
Balls and Bins: Smaller Hash Families

and Faster Evaluation

L. Elisa Celis∗ Omer Reingold† Gil Segev† Udi Wieder†

April 22, 2011

Abstract

A fundamental fact in the analysis of randomized algorithm is that when n balls are hashed
into n bins independently and uniformly at random, with high probability each bin contains
at most O(log n/ log log n) balls. In various applications, however, the assumption that a truly
random hash function is available is not always valid, and explicit functions are required.

In this paper we study the size of families (or, equivalently, the description length of their
functions) that guarantee a maximal load of O(log n/ log log n) with high probability, as well
as the evaluation time of their functions. Whereas such functions must be described using
Ω(log n) bits, the best upper bound was formerly O(log2 n/ log log n) bits, which is attained by
O(log n/ log log n)-wise independent functions. Traditional constructions of the latter offer an
evaluation time of O(log n/ log log n), which according to Siegel’s lower bound [FOCS ’89] can
be reduced only at the cost of significantly increasing the description length.

We construct two families that guarantee a maximal load of O(log n/ log log n) with high
probability. Our constructions are based on two different approaches, and exhibit different
trade-offs between the description length and the evaluation time. The first construction shows
that O(log n/ log log n)-wise independence can in fact be replaced by “gradually increasing inde-
pendence”, resulting in functions that are described using O(log n log log n) bits and evaluated
in time O(log n log log n). The second construction is based on derandomization techniques for
space-bounded computations combined with a tailored construction of a pseudorandom gen-
erator, resulting in functions that are described using O(log3/2 n) bits and evaluated in time
O(
√
logn). The latter can be compared to Siegel’s lower bound stating that O(log n/ log log n)-

wise independent functions that are evaluated in time O(
√
log n) must be described using

Ω(2
√
logn) bits.

∗University of Washington, Seattle, WA 98195, USA. Email: ecelis@cs.washington.edu. Research supported by
a UW Engineering Graduate Fellowship. Part of this work was completed while visiting Microsoft Research Silicon
Valley.
†Microsoft Research Silicon Valley, Mountain View, CA 94043, USA. Email: {omer.reingold,gil.segev,

uwieder}@microsoft.com.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 68 (2011)

{omer.reingold, gil.segev, uwieder}@microsoft.com
{omer.reingold, gil.segev, uwieder}@microsoft.com

1 Introduction

Traditional analysis of randomized algorithms and data structures often assumes the availability of
a truly random function, whose description length and evaluation time are not taken into account
as part of the overall performance. In various applications, however, such an assumption is not
always valid and explicit constructions are required. This motivated a well-studied line of research
aiming at designing explicit and rather small families of functions, dating back more than 30 years
to the seminal work of Carter and Wegman [CW79].

In this paper we study explicit constructions of families for the classical setting of hashing n balls
into n bins. A well-known and useful fact is that when n balls are hashed into n bins independently
and uniformly at random, with high probability each bin contains at most O(log n/ log log n) balls.
Thus, a natural problem is to construct explicit and significantly smaller families of functions that
offer the same maximal load guarantee. More specifically, we are interested in familiesH of functions
that map a universe U into the set {1, . . . , n}, such that for any set S ⊆ U of size n a randomly
chosen function h ∈ H guarantees a maximal load of O(log n/ log log n) with high probability. The
main measures of efficiency for such families are the description length and evaluation time of their
functions.

It is well-known that any family of O(log n/ log log n)-wise independent functions guarantees
a maximal load of O(log n/ log log n) with high probability, and this already yields a signifi-
cant improvement over a truly random function. Specifically, such functions can by represented
by O(log2 n/ log log n) bits, instead of O(|U | log n) bits for a truly random function1. A nat-
ural approach for reducing the description length is to rely on k-wise independence for k =
o(log n/ log log n), but so far no progress has been made in this direction (even though to the
best of our knowledge an explicit lower bound is only known for k = 2 [ADM+99]). At the same
time, a standard application of the probabilistic method shows that there exists such a family where
each function is described by only O(log n) bits, which is in fact optimal. This naturally leads to
the following open problem (whose variants were posed explicitly by Alon et al. [ADM+99] and by
Pagh et al. [PPR07]):

Problem 1: Construct an explicit family that guarantees a maximal load of O(log n/ log log n)
with high probability, in which each function is described by o(log2 n/ log log n) bits, or even
O(log n) bits.

In terms of the evaluation time, an O(log n/ log log n)-wise independent function can be eval-
uated using traditional constructions in time O(log n/ log log n). A lower bound proved by Siegel
[Sie04] shows that the latter can be reduced only at the cost of significantly increasing the de-
scription length. For example, even for k = O(log n/ log log n) a constant evaluation time requires
polynomial space. In the same work Siegel showed a tight (but rather impractical) upper bound
matching his lower bound. Subsequent constructions improved the constants involved considerably
(see Section 1.2 for a more elaborated discussion), but all of these constructions suffer from de-
scriptions of length at least nϵ bits for a small constant ϵ > 0. This leads to the following open
problem:

Problem 2: Construct an explicit family that guarantees a maximal load of O(log n/ log log n)
with high probability, in which each function is evaluated in time o(log n/ log log n) and
represented by no(1) bits.

1For simplicity we assume that the universe size is polynomial in n, as otherwise one can reduce the size of the
universe using a pair-wise independent function (that is described using O(log |U |) bits and evaluated in constant
time).

1

1.1 Our Contributions

We present two constructions of hash families that guarantee a maximal load of O(log n/ log log n)
when hashing n elements into n bins with all but an arbitrary polynomially-small probability.
These are the first explicit constructions in which each function is described using less than
O(log2 n/ log log n) bits. Our constructions offer different trade-offs between the description length
of the functions and their evaluation time. Table 1 summarizes the parameters of our constructions
and of the previously known constructions.

Construction 1: gradually-increasing independence. In our first construction each func-
tion is described using O(log n log log n) bits and evaluated in time O(log n log log n). Whereas
O(log n/ log log n)-wise independence suffices for a maximal load of O(log n/ log log n), the main
idea underlying our construction is that the entire output need not be O(log n/ log log n)-wise in-
dependent.

Our construction is based on concatenating the outputs of O(log log n) functions which are
gradually more independent: each function f in our construction is described using d functions
h1, . . . , hd, and for any x ∈ [u] we define

f(x) = h1(x) ◦ · · · ◦ hd(x) ,

where we view the output of each hi as a binary string, and ◦ denotes the concatenation operator on
binary strings. The first function h1 is only O(1)-wise independent, and the level of independence
gradually increases to O(log n/ log log n)-wise independence for the last function hd. As we increase
the level of independence, we decrease the output length of the functions from Ω(log n) bits for h1
to O(log log n) bits for hd. We instantiate these O(log log n) functions using ϵ-biased distributions.
The trade-off between the level of independence and the output length implies that each of these
functions can be described using only O(log n) bits and evaluated in time O(log n).

Construction 2: derandomizing space-bounded computations. In our second construction
each function is described using O(log3/2 n) bits and evaluated in time O(log1/2 n). Each function
f in our construction is described using a function h that is O(1)-wise independent, and ℓ =

O(2log
1/2 n) functions g1, . . . , gℓ that are O(log1/2 n)-wise independent, and for any x ∈ [u] we define

f(x) = gh(x)(x) .

Naively, the description length of such a function f is O(ℓ · log3/2 n) bits, and the main idea
underlying our approach is that instead of sampling the functions g1, . . . , gℓ independently and
uniformly at random, they can be obtained as the output of an explicit pseudorandom generator
for space-bounded computations using a seed of length O(log3/2 n) bits. Moreover, we present
a new construction of a pseudorandom generator for space-bounded computations in which the
description of each of these ℓ functions can be computed in time O(log1/2 n) without increasing the
length of the seed.

Our generator is obtained as a composition of those constructed by Nisan [Nis92] and by Nisan
and Zuckerman [NZ96] together with an appropriate construction of a randomness extractor for
instantiating the Nisan-Zuckerman generator. The evaluation time of our second construction
can be compared to Siegel’s lower bound [Sie04] stating that O(log n/ log log n)-wise independent

functions that are evaluated in time O(log1/2 n) must be described using Ω(2log
1/2 n) bits.

