
Lasserre Hierarchy, Higher Eigenvalues, and
Approximation Schemes for Quadratic Integer

Programming with PSD Objectives

VENKATESAN GURUSWAMI∗ ALI KEMAL SINOP∗

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213.

Abstract

We present an approximation scheme for optimizing certain Quadratic Integer Program-
ming problems with positive semidefinite objective functions and global linear constraints.
This framework includes well known graph problems such as Minimum graph bisection, Edge
expansion, Uniform sparsest cut, and Small Set expansion, as well as the Unique Games prob-
lem. These problems are notorious for the existence of huge gaps between the known algorith-
mic results and NP-hardness results. Our algorithm is based on rounding semidefinite pro-
grams from the Lasserre hierarchy, and the analysis uses bounds for low-rank approximations
of a matrix in Frobenius norm using columns of the matrix.

For all the above graph problems, we give an algorithm running in time nO(r/ε2) with ap-
proximation ratio 1+ε

min{1,λr} , where λr is the r’th smallest eigenvalue of the normalized graph
Laplacian L. In the case of graph bisection and small set expansion, the number of vertices
in the cut is within lower-order terms of the stipulated bound. Our results imply (1 + O(ε))

factor approximation in time nO(r∗/ε2) where r∗ is the number of eigenvalues of L smaller than
1 − ε. This perhaps gives some indication as to why even showing mere APX-hardness for
these problems has been elusive, since the reduction must produce graphs with a slowly grow-
ing spectrum (and classes like planar graphs which are known to have such a spectral property
often admit good algorithms owing to their nice structure).

For Unique Games, we give a factor (1 + 2+ε
λr

) approximation for minimizing the number
of unsatisfied constraints in nO(r/ε) time. This improves an earlier bound for solving Unique
Games on expanders, and also shows that Lasserre SDPs are powerful enough to solve well-
known integrality gap instances for the basic SDP.

We also give an algorithm for independent sets in graphs that performs well when the
Laplacian does not have too many eigenvalues bigger than 1 + o(1).

∗Research supported in part by a Packard Fellowship, NSF CCF 0963975, and US-Israel BSF grant 2008293. Email:
guruswami@cmu.edu, asinop@cs.cmu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 66 (2011)

Contents

1 Introduction 3

1.1 Summary of results . 4

1.2 Our Techniques . 6

1.3 Related work on Lasserre SDPs in approximation . 7

1.4 Organization . 9

2 Lasserre hierarchy of semidefinite programs 9

3 Case Study: Approximating Minimum Bisection 11

3.1 Lasserre relaxation for Minimum Bisection . 11

3.2 Main theorem on rounding . 11

3.3 The rounding algorithm . 12

3.4 Factor 1 + 1
λr

approximation of cut value . 13

3.5 Improved analysis and factor 1
λr

approximation on cut value 15

3.6 Bounding Set Size . 16

4 Algorithm for Quadratic Integer Programming 16

5 Algorithms for Graph Partitioning 18

5.1 Minimum Bisection . 20

5.2 Small Set Expansion . 21

5.3 Other Graph Partitioning Problems . 23

6 Algorithms for Unique Games Type Problems 24

6.1 Maximum cut . 24

6.2 Unique Games . 25

7 Main Technical Claims about Rounding 29

7.1 Simple lemmas about rounding . 29

7.2 Choosing A Good Seed Set . 31

8 Algorithm for Independent Set 35

A Approximately Solving SDP 39

2

1 Introduction

The theory of approximation algorithms has made major strides in the last two decades, pinning
down, for many basic optimization problems, the exact (or asymptotic) threshold up to which
efficient approximation is possible. Some notorious problems, however, have withstood this wave
of progress; for these problems the best known algorithms deliver super-constant approximation
ratios, whereas NP-hardness results do not even rule out say a factor 1.1 (or sometimes even
a factor (1 + ε) for any constant ε > 0) approximation algorithm. Examples of such problems
include graph partitioning problems such as minimum bisection, uniform sparsest cut, and small-
set expansion; finding a dense subgraph induced on k vertices; minimum linear arrangement; and
constraint satisfaction problems such as minimum CNF deletion or Unique Games.

There has been evidence of three distinct flavors for the hardness of these problems: (i) Ruling
out a polynomial time approximation scheme (PTAS) assuming that NP 6⊂

⋂
ε>0 BPTIME(2n

ε
) via

quasi-random PCPs [19, 1]; (ii) Inapproximability results within some constant factor assuming
average-case hardness of refuting random 3SAT instances [12]; and (iii) Inapproximability within
super-constant factors under a strong conjecture on the intractability of the small-set expansion
(SSE) problem [29]. While (iii) gives the strongest hardness results, it is conditioned on the conjec-
tured hardness of SSE [28], an assumption that implies the Unique Games conjecture, and arguably
does not yet have as much evidence in its support as the complexity assumptions made in (i) or
(ii).

In this work, we give a unified algorithm, based on powerful semidefinite programs from
the Lasserre hierarchy, for several of these problems, and a broader class of quadratic integer pro-
gramming problems with linear constraints (more details are in Section 1.1 below). Our algorithms
deliver a good approximation ratio if the eigenvalues of the Laplacian of the underlying graph in-
crease at a reasonable rate. In particular, for all the above graph partitioning problems, we get a
(1 + ε)/min{λr, 1} approximation factor in nOε(r) time, where λr is the r’th smallest eigenvalue
of the normalized Laplacian (which has eigenvalues in the interval [0, 2]). Note that if λr > 1− ε,
then we get a (1 +O(ε)) approximation ratio.

Perspective. The direct algorithmic interpretation of our results is simply that one can probably
get good approximations for graphs that are pretty ”weak-expanders,” in that we only require
lower bounds on higher eigenvalues rather than on λ2 as in the case of expanders. In terms of our
broader understanding of the complexity of approximating these problems, our results perhaps
point to why even showing APX-hardness for these problems has been difficult, as the reduction
must produce graphs with a very slowly growing spectrum, with many (nΩ(1), or even n1−o(1) for
near-linear time reductions) small eigenvalues. Trivial examples of such graphs are the disjoint
union of many small components (taking the union of r components ensures λr = 0), but these
are of course easily handled by working on each component separately. We note that Laplacians
of planar graphs, bounded genus graphs, and graphs excluding fixed minors, have many small
eigenvalues [18], but these classes are often easier to handle algorithmically due to their rich struc-
ture — for example, conductance and edge expansion problems are polynomial time solvable on
planar graphs [26]. Also, the recent result of [2] shows that if λr = o(1) for some r = nΩ(1), then
the graph must have an n1−Ω(1) sized subset with very few edges leaving it. Speculating some-
what boldly, may be these results suggest that graphs with too many small eigenvalues are also
typically not hard instances for these problems.

3

Our results also give some explanation for our inability so far to show integrality gaps for
even 4 rounds of the Lasserre hierarchy for problems which we only know to be hard assuming
the Unique Games conjecture (UGC). In fact, it is entirely consistent with current knowledge that
just O(1) rounds of the Lasserre hierarchy gives an improvement over the 0.878 performance ratio
of the Goemans-Williamson algorithm for Max Cut, and refutes the UGC!

1.1 Summary of results

Let us now state our specific results informally.

Graph partitioning. We begin with results for certain cut/graph partitioning problems. For
simplicity, we state the results for unweighted graphs — the body of the paper handles weighted
graphs. Below λp denotes the p’th smallest eigenvalue of the normalized Laplacian L of the graph
G, defined as L = D−1/2(I −A)D−1/2 where A is the adjacency matrix and D is a diagonal matrix
with node degrees on the diagonal. (In the stated approximation ratios, λr (resp. 2−λn−r) should
be understood as min{λr, 1} (resp. min{2 − λn−r, 1}), but we don’t make this explicit to avoid
notational clutter.) The algorithm’s running time is nO(r/ε2) in each case. This runtime arises due
to solving the standard semidefinite programs (SDP) lifted with O(r/ε2) rounds of the Lasserre
hierarchy. Our results are shown via an efficient rounding algorithm whose runtime is nO(1); the
exponential dependence on r is thus limited to solving the SDP.

• MAXIMUM CUT AND MINIMUM UNCUT: Given a graph G on n vertices with a partition
leaving at most b many edges uncut, we can find a partition that leaves at most 1+ε

2−λn−r b

many edges uncut. (We can also get an approximation guarantee of (1 + 2+ε
λr

) for Minimum
Uncut as a special case of our result for Unique Games.)

• MINIMUM (MAXIMUM) BISECTION: Given a graphG on n vertices with a bisection (partition
into two equal parts) cutting (uncutting) at most b edges, we can find a near-bisection, with
each side having n

2 ±Oε(
√
n) vertices, that cuts at most 1+ε

λr
b (uncuts at most 1+ε

2−λn−r b) edges
respectively.

• SMALL-SET EXPANSION (SSE): Given a graph G on n vertices with a set of volume µ with
at most b edges leaving it, we can find a set U of volume µ±Oε(

√
dmaxµ) with at most 1+ε

λr
b

edges leaving U . We can also find such a set with volume µ(1 ± ε), which will be a better
guarantee for highly irregular graphs.

• Various graph partitioning problems which involve minimizing ratio of cut size with size or
volume of partitions. For each problem below, we can find a non-empty set U (V , whose
value is at most 1+ε

λr
OPT.

– UNIFORM SPARSEST CUT: φG(U) — defined as the ratio of the number of edges in the
cut (U, V \ U) divided by |U ||V \ U |.

– EDGE EXPANSION: hG(U) — defined as the ratio of the number of edges leaving U to
the number of nodes in U , where U is the smaller side of the cut.

– NORMALIZED CUT: ncutG(U) — defined as the ratio of the number of edges in the cut
(U, V \ U) divided by the product of the volumes of U and V \ U .

4

– CONDUCTANCE: conductanceG(U) — defined as the fraction of edges incident on U
that leave U where U is the side of the cut with smaller volume.

In each case, we can also handle boundary conditions, which stipulate that U must contain some
subset F of nodes, and avoid some other disjoint subset B of nodes. This feature is used for our
results on the above ratio-minimization objectives as well as finding a set of volume µ(1 ± ε) for
SSE.

Remark 1 (Subspace enumeration). We note that for conductance (and related problems with quo-
tient objectives mentioned above), it is possible to get a O(1/λr) approximation in nO(r) time by
searching for a good cut in the r-dimensional eigenspace corresponding to the r smallest eigen-
values (we thank David Steurer for pointing out that this is implicit in the subspace enumeration
results of [2]). It is not clear, however, if such methods can give a (1 + ε)/λr type ratio. Further,
this method does not apply in the presence of a balance requirement such as Minimum Bisection,
as it could violate the balance condition by an Ω(n) amount, or for Unique Games (where we do
not know how to control the spectrum of the lifted graph). �

PSD Quadratic Integer Programs. In addition to the above cut problems, our method ap-
plies more abstractly to the class of minimization quadratic integer programs (QIP) with positive
semidefinite (PSD) cost functions and arbitrary linear constraints.

• QIP WITH PSD COSTS: Given a PSD matrix A ∈ R(V×[k])×(V×[k]), consider the problem of
finding x̃ ∈ {0, 1}V×[k] minimizing x̃TAx̃ subject to: (i) exactly one of {x̃u(i)}i∈[k] equals 1

for each u, and (ii) the linear constraints Bx̃ > c. We find such an x̃ with x̃TLx̃ 6 1+ε
min{1,λr(A)}

where A = diag(A)−1/2 ·A · diag(A)−1/2.

Unique Games. We next state our result for Unique Games. This is not a direct application of
the result for QIP; see Section 1.2 for details on the difficulties.

• UNIQUE GAMES: Given a Unique Games instance with constraint graph G = (V,E), label
set [k], and bijective constraints πe for each edge, if the optimum assignment σ : V → [k]
fails to satisfy η of the constraints, we can find an assignment that fails to satisfy at most
η
(

1 + 2+ε
λr

)
of the constraints.

In this case, we are only able to get a weaker ≈ 1 + 2/λr approximation factor, which is always
larger than 2. In this context, it is interesting to note that minimizing the number of unsatisfied
constraints in Unique Games is known to be APX-hard; for example, the known NP-hardness for
approximating Max Cut [16, 31] implies a factor (5/4− ε) hardness for this problem.

Remark 2 (UG on expanders). Arora et al [3] showed that Unique Games is easy on expanders,
and gave an O(log(1/OPT)

λ2
) approximation to the problem of minimizing the number of unsatisfied

constraints, where OPT is the fraction of unsatisfied constraints in the optimal solution. Our result
is a generalization, which shows a better approximation ratio of O(1/λr), if one is allowed nO(r)

time. (Note also that there is no dependence on OPT in our approximation ratio; this was also the

5

case in [3] for the subclass of ”linear” Unique Games (typically called ΓMAX2LIN), but our result
applies to general UG instances.)

