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Abstract

We show that if DTIME[2O(n)] is not included in DSPACE[2o(n)], then, for ev-
ery set B in PSPACE, all strings x in B of length n can be represented by a string
compressed(x) of length at most log(|B=n|) + O(logn), such that a polynomial-time
algorithm, given compressed(x), can distinguish x from all the other strings in B=n.
Modulo the O(logn) additive trem, this achieves the information-theoretical optimum
for string compression.

Keywords: compression, time-bounded Kolmogorov complexity, pseudo-random gener-
ator.

1 Introduction

In many practical and theoretical applications in computer science, it is important to rep-
resent information in a compressed way. If an application handles strings x from a finite set
B, it is desirable to represent every x by another shorter string compressed(x) such that
compressed(x) describes unambigously the initial x. Regarding the compression rate, ide-
ally, one would like to achieve the information-theoretical bound |compressed(x)| ≤ log(|B|),
for all x ∈ B. If a set B is computably enumerable, a fundamental result in Kolmogorov
complexity states that for all x ∈ B=n, C(x) ≤ log(|B=n|)+O(log n), where C(x) is the Kol-
mogorov complexity of x, i.e., the shortest effective description of x (B=n is the set of strings
of length n in B). The result holds because x can be described by its rank in the enumeration
of B=n. However enumeration is typically a slow operation and, in many applications, it is
desirable that the unambiguous description is not merely effective, but also efficient. This
leads to the idea of considering a time-bounded version of Kolmogorov complexity. An inter-
esting line of research [Sip83, BFL01, BLvM05, LR05], which we also pursue in this paper,
focuses on the time-bounded distinguishing Kolmogorov complexity, CDt(·). We say that a
program p distinguishes x if p accepts x and only x. CDt,A(x) is the size of the smallest pro-
gram that distinguishes x and that runs in time t(|x|) with access to the oracle A. Buhrman,
Fortnow, and Laplante [BFL01] show that for some polynomial p, for every set B, and every

string x ∈ B=n, CDp,B=n

(x) ≤ 2 log(|B=n|)+O(log n). This is an important and very general
result but the upper bound for the compressed string length is roughly 2 log(|B=n|) instead
of log(|B=n|), that one may hope. In fact, Buhrman, Laplante, and Miltersen [BLM00], show
that for some sets B, the factor 2 is necessary. There are some results where the upper bound
is asymptotically log(|B=n|) at the price of weakening other parameters. Sipser [Sip83] shows
that the upper bound of log(|B=n|) can be achieved if we allow the distinguisher program
to use polynomial advice: For every set B, there is a string wB of length poly(n) such that

for every x ∈ B=n, CDpoly,B=n

(x | wB) ≤ log(|B=n|) + log log(|B=n|) + O(1). Buhrman,
Fortnow, and Laplante [BFL01] show that log(|B=n|) can be achieved if we allow a few

exceptions: For any B, any ε, for all except a fraction of ε strings x ∈ B=n, CDpoly,B=n

(x) ≤
log(|B=n|)+poly log(n ·1/ε). Buhrman, Lee, and van Melkebeek [BLvM05] show that for all

B and x ∈ B=n, CNDpoly,B=n

(x) ≤ log(|B=n|) + O((
√

log(|B=n|) + log n) log n), wher CND
is similar to CD except that the distinguisher program is nondeterministic.
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Our main result shows that under a certain reasonable hardness assumption, the upper
bound of log(|B=n|) holds for every set B in PSPACE.

Main Result. Assume that there exists f ∈ E that cannot be computed by circuits of
size 2o(n) with PSPACE gates. Then for any B in PSPACE, there exists a polynomial p
such that for every x ∈ B=n,

CDp,B=n

(x) ≤ log(|B=n|) + O(log n).

The main result is a corollary of the following stronger result: Under the same hardness
assumption, the distinguisher program p for x of length log(|B=n|) + O(log n) is simple
conditioned by x, in the sense that Cpoly(p | x) = O(log n), where Cpoly(·) is the polynomial-
time bounded Kolmogorov complexity.

We also consider some variations of the main result in which the set B is in P or in
NP. We show that the hardness assumption can be somewhat weakened by replacing the
PSPACE gates with Σp3 gates. We also show that the distinguisher program no longer needs
oracle access to B=n in case we allow it to be nondeterministic and B is in NP.