We note that a generator with an optimal seed length against space-bounded computations
will directly yield a hash family with the optimal description length O(log n) bits. Unfortu-
nately, the best known generator [Nis92] essentially does not give any improvement over using

2

O(log n/ log log n)-wise independence. Instead, our above-mentioned approach is based on tech-
niques that were developed in the area of pseudorandomness for space-bounded computations which
we show how to use for obtaining an improvement in our specific setting. Specifically, our construc-
tion is inspired by the pseudorandom generator constructed by Lu [Lu02] for the simpler class of
combinatorial rectangles.

Extensions. It is possible to show that the hash families constructed in this paper can be success-
fully employed for storing elements using linear probing. In this setting our constructions guarantee
an insertion time of O(log n) with high probability when storing (1−α)n elements in a table of size
n, for any constant 0 < α < 1 (and have constant expected insertion time as follows from [PPR07]).
Prior to our work, constructions that offered such a high probability bound had either description
length of Ω(log2 n) bits with Ω(log n) evaluation time (using O(log n)-wise independence [SS90]) or
description length of Ω(nϵ) bits with constant evaluation time [Sie04, PT11].

In addition, we note that our constructions can easily be augmented to offer O(log log n)-
wise independence (for the first construction), and O(log1/2 n)-wise independence (for the second
construction) without affecting their description length and evaluation time. This may be useful,
for example, in any application that involves tail bounds for limited independence.

Lower bounds. We accompany our constructions with formal proofs of two somewhat folklore
lower bounds. First, we show that for a universe of size at least n2, any family of functions has a
maximal load of Ω(log n/ log log n) with high probability. Second, we show that the functions of
any family that guarantees a maximal load of O(log n/ log log n) with probability 1 − ϵ must be
described by Ω(log n+ log(1/ϵ)) bits.

Description length (bits) Evaluation time

Simulating full independence ([DW03, PP08]) O(n log n) O(1)

[Sie04],[DMadH90],[PT11] nϵ (for constant ϵ < 1) O(1)

O
(

logn
log logn

)
-wise independence (polynomials) O

(
log2 n

log logn

)
O
(

logn
log logn

)
This paper (Section 4) O

(
log3/2 n

)
O
(
log1/2 n

)
This paper (Section 3) O(log n log log n) O(log n log log n)

Table 1: The description length and evaluation time of our constructions and of the previously
known constructions that guarantee a maximal load of O(log n/ log log n) with high probability
(sorted in decreasing order of description lengths).

1.2 Related Work

As previously mentioned, a truly random function guarantees a maximal load of O(log n/ log log n)
with high probability, but must be described by Ω(u log n) bits. Pagh and Pagh [PP08] and Diet-
zfelbinger and Woelfel [DW03], in a rather surprising and useful result, showed that it is possible to
simulate full independence for any specific set of size n (with high probability) using only O(n log n)
bits and constant evaluation time. A different and arguably simpler construction was later proposed
by Dietzfelbinger and Rink [DR09].

In an influential work, Siegel [Sie04] showed that for a small enough constant ϵ > 0 it is
possible to construct a family of functions where there is a small probability of error, but if error

3

is avoided then the family is nϵ-wise independent, and each function is described using nϵ′ bits
(where ϵ < ϵ′ < 1). More importantly, a function is evaluated in constant time. While this
construction has attractive asymptotic behavior it seems somewhat impractical, and was improved
by Dietzfelbinger and Rink [DR09] who proposed a more practical construction (offering the same
parameters). Siegel [Sie04] also proved a cell probe time-space tradeoff for computing almost k-wise
independent functions. Assuming that in one time unit we can read a word of log n bits, denote
by Z the number of words in the representation of the function and by T the number of probes
to the representation. Siegel showed that when computing a k-wise δ-dependent function into [n]

then either T ≥ k or Z ≥ n
1
T (1 − δ). Observe that if k is a constant, setting T ≤ k − 1 already

implies the space is polynomial in n. Also, computing a O(log n)-wise independent function in time
O(
√
log n) requires the space to be roughly O(2

√
logn).

Few constructions diverged from the large k-wise independence approach. In [ADM+99] it is
shown that matrix multiplication over Z2 yields a maximal load of O(log n log log n) with high
probability, where each function is described using O(log2 n) bits and evaluated in time O(log n).
Note that this family is only pairwise independent. The family of functions described in [DMadH90]
(which is O(1)-wise independent) yields a maximal load of O(log n/ log log n) with high probability,
where each function is described using nϵ bits and evaluated in constant time (similar to [Sie04]).
The main advantage of this family is its practicality: it is very simple and the constants involved
are small.

Recently, Pǎtraşcu and Thorup [PT11] showed a another practical and simple construction
that uses nϵ space and O(1) time and can replace truly random functions in various applications,
although it is only 3-wise independent. A different approach was suggested by Mitzenmacher and
Vadhan [MV08], who showed that in many cases a pair-wise independent function suffices, provided
the hashed elements themselves have a certain amount of entropy.

1.3 Paper Organization

The reminder of this paper is organized as follows. In Section 2 we present several basic notions,
definitions, and tools that are used in our constructions. In Sections 3 and 4 we present our first
and second constructions, respectively. In Section 5 we prove two lower bounds for hash families,
and in Section 6 we discuss several extensions and open problems.

2 Preliminaries and Tools

In this section we present the relevant definitions and background as well as the existing tools used
in our constructions.

2.1 Basic Definitions and the Computational Model

Throughout this paper, we consider log to be of base 2. For an integer n ∈ N we denote by [n] the
set {1, . . . , n}, and by Un the uniform distribution over the set {0, 1}n. For a random variable X we
denote by x← X the process of sampling a value x according to the distribution of X. Similarly,
for a finite set S we denote by x ← S the process of sampling a value x according to the uniform
distribution over S. The statistical distance between two random variables X and Y over a finite
domain Ω is SD(X,Y) = 1

2

∑
ω∈Ω |Pr [X = ω]−Pr [Y = ω] |. For two bit-strings x and y we denote

by x ◦ y their concatenation.
We consider the unit cost RAM model in which the elements are taken from a universe of size

u, and each element can be stored in a single word of length w = O(log u) bits. Any operation in

4

the standard instruction set can be executed in constant time on w-bit operands. This includes
addition, subtraction, bitwise Boolean operations, parity, left and right bit shifts by an arbitrary
number of positions, and multiplication. The unit cost RAM model has been the subject of much
research, and is considered the standard model for analyzing the efficiency of data structures and
hashing schemes (see, for example, [DP08, Hag98, HMP01, Mil99, PP08] and the references therein).

2.2 Random Variables and Functions with Limited Independence

A family F of functions f : [u] → [v] is k-wise δ-dependent if for any distinct x1, . . . , xk ∈ [u]
the statistical distance between the distribution (f(x1), . . . , f(xk)) where f ← F and the uniform
distribution over [v]k is at most δ. A simple example for k-wise independent functions (with δ = 0)
is the family of all polynomials of degree k − 1 over a finite field. Each such polynomial can be
represented using O(kmax{log u, log v}) bits and evaluated in time O(k) assuming that a field
element fits into a constant number of words.

For our constructions we require functions that have a more succinct representation, and still
enjoy a fast evaluation. For this purpose we implement k-wise δ-dependent functions using ϵ-biased
distributions [NN93]. A sequence of random variables X1, . . . , Xn over {0, 1} is ϵ-biased if for any
non-empty set S ⊆ [n] it holds that |Pr [⊕i∈SXi = 1] − Pr [⊕i∈SXi = 0] | ≤ ϵ, where ⊕ is the
exclusive-or operator on bits. Alon et al. [AGH+92, Sec. 5] constructed an ϵ-biased distribution
over {0, 1}n where each point x ∈ {0, 1}n in the sample space can be specified using O(log(n/ϵ))
bits, and each individual bit of x can be computed in time O(log(n/ϵ)). Moreover, in the unit cost
RAM model with a word size of w = Ω(log(n/ϵ)) bits, each block of t ∈ [n] consecutive bits can be
computed in time O(log(n/ϵ) + t).2

Using the fact that for any k, an ϵ-biased distribution is also k-wise δ-dependent for δ = ϵ2k/2

(see, for example, [AGH+92, Cor. 1]), we obtain the following corollary:

Corollary 2.1. For any integers u and v such that v is a power of 2, there exists a family of k-wise
δ-dependent functions f : [u] → [v] where each function can be described using O(log u + k log v +
log(1/δ)) bits. Moreover, in the unit cost RAM model with a word size of w = Ω(log u+ k log v +
log(1/δ)) bits each function can be evaluated in time O(log u+ k log v + log(1/δ)).