For instances of ΓMAX2LIN, the paper [3] also gives an nO(r) time algorithm that satisfies all
but a fraction O(OPT/zr(G)) of constraints, where zr(G) is the value of the r-round Lasserre SDP
relaxation of Sparsest Cut onG. For r = 1, z1(G) = λ2. But the growth rate of zr(G), eg. its relation
to the Laplacian spectrum, was not known. �

Remark 3 (SDP gap instances). Our algorithm also shows that the Khot-Vishnoi UG gap instance
for the basic SDP [21], has O(1) integrality gap for the lifted SDP corresponding to poly(log n)
rounds of Lasserre hierarchy. In particular, these instances admit quasi-polynomial time constant
factor approximations. This latter result is already known and was shown by Kolla [22] using spec-
tral techniques. Our result shows that strong enough SDPs also suffice to tackle these instances.
In a similar vein, applying the ABS graph decomposition [2] to split the graph into components
with at most nε small eigenvalues while cutting very few edges, one also gets that nε

Ω(1)
rounds

of the Lasserre hierarchy suffice to well-approximate Unique Games on instances with at most ε
fraction unsatisfied constraints. �

Independent Set in graphs. We also give a rounding algorithm for the natural Lasserre SDP for
independent set in graphs. Here, our result gives an algorithm running in nO(r/ε2) time algorithm
that finds an independent set of size ≈ n

2dmax

1
λn−r−1 where λn−r > 1 is the r’th largest eigenvalue

of the graph’s normalized Laplacian. Thus even exact independent set is easy for graphs for which
the number of eigenvalues greater than ≈ 1 + 1

4dmax
is small.

1.2 Our Techniques

Our results follow a unified approach, based on a SDP relaxation of the underlying integer pro-
gram. The SDP is chosen from the Lasserre hierarchy [23], and its solution has vectors xT (σ)
corresponding to local assignments to every subset T ⊂ V of at most r′ vertices. (Such an SDP is
said to belong to r′ rounds of the Lasserre hierarchy.) The vectors satisfy dot product constraints
corresponding to consistency of pairs of these local assignments. (See Section 2 for a formal de-
scription.)

Given an optimal solution to the Lasserre SDP, we give a rounding method based on local
propagation, similar to the rounding algorithm for Unique Games on expanders in [3]. We first
find an appropriate subset S of r′ nodes (called the seed nodes). One could simply try all such
subsets in nr

′
time, though there is an O(n5) time algorithm to locate the set S as well. Then for

each assignment f to nodes in S, we randomly extend the assignment to all nodes by assigning,
for each u ∈ V \ S independently, a random value from u’s marginal distribution based on xS∪{u}
conditioned on the assignment f to S.

After arithmetizing the performance of the rounding algorithm, and making a simple but cru-
cial observation that lets us pass from higher order Lasserre vectors to vectors corresponding
to single vertices, the core step in the analysis is the following: Given vectors {Xv ∈ RΥ}v∈V
and an upper bound on a positive semidefinite (PSD) quadratic form

∑
u,v∈V Luv〈Xu, Xv〉 =

Tr(XTXL) 6 η, place an upper bound on the sum of the squared distance of Xu from the span

6

of {Xs}s∈S , i.e., the quantity
∑

u ‖X⊥S Xu‖2 = Tr(XTX⊥S X). (Here X ∈ RΥ×V is the matrix with
columns {Xv : v ∈ V }.)

We relate the above question to the problem of column-selection for low-rank approximations
to a matrix, studied in many recent works [11, 10, 6, 13]. It is known by the recent works [6, 13]1

that one can pick r/ε columns S such that Tr(XTX⊥S X) is at most 1/(1 − ε) times the error of the
best rank-r approximation to X in Frobenius norm, which equals

∑
i>r σi where the σi’s are the

eigenvalues of XTX in decreasing order. Combining this with the upper bound Tr(XTXL) 6

η, we deduce an approximation ratio of
(

1 + 1+ε
λr+1

)
for our algorithm. Also, the independent

rounding of each u implies, by standard Chernoff-bounds, that any linear constraint (such as a
balance condition) is met up to lower order deviations.

Note that the above gives an approximation ratio ≈ 1 + 1/λr, which always exceeds 2. To get
our improved (1+ε)/λr guarantee, we need a more refined analysis, based on iterated application
of column selection along with some other ideas.

For Unique Games, a direct application of our framework for quadratic IPs would require re-
lating the spectrum of the constrain graph G of the Unique Games instance to that of the lifted
graph Ĝ. There are such results known for random lifts, for instance [25]; saying something in the
case of arbitrary lifts, however, seems very difficult.2 We therefore resort to an indirect approach,
based on embedding the set of k vectors {xu(i)}i∈[k] for a vertex into a single vector Xu with some
nice distance preserving properties that enables us to relate quadratic forms on the lifted graph
to a proxy form on the base constraint graph. This idea was also used in [3] for the analysis of
their algorithm on expanders, where they used an embedding based on non-linear tensoring. In
our case, we need the embedding to also preserve distances from certain higher-dimensional sub-
spaces (in addition to preserving pairwise distances); this favors an embedding that is as “linear”
as possible, which we obtain by passing to a tensor product space.

1.3 Related work on Lasserre SDPs in approximation

The Lasserre SDPs seem very powerful, and as mentioned earlier, for problems shown to be hard
assuming the UGC (such as beating Goemans-Williamson for Max Cut), integrality gaps are not
known even for a small constant number of rounds. A gap instance for Unique Games is known
if the Lasserre constraints are only approximately satisfied [20]. It is interesting to contrast this with
our positive result. The error needed in the constraints for the construction in [20] is r/(log log n)c

for some c < 1, where n is the number of vertices and r the number of rounds. Our algorithm
requires that the SDP constraints are met within an error of ≈ r−2k−r where k is the number of
labels (this is a reasonable assumption, and it is possible to solve the SDP to this accuracy in nO(r)

time; see Appendix A). Thus even for O(log log log n) rounds, their result poses no restrictions on
the kind of algorithmic results one may get via our methods.

Strong Lasserre integrality gaps have been constructed for certain approximation problems
that are known to be NP-hard. Schoenebeck proved a strong negative result that even Ω(n) rounds
of the Lasserre hierarchy has an integrality gap ≈ 2 for Max 3-LIN [30]. Via reductions from this

1In fact our work [13] was motivated by the analysis in this paper.
2It is known that λr·knδ (L(Ĝ)) > δλr(L(G)) [2], but this large multiplicative nδ slack makes this ineffective for

r = no(1).

7

result, Tulsiani showed gap instances for Max k-CSP (for Ω(n) rounds), and instances with n1−o(1)

gap for ≈ 2
√

logn rounds for the Independent Set and Chromatic Numbers [32].

In terms of algorithmic results, even few rounds of Lasserre is already as strong as the SDPs
used to obtain the best known approximation algorithms for several problems — for example, 3
rounds of Lasserre is enough to capture the ARV SDP relaxation for Sparsest Cut [4], and Chlam-
tac used the third level of the Lasserre hierarchy to get improvements for coloring 3-colorable
graphs [7]. In terms of positive results that use a larger (growing) number of Lasserre rounds, we
are aware of only two results. Chlamtac and Singh used O(1/γ2) rounds of Lasserre hierarchy
to find an independent set of size Ω(nγ

2/8) in 3-uniform hypergraphs with an independent set of
size γn [8]. Karlin, Mathieu, and Nguyen show that 1/ε rounds of Lasserre SDP gives a (1 + ε)
approximation to the Knapsack problem [17].

However, there are mixed hierarchies, which are weaker than Lasserre and based on combin-
ing an LP characterized by local distributions (from the Sherali-Adams hierarchy) with a sim-
ple SDP, that have been used for several approximation algorithms. For instance, for the above-
mentioned result on independent sets in 3-uniform hypergraphs, an nΩ(γ2) sized independent set
can be found with O(1/γ2) levels from the mixed hierarchy. Raghavendra’s result states that for
every constraint satisfaction problem, assuming the Unique Games conjecture, the best approxi-
mation ratio is achieved by a small number of levels from the mixed hierarchy [27]. For further
information and references on the use of SDP and LP hierarchies in approximation algorithms, we
point the reader to the excellent book chapter [9].

In an independent work, Barak, Raghavendra, and Steurer [5] consider the above-mentioned
mixed hierarchy, and extend the local propagation rounding of [3] to these SDPs in a manner
similar to our work. Their analysis methods are rather different from ours. Instead of column-
based low-rank matrix approximation, they use the graph spectrum to infer global correlation
amongst the SDP vectors from local correlation, and use it to iteratively to argue that a random
seed set works well in the rounding. Their main result is an additive approximation for Max 2-
CSPs. Translating to the terminology used in this paper, given a 2CSP instance over domain size k
with optimal value (fraction of satisfied constraints) equal to v, they give an algorithm to find an
assignment with value v − O

(
k
√

1− λr
)

based on r′ � kr rounds of the mixed hierarchy. (Here
λr is the r’th smallest eigenvalue of the normalized Laplacian of the constraint graph; note though
that λr needs to be fairly close to 1 for the bound to kick in.) For the special case of Unique Games,
they get the better performance of v−O

(
4
√

1− λr
)

which doesn’t degrade with k, and also a factor
O(1/λr) approximation for minimizing the number of unsatisfied constraints in time exponential
in k.

For 2CSPs, our results only apply to a restricted class (corresponding to PSD quadratic forms),
but we get approximation-scheme style multiplicative guarantees for the harder minimization objec-
tive, and can handle global linear constraints. (Also, for Unique Games, our algorithm has running
time polynomial in the number of labels k. In terms of r, the runtime in [5] has a better 2O(r) type
dependence instead of our nO(r) bounds.) Our approach enables us to get approximation-scheme
style guarantees for several notorious graph partitioning problems that have eluded even APX-
hardness.

8

1.4 Organization

We begin with the definition of Lasserre SDPs we will use in Section 2. To illustrate the main
ideas in our work, we present them in a self-contained way for a simplified setting in Section 3, by
developing an algorithm for the Minimum Bisection problem.

The rest of our results are proved in remaining Sections: quadratic integer programming in
Section 4; graph partitioning problems such as conductance, Uniform Sparsest Cut, and SSE (on
general, non-regular, weighted graphs) in Section 5; Unique Games in Section 6; and finally, inde-
pendent sets in graphs in Section 8.

The main technical theorem about rounding that is used to analyze our algorithm for quadratic
integer programming is proved in Section 7. We discuss the accuracy needed (by our rounding)
in the solution to the Lasserre SDP in Appendix A.

2 Lasserre hierarchy of semidefinite programs

We present the formal definitions of the Lasserre family of SDP relaxations [23], tailored to the
setting of the problems we are interested in, where the goal is to assign to each vertex/variable
from a set V a label from [k] = {1, 2, . . . , k}.

Definition 1 (Lasserre vector set). Given a set of variables V and a set [k] = {1, 2, . . . , k} of labels,
and an integer r > 0, a vector set x is said to satisfy r-levels of Lasserre hierarchy constraints on k labels,
denoted

x ∈ Lasserre(r)(V × [k]) ,

if it satisfies the following conditions:

1. For each set S ∈
(

V
6r+1

)
, there exists a function xS : [k]S → RΥ that associates a vector of some finite

dimension Υ with each possible labeling of S. We use xS(f) to denote the vector associated with the
labeling f ∈ [k]S . For singletons u ∈ V , we will use xu(i) and xu(iu) for i ∈ [k] interchangeably.

For f ∈ [k]S and v ∈ S, we use f(v) as the label v receives from f . Also given sets S with labeling
f ∈ [k]S and T with labeling g ∈ [k]T such that f and g agree on S ∩ T , we use f ◦ g to denote the
labeling of S ∪ T consistent with f and g: If u ∈ S, (f ◦ g)(u) = f(u) and vice versa.

2. ‖x∅‖2 = 1.

3. 〈xS(f), xT (g)〉 > 0. for all S, T, f ∈ [k]S , and g ∈ [k]T .

4. For any S ∈
(

V
6r+1

)
, u ∈ S and f ∈ [k]S\{u},

∑
g∈[k]u xS(f ◦ g) = xS\{u}(f).

5. 〈xS(f), xT (g)〉 = 0 if there exists u ∈ S ∩ T such that f(u) 6= g(u).

6. 〈xS(f), xT (g)〉 = 〈xA(f ′), xB(g′)〉 if S ∪ T = A ∪B and f ◦ g = f ′ ◦ g′.

We will useX (i) to denote a matrix of size Υ×n,X (i) ∈ RΥ×V whose columns are the vectors {xu(i)}u∈V .

We now add linear constraints to the SDP formulation.

