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Abstract

We present a deterministic operator on tree codes – we call tree code product – that allows
one to deterministically combine two tree codes into a larger tree code. Moreover, if the original
tree codes are efficiently encodable and decodable, then so is their product. This allows us to
give the first deterministic subexponential-time construction of explicit tree codes: we are able
to construct a tree code T of size n in time 2n

ε

. Moreover, T is also encodable and decodable
in time 2n

ε

.
We then apply our new construction to obtain a deterministic constant-rate error-correcting

scheme for interactive computation over a noisy channel. If the length of the interactive com-
putation is n, the amount of computation required is deterministically bounded by n1+o(1), and
the probability of failure is n−ω(1).
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1 Introduction

In this paper we study ways to implement communication protocols over a noisy channel, and related
fundamental coding-theory questions. Classical coding theory addresses the following practical
problem. Suppose Alice wants to send Bob a message m over a channel that is affected by a
certain amount of noise. How should Alice encode m so that if the amount of noise is not excessive
Bob would be able to recover the message m? For an encoding/decoding scheme to be useful, the
following three properties need to hold: (1) Bob should be able to recover m from a corrupted

version C(m)′ of the encoded message C(m); (2) the ratio |C(m)|
|m| , called rate of the code, is small,

i.e. C(m) is not much longer than m; and (3) the encoding/decoding algorithms are efficient. In
the past 60 years, scientist and engineers have been extremely successful in addressing this coding
challenge. In particular, “good codes”, satisfying the properties above, have been successfully
constructed [MS77, Sud01]. For example, there are good efficient codes that are able to deliver the
message even if the adversary corrupts, say, 20% of the symbols in the message C(m).

Suppose that instead of the simple task of sending a message, Alice and Bob are trying to
implement a more complex protocol π over the channel. Is there a similarly good way to encode
π using a code C(π) so that even if some of the messages in the encoded protocol C(π) are
corrupted, the parties would still be able to simulate the functionality of π? When this problem
arises in practice, such as in TCP/IP protocols, this problem is reduced to treating each message
of π separately through a round-by-round encoding. Note that, however, even if the noise on the
channel is random and not adversarial, this approach requires an Ω(log n) bit overhead per round
to keep the probability of failure at each round below 1/n. Thus if the messages of the original
protocol π are short, this approach introduces a blowup in the amount of communication required.
Another problem is that if the noise is adversarial, this approach is doomed to fail, since the
adversary may choose to corrupt entirely the encoding of a single message in π, thus completely
derailing the execution of the protocol.

In fact, it is far from obvious that a constant-rate encoding scheme that protects the entire
protocol from an adversary that is allowed to corrupt a constant fraction of the messages exists. It
is not even clear that such a scheme exists when the noise is random. In a breakthrough result,
Schulman [Sch96] introduced a new coding-theory primitive, called the tree code (see Section 2.2
below for the definition of tree codes). Schulman showed how tree codes can be used to obtain
a constant-rate encoding of π that protects it against an adversary that is allowed to corrupt a
constant fraction of the communication symbols. Schulman’s original construction dealt with an
adversary that corrupts at most a 1/240 fraction of the input. In a subsequent work, [BR10] devised
a different protocol that deals with adversarial error rates of up to 1/4 − ε. The main drawback
of all these schemes is the fact that while tree codes can be shown to exist via the probabilistic
method, no explicit constant-rate constructions with efficient encoding and decoding are known.

In an unpublished memo [Sch03] Schulman outlines a construction (joint with Will Evans and
Michael Klugerman) of a 1

logn -rate deterministic tree code, where n is the length of π. Combined
with the results in [BR10], one can obtain a fairly efficient scheme for error-proofing interactive
communication. Unfortunately, the scheme falls short of being “good”, because it has a subcon-
stant 1

logn rate. A very promising recent approach by Gelles and Sahai [GS11] is to show that
objects weaker than tree codes, called potent tree codes, suffice for the main application. While
finding potent tree codes is provably easier, there are no known constructions of efficiently encod-
able/decodable potent tree codes either. Finally, one can only look at randomized errors, rather
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than adversarial ones. It turns out that in this case one only needs a much weaker object called a
local tree code. As this object generally can be represented using O(log n) bits, and thus exhaustive
search techniques can be applied to it. This was first noted informally by Schulman in [Sch03]. A
different construction has been formally presented by Moitra in [Moi11]. Both constructions yield
a constant-rate encoding scheme for a channel affected by random noise. The scheme fails with
probability 1/nc for some constant c. The scheme requires time polynomial in n to set up, and
the encoding/decoding time is also polynomial in n, where the exponent depends on the security
parameter c. For the random noise model the construction of Gelles and Sahai delivers a much
better performance, requiring expected time O(n) to encode/decode, and having an exponentially
small error probability.