The construction is obtained from the ϵ-biased distribution of Alon et al. over n = u log v bits
with ϵ = δ2−k log v/2. One partitions the u log v bits into u consecutive blocks of log v bits, each of
which represents a single output value in the set [v].

A useful tail bound for limited independence. The following is a natural generalization of
a well-known tail bound for 2k-wise independent random variables [BR94, Lemma 2.2] (see also
[DP09]) to random variables that are 2k-wise δ-dependent.

Lemma 2.2. Let X1, . . . , Xn ∈ {0, 1} be 2k-wise δ-dependent random variables, for some k ∈ N
and 0 ≤ δ < 1, and let X =

∑n
i=1Xi and µ = E [X]. Then, for any t > 0 it holds that

Pr [|X − µ| > t] ≤ 2

(
2nk

t2

)k

+ δ
(n
t

)2k
.

2Specifically, the seed consists of two elements x, y ∈ GF[2m], where m = O(log(n/ϵ)), and the ith output bit is
the inner product (modulo 2) of the binary representations of xi and y.

5

Proof. Using Markov’s inequality we obtain that

Pr [|X − µ| > t] ≤ Pr
[
(X − µ)2k > t2k

]
≤

E
[
(X − µ)2k

]
t2k

=

∑
i1,...,i2k∈[n] E

[∏2k
j=1(Xij − µij)

]
t2k

≤

∑
i1,...,i2k∈[n] E

[∏2k
j=1(X̂ij − µij)

]
+ δn2k

t2k

=
E
[
(X̂ − µ)2k

]
t2k

+ δ
(n
t

)2k
,

where µi = E [Xi] for every i ∈ [n], X̂1, . . . , X̂n are independent random variables having the same
marginal distributions as X1, . . . , Xn, and X̂ =

∑n
i=1 X̂i. In addition, as in [BR94, Lemma 2.2], it

holds that
E
[
(X̂ − µ)2k

]
t2k

≤ 2

(
2nk

t2

)k

.

This implies that

Pr [|X − µ| > t] ≤ 2

(
2nk

t2

)k

+ δ
(n
t

)2k
.

2.3 Randomness Extraction

The min-entropy of a random variable X is H∞ (X) = − log(maxx Pr [X = x]). A k-source is a
random variable X with H∞ (X) ≥ k. A (T, k)-block source is a random variable X = (X1, . . . , XT)
where for every i ∈ [T] and x1, . . . , xi−1 it holds that H∞ (Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k. In
our setting we find it convenient to rely on the following natural generalization of block sources:

Definition 2.3. A random variable X = (X1, . . . , XT) is a (T, k, ϵ)-block source if for every i ∈ [T]
it holds that

Pr
(x1,...,xi−1)←(X1,...,Xi−1)

[H∞ (Xi|X1 = x1, . . . , Xi−1 = xi−1) ≥ k] ≥ 1− ϵ .

The following lemma and corollary show that any source with high min-entropy can be viewed
as a (T, k, ϵ)-block source.

Lemma 2.4 ([GW97]). Let X1 and X2 be random variables over {0, 1}n1 and {0, 1}n2, respectively,
such that H∞ (X1X2) ≥ n1 + n2 −∆. Then, H∞ (X1) ≥ n1 −∆, and for any ϵ > 0 it holds that

Pr
x1←X1

[H∞ (X2|X1 = x1) < n2 −∆− log(1/ϵ)] < ϵ .

Corollary 2.5. Any random variable X = (X1, . . . , XT) over ({0, 1}n)T with H∞ (X) ≥ Tn −∆
is a (T, n−∆− log(1/ϵ), ϵ)-block source for any ϵ > 0.

The following defines the notion of a strong randomness extractor.

6

Definition 2.6. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong (k, ϵ)-extractor if for any
k-source X over {0, 1}n it holds that

SD ((s,Ext(x, s)), (s, y)) ≤ ϵ ,

where s← {0, 1}d, x← X, and y ← {0, 1}m.

For our application we rely on the generalization of the leftover hash lemma to block sources
[CG88, ILL89, Zuc96], showing that a strong extractor enables to reuse the same seed for a block
source. This generalization naturally extends to (T, k, ϵ)-block sources:

Lemma 2.7. Let X = (X1, . . . , XT) be a (T, k, ϵ)-block source over {0, 1}n and let H be a family
of pairwise independent functions h : {0, 1}n → {0, 1}m, where m ≤ k − 2 log(1/ϵ). Then,

SD ((h, h(x1), . . . , h(xT)), (h, y1, . . . , yT)) ≤ 2Tϵ ,

where h← H, (x1, . . . , xT)← X, and (y1, . . . , yT)← ({0, 1}m)T .

2.4 Pseudorandom Generators for Space-Bounded Computations

In this paper we model space-bounded computations as layered branching programs (LBP)3. An
(s, v, ℓ)-LBP is a directed graph with 2s(ℓ + 1) vertices that are partitioned into ℓ + 1 layers with
2s vertices in each layer. For every i ∈ {0, . . . , ℓ− 1} each vertex in layer i has 2v outgoing edges to
vertices in layer i+ 1, one edge for every possible string xi ∈ {0, 1}v. In addition, layer 0 contains
a designated initial vertex, and each vertex in layer ℓ is labeled with 0 or 1. For an (s, v, ℓ)-LBP
M and an input x = (x1, . . . , xℓ) ∈ ({0, 1}v)ℓ, the computation M(x) is defined by a walk on the
graph corresponding to M , starting from the initial vertex in layer 0, and each time advancing to
level i along the edge labeled by xi. The value M(x) is the label of the vertex that is reached in
the last layer.

We now define the notion of a pseudorandom generator that ϵ-fools a branching program M .
Informally, this means that M can distinguish between the uniform distribution and the output of
the generator with probability at most ϵ.

Definition 2.8. A generator G : {0, 1}m → ({0, 1}v)ℓ is said to ϵ-fool a layered branching program
M if

|Pr [M(G(x)) = 1]− Pr [M(y) = 1]| ≤ ϵ ,

where x← {0, 1}m and y ← ({0, 1}v)ℓ.

Theorem 2.9 ([Nis92, INW94]). For any s, v, ℓ and ϵ there exists a generator G : {0, 1}m →
({0, 1}v)ℓ that ϵ-fools any (s, v, ℓ)-LBP, where m = O(v + log ℓ(s + log ℓ + log(1/ϵ))), and can be
computed in time poly(s, v, ℓ, log(1/ϵ)).

3 A Construction Based on Gradually-Increasing Independence

In this section we present our first family of functions which, as discussed in Section 1.1, is based
on replacing O(log n/ log log n)-wise independence with “gradually-increasing independence”. The
construction is obtained by concatenating the outputs of O(log log n) functions which are gradually

3In our setting we are interested in layered branching programs that count the number of balls that are mapped
to a specific bin (or, more generally, to a specific subset of the bins).

7

more independent. Each function f ∈ F in our construction consists of d functions h1, . . . , hd that
are sampled independently, and for any x ∈ [u] we define

f(x) = h1(x) ◦ · · · ◦ hd(x) ,

where we view the output of each hi as a binary string, and ◦ denotes the concatenation operator on
binary strings. Going from left to right each function in the above concatenation has a higher level
of independence (from O(1)-wise almost independence for h1, to O(log n/ log log n)-wise almost
independence for hd), and a shorter output length (from Ω(log n) bits for h1, to O(log log n) bits
for hd). This trade-off enables us to represent each of these d functions using O(log n) bits and to
evaluate it in time O(log n). This constructions allows us to prove the following theorem:

Theorem 3.1. For any constant c > 0 and integers n and u = poly(n) there exists a family F of
functions f : [u]→ [n] satisfying the following properties:

1. Each f ∈ F is described using O(log n log log n) bits.

2. For any f ∈ F and x ∈ [u] the value f(x) can be computed in time O(log n log log n) in the
unit cost RAM model.

3. There exists a constant γ > 0 such that for any set S ⊆ [u] of size n it holds that

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

In what follows we provide a more formal description of our construction (see Section 3.1), and
then analyze it for proving Theorem 3.1 (see Section 3.2).