9

Definition 2 (Linear constraints in Lasserre SDPs). Given a matrixB = [b1 . . . b`] ∈ R(V×[k])×` and a
vector c = (c1, . . . , c`)

T ∈ R`, x ∈ Lasserre(r)(V × [k]), is said to satisfy linear constraints {(bi, ci)}`i=1

if the following holds for all i ∈ [`]:

For all subsets S ∈
(
V
6r

)
and f ∈ [k]V ,∑
u∈V,g∈[k]u

〈xS(f), xu(g)〉bi(u, g) 6 ci〈xS(f), x∅〉 ,

which is equivalent to ∑
u∈V,g∈[k]u

‖xS∪{u}(f ◦ g)‖2bi(u, g) 6 ci‖xS(f)‖2.

We denote the set of such x as x ∈ Lasserre(r)(V × [k], B6c).

Remark 4 (Convenient matrix notation). One common expression we will use throughout this
paper is the following. For matrices X ∈ RΥ×V and M ∈ RV×V :

Tr(XTXM) =
∑
u,v∈V

Mu,v〈Xu, Xv〉 .

Note that if M is positive semidefinite (denoted M � 0), then Tr(XTXM) > 0.3

Also, if L is Laplacian matrix of an undirected graph G = (V,E), we have

Tr(XTXL) =
∑

e={u,v}∈E

‖Xu −Xv‖2

where Xu denotes the column of X corresponding to u ∈ V . �

The analysis of our rounding algorithm will involve projections on certain subspaces, which we
define next.

Definition 3 (Projection operators). Given x ∈ Lasserre(r)(V × [k]), we define Π :
(

V
6r+1

)
→ RΥ×Υ

as the projection matrix onto the span of {xS(f)}f∈[k]S for given S:

ΠS ,
∑
f∈[k]S

xS(f) · xS(f)
T
.

(Here xS(f) is the unit vector in the direction of xS(f) if xS(f) is nonzero, and 0 otherwise.)

Similarly we define P :
(

V
6r+1

)
→ RΥ×Υ as the matrix corresponding to projection onto the span of

{xv(f)}v∈S,f∈[k]: PS ,
∑

v∈S,f∈[k] xv(f) · xv(f)
T

.

We will denote by Π⊥S = I−ΠS and P⊥S = I−PS the projection matrices onto the respective orthogonal
complements, where I denotes the identity matrix of appropriate dimension.

Remark 5 (Errors in Lasserre solution). For all our rounding algorithms to work, it suffices to
solve the r′-round Lasserre SDP an accuracy of (r′)−2k−r

′
, and this can be done via interior point

methods in nO(r′ log k) time. We present some details in Appendix A. For convenience, in the rest
of the paper, we assume we have an exact optimal SDP solution. �

3The use of this inequality in various places is the reason why our analysis only works for minimizing PSD quadratic
forms.

10

3 Case Study: Approximating Minimum Bisection

All our algorithmic results follow a unified method (except small set expansion on irregular
graphs and unique games, both of which we treat separately). In this section, we will illustrate
the main ideas involved in our work in a simplified setting, by working out progressively bet-
ter approximation ratios for the following basic, well-studied problem: Given as input a graph
G = (V,E) and an integer size parameter µ, find a subset U ⊂ V with |U | = µ that minimizes the
number of edges between U and V \ U , denoted ΓG(U). The special case when µ = |V |/2 and we
want to partition the vertex set into two equal parts is the minimum bisection problem. We will
loosely refer to the general µ case also as minimum bisection.4

For simplicity we will assume G is unweighted and d-regular, however all our results given in
Appendix 5 are for any weighted undirected graph G. We can formulate this problem as a binary
integer programming problem as follows:

min
x̃

∑
e={u,v}∈E

(x̃u(1)− x̃v(1))2, (1)

subject to
∑
u

x̃u(1) = µ; ∀u, x̃u(1) + x̃u(2) = 1; and x̃ ∈ {0, 1}V×[2].

If we let L be the Laplacian matrix for G, we can rewrite the objective as η , x̃(1)TLx̃(1). We will
denote by L = 1

dL the normalized Laplacian of G.

Note that the above is a quadratic integer programming (QIP) problem with linear constraints.
The somewhat peculiar formulation is in anticipation of the Lasserre semidefinite programming
relaxation for this problem, which we describe below.

3.1 Lasserre relaxation for Minimum Bisection

Let b be the vector on V ×[2] with bv(1) = 1 and bv(2) = 0 for every v ∈ V . For an integer r′ > 0, the
r′-round Lasserre SDP for Minimum Bisection consists of finding x ∈ Lasserre(r′)(V × [k], b=µ)
that minimizes the objective function ∑

e={u,v}∈E(G)

‖xu(1)− xv(1)‖2 . (2)

It is easy to see that this is indeed a relaxation of our original QIP formulation (1).

3.2 Main theorem on rounding

Let x be an (optimal) solution to the above r′-round Lasserre SDP. We will always use η in this
section to refer to the objective value of x, i.e., η =

∑
e={u,v}∈E(G) ‖xu(1)− xv(1)‖2.

Our ultimate goal in this section is to give an algorithm to round the SDP solution x to a good
cut U of size very close to µ, and prove the below theorem.

4We will be interested in finding a set of size µ±o(µ), so we avoid the terminology Balanced Separator which typically
refers to the variant where Ω(n) slack is allowed in the set size.

11

Theorem 4. For all r > 1 and ε > 0, there exists r′ = O
(
r
ε2

)
, such that given x ∈ Lasserre(r′)(V ×

[k], b=µ) with objective value (2) equal to η, one can find in randomized nO(1) time, a set U ⊆ V satisfying
the following two properties w.h.p:

1. ΓG(U) 6 1+ε
min(1,λr+1(L))η.

2. µ(1− o(1)) = µ−O
(√

µ log(1/ε)
)
6 |U | 6 µ+O

(√
µ log(1/ε)

)
= µ(1 + o(1)).

Since one can solve the Lasserre relaxation in nO(r′) time, we get the result claimed in the
introduction: an nO(r/ε2) time factor (1 + ε)/min{λr, 1} approximation algorithm; the formal the-
orem, for general (non-regular, weighted) graphs appears as Corollary 15 in Section 5. Note that
if t = arg minr{r | λr(L) > 1 − ε/2}, then this gives an nOε(t) time algorithm for approximating
minimum bisection to within a (1 + ε) factor, provided we allow O(

√
n) imbalance.

3.3 The rounding algorithm

Recall that the solution x ∈ Lasserre(r′)(V × [k], b=µ) contains a vector xT (f) for each T ∈
(
V
6r′
)

and every possible labeling of T , f ∈ [2]T of T . Our approach to round x to a solution x̃ to the
integer program (1) is similar to the label propagation approach used in [3].

Consider fixing a set of r′ nodes, S ∈
(
V
r′

)
, and assigning a label f(s) to every s ∈ S by choosing

f ∈ [2]S with probability ‖xS(f)‖2. (The best choice of S can be found by brute-forcing over all
of
(
V
r′

)
, since solving the Lasserre SDP takes nO(r′) time anyway. But there is also a faster method

to find a good S, as mentioned in Theorem 7.) Conditional on choosing a specific labeling f to S,
we propagate the labeling to other nodes as follows: Independently for each u ∈ V , choose i ∈ [2]
and assign x̃u(i)← 1 with probability

Pr [x̃u(i) = 1] =
‖xS∪{u}(f ◦ iu)‖2

‖xS(f)‖2
=
〈xS(f), xu(i)〉
‖xS(f)‖

.

Observe that if u ∈ S, label of u will always be f(u). Finally, output U = {u | x̃u(1) = 1} as the
cut. Below ΠS denotes the projection matrix from Definition 3.

Lemma 5. For the above rounding procedure, the size of the cut produced ΓG(U) satisfies

E [ΓG(U)] = η +
∑

(u,v)∈E

〈Π⊥S xu(1),Π⊥S xv(1))〉 . (3)

Proof. Note that for u 6= v, and i, j ∈ [2],

Pr [x̃u(i) = 1 ∧ x̃v(j) = 1] =
∑
f

‖xS(f)‖2 〈xS(f), xu(i)〉
‖xS(f)‖

〈xS(f), xv(j)〉
‖xS(f)‖

=
∑
f

〈xS(f), xu(i)〉〈xS(f), xv(j)〉.

Since {xS(f)}f is an orthonormal basis, the above expression can be written as the inner product
of projections of xu(i) and xv(j) onto the span of {xS(f)}f∈[2]S , which we denote by ΠS . Let us now

12

calculate the expected number ΓG(U) of edges cut by this rounding. It is slightly more convenient
to treat edges e = {u, v} as two directed edges (u, v) and (v, u), and count directed edges (u, v)
with u ∈ U and v ∈ V \ U in the cut. Therefore,

E [ΓG(U)] =
∑

(u,v)∈E

〈ΠSxu(1),ΠSxv(2)〉 =
∑

(u,v)∈E

〈ΠSxu(1),ΠS(x∅ − xv(1))〉

=
∑

(u,v)∈E

〈ΠSxu(1),ΠSx∅〉 − 〈ΠSxu(1),ΠSxv(1))〉

=
∑

(u,v)∈E

‖xu(1)‖2 − 〈ΠSxu(1),ΠSxv(1))〉 (4)

=
∑

(u,v)∈E

‖xu(1)‖2 − 〈xu(1), xv(1)〉+ 〈Π⊥S xu(1),Π⊥S xv(1))〉

= η +
∑

(u,v)∈E

〈Π⊥S xu(1),Π⊥S xv(1))〉 (5)

where (4) follows by

〈ΠSxu(1),ΠSx∅〉 = 〈xu(1),ΠSx∅〉 = 〈xu(1), x∅〉 = ‖xu(1)‖2

since x∅ =
∑

f∈[2]S xS(f) and so ΠSx∅ = x∅.

Note that the matrix ΠS depends on vectors xS(f) which are hard to control because we do not
have any constraint relating xS(f) to a known matrix. The main driving force behind all our re-
sults is the following fact, which follows since given any u ∈ S and i ∈ [2], xu(i) =

∑
f :f(u)=i xS(f)

by Lasserre constraints.

Observation 6. For all S ∈
(
V
r′

)
,

span
(
{xS(f)}f∈[2]S

)
⊇ span

(
{xu(i)}u∈S,i∈[2]

)
.

Equivalently for PS being the projection matrix onto span of {xu(i)}u∈S,i∈[2], PS � ΠS .

Thus we will try to upper bound the term (5) by replacing Π⊥S with P⊥S , but we cannot directly
perform this switch: 〈P⊥S xu(i), P⊥S xv(j)〉might be negative while Π⊥S xu(i) = 0.

3.4 Factor 1 + 1
λr

approximation of cut value

Our first bound is by directly upper bounding Equation (3) in terms of ‖Π⊥S xu(i)‖2 6 ‖P⊥S xu(i)‖2.
Using Cauchy-Schwarz and Arithmetic-Geometric Mean inequalities, (3) implies that the expected
number of edges cut is upper bounded by

η +
1

2

∑
e=(u,v)∈E

‖Π⊥S xu(1)‖2 + ‖Π⊥S xv(1)‖2 = η + d
∑
u

‖Π⊥S xu(1)‖2 6 η + d
∑
u

‖P⊥S xu(1)‖2 . (6)

Now define Xu , xu(1), and let X ∈ RΥ×V be the matrix with columns Xu. By (2), we have the
objective value η = Tr(XTXL). Let XΠ

S ,
∑

u∈S XuXu
T be the projection matrix onto the span of

13

{Xu}u∈S . Since this set is a subset of {xu(i)}u∈S,i∈[2], we have XΠ
S � PS . Therefore, we can bound

(6) further as

E [number of edges cut] 6 η + d
∑
u

‖X⊥S Xu‖2 = η + d · Tr(XTX⊥S X) . (7)

To get the best upper bound, we want to pick S ∈
(
V
r′

)
to minimize

∑
u∈V ‖X⊥S Xu‖2. It is a well

known fact that among all projection matrices M of rank r′ (not necessarily restricted to projection
onto columns of X), the minimum value of

∑
u ‖M⊥Xu‖2 = Tr(XTM⊥X) is achieved by matrix

M projecting onto the space of the largest r′ singular vectors of X . Further, this minimum value
equals

∑
i>r′+1 σi where σi = σi(X) denotes the squared ith largest singular value of X (equiva-

lently σi(X) is the ith largest eigenvalue of XTX). Hence Tr(XTX⊥S X) >
∑

i>r′+1 σi for every
choice of S. The following theorem from [13] shows the existence of S which comes close to this
lower bound:

Theorem 7. [13] For every real matrix X with column set V , and positive integers r 6 r′, we have

δr′(X) , min
S∈(Vr′)

Tr(XTX⊥S X) 6
r′ + 1

r′ − r + 1

(∑
i>r+1

σi

)
.