The hardness assumption in the main result, which we call H1, states that there exists
a function f ∈ E = ∪c≥0DTIME[2cn] that cannot be computed by circuits of size 2o(n) with
PSPACE gates. This looks like a technical hypothesis; however, Miltersen [Mil01] shows
that the more intuitive assumption “E is not contained in DSPACE[2o(n)]” implies H1. We
note that this assumption (or related versions) has been used before in somewhat similar
contexts. Antunes and Fortnow[AF09] use a version of H1 (with the PSPACE gates replaced
by Σp2 gates) to show that the semi-measure mp(x) = 2−C

p(x) dominates all polynomial-
time samplable distributions. Trevisan and Vadhan [TV00] use a version of H1 (with the
PSPACE gates replaced by Σp5 gates) to build for each k a polynomial-time extractor for all
distributions with min-entropy (1− δ)n that are samplable by circuits of size nk.

1.1 Discussion of technical aspects

We present the main ideas in the proof of the main result. The method is reminiscent of
techniques used in the construction of Kolmogorov extractors in [FHP+06, HPV09, Zim10].
Let B in PSPACE. To simplify the argument suppose that |B=n| is a power of two, say
|B=n| = 2k. If we would have a polynomial-time computable function E : {0, 1}n → {0, 1}k,
whose restriction on B is 1-to-1, then every x ∈ B=n could be distinguished from the
other elements of B=n by z = E(x) and we would obtain CDpoly,B=n

(x) ≤ |z| + O(1) =
log(|B=n|) + O(1). We do not know how to obtain such a function E, but, fortunately, we
can afford a slack additive term of O(log n) and therefore we can relax the requirements for
E. We can consider functions E of type E : {0, 1}n×{0, 1}logn → {0, 1}k. More importantly,
it is enough if E is computable in polynomial time given an advice string σ of length O(log n)
and if every z ∈ {0, 1}k has at most O(n) preimages in B×{0, 1}logn. With such an E, the
string z = E(x, 0logn) distinguishes x from strings that do not map into z and, using the
general result of Buhrman, Fortnow, and Laplante [BFL01], with additional 2 log n + O(1)
bits we can distinguish x from the other at most O(n) strings that map into z. With such

an E, we obtain for every x ∈ B=n the desired CDpoly,B=n

(x) ≤ |z|+ |σ|+ 2 log n + O(1) =
log(|B=n|) + O(log n).

Now it remains to build the function E. An elementary use of the probabilistic method
shows that if we take E : {0, 1}n × {0, 1}logn → {0, 1}k at random, with high probability,
every z ∈ {0, 1}k has at most 7n preimages. The problem is that to compute a random E in
polynomial-time we would need its table and the table of such a function has size poly(N),
where N = 2n. This is double exponentially larger than O(log n) which has to be the size
of σ from our discussion above.

To reduce the size of advice information (that makes E computable in polynomial time)
from poly(N) to O(log n), we derandomize the probabilistic construction in two steps.

In the first step we observe that counting (the number of preimages of z) can be done
with sufficient accuracy by circuits of size poly(N) and constant-depth using the result of
Ajtai [Ajt93]. We infer that there exists a circuit G of size poly(N) and constant depth

2



such that {E | every z has ≤ 7n preimages in B × {0, 1}logn} ⊆ {E | G(E) = 1} ⊆ {E |
every z has ≤ 8n preimages in B × {0, 1}logn}. Now we can utilize the Nisan- Wigder-

son [NW94] pseudo-random generator NW-gen against constant-depth circuits and we obtain
that, for most seeds s (which we call good seeds for NW-gen), NW-gen(s) is the table of a
function E where each element z ∈ {0, 1}k has at most 8n preimages in B×{0, 1}logn. This
method is inspired by the work of Musatov [Mus10], and it has also been used in [Zim11].
The seed s has size poly log(N) = poly(n), which is not short enough.

In the second step we use the Impagliazzo-Wigderson pseudo-random generator [IW97]
as generalized by Klivans and van Melkebeek [KvM02]. We observe that checking that a
seed s is good for NW-gen can be done in PSPACE, and we use the hardness assumption to
infer the existence of a pseudo-random generator H such that for most seeds σ of H (which
we call good seeds for H), H(σ) is a good seed for NW-gen. We have |σ| = log |s| = O(log n)
as desired. Finally, we take our function E to be the function whose table is NW-gen(H(σ)),
for some good seed σ for H. It follows that, given σ, E is computable in polynomial time
and that every z ∈ {0, 1}k has at most 8n preimages in B=n × {0, 1}logn.