3.1 A Formal Description

To simplify the presentation of our construction we assume that n is a power of two (as otherwise
we can choose the number of bins to be the largest power of two which is smaller than n, and this
may affect the maximal load by at most a multiplicative factor of two). Let d = O(log log n), and
for every i ∈ [d] let Hi be a family of ki-wise δ-dependent functions hi : [u]→ {0, 1}ℓi , where:

• n0 = n, and ni = ni−1/2
ℓi for every i ∈ [d].

• ℓi = ⌊(log ni−1)/4⌋ for every i ∈ [d− 1], and ℓd = log n−
∑d−1

i=1 ℓi.

• kiℓi = Θ(log n) for every i ∈ [d− 1], and kd = Θ(log n/ log log n).

• δ = poly(1/n).

The exact constants for the construction depend on the error parameter c, and will be fixed by
the analysis in Section 3.2. Note that Corollary 2.1 provides such families Hi where each function
hi ∈ Hi is represented using O(log u + kiℓi + log(1/δ)) = O(log n) bits and evaluated in time
O(log u + kiℓi + log(1/δ)) = O(log n). Each function f ∈ F in our construction consists of d
functions h1 ∈ H1, . . . , hd ∈ Hd that are sampled independently and uniformly at random. For any
x ∈ [u] we define

f(x) = h1(x) ◦ · · · ◦ hd(x) .

8

3.2 Analyzing the Construction

We naturally view the construction as a tree consisting of d+ 1 levels that are numbered 0, . . . , d,
where levels 0, . . . , d− 1 consist of “intermediate” bins, and level d consists of the actual n bins to
which the elements are hashed. For a given set S ⊆ [u] of size n, level 0 consists of a single bin
containing the n elements of S. Level 1 consists of 2ℓ1 bins, to which the elements of S are hashed

using the function h1. More generally, each level i ∈ {1, . . . , d − 1} consists of 2
∑i

j=1 ℓj bins, and
the elements of each such bin are hashed into 2ℓi+1 bins in level i+ 1 using the function hi+1.

Recall that we defined n0 = n, and ni = ni−1/2
ℓi for every i ∈ [d]. The number ni is the

expected number of elements in each bin in level i, and we show that with high probability no bin
in levels 0, . . . , d − 1 contains more than (1 + α)ini elements, where α = Ω(1/ log log n). This will
be guaranteed by the following lemma.

Lemma 3.2. For any i ∈ {0, . . . , d − 2}, α = Ω(1/ log log n), 0 < αi < 1, and set Si ⊆ [u] of size
at most (1 + αi)ni it holds that

Pr
hi+1←Hi+1

[
max

y∈{0,1}ℓi+1

∣∣h−1i+1(y) ∩ Si

∣∣ ≤ (1 + α)(1 + αi)ni+1

]
> 1− 1

nc+1
.

Proof. Fix y ∈ {0, 1}ℓi+1 , let X =
∣∣h−1i+1(y) ∩ Si

∣∣, and assume without loss of generality that
|Si| ≥ ⌊(1 + αi)ni⌋ (as otherwise dummy elements can be added). Then X is the sum of |Si|
indicator random variables that are ki+1-wise δ-dependent, and has expectation µ = |Si|/2ℓi+1 .
Lemma 2.2 states that

Pr [X > (1 + α)µ] ≤ 2

(
|Si|ki+1

(αµ)2

)ki+1/2

+ δ

(
|Si|
αµ

)ki+1

= 2

(
22ℓi+1ki+1

α2|Si|

)ki+1/2

+ δ

(
2ℓi+1

α

)ki+1

.

We now upper bound each of above two summands separately. For the first one, recall that
ℓi+1 ≤ (log ni)/4, and combined with the facts that |Si| ≥ (1+αi)ni−1 ≥ ni and α = Ω(1/ log log n),
this yields

2

(
22ℓi+1ki+1

α2|Si|

)ki+1/2

≤ 2

(
ki+1

α222ℓi+1

)ki+1/2

≤ 1

2nc+2
, (3.1)

where the last inequality follows from the choice of ki+1 and ℓi+1 such that ki+1ℓi+1 = Ω(log n).
This also enables us to upper bound the second summand, noting that for an appropriate choice of
δ = poly(1/n) it holds that

δ

(
2ℓi+1

α

)ki+1

≤ 1

2nc+2
. (3.2)

Therefore, by combining Equations (3.1) and (3.2), and recalling that ni+1 = ni/2
ℓi+1 we obtain

Pr [X > (1 + α)(1 + αi)ni+1] = Pr
[
X > (1 + α)(1 + αi)

ni

2ℓi+1

]
≤ Pr [X > (1 + α)µ]

≤ 1

nc+2
.

The lemma now follows by a union bound over all y ∈ {0, 1}ℓi+1 (there are at most n such values).

9

We are now ready to prove Theorem 3.1. The description length and evaluation time of our
construction were already argued in Section 3.1, and therefore we focus here on the maximal load.

Proof of Theorem 3.1. Fix a set S ⊆ [u] of size n. We begin the proof by inductively arguing
that for every level i ∈ {0, . . . , d − 1}, with probability at least 1 − i/nc+1 the maximal load in
level i is at most (1 + α)ini elements per bin, where α = Ω(1/ log log n). For i = 0 this follows
by our definition of level 0: it contains a single bin with the n0 = n elements of S. Assume
now that the claim holds for level i, and we now directly apply Lemma 3.2 for each bin in level
i with (1 + αi) = (1 + α)i. A union bound over all bins in level i (at most n such bins), implies
that with probability at least 1 − (i/nc+1 + 1/nc+1) the maximal load in level i + 1 is at most
(1+α)i+1ni+1, and the inductive claim follows. In particular, this guarantees that with probability
at least 1 − (d − 1)/nc+1, the maximal load in level d − 1 is (1 + α)d−1nd−1 ≤ 2nd−1, for an
appropriate choice of d = O(log log n).

Now we would like to upper bound the number nd−1. Note that for every i ∈ [d − 1] it holds

that ℓi ≥ (log ni−1)/4 − 1, and therefore ni = ni−1/2
ℓi ≤ 2n

3/4
i−1. By simple induction this implies

ni ≤ 2
∑i−1

j=0(3/4)
j

n(3/4)i ≤ 16n(3/4)i . Thus, for an appropriate choice of d = O(log log n) it holds that

nd−1 ≤ log n. In addition, the definition of the ni’s implies that nd−1 = n/2
∑d−1

j=1 ℓj , and therefore
ℓd = log n−

∑d−1
i=j ℓj = log nd−1.

That is, in level d− 1 of the tree, with probability at least 1− (d− 1)/nc+1, each bin contains
at most 2nd−1 ≤ 2 log n elements, and these elements are hashed into nd−1 bins using the function
hd. The latter function is kd-wise δ-dependent, where kd = Ω(log n/ log log n) and therefore the
probability that any t = γ logn/ log log n ≤ kd elements from level d−1 are hashed into any specific
bin in level d is at most(

2nd−1
t

)((
1

nd−1

)t

+ δ

)
≤
(
2end−1

t

)t
((

1

nd−1

)t

+ δ

)

≤
(
2e

t

)t

+ δ

(
2end−1

t

)t

≤
(
2e log log n

γ logn

) γ logn
log logn

+ δ

(
2e log log n

γ

) γ logn
log logn

≤ 1

2nc+3
+

1

2nc+3

=
1

nc+3
,

for an appropriate choice of t = γ log n/ log log n and δ = poly(1/n). This holds for any pair of bins
in levels d − 1 and d, and therefore a union bound over all such bins implies that the probability
that there exists a bin in level d with more than t elements is at most 1/nc+1. This implies that
with probability at least 1− d/nc+1 > 1− 1/nc a randomly chosen function f has a maximal load
of γ log n/ log log n.