Contributions

Our main technical contribution is Theorem 6, which gives a new way to combine two tree codes
to obtain a larger tree code. If a tree code T1 is of size d1 (i.e. it encodes strings of length d1), and
a tree code T2 is of size d2, then the newly obtained product tree code T = T1 ⊗ T2 will be of size
d = Ω(d1×d2). This gives a way of constructing larger tree codes from smaller ones. In particular,
one can construct a tree code of size n from a constant number of copies of a tree code of size nε

using the ⊗ operator. Since a tree code of size nε can be found by brute force in time 2O(nε), we
obtain a subexponential 2O(nε)-time deterministic algorithm for constructing a tree code of size n.
Moreover, the resulting code is also encodable and decodable in time 2O(nε). A formal statement
of the result on tree code product requires us to define tree codes first, and thus is deferred until
Section 3.

Using the ⊗ operators we can construct a code of size log n from codes of size logε n. Codes of
size logε n can be found in time 2logε n = no(1). Thus we obtain a way of constructing a tree code
of size log n (and, in fact, of size logC n for any C > 1) in subpolynomial time. By combining this
new construction with ideas from [Sch03, Moi11], we show (see Corollary 9 below):

Theorem A. For every noise rate β < 1/2, and any parameter c > 1, there is a deterministic
transformation of communication protocols Cβ,c(π), such that for every binary protocol π, Cβ,c is
a binary protocol, |Cβ,c(π)| = Oβ,c(|π|), and for all inputs x, y, both parties can determine π(x, y)
correctly with probability > 1−2−Ω((logn)c), by running Cβ,c(π) if the channel is affected by a random

noise of rate < β. Moreover, the encoding/decoding of each symbol takes time 2O((logn)1/c), and thus

the computational resources required to execute Cβ,c(π) are bounded by n · 2O((logn)1/c) = n1+o(1).

The theorem has two advantages over prior deterministic constructions. Firstly, it is very
efficient: the computational overhead is a subpolynomial multiplicative factor. Secondly, it achieves
a subpolynomial failure probability. The theorem is incomparable to the construction of [GS11].
The running time in Theorem A is higher by a factor of no(1), and the error probability in Theorem A
is 2−Ω((logn)c) rather than exponential in n. On the other hand, the construction in Theorem A
is completely deterministic, and the running time is n1+o(1) in the worst case, rather than in
expectation. In addition, the error-correction scheme in Theorem A also works for adversarial
noise models, as long as the adversary is not allowed to place a disproportionately high fraction of
errors in any single stretch of length (log n)c. It is very possible that the two constructions can be
fused to obtain parameters that dominate both.

In addition to the immediate benefits in terms of better error-correcting schemes for interactive
communication, we believe that our construction can potentially be a building block in constructing
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efficient tree codes. The reason why we cannot apply the ⊗ operator repeatedly to obtain a highly
efficient tree code of arbitrary size is that the encoding rate of T1 ⊗ T2 is worse than the rate of T1

and T2. Thus we are only allowed a constant number of tree code product applications if we are
to keep the rate from falling below a constant. One possible avenue of attack if one were to apply
⊗ more than a constant number of times is to come up with a variant of the ⊗ operator that does
not cause such a significant rate drop. A different context in Theoretical Computer Science where
such an approach has recently been successful is the zig-zag product of graphs [RVW02] which is
a variant of graph squaring that manages to keep the degree from being squared while preserving
some desirable properties of graph squaring.