In particular, for all ε ∈ (0, 1), δr/ε 6 1
1−ε

(∑
i>r+1 σi

)
. Further one can find a set S ∈

(
V
r′

)
achieving the

claimed bounds in deterministic O(rn4) time.

Remark 6. Prior to our paper [13], it was shown in [6] that δr(2+ε)/ε 6 (1 + ε)
(∑

i>r+1 σi

)
. The

improvement in the bound on r′ from 2r/ε to r/ε to achieve (1 + ε) approximation is not of major
significance to our application, but since the tight bound is now available, we decided to state and
use it. �

Remark 7 (Running time of our algorithms). If the Lasserre SDP can be solved faster than nO(r′)

time, perhaps in exp(O(r′))nc time for some absolute constant c, then the fact that we can find S
deterministically in only O(n5) time would lead to a similar runtime for the overall algorithm. �

Picking the subset S∗ ∈
(
V
r′

)
that achieves the bound (7) guaranteed by Theorem 7, we have

Tr(XTX⊥S∗X) = δ r
ε
(X) 6 (1− ε)−1

∑
i>r

σi .

In order to relate this quantity to the SDP objective value η = Tr(XTXL), we use the fact that
Tr(XTXL) is minimized when eigenvectors of XTX and L are matched in reverse order: ith

largest eigenvector of XTX corresponds to ith smallest eigenvector of L. Letting 0 = λ1(L) 6
λ2(L) 6 . . . 6 λn(L) 6 2 be the eigenvalues of normalized graph Laplacian matrix, L = 1

dL, we
have

η

d
=

1

d
Tr(XTXL) >

∑
i

σi(X)λi(L) >
∑
i>r+1

σi(X)λr+1(L) > (1− ε)λr+1(L)δ r
ε
(X).

Plugging this into (7), we can conclude our first bound:

14

Theorem 8. For all positive integers r and ε ∈ (0, 1), given SDP solution x ∈ Lasserre(dr/εe)(V ×
[k], b=µ), the rounding algorithm given in 3.3 cuts at most

(
1 + 1

(1−ε)λr+1(L)

)∑
e=(u,v)∈E ‖xu(1) −

xv(1)‖2 edges in expectation.

In particular, the algorithm cuts at most a factor
(

1 + 1
(1−ε)λr+1(L)

)
more edges than the optimal cut

with µ nodes on one side.5

Note that λn(L) 6 2, hence even if we use n-rounds of Lasserre relaxation, for which x is an
integral solution, we can only show an upper bound > 3

2 . Although this is too weak by itself for
our purposes, this bound will be crucial to obtain our final bound.

3.5 Improved analysis and factor 1
λr

approximation on cut value

First notice that Equation (5) can be written as

E [number of edges cut] = Tr(XTXL)+Tr(XTΠ⊥SX(I−L)) = Tr(XTΠ⊥SX)+Tr(XTΠSXL) . (8)

If value of this expression is larger than η
(1−ε)λr+1

+ηε, then value of Tr(XTΠSXL) has to be larger
than εη due to the bound we proved on Tr(XTΠ⊥SX). Consider choosing another subset T that
achieves the bound δr(Π⊥SX). The crucial observation is that distances between neighboring nodes
on vectors Π⊥SX has decreased by an additive factor of ηε,

Tr(XTΠ⊥SXL) = Tr(XTXL)− Tr(XTΠSXL) < η(1− ε)

so that Tr(XTΠ⊥S∪TX) < (1−ε) η
(1−ε)λr+1

. Now, if we run the rounding algorithm with S∪T as the
seed set, and (8) with S ∪ T in place of S is larger than η

(1−ε)λr+1
+ ηε, then Tr(XTΠS∪TXL) > 2εη.

Hence
Tr(XTΠ⊥S∪TXL) 6 Tr(XTXL)− Tr(XTΠS∪TXL) < η(1− 2ε) .

Picking another set T ′, we will have Tr(XTΠ⊥S∪T∪T ′X) < (1 − 2ε) η
(1−ε)λr+1

. Continuing this pro-
cess, if the quantity (8) is not upper bounded by η

(1−ε)λr+1
+ηε after d1

εemany such iterations, then
the total projection distance becomes

Tr(XTΠ⊥S∪T∪...X) < (1− d1/εeε) η

(1− ε)λr+1
6 0

which is a contradiction. For formal statement and proof in a more general setting, see Theorem 30
in Section 7.

Theorem 9. For all integers r > 1 and ε ∈ (0, 1), letting r′ = O
(
r
ε2

)
, given SDP solution x ∈

Lasserre(dr′)(V × [k], b=µ), the expected number of edges cut by the above rounding algorithm is at most
(1 + ε)/min{1, λr+1(L)} times the size of the optimal cut with µ nodes on one side. (Here λr+1(L) is the
(r + 1)’th smallest eigenvalue of the normalized Laplacian L = 1

dL of the G.)

5We will later argue that the cut will also meet the balance requirement up to o(µ) vertices.

15

3.6 Bounding Set Size

We now analyze the balance of the cut, and show that we can ensure that |U | = µ±o(µ) in addition
to ΓG(U) being close to the expected bound of Theorem 9 (and similarly for Theorem 8).

Let S∗ fixed to be arg minS∈(Vr′)
Tr(XTX⊥S X). We will show that conditioned on finding cuts

with small ΓG(U), the probability that one of them has |U | ≈ µ is bounded away from zero. We
can use a simple Markov bound to show that there is a non-zero probability that both cut size and
set size are within 3-factor of corresponding bounds. But by exploiting the independence in our
rounding algorithm and Lasserre relaxations of linear constraints, we can do much better. Note
that in the r′-round Lasserre relaxation, for each f ∈ [2]S

∗
, due to the set size constraint in original

IP formulation, x satisfies:∑
u

x̃u(1) = µ =⇒
∑
u

〈xS∗(f), xu(1)〉 = µ‖xS∗(f)‖2 .

This implies that conditioned on the choice of f , the expectation of
∑

u x̃u(1) is µ and events
x̃u(1) = 1 for various u are independent. Applying the Chernoff bound, we get

Prx̃

[∣∣∣∑
u

x̃u(1)− µ
∣∣∣ > 2

√
µ log

1

ζ

]
6 o(ζ) 6

ζ

3
.

Consider choosing f ∈ [2]S
∗

so that E
[
number of edges cut f

]
6 E

[
number of edges cut

]
, b. By

Markov inequality, if we pick such an f , Pr
[
number of edges cut > (1 + ζ)b

]
6 1 − ζ

2 , where the
probability is over the random propagation once S∗ and f are fixed.

Hence with probability at least ζ
6 , the solution x̃ will yield a cut U with ΓG(U) 6 (1 + ζ)b and

size |U | in the range µ± 2
√
µ log 1

ζ . Taking ζ = ε and repeating this procedure O
(
ε−1 log n

)
times,

we get a high probability statement and finish our main Theorem 4 on minimum bisection.

4 Algorithm for Quadratic Integer Programming

First we will state couple of concentration inequalities in a form suitable for us.

Definition 10. Given a ∈ Rn, consider n independent Bernoulli random variables, Xi with Pr [Xi = 1] =
pi and Pr [Xi = 0] = 1 − pi for some pi ∈ [0, 1]. For any 0 < ε < 1, we define ∆ε(a, µ) as the minimum
value that satisfies

Pr

[∣∣∣∣∣∑
i

aiXi − E

[∑
i

aiXi

]∣∣∣∣∣ > ∆ε(a, p)

]
6 ε.

subject to

E

[∑
i

aiXi

]
= µ.

Corollary 11. For given vector a ∈ Rn and real µ, and the following bounds hold:

16

1. For any a, ∆ε(a, µ) = O
(√

ln 1
ε‖a‖2

)
.

2. If a is non-negative and ‖a‖∞ 6 µ
log(1/ε) then ∆ε(a, µ) = O

(√
‖a‖∞µ log 1

ε

)
.

Proof of item 1. Follows from Hoeffding bound.

Proof of Item 2. Follows from Chernoff bound.

Definition 12 (Generalized eigenvalues). Given two PSD matrices A,B ∈ Rm×m � 0, λ is a general-
ized eigenvalue along with the corresponding generalized eigenvector x provided that Bx 6= 0 and

Ax = λBx.

We will use λi[A;B] to denote the ith smallest generalized eigenvalue.

Observation 13. Given a PSD matrix A, λi[A; diag(A)] is equal to the ith smallest eigenvalue of the
matrix diag(A)−1/2 ·A · diag(A)−1/2 where we use the convention 0/0 =∞ and 0 · ∞ = 0.

The result we present here is a generalization of minimum bisection. Since its proof is ex-
tremely similar to the one presented for minimum bisection, we only provide a sketch, while
deferring the formal claim about the rounding analysis, Theorem 30, to Section 7.

Theorem 14. Consider a quadratic integer programming problem with a positive semidefinite symmetric
matrix A � 0 in the objective, a set of forbidden labels for each node, D ⊆ V × [k], and a set of linear
constraints, {(b1, c1), . . . , (b`, c`)} where bi ∈ RV×[k] and ci ∈ R:

min x̃TAx̃
s. t 〈bi, x̃〉 6 ci for all i ∈ [`],

x̃u(i) = 0 for all (u, i) ∈ D,∑
i∈[k] x̃u(i) = 1 for all u ∈ V ,

x̃ ∈ {0, 1}V×[k].

Given 0 < ε < 1, positive integer r, there exists an algorithm, running in time nO(r/ε2), to find a
labeling x̃ with objective value

x̃TAx̃ 6
1 + ε

min{1, λr+1}
OPT,

where λr+1 = λr+1 [A; diag(A)] is defined as in Definition 12.

Furthermore it satisfies the following properties:

1. For all u ∈ V : ∑
i∈[k]

x̃u(i) = 1,

2. For all (u, i) ∈ D:
x̃u(i) = 0,

17

3. For all i ∈ [`], 〈bi, x̃〉 deviates from ci by the corresponding concentration bound.

For example, if for all u, there is at most one label for u, f ∈ [k]u with a non-zero coefficient in bi,∣∣support
(
{bi(u, f)}f∈[k]u

)∣∣ 6 1

then
|〈bi, x̃〉 − ci| 6 ∆ε/(2`)(bi, ci).

Proof. We will find a solution x to r′-rounds of Lasserre relaxation of this problem, x ∈ Lasserre(r′)(V×
[k], {bTi }i

6c
) with objective value xTAx = η and which also obeys the hard constraints xu(i) = 0

for (u, i) ∈ D. Given such x, let x̃ be the rounded labeling promised by Theorem 30 (which obeys
the first two properties by construction), with expected objective value

Ex̃
[
x̃TAx̃

]
6 η · 1 + ε/2

min{1, λr+1}
.

Using Markov inequality,

Prx̃

[
x̃TAx̃ 6 η · 1 + ε

min{1, λr+1}

]
> 1− ε .

For i ∈ [`], probability that property 3 for ith linear constraint will not be satisfied is ε
2` by

definition of ∆ε. Taking union bound, we see that with probability Ω(ε), x̃ ∼ D∗ will satisfy all
conditions and have x̃TAx̃ 6 1+ε

min{1,λr+1} . Repeating O(n) many times, we can turn this into a high
probability statement.

For the running time bound, the rounding algorithm takes randomized nO(1) time and solving
the Lasserre relaxation takes nO(r′) time.

5 Algorithms for Graph Partitioning

Our goal in this section is to give approximation schemes for Minimum Bisection, Small Set Ex-
pansion, and various cut problems minimizing ratio of edges crossing the cut by the size/volume
of the partition, such as Uniform Sparsest Cut, edge expansion, and conductance. Our results
apply to weighted, not necessarily regular, graphs. Except for Minimum Bisection, it will be im-
portant for our algorithm that we are able to handle disjoint (possibly empty) foreground and
background sets F and B and find a non-expanding set U satisfying F ⊆ U ⊆ V \ B. So we state
more general results with these additional constraints.

Throughout the whole paper, when talking about graphs, we use the following convention:

18

Symbol Stands for
G a connected, undirected weighted graph with non-negative edge weights.

V,E,W nodes, edges and edge weights of G = (V,E,W).
n number of nodes, n = |V |.
we weight of edge e = {u, v} ∈ E.
du (weighted) degree of node u ∈ V , du =

∑
e={u,v}∈E we.

dmax maximum degree, dmax = maxu∈V du.
m total degree, m =

∑
u du = VolG (V).

VolG (U) total degrees of nodes in U ⊆ V , VolG (U) =
∑

u∈U du.
ΓG(U) sum of weights of edges in the cut [U, V \ U], ΓG(U) =

∑
e={u,v}∈E:u∈U,v/∈U we.