4 A Construction Based on Generators for Space-Bounded Computations

The starting point of our second construction is the observation that any pseudorandom generator
which fools small-width branching programs, directly defines a family of functions with the desired
maximal load. Specifically, for a universe [u], a generator that produces u blocks of length log n
bits each can be interpreted as a function f : [u] → [n], where for any input x ∈ [u] the value

10

h(x) is defined to be the xth output block of the generator. Fixing a subset S ⊆ [u], we observe
that the event in which the load of any particular bin is larger than t = O(log n/ log log n) can be
recognized by a branching program of width t+ 1 < n (all the program needs to do is count up to
t). Assuming the existence of such an explicit generator with seed of length O(log n) bits implies
a family of functions with description length of O(log n) bits (which is optimal up to a constant
factor).

Unfortunately, the best known generator [Nis92] has seed of length Ω(log2 n) bit, which essen-
tially does not give any improvement over using O(log n/ log log n)-wise independence. Still, our
construction uses a pseudorandom generator in an inherent way, but instead of generating O(u log n)

bits directly it will only produce O
(
2log

1/2 n
)
descriptions of O

(
log1/2 n

)
-wise independent func-

tions. Our construction will combine these functions into a single function f : [u] → [n]. The
construction is inspired by the pseudorandom generator of Lu [Lu02] for the class of combinatorial
rectangles (which by itself seems too weak in our context).

We now describe our family F . Let H be a family of k1-wise independent functions h : [u]→ [ℓ]

for k1 = O(1) and ℓ = O
(
2log

1/2 n
)
, and let G be a family of k2-wise independent functions

g : [u] → [n] for k2 = O
(
log1/2 n

)
. Each function f ∈ F consists of a function h ∈ H that is

sampled uniformly at random, and of ℓ functions g1, . . . , gℓ ∈ G that are obtained as the output
of a pseudorandom generator. The description of each gj is given by the jth output block of the
generator. For any x ∈ [u] we define

f(x) = gh(x)(x) .

Using the generator provided by Theorem 2.9, the description length of each such f is only

O
(
log3/2 n

)
bits. Moreover, we present a new construction of a pseudorandom generator in which

the description of each gj can be computed in time O
(
log1/2 n

)
, without increasing the length of

the seed. Thus, for any x ∈ [u] the time required for computing f(x) = gh(x)(x) is O
(
log1/2 n

)
:

the value h(x) can be computed in time O(k1) = O(1), the description of gh(x) can be computed

in time O
(
log1/2 n

)
, and then the value gh(x)(x) can be computed in time O(k2) = O

(
log1/2 n

)
.

This allows us to prove the following theorem:

Theorem 4.1. For any constant c > 0 and integers n and u = poly(n) there exists a family F of
functions f : [u]→ [n] satisfying the following properties:

1. Each f ∈ F is described using O
(
log3/2 n

)
bits.

2. For any f ∈ F and x ∈ [u] the value f(x) can be computed in time O
(
log1/2 n

)
in the unit

cost RAM model.

3. There exists a constant γ > 0 such that for any set S ⊆ [u] of size n it holds that

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

The proof of Theorem 4.1 proceeds in three stages. First, in Section 4.1 we analyze the basic
family F̂ that is obtained by sampling the functions g1, . . . , gℓ independently and uniformly at
random. Then, in Section 4.2 we show that one can replace the descriptions of g1, . . . , gℓ with

11

the output of a pseudorandom generator that uses a seed of length O
(
log3/2 n

)
bits. Finally in

Section 4.3 we present a new generator that enables to compute the description of each function gj

in time O
(
log1/2 n

)
without increasing the length of the seed.

4.1 Analyzing the Basic Construction

We begin by analyzing the basic family F̂ in which each function f̂ is obtained by sampling
the functions h ∈ H and g1, . . . , gℓ ∈ G independently and uniformly at random, and defining
f̂(x) = gh(x)(x) for any x ∈ [u]. For analyzing F̂ we naturally interpret it as a two-level process:

The function h maps the elements into ℓ = O
(
2log

1/2 n
)
first-level bins, and then the elements of

each such bin are mapped into n second-level bins using the function gj for the jth first-level bin.
When hashing a set S ⊆ [u] of size n, we expect each first-level bin to contain roughly n/ℓ

elements, and in Claim 4.2 we show that this in fact holds with high probability. Then, given
that each of the first-level bins contains at most, say, 2n/ℓ elements, in Claim 4.3 we show that

if the gj ’s are sampled independently and uniformly at random from a family of O
(
log1/2 n

)
-wise

independent functions, then the maximal load in the second-level bins is O(log n/ log log n) with
high probability.

For a set S ⊂ [u] denote by Sj the subset of S mapped to first level bin j; i.e. Sj = S ∩ h−1(j).

Claim 4.2. For any set S ⊆ [u] of size n it holds that

Pr
h←H

[
max
j∈[ℓ]
|Sj | ≤ 2 · n

ℓ

]
> 1− 1

nc+5
.

Proof. For any j ∈ [ℓ] the random variable |Sj | is the sum of n binary random variables that are

k1-wise independent, and has expectation n/ℓ. Letting ℓ = β2log
1/2 n for some constant β > 0,

Lemma 2.2 (when setting δ = 0 and t = n/ℓ) guarantees that for an appropriate choice of the
constant k1 it holds that

Pr
h←H

[
|Sj | > 2 · n

ℓ

]
≤ 2

(
nk1

(n/ℓ)2

)k1/2

= 2

(
βk1

2logn−2
√
logn

)k1/2

≤ 1

nc+6
.

This holds for any j ∈ [ℓ], and therefore a union bound over all ℓ ≤ n values yields

Pr
h←H

[
max
j∈[ℓ]
|Sj | > 2 · n

ℓ

]
≤ ℓ · 1

nc+6

≤ 1

nc+5
.

Claim 4.3. There exists a constant γ > 0 such that for any set S ⊆ [u] of size n and for any
i ∈ [n] it holds that

Pr
f̂←F̂

[∣∣∣f̂−1(i) ∩ S
∣∣∣ ≤ γ log n

log log n

]
> 1− 1

nc+4
.

12

Proof. For any set S ⊆ [u] of size n, Claim 4.2 guarantees that with probability at least 1−1/nc+5

it holds that
max
j∈[ℓ]
|Sj | ≤ 2 · n

ℓ
.

From this point on we condition on the latter event and fix the function h. Let ki,j = |Sj ∩ g−1j (i)|
be the number of elements mapped to second level bin i via first level bin j. The event in which
one of the n second-level bins contains more than t = O(log n/ log log n) elements is the union of
the following two events:

• Event 1: There exists a second-level bin i ∈ [n] and first level bin j such that ki,j ≥ α log1/2 n

for some constant α. If we set the functions gj to be α log1/2 n-wise independent, the proba-
bility of this event is at most(|Sj |

α log1/2 n

)
·
(
1

n

)α log1/2 n

≤ |Sj |α log1/2 n ·
(
1

n

)α log1/2 n

≤
(
2

ℓ

)α log1/2 n

≤ 1

nc+7
,

for an appropriate choice of ℓ = O
(
2log

1/2 n
)
and α. There are nℓ < n2 such pairs of bins,

and therefore a union bound implies that this event occurs with probability at most 1/nc+5.

• Event 2: Some second-level bin i ∈ [n] has t = O(log n/ log log n) elements with ki,j ≤
α log1/2 n for all j. Since g1, . . . , gℓ are sampled independently from a family that is α log1/2 n-
wise independent, the probability of this event is at most(

n

t

)(
1

n

)t

≤
(ne

t

)t(1

n

)t

=
(e
t

)t
≤ 1

nc+6
,

for an appropriate choice of t = O(log n/ log log n). This holds for any second-level bin i ∈ [n],
and therefore a union bound over all n such bins implies that this event occurs with probability
at most 1/nc+5.

Combining all of the above, we obtain that there exists a constant γ such that for all sufficiently
large n it holds that

Pr
f̂←F̂

[
max
i∈[n]

∣∣∣f̂−1(i) ∩ S
∣∣∣ ≤ γ log n

log log n

]
> 1− 3

nc+5
> 1− 1

nc+4
.