The rest of the paper is organized as follows. In Section 2 we state a lemma about (non-tree) codes
that we will use in this paper; we then define tree codes, local tree codes, as well as what it means
for these objects to be efficiently encodable and decodable. In Section 3 we give our main tree
code product construction. In Section 4 we show how to use the tree code product construction
to obtain better explicit tree codes and local tree codes, as well as to obtain better deterministic
error-correcting schemes for interactive communication over a noisy channel.

2 Preliminaries

2.1 Good (non-tree) codes

An error-correcting code is a function C : Σn → Σm such that the message m can be recovered from
C(m) even if some of the symbols in C(m) are corrupted. There are several parameters involved:
the alphabet size σ = |Σ|, the amount (and type) of error one can recover from, and the rate
m
n of the encoding. The problem generally gets harder when σ becomes smaller, when the errors
are large (constant-rate) and adversarial, and when we would like to keep the rate constant. A
code with a constant alphabet size, a constant rate and which can withstand constant-rate errors
is said to be good. It is a well known fact from coding theory [Jus72, MS77, Sud01] that good
error-correcting codes exist, and moreover can be encoded and decoded efficiently. We will use the
following reformulation of this fact. We omit the proof here, since it is a standard corollary of the
existence of good codes, combined with an application of an expander code (cf. [SS96]):

Lemma 1. For each Σ1 of size σ1 = |Σ1|, and for each pair of parameters (n, ε) there is an alphabet

Σ2 of size σ2 = σ
O(1)
1 and a code C : Σn

1 → Σn
2 with the following properties:

1. Distance: for w1 6= w2, H(C(w1), C(w2)) > (1− ε)n.

2. Efficient encoding: C(w) can be computed in time poly(n, log σ2).

3. Efficient decoding: there is a partial function D : Σn
2 → Σn

1 computable in time poly(n, log σ2),
such that for each w ∈ Σn

2 , whenever there is an w′ ∈ Σn
1 with H(C(w′), w) < 1

2(1 − ε)n,
D(w) = w′.

2.2 Tree codes and local tree codes

Tree codes were introduced by Schulman [Sch96], and are currently the only known tool that allows
good error-correcting coding for interactive computation. For a string s, we denote by s[i..j] the
substring of s between locations i and j, inclusively.
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Definition 2. A tree code T with parameters (d, α, σi, σo) corresponding to depth, distance, input
alphabet size and output alphabet size is a σi-regular tree of depth d with edges labeled with labels
from the alphabet Σo = {1, . . . , σo}. Denote Σi = {1, . . . , σi}. The tree defines a natural mapping
T : Σ≤di → Σ≤do . We require that for each three words w,w1, w2 over Σi, such that |w1| = |w2|,
|w|+ |w1| ≤ d, and w1[1] 6= w2[1], we have

H(T (w ◦ w1), T (w ◦ w2)) ≥ α · |w1|,

where ◦ is the concatenation operator.

In other words, the tree code is an encoding scheme where the k-th symbol of the encoding
depends only on the first k symbols of the source, and where the encodings of two different words
diverge at a linear rate from the first location of disagreement. Mimicking coding theory terminol-
ogy, a tree code is said to be good when the distance parameter α and the rate are both constant, i.e.

α = Ω(1) and σo = σ
O(1)
i . Good tree codes have been shown to exist in [Sch96] via a probabilistic

argument. Unfortunately, to date, no explicit constructions of good tree codes are known.
When one deals with uniformly random noise, rather than with adversarial noise, coding for

interactive communication does not require full tree codes, but rather only local tree codes. Local
tree codes were introduced by Moitra [Moi11], but were also mentioned in an earlier unpublished
memo by Schulman [Sch03] (under the name “weak tree codes”). In a local tree code one only
requires divergent paths to diverge at a linear rate for a limited number ` of steps:

Definition 3. A local tree code T with parameters (d, α, `, σi, σo) corresponding to depth, distance,
locality, input alphabet size and output alphabet size is a σi-regular tree of depth d with edges labeled
with labels from the alphabet Σo = {1, . . . , σo}. Denote Σi = {1, . . . , σi}. The tree defines a natural
mapping T : Σ≤di → Σ≤do . We require that for each three words w,w1, w2 over Σi, such that
|w1| = |w2| ≤ `, |w|+ |w1| ≤ d, and w1[1] 6= w2[1], we have

H(T (w ◦ w1), T (w ◦ w2)) ≥ α · |w1|,

where ◦ is the concatenation operator.