D diagonal matrix of node degrees, Du,u = du, Du,v = 0 for u 6= v.
A adjacency matrix of G, Au,v = w(u,v) if (u, v) ∈ E, 0 otherwise.
L Laplacian matrix of G, L = D −A
L normalized Laplacian matrix of G, L = D−1/2LD−1/2.
A normalized adjacency matrix of G, A = D−1/2AD−1/2.

λi(·) ith smallest eigenvalue of given matrix.
OPT optimum value (in terms of minimization) for the problem in question.

For sake of clarity, let us formally recap the objectives of each of the cut problems we will solve
in this section. In all cases, the input consists of a graph G = (V,W,E), and disjoint foreground
and background sets F,B ⊂ V .

• MINIMUM BISECTION: Given an integer µ satisfying |V \ (F ∪B)| 6 µ 6 |V |/2, the objective
function is the minimum value of ΓG(U) over setsU such that F ⊆ U ⊆ V \B and |U\F | = µ.

• SMALL SET EXPANSION: Given an integer µ satisfying VolG (V \ (F ∪B)) 6 µ 6 m/2, the
objective function is the minimum value of ΓG(U) over sets U such that F ⊆ U ⊆ V \B and
VolG (U \ F) = µ. 6

• UNIFORM SPARSEST CUT: The objective function is to minimize

φG(U) ,
ΓG(U)

|U | · |V \ U |
.

over non-empty sets U (V such that F ⊆ U ⊆ V \B.

• EDGE EXPANSION: The objective function is to minimize

hG(U) ,
ΓG(U)

min (|U |, |V \ U |)
.

over non-empty sets U (V such that F ⊆ U ⊆ V \B.

• NORMALIZED CUT: The objective function is to minimize

ncutG(U) ,
ΓG(U)

VolG (U) ·VolG (V \ U)
.

over non-empty sets U (V such that F ⊆ U ⊆ V \B.
6Our methods apply without change if the volume of the set U \ F is only constrained to be in the range [µ(1 −

ζ), µ(1 + ζ)] for some ζ > 0. For concreteness, we just focus on the exact volume case.

19

• CONDUCTANCE: The objective function is to minimize

conductanceG(U) ,
ΓG(U)

min (VolG (U) ,VolG (V \ U))
.

over non-empty sets U (V such that F ⊆ U ⊆ V \B.

5.1 Minimum Bisection

We will consider the following quadratic integer program formulation of Minimum Bisection

min
x̃

∑
e={u,v}∈E

(x̃u(1)− x̃v(1))2,

subject to
∑

u∈V \F

x̃u(1) = µ,

x̃u(1) = 1 ∀u ∈ F,
x̃u(2) = 1 ∀u ∈ B,
x̃u(1) + x̃u(2) = 1 ∀u ∈ V,
x̃ ∈ {0, 1}V×[2] ,

and its SDP relaxation:

min
x

Tr(X (1)TX (1)L),

subject to
∑

u∈V \F

‖xS∪{u}(f ◦ 1u)‖2 = µ‖xS(f)‖2 ∀S ∈
(
V

r′

)
and f ∈ [2]S ,

xu(1) = x∅ ∀u ∈ F,
xu(2) = x∅ ∀u ∈ B,

x ∈ Lasserre(r′)(V × [2], b=µ)

where b is a vector with bu(1) = 1 and bu(2) = 0.

The first result is a straightforward corollary of Theorem 14.

Corollary 15 (Minimum Bisection). Given 0 < ε < 1, positive integer r, a target size µ 6 n
2 , disjoint

foreground and background sets (possibly empty) F and B, respectively, with

µ 6 |V \ (F ∪B)|,

there exists an algorithm, running in time nO(r/ε2), to find a set U ⊆ V such that:

F ⊆ U ⊆ V \B,

µ−O
(√

µ log(1/ε)
)
6 |U \ F | 6 µ+O

(√
µ log(1/ε)

)
,

ΓG(U) 6
1 + ε

min{λr+1(L), 1}
OPT .

20

Proof. Follows from Theorem 14. Note that the objective matrix takes the form L′ =

[
L 0
0 0

]
. Its

(r+1)th generalized smallest eigenvalue λr+1[L′; diag(L′)] is equal to (r+1)th smallest eigenvalue
λr+1(L) of L.

5.2 Small Set Expansion

Our next result is on the small set expansion problem. A naı̈ve application of Theorem 14 will yield
good bounds only when the graph does not have high degree nodes (compared to the average
degree). However our guarantee is irrespective of the degree distribution on graph G such that
we are always able to find a set of volume µ(1 ± ε). In order to achieve this, the fact that we can
assign arbitrary unary constraints in the form of foreground and background sets is crucial.

We use the following standard integer programming formulation of SSE

min
x̃

∑
e={u,v}∈E

(x̃u(1)− x̃v(1))2,

subject to
∑

u∈V \F

dux̃u(1) = µ,

x̃u(1) = 1 ∀u ∈ F,
x̃u(2) = 1 ∀u ∈ B,
x̃u(1) + x̃u(2) = 1 ∀u ∈ V,
x̃ ∈ {0, 1}V×[2] ,

and its natural SDP relaxation under Lasserre constraints:

min
x

Tr(X (1)TX (1)L),

subject to xu(1) = x∅ ∀u ∈ F,
xu(2) = x∅ ∀u ∈ B,

x ∈ Lasserre(r′)(V × [2], b=µ)

where b is a vector with bu(1) = du and bu(2) = 0.

Theorem 16 (Small Set Expansion). Given 0 < ε < 1, positive integer r, a target volume µ, disjoint
foreground and background sets (possibly empty) F and B, respectively , with

µ 6 VolG (V \ (F ∪B)) ,

there exists an algorithm, running in time nO
(
r+log(1/ε)

ε2

)
to find a set U ⊆ V such that:

F ⊆ U ⊆ V \B,

ΓG(U) 6
1 + ε

min{λr+1(L), 1}
OPT

and

21

1. If d′max , maxu∈V \(F∪B) du 6 O
(

µ

log 1
ε

)
, then

µ

(
1−O

(√
d′max

µ
log

1

ε

))
6 VolG (U \ F) 6 µ

(
1 +O

(√
d′max

µ
log

1

ε

))

(In fact, in this case the running time is bounded by nO(r/ε2).)

2. Else
µ (1− ε) 6 VolG (U \ F) 6 µ (1 + ε) .

Proof of 1. We follow the exact same proof as Theorem 14 using the standard integer programming
formulation of SSE, and defining the cut U = {u | x̃u(1) = 1}. Using bound 2 from Corollary 11,
∆ε/2(d, µ) 6 O(

√
d′maxµ log(1/ε)) provided that d′max 6 O

(
µ

log 1
ε

)
. Applying Markov bound on

EU [ΓG(U)], we see that with probability Ω(ε),

ΓG(U) 6
1 + ε

λr+1

and
µ−O

(√
µd′max log(1/ε)

)
6 VolG (U \ F) 6 µ+O

(√
µd′max log(1/ε)

)
.

Proof of 2. At a high level, our algorithm proceeds in the following way: We enumerate all sub-
sets U0 of volume at most µ from the set of high degree nodes H, which is defined by H ,{
u | du > ε2

log(1/ε)µ
}

. For each such subset U0, we solve the corresponding Lasserre SDP relax-

ation of Small Set Expansion problem on this graphwith foreground set F ′ , F ∪ U0, background
set B′ , B ∪ (H \ U0) and target volume µ′ , µ − VolG (U0). Note that the maximum degree of
any unconstrained node for this problem d′′max = maxu∈V \(F ′∪B′) du is at most d′′max 6

ε2

log(1/ε)µ.

There are two possible cases:

1. If d′′max <
1

log(1/ε)µ
′ then we can apply the analysis given in proof of 1 to find a set U such

that
|VolG (U0 ∪ U)− µ| 6 O(

√
µ′d′′max log(1/ε)) 6

√
µ′ε2µ 6

√
µε2µ = µε.

2. If d′′max >
1

log(1/ε)µ
′, then we have 1

log(1/ε)µ
′ 6 ε2

log(1/ε)µ, which implies µ′ 6 ε2µ.

In this case, instead of Chernoff bound, we use a simple Markov bound to conclude that

PrU

[
VolG (U) >

µ′

ε/2

]
6 ε/2.

Combining this with the bound on ΓG(U), with probability Ω(ε), we will find U with

|VolG (U0 ∪ U)− µ| 6 µ′/(ε/2) 6 2εµ.

22

After enumerating all such sets, we return the one with smallest cut. Correctness of this algo-
rithm is obvious.

For running time, note that number of nodes we can choose from H is at most log(1/ε)
ε2

. Hence
we solve Lasserre SDP at most (|H|

6 log(1/ε)
ε2

)
6 n

O
(

log(1/ε)

ε2

)

times. Consequently the total running time is

n
O
(

log(1/ε)

ε2

)
· nO

(
r
ε2

)
= n

O
(
r+log(1/ε)

ε2

)
.

5.3 Other Graph Partitioning Problems

Our final problems are graph partitioning problems with a ratio in the objective, uniform sparsest
cut, edge expansion, normalized cut and conductance. All these results are direct extensions of
our Minimum Bisection with arbitrary target sizes or Small Set Expansion results.

Note that the natural integer formulation for these problems involve a ratio in the objective and
even after relaxing integrality constraints, the resulting formulation is not SDP anymore. More-
over due to the presence of Lasserre constraints, one can not simply equate the denominator to a
constant, say 1, and solve the resulting SDP. We instead guess the value of denominator and solve
the corresponding Min-Bisection or SSE problem, repeating this for all poly(n) possible values.

Corollary 17 (Graph Partitioning). Given 0 < ε < 1, positive integer r, disjoint foreground and back-
ground sets (possibly empty)F andB respectively, there exists an algorithm, running in time nO((r+log(1/ε))/ε2),
to find a non-empty set U (V such that:

F ⊆ U ⊆ V \B,

{φG(U), hG(U),ncutG(U), conductanceG(U)} 6 1 + ε

min{λr+1(L), 1}
OPT .

We sketch the proof for only conductance. Proofs for other problems follow the same pattern.

Proof for Conductance. Let U∗ be the optimal solution with µ∗ = VolG (U∗) and η∗ = ΓG(U∗).

We guess the volume of optimal partition µ′ and invoke Theorem 16. If we keep repeating this
for all values of µ′ in εm

n

{
1, 2, . . . , b n2εc

}
, we will find U such that

|VolG (U)− µ∗| 6 εµ∗ + o(1) and ΓG(U) 6
1 + ε

min{1, λr+1}
η∗

so that ΦG(U) 6 1+O(ε)
min{1,λr+1}ΦG(U∗). The running time will be bounded by

O
(n
ε

)
· nO

(
r+log(1/ε)

ε2

)
.

23

6 Algorithms for Unique Games Type Problems

In this section, we obtain our algorithmic result for Unique Games type problems. Let us quickly
recall the definition of the Unique Games problem. An instance of Unique Games consists of
a graph G = (V,E,W) with non-negative edge weights we for each edge e ∈ E, a label set [k],
and bijection constraints πe : [k] → [k] for each edge e = {u, v}. The goal is to find a labeling
f : V → [k] that minimizes the number of unsatisfied constraints, where e = {u, v} is unsatisfied
if πe(f(u)) 6= f(v) (we assume the label of the lexicographically smaller vertex u is projected by
πe).

Remark 8. Unique Games can also be captured in the quadratic integer programming framework
of Section 4, where the matrix A defining the PSD quadratic form corresponds to the Laplacian of
the “lifted graph” Ĝ with vertex set V × [k] obtained by replacing each edge in G by a matching
corresponding to its permutation constraint. However, except for the problem of maximum cut,
we are unable to apply the results from that section directly because there is no known way to
relate the rth eigenvalue of the constraint graph to say the poly(r)th eigenvalue of the lifted graph.
Hence we use the “projection distance” type bound based on column selection (similar to Section
3.4), after constructing an appropriate embedding to relate the problem to the original graph. �

Remark 9. Although we do not explicitly mention in the theorem statements, we can provide
similar guarantees in the presence of constraints similar to graph partitioning problems such as

• constraining labels available to each node,

• constraining fraction of labels used among different subsets of nodes.

For example, the guarantee for maximum cut algorithm immediately carries over to maximum
bisection with guarantees on partition sizes similar to minimum bisection. �

6.1 Maximum cut

We first start with the simplest problem fitting in the framework for unique games — finding a
maximum cut in a graph.

Theorem 18 (Maximum Cut / Minimum Uncut). Given a weighted undirected graph G = (V,E,W),
for all ε ∈ (0, 1) and a positive integer r, there exists an algorithm to find a set U ⊆ V such that the total
weight of uncut edges by partitioning (U, V \ U) is bounded by

min

{
1 +

2 + ε

λr+1(L)
,

1 + ε

min {2− λn−r−1(L), 1}

}
· OPT

in time nO
(
r
ε2

)
, where OPT is the total weight of uncut edges in the optimal labeling.