The idea of the 2-step derandomization has been used by Antunes and Fortnow [AF09]
and later by Antunes, Fortnow, Pinto and Souza [AFPS07].

2 Preliminaries

2.1 Notation and basic facts on Kolmogorov complexity

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗. If x is a
string, |x| denotes its length; if B is a finite set, |B| denotes its size. If B ⊆ {0, 1}∗, then
B=n = {x ∈ B | |x| = n}.

The Kolmogorov complexity of a string x is the length of the shortest program that
prints x. The t-time bounded Kolmogorov complexity of a string x is the length of the
shortest program that prints x in at most t(|x|) steps. The t-time bounded distinguishing
Kolmogorov complexity of a string x is the length of the shortest program that accepts x
and only x and runs in at most t(|x|) steps. The formal definitions are as follows.

We fix an universal Turing machine U , which is able to simulate any other Turing ma-
chine with only a constant additive term overhead in the program length. The Kolmogorov
complexity of the string x conditioned by string y, denoted C(x | y), is the length of the
shortest string p (called a program) such that U(p, y) = x. In case y is the empty string, we
write C(x).

For the time-bounded versions of Kolmogorov complexity, we fix an universal machine
U , that, in addition to the above property, can also simulate any Turing machine M in
time tM (|x|) log tM (|x|), where tM (|x|) is the running time of M on input x. For a time
bound t(·), the t-bounded Kolmogorov complexity of x conditioned by y, denoted Ct(x | y),
is the length of the shortest program p such that U(p, y) = x and U(p, y) halts in at most
t(|x|+ |y|) steps.

The t-time bounded distinguishing complexity of x conditioned by y, denoted CDt(x | y)
is the length of the shortest program p such that

(1) U(p, x, y) accepts,
(2) U(p, v, y) rejects for all v 6= x,
(3) U(p, v, y) halts in at most t(|v|+ |y|) steps for all v and y.
In case y is the empty string λ, we write CDt(x) in place of CDt(x | λ). If U is an oracle

machine, we define in the similar way, CDt,A(x | y) and CDt,A(x), by allowing U to query
the oracle A.

For defining t-time bounded nondeterministic distinguishing Kolmogorov complexity, we
fix U a nondeterministic universal machine, and we define CNDt(x | y) in the similar way.

Strings x1, x2, . . . , xk can be encoded in a self-delimiting way (i.e., an encoding from
which each string can be retrieved) using |x1|+|x2|+. . .+|xk|+2 log |x2|+. . .+2 log |xk|+O(k)
bits. For example, x1 and x2 can be encoded as (bin(|x2|)01x1x2, where bin(n) is the
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binary encoding of the natural number n and, for a string u = u1 . . . um, u is the string
u1u1 . . . umum (i.e., the string u with its bits doubled).

2.2 Distinguishing complexity for strings in an arbitrary set

As mentioned, Buhrman, Fortnow and Laplante [BFL01], have shown that for any set B

and for every x ∈ B=n it holds that CDpoly,B=n

(x) ≤ 2 log(|B=n|) + O(log n). We need the
following more explicit statement of their result.

Theorem 2.1 There exists a polynomial-time algorithm A such that for every set B ⊆
{0, 1}∗, every n, every x ∈ B=n, there exists a string px of length |px| ≤ 2 log(|B=n|) +
O(log n) such that

• A(px, x) = accept,

• A(px, y) = reject, for every y ∈ B=n − {x}.

2.3 Approximate counting via polynomial-size constant-depth cir-
cuits

We will need to do counting with constant-depth polynomial-size circuits. Ajtai [Ajt93] has
shown that this can be done with sufficient precision.

Theorem 2.2 (Ajtai’s approximate counting with polynomial size constant-depth
circuits) There exists a uniform family of circuits {Gn}n∈N, of polynomial size and constant
depth, such that for every n, for every x ∈ {0, 1}n, for every a ∈ {0, . . . , n − 1}, and for
every ε > 0,

• If the number of 1’s in x is ≤ (1− ε)a, then Gn(x, a, 1/ε) = 1,

• If the number of 1’s in x is ≥ (1 + ε)a, then Gn(x, a, 1/ε) = 0.