4.2 Derandomizing the Basic Construction

As discussed above, the key observation that allows the derandomization g1, . . . , gℓ ∈ G is the fact
that the event in which the load of any particular bin is larger than t = O(log n/ log log n) can be

13

recognized in O(log n) space (and, more accurately, in O(log t) space). Specifically, fix a set S ⊆ [u]
of size n, a second-level bin i ∈ [n], and a function h ∈ H. Consider the layered branching program
MS,h,i that has ℓ + 1 layers each of which contains roughly n vertices, where every layer j ∈ [ℓ]
takes as input the description of the function gj and keeps count of the number of elements from
S that are mapped to bin i using the functions h, g1, . . . , gj . In other words, the jth layer adds to
the count the number of elements x ∈ S such that h(x) = j and gj(x) = i. Each vertex in the final
layer is labeled with 0 and 1 depending on whether the count has exceeded t (note that there is no
reason to keep on counting beyond t, and therefore it suffices to have only t vertices in each layer).

Let G : {0, 1}m → ({0, 1}v)ℓ be a generator that ϵ-fools any (s, v, ℓ)-LBP, where ϵ = 1/nc+4,

s = O(log n), v = O(k2 logn) = O
(
log3/2 n

)
, and ℓ = O

(
2log

1/2 n
)
. Theorem 2.9 provides an

explicit construction of such a generator with a seed of lengthm = O(v+log ℓ·(s+log ℓ+log(1/ϵ))) =

O
(
log3/2 n

)
. For any seed x ∈ {0, 1}m we use G(x) = (g1, . . . , gℓ) ∈ ({0, 1}v)ℓ for providing the

descriptions of the function g1, . . . , gℓ.
By combining Claim 4.3 with the fact that G is a generator that ϵ-fools any (s, v, ℓ)-LBP we

obtain the following claim:

Claim 4.4. There exists a constant γ > 0 such that for any set S ⊆ [u] of size n it holds that

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≤ γ log n

log log n

]
> 1− 1

nc
.

Proof. Let γ > 0 be the constant specified by Claim 4.3, and again denote by F̂ the basic family
obtained by sampling h ∈ H and g1, . . . , gℓ ∈ G independently and uniformly at random. Then for
any set S ⊆ [u] of size n and i ∈ [n] it holds that

Pr
f←F

[∣∣f−1(i) ∩ S
∣∣ > γ log n

log log n

]
= Pr

h←H

[
Pr

x←{0,1}m
[MS,h,i(G(x)) = 1]

]
≤ Pr

h←H

[
Pr

g1,...,gℓ←G
[MS,h,i(g1, . . . , gℓ) = 1]

]
+

1

nc+4
(4.1)

= Pr
f̂←F̂

[∣∣∣f̂−1(i) ∩ S
∣∣∣ > c logn

log log n

]
+

1

nc+4

<
2

nc+4
, (4.2)

where Equation (4.1) follows from the fact that G is a generator that 1/nc+4-fools the branching
program MS,h,i, and Equation (4.2) follows from Claim 4.3. A union bound over all bins i ∈ [n]
yields

Pr
f←F

[
max
i∈[n]

∣∣f−1(i) ∩ S
∣∣ ≥ c log n

log log n

]
≤ n · 2

nc+4

≤ 1

nc
.

4.3 A More Efficient Generator

As shown in Section 4.2, we can instantiate our construction with any generator G : {0, 1}m →
({0, 1}v)ℓ that ϵ-fools any (s, v, ℓ)-LBP, where s = O(log n), v = O

(
log3/2 n

)
, ℓ = O

(
2log

1/2 n
)
, and

14

ϵ = 1/nc+4. The generator constructed by Impagliazzo, Nisan, and Wigderson [INW94] (following
[Nis92]), whose parameters we stated in Theorem 2.9, provides one such instantiation, but for this
generator the time to compute each v-bit output block seems at least logarithmic. Here we construct
a more efficient generator for our parameters, where each v-bit output block can be computed in

time O
(
log1/2 n

)
without increasing the length of the seed.

The generator we propose uses as a building blocks the generators constructed by Nisan [Nis92]
and by Nisan and Zuckerman [NZ96]. In what follows we first provide a high-level description of
these two generators, and then turn to describe our own generator.

4.3.1 Nisan’s Generator

Let H be a family of pairwise independent functions h : {0, 1}v2 → {0, 1}v2 . For every integer k ≥ 0

Nisan [Nis92] constructed a generator G
(k)
N : {0, 1}v2 ×Hk → ({0, 1}v2)2

k

that is defined recursively

by G
(0)
N (x) = x, and

G
(k)
N (x, h1, . . . , hk) = G

(k−1)
N (x, h1, . . . , hk−1) ◦G

(k−1)
N (hk(x), h1, . . . , hk) ,

where ◦ denotes the concatenation operator. For any integers v2 and k, Nisan proved that G
(k)
N is

a generator that 2−v2-fools any (v2, v2, 2
k)-LBP.

When viewing the output of the generator as the concatenation of 2k blocks of length v2 bits
each, we observe that each such block can be computed by evaluating k pairwise independent

functions. In our setting we are interested in v2 = O(log n) and 2k = O
(
2log

1/2 n
)
, and in this

case each output block can be computed in time O
(
log1/2 n

)
. Formally, from Nisan’s generator

we obtain the following corollary:

Corollary 4.5. For any s2 = O(log n), v2 = O(log n), ℓ2 = O
(
2log

1/2 n
)
, and ϵ = poly(1/n),

there exists a generator GN : {0, 1}m2 → ({0, 1}v2)ℓ2 that ϵ-fools any (s2, v2, ℓ2)-LBP, where m2 =

O
(
log3/2 n

)
. In the unit cost RAM model with a word size of w = Ω(log n) bits each v2-bit output

block can be computed in time O
(
log1/2 n

)
.

4.3.2 The Nisan-Zuckerman Generator and an Efficient Instantiation

Given a (k, ϵ)-extractor Ext : {0, 1}t1×{0, 1}d1 → {0, 1}v1 Nisan and Zuckerman [NZ96] constructed

a generator GExt
NZ : {0, 1}t1 ×

(
{0, 1}d1

)ℓ1 → ({0, 1}v1)ℓ1 that is defined as

GExt
NZ (x, y1, . . . , yℓ1) = Ext(x, y1) ◦ · · · ◦ Ext(x, yℓ1) ,

where ◦ denotes the concatenation operator. When viewing the output of the generator as the
concatenation of ℓ1 blocks of length v1 bits each, we observe that the time to compute each such

block is the time to compute the extractor Ext. In our setting we are interested in t1 = O
(
log3/2 n

)
,

v1 = O
(
log3/2 n

)
, k = t1 − O(log n), and ϵ = poly(1/n), and in Lemma 4.7 we construct an

extractor that has a seed of length d1 = O(log n) bits and can be computed in time O
(
log1/2 n

)
.

As a corollary, from the Nisan-Zuckerman generator when instantiated with our extractor we obtain:

15

Corollary 4.6. For any s1 = O(log n), v1 = O
(
log3/2 n

)
, ℓ1 = O

(
2log

1/2 n
)
, and ϵ = poly(1/n),

there exists a generator GExt
NZ : {0, 1}m1 → ({0, 1}v1)ℓ1 that ϵ-fools any (s1, v1, ℓ1)-LBP, where

m1 = O
(
log3/2 n+ 2log

1/2 n · log n
)
. Moreover, there exists an extractor Ext such that in the unit

cost RAM model with a word size of w = Ω(log n) bits each v1-bit output block of the generator

GExt
NZ can be computed in time O

(
log1/2 n

)
.

The following lemma presents the extractor that we use for instantiating the Nisan-Zuckerman
generator.

Lemma 4.7. Let t1 = Θ
(
log3/2 n

)
, ∆ = O(log n) and ϵ = poly(1/n). There exists a (t1 −∆, ϵ)-

extractor Ext : {0, 1}t1 × {0, 1}d1 → {0, 1}v1, where d1 = O(log n) and v1 = Ω
(
log3/2 n

)
, that can

be computed in time O
(
log1/2 n

)
in the unit cost RAM model with a word size of w = Ω(log n)

bits.