Proof. The first bound will follow from the more general result for Unique Games (Theorem 19
below), so we focus on the second bound claiming an approximation ratio of (1 + ε)/min{2 −
λn−r−1, 1}.

24

The Laplacian matrix, L̂ corresponding to the lifted graph, Ĝ, for maximum cut can be ex-
pressed as:

L̂ =

(
D −A
−AT D

)
=

(
D −A
−A D

)
whose normalized Laplacian matrix is given by

L̂ =

(
I −A
−A I

)
.

By direct substitution, it is easy to see that, for every eigenvector qi of constraint graph’s normal-

ized Laplacian matrix, L, there are two corresponding eigenvectors for L̂,

(
1√
2
qi

1√
2
qi

)
and

(
1√
2
qi

− 1√
2
qi

)
with corresponding eigenvalues given by λi and 2−λi respectively. As a convention, we will refer
to the first type of eigenvectors as even eigenvectors and the latter type as odd eigenvectors.

For any node u ∈ V , we can express xu(i) for i ∈ [2] as

xu(i) = ‖xu(i)‖2x∅ + (−1)i‖xu(1)‖‖xu(2)‖yu ,

where yu is a unit vector orthogonal to x∅, 〈x∅, yu〉 = 0. For any set S, Π⊥S xu(1) = Π⊥S (x⊥∅ xu(1)) =

Π⊥S yu = −Π⊥S xu(2). Consequently X TΠ⊥SX has zero correlation with even eigenvectors of L̂.
Therefore we have the following identity:

Tr(X TΠ⊥S x
⊥
∅ Π⊥SX L̂) =Tr(X (1)TΠ⊥S x

⊥
∅ Π⊥SX (1)(D +A)).

In particular, we can slightly modify Theorem 30 to take into account only the eigenvectors of L̂
with which x⊥∅ X has non-zero correlation. Using our standard rounding procedure, we can then
find a set U for which the fraction of “uncut” edges is bounded by (1 + ε) OPT

min(λr+1(I+A),1) . The
proof is now complete by noting that λr+1(I +A) = 2− λn−r−1(L).

6.2 Unique Games

In this section, we prove our main result for approximating Unique Games.

Theorem 19 (Unique Games). Let G = (V,E,W) be an instance of Unique Games with label set [k] and
permutation constraints πe for each e ∈ E.

Then for all ε ∈ (0, 1) and positive integer r, there exists an algorithm to find a labeling of nodes V ,
f : V → [k] with total weight of unsatisfied constraints bounded by

∑
e={u,v}∈E

we1[f(v)6=πe(f(u))] 6

(
1 +

2 + ε

λr+1(L)

)
OPT

in time (kn)O(rε), where OPT is the total weight of unsatisfied constraints in the optimal labeling.

25

Proof. Let x be vectors satisfying r′ = O(r/ε)-levels of Lasserre hierarchy constraints with

η ,
1

4

∑
e=(u,v)∈E

we
∑
f

‖xu(f)− xv(πe(f))‖2.

where for notational convenience we treat each undirected edge {u, v} as two directed edges of
half the weight. Let S = S∗ ∈

(
V
r′

)
to be chosen later. By choosing the labeling from f ∼ D∗, we

know by using Claim 27 that the expected weight of unsatisfied constraints is bounded by:

1

2

∑
e=(u,v)∈E

wePrf∼D∗ [f(u) 6= πe(f(v))] =
1

2

∑
e=(u,v)∈E

we
∑
f

〈ΠSxu(f),ΠS(x∅ − xv(πe(f)))〉

=
1

2

∑
e=(u,v)∈E

we
∑
f

‖xu(f)‖2 − 〈xu(f), xv(πe(f))〉+ 〈Π⊥S xu(f),Π⊥S xv(πe(f))〉

= η +
1

2

∑
e=(u,v)∈E

we
∑
f

〈Π⊥S xu(f),Π⊥S xv(πe(f))〉

6 η +
1

2

∑
e=(u,v)∈E

we
∑
f

‖Π⊥S xu(f)‖2 + ‖Π⊥S xv(f)‖2

2

= η +
1

2

∑
u

du
∑
f

‖Π⊥S xu(f)‖2

If we let PS be the projection matrix onto span of {xv(f)}v∈S,f∈[k] , the above is upper bounded by

6 η +
1

2

∑
u

du
∑
f

‖P⊥S xu(f)‖2.

Therefore the total weight of unsatisfied constraints is bounded by:

η∗ 6 η

(
1 +

1
2

∑
u du

∑
f ‖P⊥S xu(f)‖2

1
4

∑
e=(u,v)∈E

∑
f we‖xu(f)− xv(πe(f))‖2

.

)

Consider the embedding {xu(f)}f∈[k] 7→ Xu given in Theorem 20 below. For this embedding, we
know that, for any set S, the above quantity is bounded by

6 η

(
1 +

1
2

∑
u du‖X⊥S Xu‖2

1
8

∑
e=(u,v)∈E we‖Xu −Xv‖2

)
= η

(
1 + 4

Tr(XTX⊥S XD)

2Tr(XTXL)

)

If we further scale X by D1/2 so that X ′ = D1/2X ,

= η

(
1 + 2

Tr(X ′TX ′⊥SX
′)

Tr(X ′TX ′L)

)

where L is the normalized Laplacian matrix. Picking S∗ = arg minC∈(Vr′)
Tr(X ′TX ′⊥CX

′), and ap-
plying Lemma 29 we obtain the desired result.

26

Theorem 20 (A useful embedding). Given vectors x ∈ Rm×(V×[k]) with the property that, for any
u ∈ V , whenever f, g ∈ [k]u are two different labellings of u, f 6= g,

〈xu(f), xu(g)〉 = 0.

Then there exists an embedding {xu(f)}f∈[k]u 7→ Xu with the following properties:

1. For any u ∈ V , ‖Xu‖2 =
∑

f ‖xu(f)‖2.

2. For any u, v ∈ V and any permutation π ∈ Sym([k]):∑
i∈[k]

‖xu(iu)− xv(π(i)v)‖2 > 1

2
‖Xu −Xv‖2.

3. For any set S ⊆ V and any node u ∈ V , if we let PS be the projection matrix onto the span of
{xs(f)}s∈S,f∈[k]:

‖X⊥S Xu‖2 >
∑
f∈[k]u

‖P⊥S xu(f)‖2.

In the rest of this section, we will prove Theorem 20.

Our embedding is as follows. Assume that the vectors xu(f) belong to Rm. Let e1, e2, . . . , em ∈
Rm be the standard basis vectors. Define Xu ∈ Rm ⊗ Rm as

Xu =
m∑
i=1

∑
f∈[k]u

〈xu(f), ei〉xu(f)⊗ ei .

Observation 21. For vectors x, y ∈ Rm,
∑m

i=1〈x, ei〉〈y, ei〉 = 〈x, y〉.

The first property of the vectors Xu follows from this observation easily:

‖Xu‖2 =
∑
i

∑
f,g

〈xu(f), ei〉〈xu(g), ei〉〈xu(f), xu(g)〉

=
∑
f,g

〈xu(f), xu(g)〉
∑
i

〈xu(f), ei〉〈xu(g), ei〉

=
∑
f,g

〈xu(f), xu(g)〉〈xu(f), xu(g)〉

=
∑
f

‖xu(f)‖2.

We prove the second property in Claim 22 and third one in Claim 23.

Claim 22. For any permutation π ∈ Sym([k]):

1

2
‖Xu −Xv‖2 6

∑
i∈[k]

‖xu(iu)− xv(π(i)v)‖2

27

Proof. Without loss of generality, we assume π is the identity permutation. We have

1

2
‖Xu −Xv‖2 =

‖Xu‖2 + ‖Xv‖2

2
− 〈Xu, Xv〉

=
‖Xu‖2 + ‖Xv‖2

2
−
∑
f,g

〈xu(f), xv(g)〉
∑
i

〈xu(f), ei〉〈xv(g), ei〉

=
∑
f

‖xu(f)‖2 + ‖xv(f)‖2

2
−
∑
f,g

〈xu(f), xv(g)〉2‖xu(f)‖‖xv(g)‖

The sum over all pairs is lower bounded by summing only the corresponding pairs:

6
1

2

∑
f

(
‖xu(f)‖2 + ‖xv(f)‖2 − 2〈xu(f), xv(f)〉〈xu(f), xv(f)〉

)
=

1

2

∑
f

‖xu(f)− xv(f)‖2 +
∑
f

〈xu(f), xv(f)〉
(

1− 〈xu(f), xv(f)〉
)

︸ ︷︷ ︸
>0

(9)

Since the coefficient of 〈xu(f), xv(f)〉 is positive, we can use Cauchy-Schwarz inequality to replace
〈xu(f), xv(f)〉with ‖xu(f)‖ · ‖xv(f)‖ in Equation (9) to obtain:

6
1

2

∑
f

‖xu(f)− xv(f)‖2 +
∑
f

(‖xu(f)‖ · ‖xv(f)‖ − 〈xu(f), xv(f)〉) (10)

Using inequality ‖xu(f)‖ · ‖xv(f)‖ 6 1
2

(
‖xu(f)‖2 + ‖xv(f)‖2

)
on Equation (10):

6
1

2

∑
f

(
‖xu(f)− xv(f)‖2 + ‖xu(f)‖2 + ‖xv(f)‖2 − 2〈xu(f), xv(f)〉

)
=
∑
f

‖xu(f)− xv(f)‖2.

Claim 23.
‖X⊥S Xu‖2 >

∑
f

‖P⊥S xu(f)‖2.

Proof. For any θ ∈ RS :

‖Xu −
∑
v

θvXv‖2 =
m∑
i=1

∥∥∥∥∑
f

〈xu(f), ei〉xu(f)−
∑
v∈S,g

θv〈xv(g), ei〉xv(g)︸ ︷︷ ︸
PSΘi

∥∥∥∥2

. (11)

28

Substituting αf = P⊥S xu(f) and βf = PSxu(f), Equation (11) is equal to:

=

m∑
i=1

∥∥∥∥∑
f

〈xu(f), ei〉(αf + βf)− PSΘi

∥∥∥∥2

=
m∑
i=1

∥∥∥∥∑
f

〈xu(f), ei〉αf
∥∥∥∥2

+

∥∥∥∥∑
f

〈xu(f), ei〉βf − PSΘi

∥∥∥∥2

>
m∑
i=1

∥∥∥∥∑
f

〈xu(f), ei〉αf
∥∥∥∥2

=
∑
f,g

〈αf , αg〉
m∑
i=1

〈xu(f), ei〉〈xu(g), ei〉

=
∑
f,g

〈αf , αg〉〈xu(f), xu(g)〉 =
∑
f

‖αf‖2 =
∑
f

‖P⊥S xu(f)‖2.

This concludes the proof of Theorem 20, therefore also the proof of Theorem 19.

7 Main Technical Claims about Rounding

In this section we state and prove the main results concerning our rounding algorithm for Lasserre
SDP solutions, and in particular prove Theorem 30 which we used to analyze our algorithm for
quadratic integer programming and its applications to graph partitioning. Some of this discussion
already appeared in the simpler setting of Minimum Bisection in Section 3. All our rounding
algorithms are based on choosing labels of a carefully chosen “seed” set S∗ of appropriate size r′,
which is then propagated to other nodes conditioned on the particular labeling of S∗.

7.1 Simple lemmas about rounding

We first describe how to perform the rounding after a good choice of the seed set S∗ has been
made, followed by an analysis of its properties. This part is quite simple; the crux of our rounding
is how to choose the best S∗ and bound the performance when it is used as the seed set. This will
be described in Section 7.2.

Definition 24 (Rounding distribution). Given x ∈ Lasserre(r′)(V × [k]) and S∗ ∈
(
V
r′

)
, we define D∗

as the distribution on labellings of S∗, in which a labeling f ∈ [k]S
∗ is chosen with probability:

Prf ′∼D∗
[
f ′ = f

]
= ‖xS∗(f)‖2.

Here f ∼ D∗ denotes choosing from distribution D∗.
For any f ∈ [k]S

∗ , we use D∗f as the distribution on binary vectors corresponding to labellings of V ,

{0, 1}V [k] , in which each node u ∈ V receives, independently at random, a label g ∈ [k]u with probability:

Prx̃∼D∗f [x̃u(g) = 1] =
‖xS∗∪{u}(f ◦ g)‖2

‖xS∗(f)‖2
=
〈xS∗(f), xu(g)〉
‖xS∗(f)‖

.

29

We will abuse the notation and use x̃ ∼ D∗ for sampling a binary labeling vector by first choosing
f ∼ D∗ and then choosing x̃ ∼ D∗f .

We now prove some simple properties of this rounding. All claims below hold for every fixed
choice of S∗.