We do not need the full strength (namely, the uniformity of Gn) of this theorem; the required
level of accuracy (just ε > 0) can be achieved by non-uniform polynomial-size circuits of
depth d = 3 (with a much easier proof, see [Vio10]).

2.4 Pseudo-random generator fooling bounded-size constant-depth
circuits

The first step in the derandomization argument in the proof of Theorem 3.2 is done using the
Nisan-Wigderson pseudo-random generator that “fools” constant-depth circuits [NW94].

Theorem 2.3 (Nisan-Wigderson pseudo random generator) For every constant
d there exists a constant α > 0 with the following property. There exists a function

NW-gen : {0, 1}O(log2d+6 n) → {0, 1}n such that for any circuit G of size 2n
α

and depth d,

|Prob
s∈{0,1}O(log2d+6 n) [G(NW-gen(s)) = 1]− Probz∈{0,1}n [G(z) = 1]| < 1/100.

Moreover, there is a procedure that on inputs (n, i, s) produces the i-th bit of NW-gen(s) in
time poly(log n).

2.5 Hardness assumptions and pseudo-random generators

The second step in the derandomization argument in the proof of Theorem 3.2 uses pseudo-
random generators based on the assumption that hard functions exist in E = ∪cDTIME[2cn].
Such pseudo-random generators were constructed by Nisan and Wigderson [NW94]. Impagli-
azzo and Wigderson [IW97] strenghten the results in [NW94] by weakening the hardness
assumptions. Klivans and van Melkebeek [KvM02] show that the Impagliazzo-Wigderson
results hold in relativized worlds. We use in this paper some instantiations of a general
result in [KvM02].
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We need the following definition. For a function f : {0, 1}∗ → {0, 1} and an oracle A,
the circuit complexity CAf (n) of f at length n relative to A is the smallest integer t such
that there exists an A oracle circuit of size t that computes f on inputs of length n.

We use the following hardness assumptions.
Assumption H1:

There exists f ∈ E such that for some ε > 0 and for some PSPACE complete set A,
CAf (n) ≥ 2ε·n.

Assumption H2:

There exists f ∈ E such that for some ε > 0 and for some Σp3 complete set A, CAf (n) ≥
2ε·n.

If H1 holds, then for some oracle A that is PSPACE complete, for every k, there exists
H : {0, 1}c logn → {0, 1}n computable in time poly(n) such that for every oracle circuit C
of size nk,

|Probσ∈{0,1}c logn [CA(H(σ)) = 1]− Probs∈{0,1}n [CA(s) = 1]| < o(1).

If H2 holds, then for some oracle A that is Σp3 complete, for every k, there exists H :
{0, 1}c logn → {0, 1}n computable in time poly(n) such that for every oracle circuit C of size
nk,

|Probσ∈{0,1}c logn [CA(H(σ)) = 1]− Probs∈{0,1}n [CA(s) = 1]| < o(1).

3 Main Result

Theorem 3.1 Assuming H1, the following holds: For every set B in PSPACE, there exists
a polynomial p such that for every length n, and for every string x ∈ B=n, there exists a
string z with the following properties:

(1) |z| = dlog(|B=n|)e,
(2) Cp(z | x) = O(log n),

(3) CDp,B=n

(x | z) = O(log n).

Before proving the theorem, we note that (1) and (3) immediately imply the following
theorem, which is our main result.

Theorem 3.2 Assumming H1, the following holds: For every set B in PSPACE there exists
a polynomial p, such that for every length n, and for every string x ∈ B=n,

CDp,B=n

(x) ≤ log(|B=n|) + O(log n).

Proof. (of Theorem 3.1) Let us fix a set B in PSPACE and let us focus on B=n, the set of
strings of length n in B. Let k = dlog |B=n|e and let K = 2k. Also, let N = 2n.

Definition 3.3 Let E : {0, 1}n × {0, 1}logn → {0, 1}k. We say that E is ∆-balanced if for
every z ∈ {0, 1}m,

∣∣E−1(z) ∩ B=n × {0, 1}logn
∣∣ ≤ ∆ · |B

=n| · n
K

.

The plan for the proof is as follows. Suppose that we have a function E : {0, 1}n ×
{0, 1}logn → {0, 1}k that is ∆-balanced, for some constant ∆.