Proof. Given a random variable X over {0, 1}t1 we partition it into T = t1/z consecutive blocks
X = X1 ◦ · · · ◦XT each of length z bits, where z = ⌈2(∆ + 3 log(2T/ϵ))⌉ = O(log n). Without loss
of generality we assume that z divides t1, and otherwise we ignore the last block. Corollary 2.5
guarantees that X is a (T, z −∆ − log(2T/ϵ), ϵ/2T)-block source. Let H be a family of pair-wise
independent functions h : {0, 1}z → {0, 1}z′ , where z′ = ⌊z−∆− 3 log(2T/ϵ)⌋ = Ω(log n) and each
h ∈ H is described by d1 = O(log n) bits. We define an extractor Ext : {0, 1}t1 ×H → {0, 1}Tz′ by
applying a randomly chosen h ∈ H to each of the T blocks of the source. That is,

Ext(x1 ◦ · · · ◦ xT , h) = h(x1) ◦ · · · ◦ h(xT) .

Lemma 2.7 implies that the distribution (h, h(x1), . . . , h(xT)) is ϵ-close to the distribution

(h, y1, . . . , yT), where h ← H, (x1, . . . , xT) ← X, and (y1, . . . , yT) ←
(
{0, 1}z′

)T
. In addition,

in the unit cost RAM model with a word size of w = Ω(log n) bits each application of h can be

done in constant time, and therefore the extractor can be computed in time T = O
(
log1/2 n

)
.

Finally, note that the number of outputs bits is Tz′ = t1z
′/z = Ω

(
log3/2 n

)
.

4.3.3 Our Generator

Recall that we are interested in a generator G : {0, 1}m → ({0, 1}v)ℓ that ϵ-fools any (s, v, ℓ)-

LBP, where s = O(log n), v = O
(
log3/2 n

)
, ℓ = O

(
2log

1/2 n
)
, and ϵ = 1/nc+4. Let GNZ :

{0, 1}m1 → ({0, 1}v)ℓ be the Nisan-Zuckerman generator that is given by Corollary 4.6 that ϵ/2-

fools any (s, v, ℓ)-LBP, where m1 = O
(
log3/2 n+ 2log

1/2 n · log n
)
. In addition, let GN : {0, 1}m2 →

({0, 1}v2)ℓ be Nisan’s generator that is given by Corollary 4.5 that ϵ/2-fools any (s, v2, ℓ)-LBP,

where v2 = O(log n) and m2 = O
(
log3/2 n

)
. We define a generator G as follows:

G(x1, x2) = GNZ(x1, GN(x2)) .

That is, given a seed (x1, x2) it first computes the output (y1, . . . , yℓ) of Nisan’s generator using
the seed x2, and then it computes the output Ext(x1, y1) ◦ · · · ◦Ext(x1, yℓ1) of the Nisan-Zuckerman
generator. Observe that the time to compute the ith v-bit output block is the time to compute

16

the ith output block for both generators, which is O
(
log1/2 n

)
. In addition, note that the length

of seed is O
(
log3/2 n

)
bits since each of x1 and x2 is of length O

(
log3/2 n

)
bits. Thus, it only

remains to prove that G indeed ϵ-fools any (s, v, ℓ)-LBP. This is proved in the following lemma.

Lemma 4.8. For the parameters s, v, ℓ, m, and ϵ specified above, G is a generator that ϵ-fools
any (s, v, ℓ)-LBP.

Proof. Let M be an (s, v, ℓ)-LBP, and let m′1 = O
(
log3/2 n

)
. Then,∣∣∣∣ Pr

x←{0,1}m
[M(G(x)) = 1]− Pr

u←{0,1}vℓ
[M(u) = 1]

∣∣∣∣
=

∣∣∣∣∣∣∣ Pr
x1←{0,1}

m′1
x2←{0,1}

m2

[M(GNZ(x1, GN(x2))) = 1]− Pr
u←{0,1}vℓ

[M(u) = 1]

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣ Pr
x1←{0,1}

m′1
x2←{0,1}

m2

[M(GNZ(x1, GN(x2))) = 1]− Pr
x1←{0,1}

m′1
y2←{0,1}

v2ℓ

[M(GNZ(x1, y2) = 1]

∣∣∣∣∣∣∣∣ (4.3)

+

∣∣∣∣∣∣∣∣ Pr
x1←{0,1}

m′1
y2←{0,1}

v2ℓ

[M(GNZ(x1, y2) = 1]− Pr
u←{0,1}vℓ

[M(u) = 1]

∣∣∣∣∣∣∣∣ . (4.4)

We now show that the expressions in Equations (4.3) and (4.4) are upper bounded by ϵ/2 each,
and thus the lemma follows. The expression in Equation (4.4) is the advantage of M in distin-
guishing between the output of GNZ (with a uniformly chosen seed) and the uniform distribution.
Since GNZ was chosen to ϵ/2-fool any (s, v, ℓ)-LBP, then this advantage is upper bounded by ϵ/2.

For bounding the expression in Equation (4.3) it suffices to bound the expression resulting by
fixing x∗1 to be the value of x1 that maximizes it. Then, we define M∗(·) = M(GNZ(x

∗
1, ·)), which

is an (s, v2, ℓ)-LBP. Since GN was chosen to ϵ/2-fool any (s, v2, ℓ)-LBP, we obtain∣∣∣∣∣∣∣∣ Pr
x1←{0,1}

m′1
x2←{0,1}

m2

[M(GNZ(x1, GN(x2))) = 1]− Pr
x1←{0,1}

m′1
y2←{0,1}

v2ℓ

[M(GNZ(x1, y2) = 1]

∣∣∣∣∣∣∣∣
≤
∣∣∣∣ Pr
x2←{0,1}m2

[M∗(GN(x2)) = 1]− Pr
y2←{0,1}v2ℓ

[M∗(y2) = 1]

∣∣∣∣
≤ ϵ

2
.

5 Lower Bounds for Balls-and-Bins Hash Functions

In this section we provide formal proofs of two somewhat folklore lower bounds. First, in Theorem
5.1 we show that for u ≥ n2 any family H of functions h : [u] → [n] has a maximal load of
Ω(log n/ log log n) with high probability when hashing n balls into n bins. Then, in Theorem 5.4
we show that any such family that guarantees a maximal load of O(log n/ log log n) (and even of
O(log n)) with probability 1− ϵ must be of size Ω(n/ϵ log n).

17

Theorem 5.1. For all sufficiently large n and u ≥ n2, and for any family H of functions h : [u]→
[n], there exists a set S ⊆ [u] of size n such that

Pr
h←H

[
max
i∈[n]

∣∣h−1(i) ∩ S
∣∣ < log n

2 log log n

]
<

1

n
.

By the minimax principle it is enough to show the following:

Lemma 5.2. For all sufficiently large n and u ≥ n2, and for any fixed function h : [u] → [n] it
holds that

Pr
S⊆[u],|S|=n

[
max
i∈[n]

∣∣h−1(i) ∩ S
∣∣ < log n

2 log log n

]
<

1

n
.

Proof. Let S′ denote a random set obtained by sampling n balls independently and uniformly at
random from [u], with replacement. We claim it is enough to show that the bound holds for a set
S′ thus sampled, in other words the collisions in the sampling of S′ do not contribute much to the
overall load. To see this observe that since u ≥ n2, the probability the same ball had been sampled
at least 3 times is smaller than 1/n3. Now, let pi = Prx←[u][h(u) = i] denote the probability a
randomly sampled ball is placed in bin i. Thus, our goal is to bound the maximal load of a process
where n balls are sequentially placed in bins where the allocation of each ball is determined by
p⃗ = (p1, . . . , pn). Let α(k, p⃗) denote the probability that after n uniformly sampled balls are placed
in n bins using h, the maximal load is at least k.

Claim 5.3. For every k it holds that α(k, p⃗) ≥ α(k, u⃗) where u⃗ is the uniform distribution over the
n bins.