Claim 25. For any u ∈ V and g ∈ [k]u, we have

Prx̃∼D∗ [x̃u(g) = 1] = ‖xu(g)‖2.

Proof. Indeed, by definition of the rounding scheme, Prx̃∼D∗ [x̃u(g) = 1] equals∑
f

‖xS∗(f)‖2
‖xf∪{u}(f ◦ g)‖2

‖xS∗(f)‖2
=
∑
f

〈xS∗(f), xu(g)〉 = 〈x∅, xu(g)〉 = ‖xu(g)‖2 .

Before stating the next claim, let us again recall the definition of the projection operator used
in the analysis of the rounding.

Definition 26. Given x ∈ Lasserre(r)(V × [k]), we define ΠS ∈ RΥ×Υ as the projection matrix onto the
span of {xS(f)}f∈[k]S for given S:

ΠS ,
∑
f∈[k]S

xS(f) · xS(f)
T
.

Define Π⊥S = I − ΠS to be the projection matrix onto the orthogonal complement of the span of
{xS(f)}f∈[k]S , where I denotes the identity matrix of appropriate dimension.

Claim 27. For any u 6= v ∈ V and g ∈ [k]u, h ∈ [k]v:

Prx̃∼D∗ [x̃u(g) = 1 ∧ x̃u(h) = 1] = 〈ΠS∗xu(g),ΠS∗xv(h)〉.

Proof.

Prx̃∼D∗ [x̃u(g) = 1 ∧ x̃v(h) = 1] =
∑
f

‖xS∗(f)‖2
‖xS∗∪{u}(f ◦ g)‖2‖xS∗∪{v}(f ◦ h)‖2

‖xS∗(f)‖4

=
∑
f

‖xS∗∪{u}(f ◦ g)‖2‖xS∗∪{v}(f ◦ h)‖2

‖xS∗(f)‖2

=
∑
f

〈xS∗(f), xu(g)〉〈xS∗(f), xv(h)〉
‖xS∗(f)‖2

=
∑
f

〈xS∗(f), xu(g)〉〈xS∗(f), xv(h)〉

=
∑
f

xu(g)TxS∗(f) · xS∗(f)
T
xv(h)

= xu(g)TΠS∗xv(h) = 〈ΠS∗xu(g),ΠS∗xv(h)〉.

30

Claim 28. Given any S∗ with x̃ sampled from D∗ as described, the following identity holds:

For any matrix L ∈ R(V×[k])2 ,

Ex̃∼D∗
[
x̃TLx̃

]
= Tr(X TΠ⊥S∗Xdiag(L)) + Tr(X TΠS∗XL)

Proof. Consider L = diag(A) + Lo:

Ex̃∼D∗
[
x̃TLx̃

]
=Ex̃∼D∗

[
x̃Tdiag(L)x̃+ x̃TLox̃

]
Using Claim 25 and Claim 27:

=Tr(X TXdiag(L)) + Tr(X TΠS∗XLo)
=Tr(X TXdiag(L)) + Tr(X TΠS∗X (L− diag(L)))

=Tr(X TΠ⊥S∗Xdiag(L)) + Tr(X TΠS∗XL).

7.2 Choosing A Good Seed Set

In this section we show how to pick a good S∗ and prove our main result, Theorem 30, which lets
us relate the performance of our rounding algorithm to the objective value of relaxation.

We begin with a lemma relating the best bound achieved by column-selection for a matrix X
(as in Theorem 7) to the objective function Tr(XTXL) with respect to an arbitrary PSD matrix L.

Lemma 29. Given X ∈ Rm×n and a PSD matrix L ∈ Rn×n � 0 for any positive integer r and positive
constant ε > 0, there exists r/ε columns, S ∈

(
[n]
r

)
of X such that

Tr(XTX⊥S Xdiag(L)) 6
Tr(XTXL)

(1− ε)λr+1 [L; diag(L)]

where λr+1 [L; diag(L)] is (r + 1)th smallest generalized eigenvalue as defined in Definition 12. Further-
more such S can be found in deterministic O(rn4) time.

Proof. Let X̃ ← Xdiag(L)1/2 and L ← diag(L)−1/2Ldiag(L)−1/2 with convention 0/0 = ∞ and
0 · ∞ = 0. Note that the ith smallest eigenvalue of L, λi(L), corresponds to the ith smallest gener-
alized eigenvalue λi[L; diag(L)] by Observation 13. If we let σi be ith largest eigenvalue of X̃T X̃ ,
then using Theorem 7 on vectors X̃ , we can find S ∈

(
V
r′

)
in time O(rn4) such that

Tr(X̃T X̃⊥S X̃) 6
1

1− ε
∑
i>r+1

σi.

By the von Neumann-Birkhoff theorem, Tr(X̃T X̃L) is minimized when the ith largest eigenvector
of X̃T X̃ corresponds to the ith smallest eigenvector of L:

Tr(X̃T X̃L) >
∑
i

σiλi >
∑
i>r+1

σiλi > λr+1

∑
i>r+1

σi > (1− ε)λr+1Tr(X̃
T X̃⊥S X̃).

31

The span of {X̃u}u∈S is the same with {Xu}u∈S since X̃u differs from Xu only by a scaling factor
which does not affect the span. In particular, X̃⊥S = X⊥S :

Tr(X̃T X̃⊥S X̃) = Tr(X̃TX⊥S X̃) = Tr(XTX⊥S Xdiag(L)).

The proof is complete by noting that Tr(X̃T X̃L) = Tr(XTXL).

Theorem 30 (Main technical theorem). Given positive integer r and ε ∈ (0, 1), let x be a set of vectors
satisfying r′ = O

(
r
ε2

)
rounds of Lasserre hierarchy constraints, x ∈ Lasserre(r′)(V × [k]) with X ,

(xu(f))u∈V,f∈[k]u being the matrix whose columns are vectors of x corresponding to singletons.

Given any PSD matrix L ∈ R(V×[k])×(V×[k]), with L � 0, we can find a seed set S∗ of size at most r′

in deterministic time O(n5) with the following properties. For x̃ randomly sampled from the distribution
D∗, x̃ ∼ D∗, as described in Definition 24:

1. x̃ is a binary vector, x̃ ∈ {0, 1}V×[k].

2. x̃ is an indicator function of a proper labeling of V . In particular for any u ∈ V ,∑
i∈[k]

x̃u(i) = 1.

3. If there exists u and i such that xu(i) = x∅ (equivalently ‖xu(i)‖2 = 1) then x̃u(i) is always 1.
Similarly, if xu(i) = 0, then x̃u(i) is always 0.

4. The expected correlation of x̃ with L is bounded by the correlation of x with L as follows:

Ex̃∼D∗
[
x̃TLx̃

]
6

1 + ε

1− ε
Tr(X TXL)

min{λr+1, 1}

Here X denotes the matrix with columns xu(i), (u, i) ∈ V × [k], and λr+1 = λr+1 [L; diag(L)] is
(r + 1)th smallest generalized eigenvalue as defined in Definition 12.

Furthermore this set S∗ satisfies the following bound

Tr(X TΠ⊥S∗Xdiag(L)) + Tr(X TΠS∗XL) 6
1 + ε

1− ε
Tr(X TXL)

min{λr+1, 1}

where ΠS∗ is defined as in Definition 26.

Proof. Note that the first three properties follow by construction of D∗. We will now prove the
fourth property. Since final bound is just a restatement of the fourth property (see Claim 28), this
will finish our proof.

Let r0 , r/ε. Consider picking our “seed” nodes in the following iterative way. Starting with
S∗ ← ∅, for each i ∈ {1, 2, . . .}, let

S̃(i)← arg min
S∈(V×[k]

r0
)
Tr(X(i− 1)TX⊥S X(i− 1)diag(L)),

32

and we set S(i) to be the set of nodes whose at least one label appears in S̃(i):

S(i)←
{
u | ∃f ∈ [k]u such that (u, f) ∈ S̃(i)

}
,

and X(i) ← Π⊥S(i)X(i − 1) with X(0) = X . At each step we set S∗ ← Si and repeat this until

Ex̃∼D∗
[
x̃TLx̃

]
is at most 1+ε

1−ε
η

min(1,λr+1) . Here η , Tr(X TXL) and Si is the collection of all seed sets

seen so far, Si ,
⋃
j6i

S(j) .

Note that, by Lasserre constraints, all vectors in {xu(f)}u∈S,f∈[k]u are linear combinations of
vectors in {xS(f)}f∈[k]S . Hence for any subset of nodes T ⊆ V of size at most r′, X⊥T×[k] � Π⊥T .

For any i, using D∗(i) to denote the distribution at iteration i with seed set chosen as S∗ ← Si,
by Claim 28:

Ex̃∼D∗(i)
[
x̃TLx̃

]
=Tr(X TΠ⊥SiXdiag(L)) + Tr(X TΠSiXL) (12)

Factoring out Tr(X TXL) from Equation (12):

=Tr(X TXL)

(
Tr(X TΠ⊥SiXdiag(L))

Tr(X TXL)
+

Tr(X TΠSiXL)

Tr(X TXL)

)

Let ξi be defined as ξi , 1
ηEx̃∼D∗(i)

[
x̃TLx̃

]
so that:

ξi =
Tr(X TΠ⊥SiXdiag(L))

Tr(X TXL)︸ ︷︷ ︸
δi

+
Tr(X TΠSiXL)

Tr(X TXL)︸ ︷︷ ︸
ηi

Finally
λ′r+1 , (1− ε) min {λr+1[L; diag(L)], 1} . (13)

We will show that this procedure will stop for some i with i 6 d1
εe in Lemma 35. Note that each

iteration takes time at most O(r0n
4). If this procedure takes K iterations, we have r0K 6 n, hence

running time is O(Kr0n
4) = O(n5).

Observation 31.

δi+1 =
Tr(X TΠ⊥SiXdiag(L))

Tr(X TXL)
=

Tr(X(i)TΠ⊥S(i+1)X(i)diag(L))

Tr(XTXL)
.

Proof. Note thatX(i) = Π⊥SiX and Π⊥SiΠ
⊥
S(i+1) = Π⊥Si+1

. This implies Π⊥S(i+1)X(i) = Π⊥SiΠ
⊥
S(i+1)X =

Π⊥Si+1
X .

Observation 32. For any i > 0, we have ηi 6 1.

Proof. Note ΠSi
� I . Since L is PSD, Tr(XTΠSi

XL) 6 Tr(XTXL).

33

Lemma 33. For any i > 0,

δi+1 6
1− ηi
λ′r+1

.

where λ′r+1 is defined as in Equation (13).

Proof. Using Observation 31,

δi+1 = Tr(X(i)TΠ⊥S(i+1)X(i)diag(L))

6 Tr(X(i)TX⊥S(i+1)×[k]X(i)diag(L))

6 Tr(X(i)TX⊥
S̃(i+1)

X(i)diag(L))

6
1

(1− ε)λr+1
Tr(X(i)TX(i)L) ,

where the first inequality follows from Π⊥S(i+1) � X⊥S(i+1)×[k], and the second inequality from

S̃(i + 1) ⊆ S(i + 1) × [k]. For the last inequality, we can immediately apply the bound from
Lemma 29. Using (1 − ε)λr+1 [L; diag(L)] > λ′r+1 for λ′r+1 as defined in Equation (13), and the
identity

Tr(X(i)TX(i)L) = Tr(X TΠ⊥SiXL) = Tr(X TXL)− Tr(X TΠSiXL) = η(1− ηi)

we conclude the proof.

Lemma 34. If ξi+1 > 1+ε
λ′r+1

, then
ε+ ηi
λ′r+1

6 ηi+1.

Proof. Using Lemma 33,

1 + ε

λ′r+1

6 ξi+1 = δi+1 + ηi+1 6
1− ηi
λ′r+1

+ ηi+1.

Hence
ε+ ηi
λ′r+1

6 ηi+1 .

Lemma 35. There exists i 6 d1
εe for which ξi 6 1+ε

λ′r+1
.

Proof. By contradiction. Let K = d1
εe and assume for all i 6 K, ξi > 1+ε

λ′r+1
. By Lemma 34,

η1 >
ε

λ′r+1

> ε

η2 >
ε

λ′r+1

+
η1

λ′r+1

>
ε

λ′r+1

(1 + 1) > 2ε

...

ηK >
ε

λ′r+1

+
ηK−1

λ′r+1

> K
ε

λ′r+1

> Kε =⇒ ηK > 1.

which contradicts Observation 32.

34

This completes the proof of Theorem 30.

8 Algorithm for Independent Set

Our final algorithmic result is on finding independent sets on a graph. For simplicity, we focus on
unweighted graphs though the extension for graphs with non-negative vertex weights is straight-
forward. As usual, we denote by α(G) the size of the largest independent set inG. Let dmax denote
the maximum degree of a vertex of G.