Local tree codes are much easier to construct efficiently. As noted by Schulman in his note
[Sch03], knowing a tree code of depth ` is enough to construct a local tree code. We will repeat
this argument below for completeness. Moitra [Moi11] gives another way of constructing local tree
codes with locality ` = Θ(log n) in polynomial time.

2.3 Efficient encoding and decoding of tree codes

For the main application of the codes, namely for coding for interactive communication, it is not
enough to just construct the code T . One also needs to be able to perform the encoding and
decoding operations explicitly. While derandomization tools may allow us one day to get rid of the
randomness in the tree code construction, it is not clear that they would yield an efficient encoding,
and especially an efficient decoding algorithm. Looking for a “best match” path in a tree of depth
n may generally take time exponential in n. Our goal in this paper is to produce efficient encoding
and decoding algorithms, thus we need to define efficient decoding that is “good enough” for the
applications.
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Definition 4.

• Efficient encoding: A tree code (either local or general) T of depth d and output alphabet
size σo is encodable in time t(d, σo) if each symbol of the output can be computed in t(d, σo)
time.

• Efficient decoding – general tree codes: A tree code T with parameters (d, α, σi, σo) is
decodable in time t(d, σo) if there is an algorithm D that runs in time t(d, σo) that for each
k ≤ d and for each string s ∈ Σk

o , outputs a string D(s) ∈ Σk
i such that for each s′ ∈ Σk

i , if j
is the first location of disagreement between s′ and D(s), then

H(s[j..k], T (s′)[j..k]) ≥ α

2
· (k − j + 1).

• Efficient decoding – local tree codes: A local tree code T with parameters (d, α, `, σi, σo)
is decodable in time t(d, `, σo) if there is an algorithm D that runs in time t(d, `, σo) that for
each r ≤ ` and k ≤ d − r and for each pair of strings s1 ∈ Σk

i , s2 ∈ Σr
o outputs a string

D(s1, s2) ∈ Σr
i such that for each s′ ∈ Σr

i , if j is the first location of disagreement between s2

and D(s), then

H(s2[j..r], T (s1 ◦ s′)[k + j..k + r]) ≥ α

2
· (r − j + 1).

The first two parts of Definition 4 are fairly straightforward and closely follow standard defi-
nitions of encoding and decoding. The tree code guarantee is that “a mistake causes the encoded
words to diverge in Hamming distance”. Thus the decoding guarantee is that “if we failed to
decode s′ correctly from some location j, it is because there is a big Hamming distance starting
from location j between the encoding of s′ and the received word.” The third part of the definition
states that we can decode the last r ≤ ` symbols with the same guarantees as with ordinary tree
codes, provided that we are given all preceding symbols correctly.

Definition 4 is sufficient for applications in error-correction of interactive communications. Ide-
ally, we would like to be able to decode tree codes in time polynomial in d (assuming σo is constant).
A brute force decoding would take time exponential in d for general tree codes, and exponential in
` for local tree codes. In the application of local tree codes to error-correcting for interactive com-
munication that is affected by random noise one needs ` to be ≈ log d. Thus even the brute-force
decoding scheme is sufficient if one is interested in an algorithm that runs in time polynomial in
d. We would like our algorithm to run in subpolynomial time do(1) per symbol. To achieve this
we need a local tree code that can be decoded faster than brute force, i.e. in subexponential time.

Note that a local tree code that is decodable in time 2O(
√
`) already suffices, as it would translate

into a communication scheme that requires 2
√

log d = do(1) computation per round.

3 Main results: combining multiple tree codes

In this section we will introduce an operation we call tree code product that uses two tree codes
of depths d1 and d2 to produce a tree code of depth roughly d1 × d2 without decreasing the rate
too much. The newly obtained tree code will be decodable in time similar to the two original tree
codes. We will then use this operation to obtain good tree codes that can be constructed and
decoded in subexponential time. We will use these, in turn, to obtain local tree codes that can be
deterministically constructed and decoded in subpolynomial time.
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3.1 From a small tree code to a local tree code

As a first step, we will need a generic tool for converting a tree code of depth d into a local tree
code of depth D � d with ` ≈ d. In addition to the obvious benefit in the construction of local
tree codes, we will also need this tool to perform the tree code product later in the section. To our
knowledge, this construction was first outlined in an unpublished note by Schulman [Sch03]. We
repeat essentially the same proof here both for completeness and to get all the parameters set up
for later use.

