orthogonal vectors. See Raz [13, Lem. 4.4] for a similar result for the sphere Sn�1:

LEMMA 3.1. Let ˛ > 0 be a sufficiently small constant. Fix A � f�1; C1gn with jAj >

2.1�˛/n: Then for k D bn=10c there exist x1; x2; : : : ; xk 2 A such that for each i;

k projspanfx1;x2;:::;xi g xiC1k 6

p
n

3
: (3.1)

Proof. The proof is by induction. Having selected x1; x2; : : : ; xi 2 A; pick xiC1 2

f�1; C1gn uniformly at random. Then PŒxiC1 2 A� > 2�˛n: On the other hand, Fact 2.2
implies that the projection of xiC1 onto spanfx1; x2; : : : ; xi g has Euclidean norm at most
p

n=3; except with probability 2�˛n: Thus, there exists xiC1 2 A that obeys (3.1).

The next lemma shows that given any family of near-orthogonal vectors in f�1; C1gn; a
random vector in f�1; C1gn will almost surely have a substantial inner product with some
vector from the family. The proof uses the lower bound in Talagrand’s theorem.

LEMMA 3.2. Fix vectors x1; x2; : : : ; xm 2 f�1; C1gn that obey (3.1) for all i: Then

P
y2f�1;C1gn

�
max

iD1;:::;m
jhy; xi ij 6

p
n

4

�
6 e�˝.m/: (3.2)

Proof. Let Qx1; : : : ; Qxm be orthogonal vectors obtained from x1; : : : ; xm by the Gram-
Schmidt process, i.e., Qxi D xi �projspanfx1;:::;xi�1g xi : Let M and QM be the m�n matrices
with rows x1; : : : ; xm and Qx1; : : : ; Qxm; respectively. Then hM; QM i > 8

9
nm by (3.1). Also

�1. QM/ 6
p

n since QM has orthogonal rows. Thus, Fact 2.1 gives �dm=4e.M/ > 0:51
p

n:

Let M D
Pm

iD1 �i .M/ui v
T
i be the singular value decomposition of M: Define V D

fvi W �i .M/ > 0:51
p

ng; so that jV j > m=4 by the previous paragraph. For all vectors y;

kMyk
2

D

mX
iD1

�i .M/2
hy; vi i

2 > 0:26n
X
v2V

hy; vi
2

D 0:26nk projspan V yk
2:

Since span V has dimension at least m=4; Fact 2.2 guarantees that kMyk2 > mn=16 with
probability 1 � exp.�˝.m// for random y 2 f�1; C1gn: This implies (3.2).

The main result of this section is immediate from the previous two lemmas for basic
combinatorial reasons; cf. the well-known proof of an ˝.

p
n/ lower bound on the com-

munication complexity of disjointness due to Babai, Frankl, and Simon [2].

THEOREM 3.3. Let � > 0 be a small enough constant. Let A; B � f�1; C1gn be given
such that Px2A;y2B Œx ? y� 6 �; where x ? y is shorthand for jhx; yij >

p
n=4: Then

4�n
jAj jBj D exp.�˝.n//:

Proof. Assume that jAj > 2 � 2.1�˛/n; where ˛ > 0 is the constant from Lemma 3.1. We
will show that a random y 2 f�1; C1gn occurs in B with probability at most exp.�˝.n//:

The argument is a combinatorial accounting for what kinds of elements arise in B and
is closely analogous to Theorem 8.3 in [2]. Define A0 D fx 2 A W Py2B Œx ? y� 6 2�g;

so that jA0j > 1
2
jAj. Fix x1; x2; : : : ; xk 2 A0 to obey (3.1) for all i; where k D bn=10c:

Define B 0 D fy 2 B W Pi2Œk�Œxi ? y� 6 3�g; so that jB 0j > 1
3
jBj: Then 2�njB 0j is a lower
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bound on the probability that a random y 2 f�1; C1gn has jhy; xi ij 6
p

n=4 for at least
.1 � 3�/k indices i: By Lemma 3.2 and the union bound, this probability cannot exceed�

k
3�k

�
e�˝.k/ 6 e�˝.n/:

4. MAIN RESULT

In this final section, we prove the sought ˝.n/ bound on the communication complexity
of gap Hamming distance and gap orthogonality, defined in (1.1) and (1.3).

MAIN THEOREM. R1=3.ORTn/ D ˝.n/:

Proof. Consider the partial Boolean function fn on f�1; C1gn � f�1; C1gn defined as �1

when jhx; yij 6
p

n=8 and C1 when jhx; yij >
p

n=4: With � the uniform distribution
on f�1; C1gn � f�1; C1gn; Theorem 3.3 guarantees that �.R Z f �1

n .C1// > ��.R/

for all rectangles R with �.R/ > 2��n; where � > 0 is a small constant. Since
�.fn

�1.�1// D �.1/; the corruption bound (Theorem 2.3) shows that R1=3.fn/ D ˝.n/:

Finally, fn.x; y/ D ORT64n.x64; y64/:

COROLLARY. R1=3.GHDn/ D ˝.n/:

Proof. Immediate from the reduction in Figure 1. Formally, for n a square,

ORTn.x; y/ D GHD10nC15
p

n

�
x10.�1/15

p
n; y10.C1/15

p
n
�

^ :GHD10nC15
p

n

�
x10.C1/15

p
n; y10.C1/15

p
n
�

:
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APPENDIX A. MORE ON TALAGRAND’S CONCENTRATION INEQUALITY

For a subset S � Rn and a point x 2 Rn; let �.x; S/ D infy2conv S kx � yk be the
Euclidean distance from x to the convex hull of S: Talagrand’s inequality [15, 1] states that
for any reasonably large subset S of the hypercube, almost all the points of the hypercube
lie at a short distance from the convex hull of S: In more detail:

THEOREM A.1 (Talagrand). For a fixed set S � f�1; C1gn and a random x 2 f�1; C1gn;

PŒx 2 S� PŒ�.x; S/ > t� 6 e�t2=16:

In the terminology of Euclidean distances, Fact 2.2 states that for every linear subspace
V � Rn and a random x 2 f�1; C1gn;

P
hˇ̌̌

�.x; V / �
p

n � dim V
ˇ̌̌

> t C O.1/
i

6 4e�˝.t2/: (A.1)

To explain why this is a consequence of Talagrand’s inequality, we will closely follow the
treatment in a recent expository article by Tao [16]. Fix a > 0 and consider the set S D

fx 2 f�1; C1gn W �.x; V / 6 ag: Then PŒ�.x; V / 6 a� PŒ�.x; S/ > t� 6 exp.�t2=16/ by
Talagrand. But by the triangle inequality, �.x; V / > a C t implies �.x; S/ > t; whence

PŒ�.x; V / 6 a� PŒ�.x; V / > a C t � 6 e�t2=16 (A.2)

for any a: Let m be the median value of �.x; V /: The two tail bounds

PŒ�.x; V / > m C t � 6 2e�t2=16; (A.3)

PŒ�.x; V / 6 m � t � 6 2e�t2=16 (A.4)

result from letting a D m and a D m � t; respectively, in (A.2). Consequently, �.x; V /

is sharply concentrated around its median. The sharp concentration means among other
things that the median is within an additive constant of EŒ�.x; V /2�1=2 D

p
n � dim V :

Along with (A.3) and (A.4), this settles (A.1).
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