Theorem 36. Given 0 < ε < 1, positive integer r, a graph G with dmax > 3, there exists an algorithm to
find an independent set I ⊆ V such that

|I| > α(G) ·min

{
1

2dmax

(
1

(1− ε) min{2− λn−r−1(L), 1}
− 1

)−1

, 1

}
(14)

in time nO
(
r
ε2

)
.

Remark 10. The above bound (14) implies that if λn−r−1, which is the (r + 1)st largest eigen-
value of the normalized Laplacian L, is very close to 1, then we can find large independent sets
in nO(r/ε2) time. In particular, if it is at most 1 + 1

4dmax
, then taking ε = O(1/dmax), we can find

an optimal independent set. The best approximation ratio for independent set in terms of dmax

is about O
(
dmax·log log dmax

log dmax

)
[14, 15]. The bound (14) gives a better approximation ratio when

λn−r−1 6 1 +O
(

1
log dmax

)
. �

Proof. (of Theorem 36) Consider the following integer program for finding largest independent set
in G:

max
∑
u

x̃u(1)

subject to x̃u(1)x̃v(1) = 0 for any edge e = (u, v) ∈ E ,
x̃u(1) + x̃u(2) = 1 for all u ∈ V .

x̃ ∈ {0, 1}V×[2].

Assume x is a feasible solution to the usual r′-rounds of Lasserre relaxation of this formulation:

max Tr(X (1)TX (1))

subject to 〈xu(1), xv(1)〉 = 0 for any edge e = (u, v) ∈ E ,

x ∈ Lasserre(r′)(V × [2])

with value
∑

u ‖xu(1)‖2 = Tr(X (1)TX (1)) = µ. Here,X (1) denotes the matrix with columns xu(1),
and henceforth in the proof we will denote X (1) by X , X , X (1).

For S∗ to be chosen later, pick x̃ ∼ D∗ as per Definition 24. For ease of notation, we will denote
S∗ by S in the ensuing calculations. We convert x̃ into an independent set as follows.

35

1. For each u, if x̃u(1) = 1 then let I ← I ∪ {u}with probability pu which we will specify later.

2. After the first step, for each edge e = {u, v}, if {u, v} ⊆ I , we choose one end point randomly,
say u, and set I ← I \ {u}.

By construction, the final set I is an independent set.

Note that for any u, the probability that u will be in the final independent set I is at least:

Pr [u ∈ I] > E [pux̃u(1)]− 1

2
E

 ∑
v∈N(u)

pupvx̃u(1)x̃v(1)


= pu‖xu(1)‖2 − 1

2

∑
v∈N(u)

pupv〈ΠSxu(1),ΠSxv(1)〉. (15)

By (15), the expected size of the independent set found by the algorithm satisfies

E [|I|] >
∑
u

pu‖xu(1)‖2 −
∑
{u,v}∈E

pupv〈ΠSxu(1),ΠSxv(1)〉. (16)

Note that for every edge {u, v} ∈ E,

〈ΠSxu(1),ΠSxv(1)〉 =
∑
f∈[2]S

〈xS(f), xu(1)〉〈xS(f), xv(1)〉
‖xS(f)‖4

> 0 . (17)

We now consider two cases.

Case 1: 〈ΠSxu(1),ΠSxv(1)〉 = 0 for all edges {u, v} ∈ E. In this case, we take pu = 1 for all u ∈ V ,
and by (16), we find an independent set of expected size at least µ > α(G).

Case 2: In this case, we have∑
{u,v}∈E

〈ΠSxu(1),ΠSxv(1)〉 =
1

2
Tr(XTΠSXA) > 0 , (18)

where A is the adjacency matrix of G. Let A = D−1/2AD−1/2 be the normalized adjacency matrix,
and define

ξ ,
Tr(XTΠSXA)

Tr(XTX)
. (19)

By (17) and (18), we have ξ > 0.

We now pick pu = α√
du

for all u ∈ V , where we will optimize the choice of α shortly. For this
choice, we have

E [|I|] > α
∑
u

1√
du
‖xu(1)‖2 − 1

2
α2Tr(XTΠSXA)

>
α√
dmax

∑
u

‖xu(1)‖2 − 1

2
α2Tr(XTΠSXA)

= µ

(
α√
dmax

− 1

2
α2 Tr(XTΠSXA)

Tr(XTX)︸ ︷︷ ︸
ξ

)

36

This expression is maximized when α = 1
ξ·
√
dmax

, for which it becomes:

E [|I|] > µ

2dmax

1

ξ
. (20)

We now describe how we choose S = S∗. Note that the matrix I + A is positive semidefinite

with diagonal entries equal to 1. By applying Theorem 30 to the matrix
[
I +A 0

0 0

]
, we will

choose S such that

Tr(XTΠ⊥SX) + Tr(XTΠSX(I +A)) 6
Tr(XTX(I +A))

λ′

=
1

λ′
Tr(XTX) since Tr(XTXA) = 0

where λ′ = (1− ε) min{λr+1(I +A), 1} = (1− ε) min{2− λn−r−1(L), 1}.
On the other hand,

Tr(XTΠ⊥SX) + Tr(XTΠSX(I +A))

Tr(XTX)
=
Tr(XTΠ⊥SX) + Tr(XTΠSX) + Tr(XTΠSXA)

Tr(XTX)

=
Tr(XTX) + Tr(XTΠSXA)

Tr(XTX)
= 1 + ξ.

Thus, for such a choice of S, we obtain that ξ 6 1
λ′ − 1. Substituting this back into Equation (20),

we have
E [|I|] > µ

2dmax

1

1/λ′ − 1
.

Acknowledgments

We thank Sivaraman Balakrishnan, Ravishankar Krishnaswamy and Srivatsan Narayanan for use-
ful discussions.

References

[1] C. Ambühl, M. Mastrolilli, and O. Svensson. Inapproximability results for sparsest cut, op-
timal linear arrangement, and precedence constrained scheduling. In Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science, pages 329–337, 2007. 3

[2] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for Unique Games and related
problems. In Proceedings of the 51st IEEE Symposium on Foundations of Computer Science, 2010.
3, 5, 6, 7

[3] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. K. Vishnoi. Unique games on
expanding constraint graphs are easy. In STOC, pages 21–28, 2008. 5, 6, 7, 8, 12

37

[4] S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM, 56(2), 2009. 8

[5] B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies
via global correlation. Manuscript, April 2011. 8

[6] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix recon-
struction. CoRR, abs/1103.0995, 2011. 7, 14

[7] E. Chlamtac. Approximation algorithms using hierarchies of semidefinite programming re-
laxations. In 48th Annual IEEE Symposium on Foundations of Computer Science, pages 691–701,
2007. 8

[8] E. Chlamtac and G. Singh. Improved approximation guarantees through higher levels of sdp
hierarchies. In APPROX-RANDOM, pages 49–62, 2008. 8

[9] E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps. In Handbook on Semidef-
inite, Cone and Polynomial Optimization. Springer, 2011. To appear. 8

[10] A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selec-
tion. In FOCS, pages 329–338, 2010. 7

[11] A. Deshpande and S. Vempala. Adaptive sampling and fast low-rank matrix approximation.
In APPROX-RANDOM, pages 292–303, 2006. 7

[12] U. Feige. Relations between average case complexity and approximation complexity. In
STOC, pages 534–543, 2002. 3

[13] V. Guruswami and A. K. Sinop. Optimal column-based low-rank matrix reconstruction.
arXiv:cs.DS/1104.1732, April 2011. 7, 14

[14] M. M. Halldórsson. Approximations of independent sets in graphs. In APPROX, pages 1–13,
1998. 35

[15] E. Halperin. Improved approximation algorithms for the vertex cover problem in graphs and
hypergraphs. SIAM J. Comput., 31(5):1608–1623, 2002. 35

[16] J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001. 5

[17] A. R. Karlin, C. Mathieu, and C. T. Nguyen. Integrality gaps of linear and semi-definite
programming relaxations for knapsack. CoRR, abs/1007.1283, 2010. 8

[18] J. A. Kelner, J. R. Lee, G. N. Price, and S.-H. Teng. Metric uniformization and spectral bounds
for graphs. CoRR, abs/1008.3594, 2010. Prelim. version in FOCS’09. 3

[19] S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique.
SIAM J. Comput., 36(4):1025–1071, 2006. 3

[20] S. Khot, P. Popat, and R. Saket. Approximate Lasserre integrality gap for unique games. In
APPROX-RANDOM, pages 298–311, 2010. 7

38

[21] S. Khot and N. K. Vishnoi. The Unique Games conjecture, integrality gap for cut problems
and embeddability of negative type metrics into l1. In Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science, pages 53–62, 2005. 6

[22] A. Kolla. Spectral algorithms for Unique Games. In Proceedings of the 25th IEEE Conference on
Computational Complexity, pages 122–130, 2010. 6

[23] J. B. Lasserre. An explicit equivalent positive semidefinite program for nonlinear 0-1 pro-
grams. SIAM Journal on Optimization, 12(3):756–769, 2002. 6, 9

[24] Y. Nesterov and A. Nemirovski. Interior-point polynomial algorithms in convex programming.
Cambridge University Press, 2006. 40

[25] R. Oliveira. The spectrum of random k-lifts of large graphs (with possibly large k). Journal of
Combinatorics, 1(3-4):285–306, 2010. 7

[26] J. K. Park and C. A. Phillips. Finding minimum-quotient cuts in planar graphs. In STOC,
pages 766–775, 1993. 3

[27] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In Pro-
ceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254, 2008. 8

[28] P. Raghavendra and D. Steurer. Graph expansion and the unique games conjecture. In Pro-
ceedings of the 42nd ACM Symposium on Theory of Computing, pages 755–764, 2010. 3

[29] P. Raghavendra, D. Steurer, and M. Tulsiani. Reductions between expansion problems. Elec-
tronic Colloquium on Computational Complexity (ECCC), 17:172, 2010. 3

[30] G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science, pages 593–602, 2008. 7

[31] L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation, and linear
programming. SIAM J. Comput., 29(6):2074–2097, 2000. 5

[32] M. Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, pages 303–312, 2009. 8

A Approximately Solving SDP

In this section, we will consider the case when we are only given an approximate SDP solution x to
r′ rounds of the Lasserre SDP Lasserre(r′)(V ×[k]) (recall that the number of rounds r′ was always
be at least r/ε (and at most O(r/ε2)) for achieving an approximation ratio of the form (1 + ε)/λr).

Theorem 37. For any positive ε > 0, positive integers k and r′ > 1/ε, it suffices to solve r′-round Lasserre
SDP relaxation within an additive factor of O

(
r′−2k−r

′
)

. Then a slightly modified rounding algorithm
will achieve all algorithmic bounds (except independent set) stated in this paper.

Furthermore one can solve such SDPs within required accuracy in time (kn)O(r′) using interior point
methods.

39

Proof. We only change the part of these algorithms where SDP solution is found. We compute an
approximate x which satisfies the following: Given any subsets S) T and g ∈ [k]T ,∥∥∥∥∥∥

∑
f∈[k]S\T

xS(f ◦ g)− xT (g)

∥∥∥∥∥∥
2

6 ε0

for ε0 6 ε to be specified later.

For all S and f , if ‖xS(f)‖2 6 ε, we set xS(f) ← 0. One can check that all guarantees will
change by an additive factor of ε, except Theorem 30. In order to carry out Theorem 30, we need
to ensure that

max
S

λmax (PS −ΠS) 6
1

2
ε. (21)

Then Lemma 33 will become δi+1 6
1−ηi
λ′r+1

+ ε
2 which will cause Lemma 34 to become

ξi 6
1 + ε

λr+1
+ ε 6

1 +O(ε)

λr+1
.

For any S, note that PS = ΠSPSΠS︸ ︷︷ ︸
QS

+ Π⊥SPSΠ⊥S︸ ︷︷ ︸
RS

. Since PS � I , ΠSPSΠS � ΠS , we have QS � ΠS .

Therefore;

λmax(PS −ΠS) 6λmax(RS) 6 Tr(RS)

6
∑

u∈S,g∈[k]u : xu(g)6=0

∥∥∥∑f∈[k]S\{u} xS(f ◦ g)− xu(g)
∥∥∥2

‖xu(g)‖2

6
kr
′
ε0

ε

where the last step used the fact that any nonzero xu(g) has ‖xu(g)‖2 > ε.

Hence if we pick ε0 6 ε2

2kr′
, (21) always holds. By noting that ε 6 1

r′ , we see that an accuracy of

at most ε0 6 O
(

1
r′2kr′

)
suffices.

For the running time, it suffices to note that the interior point algorithm for SDP given in [24]
runs in time O

(
N1/2(PN3 + P 2N2 + P 3) log 1

ε0

)
, where N,P = (kn)O(r′) are the number of vari-

ables and constraints.

40

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