Lemma 5. Let T be a tree code with parameters (d, α, σi, σo). Then for any depth parameter D
and for any ε, we can construct a depth D local tree code T ′ with parameters (D,α, d·(1−ε), σi, σ′o),
where σ′o = σ

Oε(1)
o . Moreover, up to a factor of polylog D, the encoding and decoding times for T ′

are the same as for T .

Proof. The proof proceeds by overlapping k = 1 + d1/εe = Oε(1) copies of T . Pick k numbers
t1 = 1 < t2 < . . . < tk ≤ d such that for each i, ti+1 − ti ≤ 1 + εd, and d + 1 − tk ≤ 1 + εd. Let
T ′i be a (periodic) tree code that uses T to encode each block of d inputs starting from locations
that are ti mod d. Thus each T ′i outputs a label in Σo. Let T ′ be the concatenation of T ′1 , . . . , T ′k .
Then T ′ is a tree code with alphabet Σk

o of size σko .
To see that T ′ is a local tree code observe that if w,w1, w2 are three strings over Σi such that

|w1| = |w2| ≤ d · (1− ε), and let j := |w|+ 1. Then there is an i and a location q ≤ j with q = ti
mod d such that j−q ≤ dε. Then by the tree code property of T , the encodings of w◦w1 and w◦w2

will disagree in the i-th coordinate in at least an α-fraction of the locations from j to j + |w1| − 1.
Finally, it is evident from the construction that encoding and decoding of T ′ reduces to at most

k operations on the tree T and simple arithmetic with numbers of magnitude ≤ D.
Let us also note that the construction would work and produce a (D,α, d/2, σi, σ

′
o)-local codes

by overlapping just two copies of T , thus yielding σ′o = σ2
o .

3.2 Tree code product

We can now formulate our main theorem on combining two tree codes to obtain a third, larger,
tree code. The operation resembles a product operation.

Theorem 6. Let TI and TO be two tree codes of depth, distance and alphabet size parameters
(d1, α1, σi, σo1) and (d2, α2, σi, σo2), respectively. Then we can construct a “product tree code”
TP := TI ⊗ TO with parameters (d, α, σi, σo) where α = min(α1, α2/10), d = d1 × d2/4, and σo =
(σo1σo2)O(1).

Moreover, the encoding and decoding times for TP are the same as for TI and TO, except there
is a multiplicative overhead polynomial in d1 + d2.

Proof Idea: We use a tiling by the “internal” tree code TI to obtain a local tree code with ` = d1/2.
This takes care of divergent paths that diverge for at most d1/2 positions. To take care of longer
paths, we use the outer tree code TO. Consider a code where we use T = d1/4 interleaved copies of
TO. The first copy encodes positions 1, 1 +T, . . . , 1 + (d2−1) ·T , the second copy encodes positions
2, 2 + T, . . . , 2 + (d2 − 1) · T , etc. This is, of course, not a good tree code, since one disagreement

in the source will only lead to a Θ
(

1
d1

)
-fraction of disagreements in the encoding. However, these

disagreements will be well-spread among the blocks of length d1/4: a constant fraction of the blocks
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will have at least on location of disagreement. To amplify this to a constant distance we wrap each
block with an ordinary good error-correcting code. Divergent paths of length > d1/2 will contain
one or more blocks of length d1/4. A constant fraction of these blocks will have a constant rate
Hamming distance from each other, yielding the tree code property for longer divergent paths.

Proof. Assume without loss of generality that d1/4 is an integer. We will make use of a good code

C : Σ
d1/4
o2 → Σ

d1/4
3 from Lemma 1 with ε = 1/3, so that the distance between any two codewords

is at least d1/6. Furthermore, we know that σ3 := |Σ3| = σ
O(1)
o2 .