Proof. The proof follows a symmetrization argument. Assume for contradiction that there exists
two bins i, j ∈ [n] such that both pi and pj are positive and different from 1/n. Define p⃗i,j to be
the vector obtained from p⃗ by replacing both pi and pj with (pi + pj)/2. It is enough to show that
α(k, p⃗) ≥ α(k, p⃗i,j). Let Aℓ be the event that bins i and j receive a total of exactly ℓ > 0 balls. The
probability of Aℓ is the same both under p⃗ and p⃗i,j . Further, conditioned on Aℓ, the load of bins i
and j is independent of the rest of the allocation, and the load of the remaining bins is distributed
the same in both processes. Thus we can concentrate on bins i and j and the probability that one
of them receives at least k balls conditioned on Aℓ.

Observe that if ℓ ≥ 2k − 1 then with probability 1 one of the bins received at least k balls and
the lemma holds trivially. We focus on the regime ℓ ≤ 2k− 2 in which at most one of the bins gets
k balls. We define p = pi/(pi + pj) and

Φ(p) =
ℓ∑

m=k

(
ℓ

m

)
pm(1− p)ℓ−m

Now, the probability that one of these bins receives at least k balls is Φ(p)+Φ(1−p). When taking
the derivative by p we get Φ′(p)−Φ′(1− p) which obviously vanishes at p = 1/2. Also, the second
derivative is positive in (0, 1), which completes the proof of the claim.

The proof of Lemma 5.2 is completed by observing that when n balls are placed independently
and uniformly at random in n bins, with probability 1− 1/n there would be a bin with more than
log n/ log log n bins, c.f. [MU05, Lemma 5.12].

18

Theorem 5.4. For all n and u ≥ 2n log n, and for any family H of functions h : [u]→ [n], if for
any set S ⊆ [u] of size n it holds that

Pr
h←H

[
max
i∈[n]

∣∣h−1(i) ∩ S
∣∣ < log n

]
< ϵ ,

then |H| ≥ n/(ϵ log n).

Proof. Given a familyH we show how to construct a bad set for it. Initially the bad set S∗ is empty.
Consider any function h ∈ H. Since u ≥ 2n log n, there is a set Sh ⊆ U such that |Sh| ≥ log n and
all elements of Sh are mapped by h to the same bin i. Thus, we can take log n elements of Sh and
add them to S∗. This means

∣∣h−1(i) ∩ S∗
∣∣ ≥ log n. Now, observe that u− |S∗| ≥ 2n log n− log n,

so we can repeat the argument for the next function h′ by finding a set Sh′ which maps at least
2 log n − 1 elements into the same bin. Again, we can take log n of the elements in Sh′ and add
them to S∗. We continue in this fashion, noting that at step i we have u− |S∗| ≥ 2n log n− i log n.
Hence, we can repeat this process n/ log n times, until S∗ contains n elements. These bad functions
should be at most an ϵ fraction of the set of all functions, giving the desired bound.

6 Extensions and Open Problems

Applications. As discussed in Section 1.1, our two constructions can be successfully employed
for storing elements using linear probing, guaranteeing an insertion time of O(log n) with high prob-
ability. An interesting open problem is whether the techniques developed in this paper, or similar
techniques, can be used to construct small hash families that are suitable for other applications. For
instance, O(log n)-wise independence is known to suffice for two-choice hashing [ABK+99, Vöc99],
cuckoo hashing [PR04], and more. Existing constructions have so far focused on simplicity and
fast computation [DW03, Woe06, PP08, PT11], albeit with a significant increase to the description
length.

Augmenting our constructions with k-wise independence. Our constructions can easily
be augmented to offer O(log log n)-wise independence (for the first construction), and O(log1/2 n)-
wise independence (for the second construction) without affecting their description length and
evaluation time. This may be useful, for example, in any application that involves tail bounds for
limited independence.

Specifically, any function f resulting from either one of our constructions can be modified to
f(x)+h(x) mod n, where h is sampled from a family of O(log log n)-wise independent functions for
the first construction, and from a family of O(log1/2 n)-wise independent functions for the second
construction. Our analysis easily extends to this case, and the resulting functions clearly enjoy
the level of independence offered by h. By implementing h using a polynomial of the appropriate
degree, the description length and evaluation time of our constructions are not affected.

A time-space lower bound. Our constructions offer two different trade-offs between the de-
scription length and the evaluation time. It would be interesting to prove a lower bound on the
time-space trade-off of any family that guarantees a maximal load of O(log n/ log log n) with high
probability when hashing n balls into n bins. For example, can we rule out constructions that are
optimal in both aspects (i.e., description length O(log n) bits and evaluation time O(1))?

We note that any such lower bound must be computational in nature and cannot be proven in
the cell probe model, since in the cell probe model by definition any computation on O(log n) bits
could be done in O(1) time.

19

Acknowledgment

We thank Moni Naor for many inspiring discussions.

References

[ABK+99] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM
Journal on Computing, 29(1):180–200, 1999.

[ADM+99] N. Alon, M. Dietzfelbinger, P. B. Miltersen, E. Petrank, and G. Tardos. Linear hash
functions. Journal of the ACM, 46(5):667–683, 1999.

[AGH+92] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple construction of almost k-
wise independent random variables. Random Structures and Algorithms, 3(3):289–304,
1992.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science, pages
276–287, 1994.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

[CW79] L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, 18(2):143–154, 1979.

[DMadH90] M. Dietzfelbinger and F. Meyer auf der Heide. A new universal class of hash functions
and dynamic hashing in real time. In Proceedings of the 17th International Colloquium
on Automata, Languages and Programming, pages 6–19, 1990.

[DP08] M. Dietzfelbinger and R. Pagh. Succinct data structures for retrieval and approxi-
mate membership. In Proceedings of the 35th International Colloquium on Automata,
Languages and Programming, pages 385–396, 2008.

[DP09] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University Press, 2009.

[DR09] M. Dietzfelbinger and M. Rink. Applications of a splitting trick. In Proceedings of
the 36th International Colloquium on Automata, Languages and Programming, pages
354–365, 2009.

[DW03] M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions.
In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages
629–638, 2003.

[GW97] O. Goldreich and A. Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Structures and Algorithms, 11(4):315–343,
1997.

[Hag98] T. Hagerup. Sorting and searching on the word RAM. In Proceedings of the 15th
Annual Symposium on Theoretical Aspects of Computer Science, pages 366–398, 1998.

20

[HMP01] T. Hagerup, P. B. Miltersen, and R. Pagh. Deterministic dictionaries. Journal of
Algorithms, 41(1):69–85, 2001.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-
way functions. In Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pages 12–24, 1989.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algo-
rithms. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pages 356–364, 1994.

[Lu02] C.-J. Lu. Improved pseudorandom generators for combinatorial rectangles. Combina-
torica, pages 417–434, 2002.

[Mil99] P. B. Miltersen. Cell probe complexity - a survey. In Proceedings of the 19th Confer-
ence on the Foundations of Software Technology and Theoretical Computer Science,
Advances in Data Structures Workshop, 1999.

[MU05] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

[MV08] M. Mitzenmacher and S. Vadhan. Why simple hash functions work: Exploiting the
entropy in a data stream. In Proceedings of the 19th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 746–755, 2008.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NN93] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and ap-
plications. SIAM Journal on Computing, 22(4):838–856, 1993.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996.

[PP08] A. Pagh and R. Pagh. Uniform hashing in constant time and optimal space. SIAM
Journal on Computing, 38(1):85–96, 2008.

[PPR07] A. Pagh, R. Pagh, and M. Ružić. Linear probing with constant independence. In
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 318–
327, 2007.

[PR04] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of Algorithms, 51(2):122–144,
2004.

[PT11] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing. To appear in
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, 2011.

[Sie04] A. Siegel. On universal classes of extremely random constant-time hash functions.
SIAM Journal on Computing, 33(3):505–543, 2004. A preliminary version appeared in
Proceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science,
pages 20–25, 1989.

21

[SS90] J. P. Schmidt and A. Siegel. The analysis of closed hashing under limited randomness.
In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages
224–234, 1990.

[Vöc99] B. Vöcking. How asymmetry helps load balancing. In Journal of the ACM, pages
131–140, 1999.

[Woe06] P. Woelfel. Asymmetric balanced allocation with simple hash functions. In Symposium
on Discrete Algorithms, pages 424–433, 2006.

[Zuc96] D. Zuckerman. Simulating BPP using a general weak random source. Algorithmica,
16(4/5):367–391, 1996.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