By Lemma 5 we can use TI to construct a local tree code T ′I of depth d = d1 × d2/4 with

parameters (d, α1, d1/2, σi, σ
′
o1), where σ′o1 = σ

O(1)
o1 . The tree code TP will be the concatenation of

T ′I with another code T ′O. The local tree code T ′I “takes care” of divergent paths that are of length
d1/2 or shorter. The code T ′O, which will also be a tree code, “takes care” of divergent paths that
are of length Ω(d1). We note that the code T ′O will not have distance properties of a good tree code
on scales below d1.

Before constructing the code T ′O : Σ≤di → Σ≤d3 , we construct an intermediate code T ′′O : Σ≤di →
Σ≤do2 . For a string w ∈ Σ∗i , w = s1, s2, . . . , sn and an integer k, define

w mod k := sn−bn−1
k c·k, sn−bn−1

k c·k+k, . . . , sn−k, sn.

In other words, w mod k is obtained from w by starting from the last element and going backwards,
taking every k-th element. We define

T ′′O (w) := TO(w mod d1/4).

We now define T ′O from T ′′O . T ′O is defined in blocks of size d1/4. Let the output of T ′′O be given by
blocks B1, B2, . . . , Bd2 of length d1/4 each. Then the output of T ′O is

B0, C(B1), CB(2), . . . , C(Bd2−1).

Here B0 is an arbitrary string in Σ
d/4
3 , and C is the good code from Lemma 1 that we have assumed.

Note that T ′O thus defined is a tree code in that the i-th symbol in the output only depends on the
first i symbols of the input.

As noted earlier, we define TP to be the concatenation of T ′I and T ′O. The alphabet size σo of
the resulting code is σo = σ′o1 · σ3 = (σo1σo2)O(1). The depth of the code is d = d1× d2/4. It is also
easy to see that the encoding process is efficient. It remains to see that the distance of the code is
indeed α = min(α1, α2/10), and that decoding can be performed efficiently.

The distance of TP . Let w,w1, w2 be three strings over Σi such that |w1| = |w2|, w1[1] 6= w2[1],
and |w|+ |w1| ≤ d. We need to show that

H(TP (w ◦ w1), TP (w ◦ w2)) ≥ α · |w1|.

There are two cases to consider.
Case 1: |w1| ≤ d1/2. In this case,

H(TP (w ◦ w1), TP (w ◦ w2)) ≥ H(T ′I (w ◦ w1), T ′I (w ◦ w2)) ≥ α1 · |w1| ≥ α · |w1|.

Case 2: |w1| > d1/2. In this case let Bi be the length-(d/4) block that contains the first location
of w1. Let Bi+1, . . . , Bi+j be the blocks that are entirely contained within the locations covered by
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w1. Note that since |w1| > d1/2, j ·d1/4 ≥ |w1|/3, i.e. j ≥ 4
3 ·
|w1|
d1

. Let k be the location of the first
symbol of w1 within Bi. Since the k-th symbol in each block of the encoding of w ◦ w1 by T ′′O is
encoded using the tree code TO, at least α2 · j of the blocks Bi, . . . , Bi+j−1 contain a disagreement
location under the encoding T ′′O . Finally, since C is an error-correcting code of distance d1/6 on
each block, the distance between the blocks Bi+1, . . . , Bi under the encoding T ′O is at least

α2 · j ·
d1

6
≥ α2 ·

4

3
· |w1|

6
=

2α2

9
· |w1| > α · |w1|.

Efficient decoding of TP . The decoding algorithm also works on two different scales. Given an
input string s ∈ Σk

o with k ≤ d that needs to be decoded, it uses the decoder for T ′I to decode the
last d1/2 symbols. Note that the local tree code guarantee is not sufficient to be able to decode T ′I
since we may not have a decoded prefix. However, the structure of the construction of T ′I implies
that there is a copy of TI that covers the last d1/2 symbols of s, and we use this copy to decode
them. We thus obtain a decoding D(s)[(k − d1/4 + 1)..k].

To decode symbols in locations [1..k − d1/2], we use T ′O. Let B1, . . . , Bj be the length-d1/4
blocks that are contained entirely within the locations of s. Thus j · (d1/4) ≤ k < (j + 1) · (d1/4).

Let s1, . . . , sj−1 ∈ Σ
d1/4
o2 be strings obtained by decoding the blocks B2, B3, . . . , Bj in s using the

decoder for the code C. Finally, if we are interested in the q-th location in block Bb, where
1 ≤ b ≤ j − 1, we first construct the string B1[q], B2[q], . . . , Bj−1[q], and then use the decoder for
TO to decode it and obtain the decoding for D(s)[(b− 1) · d1/4 + q] ∈ Σi. This allows us to decode
D(s)[1..(j − 1) · (d1/4)].

We have (j − 1) · (d1/4) > k − d1/2, and thus at least one of the two methods allows us to
decode all symbols in D(s) ∈ Σk

i . If a location i happens to be decoded by both, we use the first
method, i.e. the local decoding using TI to determine D(s)[i]. It is easy to see that the overhead is
polynomial in depth. The only operations performed are decoding using TI and TO and decoding
with respect to the good code C.

The performance analysis of the decoding algorithm is very similar to the distance analysis. Let
s′ ∈ Σk

i , and let t be the first location of disagreement between s′ and D(s). We need to show that

H(s[t..k], TP (s′)[t..k]) ≥ α

2
(k − t+ 1).

Once again, there are two cases to consider.
Case 1: t > k − d1/2. In this case, by the decoding properties of TI , we must have

H(s[t..k], TP (s′)[t..k]) ≥ α1

2
(k − t+ 1) ≥ α

2
(k − t+ 1).

Case 2: t ≤ k − d1/2. Let Bi be the block containing the location t. By the tree code decoding
property of TO, at least α2

2 · (j − i) of the strings si, . . . , sj−1 have disagreements with the corre-
sponding strings in the encoding of s′. By the properties of the code C, if there is a disagreement
between an sq and the corresponding string in the encoding of s′, it means that the number of
disagreements between s and TP (s′)[t..k] in the locations corresponding to the next block Bq+1 is
at least d1

12 . Thus we have

H(s[t..k], TP (s′)[t..k]) ≥ α2

2
· (j − i) · d1

12
≥ α2

2
· k − t+ 1

3d1/4
· d1

12
=
α2

18
· (k − t+ 1) >

α

2
· (k − t+ 1).
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Note that the construction is not associative, i.e. (T1⊗T2)⊗T3 and T1⊗ (T2⊗T3) are different
codes. Another interesting feature is that the the distance parameter α only decreases with respect
to the second coordinate. This means that we can use a single code T with parameters (d, α, σi, σo),
apply its product with itself on the right k times to obtain a code Tk = ((. . . (T ⊗T )⊗T )⊗ . . .)⊗T
of depth ∼ dk and distance ≥ α/10.

4 Applications: interactive computation with random noise

4.1 Subexponential-time tree codes

Theorem 6 allows us to give the first deterministic construction of good tree codes in time subex-
ponential in their depth. Moreover, the encoding/decoding operations will also be subexponential.

Theorem 7. Let d and ε > 0 be any parameters, and let σi be the constant size of the input
alphabet. Then there is a constant α independent of d and ε and a constant σo = σo(ε, σi) such that
we can construct a tree code T = T (d, ε) with parameters (d, α, σi, σo). Moreover, the construction,
as well as the encoding and decoding operations will run in time polynomial in 2d

ε
.

Proof. We know [Sch96] that there exists a tree code with parameters (4dε, α′, σi, σ
′
o). Where σ′o is

a constant, and α′ is a constant we can make arbitrarily close to 1. Using brute force we can find
such a code T1 in time 2O(dε). Moreover, T1 will be encodable and decodable in time 2O(dε).

Set k := d1/εe, and let Tk = ((. . . (T1 ⊗ T1)⊗ T1)⊗ . . .)⊗ T1. Then by k repeated applications
of Theorem 6, we see that Tk is a (d′, α′/10, σi, σo)-tree code, where d′ > d and σo is a constant.
Moreover, Tk is encodable and decodable in time 2O(dε).

4.2 Interactive computation with random noise

We can now use Theorem 7 together with Lemma 5 to obtain a local tree code of depth n with
`� log n and subpolynomial construction, encoding and decoding times.

Theorem 8. For any parameters c > 1, any depth n and any input alphabet size σi, we can
construct a local tree code with parameters (n, α, `, σi, σo), where α is a constant independent of
c, n, and σi, σo = Oc,σi(1), and ` = Ω((log n)c). Moreover, the construction, as well as each

encoding/decoding operation, can be performed in subpolynomial time of t(n, `, σo) = 2O((logn)1/c).

Proof. We apply Theorem 7 with d = (log n)c, ε = 1/c2, and σi = σi to obtain a tree code T ′ with
parameters ((log n)c, α, σi, σ

′
o), where α is a universal constant, and σ′o is a constant that depends

on σi and c. The code T ′ is constructible, encodable, and decodable in time

t(n) = 2O(dε) = 2O((logn)1/c).

Next we apply Lemma 5 to construct the local tree code T from T ′. The local tree code T will
have the desired parameters.

If we are using a tree code to send messages down a channel that is affected by i.i.d. random
noise of a constant rate, as opposed to an adversarial noise, then the probability that a stretch
of ` positions contains a disproportionately high number of errors decays exponentially in `. This

10



The transmitting player: encodes her messages using T .
The receiving player: maintains the currently decoded messages.
After step i, maintain a string wi of length li := max(i− `+ 1, 0).
On step i+ 1:
• The receiver decodes the symbols in locations [li + 1..i+ 1] using the local tree code
decoder and the string wi, thus obtaining a string s[li + 1..i+ 1].
• If li+1 > 0, the receiver updates wi+1 := wi ◦ w[li + 1].

Figure 1: The protocol for communication over a noisy channel using a local tree code

means that if `� log n, the probability of having a stretch of errors that is longer than ` anywhere
during the communication becomes small.

More formally, consider the following algorithm for simulating a tree code with a local tree code
T where the noise is random. Suppose that T has parameters (n, α, `, σi, σo), and assume that the
noise rate of the channel is < α/4. The protocol is outlines on Figure 1. At each step the receiver
maintains a string wi. These are the “verified” decoded symbols – and they include all the symbols
but the last `. The receiver uses the local tree code decoder to recover the remaining symbols. He
then adds the earliest (and thus the most certain) recovered symbol to wi before proceeding to the
next iteration. The computational cost per round is the encoding/decoding cost of T .

In all the applications of tree codes, particularly in [BR10], the encoding/decoding scheme on
Figure 1 is a good replacement for the actual tree code, provided that all the decodings wi are
perfectly correct. By the local tree code property, this is indeed the case as long as there is no
continuous stretch of ` locations which contains at least α/2 transmission errors. Since we assume
that the error rate is < α/4, the probability of having a continuous stretch of ` locations with at
least α/2 errors is bounded by

n ·

((
3

4

)α/4)`
= n · 2−Ω(`),

since α is a constant. The scheme on Figure 1 will also work when the errors on the channel are
adversarial, as long as no stretch of ` adjacent locations has an error rate exceeding α/4.

If our channel is affected by random errors, we can reduce the error rate to any constant,
in particular below α/4, while reducing the code rate by a constant. This can be achieved, for
example, by retransmitting each symbol a constant number of times. By applying the parameters
from Theorem 8, and combining the result with the protocol from [BR10] we obtain:

Corollary 9. For every noise rate β < 1/2, and any parameter c > 1, there is a deterministic
transformation of communication protocols Cβ,c(π) and a constant σo, such that for every binary
protocol π, Cβ,c is a protocol over Σo, |Cβ,c(π)| = Oβ,c(|π|), and for all inputs x, y, both parties can
determine π(x, y) correctly with probability > 1 − 2Ω((logn)c), by running Cβ,c(π) if the channel is
affected by a random noise of rate β. Moreover, as the encoding/decoding of each symbol takes time

2O((logn)1/c), the computational resources required to execute Cβ,c(π) are bounded by n ·2O((logn)1/c).

It is also easy to see that the alphabet Σo can be replaced with the binary alphabet, with
only a constant overhead in the rate. This can be done by replacing each symbol with its bi-
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nary representation, and repeating this representation a constant number of times, thus implying
Theorem A.
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