Furthermore assume that E can be “described” by a string σ, in the sense that given σ
as an advice string, E is computable in time polynomial in n.

Fix x in B=n. and let z = E(x, 0logn). Clearly, the string z satisfies requirement (1). It
remains to show (2) and (3).

Consider the set

U = {u ∈ B=n | ∃v ∈ {0, 1}logn, E(u, v) = z}.
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Since E is ∆-balanced, the size of U is bounded by ∆ · |B
=n|·n
K ≤ ∆n.

Now observe that for some polynomial p,

CDp,B=n

(x | z) ≤ |σ|+ 2 log(∆n) + O(log n) + self-delimitation overhead.

Indeed, the following is a polynomial-time algorithm using oracle B=n that distinguishes
x (it uses an algorithm A, promised by Theorem 2.1, that distinguishes x from the other
strings in U , using a string px of length 2 log(|U=n|) +O(log n) ≤ 2 log(∆n) +O(log n)).

Input: y; the strings z, σ, px, defined above, are also given.
If y 6∈ B=n, then reject.
If for all v ∈ {0, 1}logn, E(y, v) 6= z, then reject.
If A(y, px) = reject, then reject.
Else accept.

Clearly, the algorithm accepts input y iff y = x. Also, since z = E(x, 0logn), Cp(z | x) ≤
|σ|+O(1). For a further application (Theorem 4.3), note that the above algorithm queries
the oracle B=n a single time.

Therefore, if we manage to achieve σ = O(log n), we obtain that CDp,B=n

(x | z) ≤
O(log n) and Cp(z | x) ≤ O(log n).

Thus our goal is to produce a function E : {0, 1}n × {0, 1}logn → {0, 1}k that using an
advice string σ of length O(log n) is computable in polynomial time and is ∆-balanced for
some constant ∆. Let us call this goal (∗).

We implement the ideas exposed in Section 1.1 and the reader may find convenient to
review that discussion.

Claim 3.4 . With probability at least 0.99, a random function E : {0, 1}n × {0, 1}logn →
{0, 1}k is 7-balanced.

Proof. For fixed x ∈ B, y ∈ {0, 1}logn, z ∈ {0, 1}m, if we take a random function E :
{0, 1}n × {0, 1}logn → {0, 1}k, we have that Prob[E(x, y) = z] = 1/K. Thus the expected
number of preimages of z in the rectangle B × {0, 1}logn is µ = (1/K) · |B| · n. By the
Chernoff’s bounds,1

Prob[number of preimages of z in B × {0, 1}logn > 7µ] < e−(6 ln 2)µ.

Therefore, the probability of the event “there is some z ∈ {0, 1}k such that the number of
z-cells in B × {0, 1}logn is > 7µ” is at most K · e−(6 ln 2)µ < 0.01.

Claim 3.5 . There exists a circuit G of size poly(N) and constant depth such that for any
function E : {0, 1}n × {0, 1}logn → {0, 1}k (whose table is given to E as the input),

(a) If G(E) = 1, then E is 8-balanced,

(b) If E is 7-balanced, then G(E) = 1.

Proof. By Theorem 2.2, there is a constant-depth, poly(N) size circuit that counts in an
approximate sense the occurrences of a string z in {0, 1}k in the rectangle B×{0, 1}logn. If
we make a copy of this circuit for each z ∈ {0, 1}k and link all these copies to an AND gate
we obtain the desired circuit G.

More precisely, let xz be the binary string of length |B| · n, whose bits are indexed as
(u, v) for u ∈ B, v ∈ {0, 1}logn, and whose (u, v)-bit is 1 iff E(u, v) = z. By Theorem 2.2,
there is a constant-depth, poly(N) size circuit G′ that behaves as follows:

• G′(xz) = 1 if the number of 1’s in xz is ≤ 7 |B|·nK ,

1We use the following version of the Chernoff bound. If X is a sum of independent Bernoulli random
variables, and the expected value E[X] = µ, then Prob[X ≥ (1 + ∆)µ] ≤ e−∆(ln(∆/3))µ. The standard

Chernoff inequality Prob(X ≥ (1 + ∆)µ] ≤
(

e∆

(1+∆)(1+∆)

)µ
is presented in many textbooks. It can be

checked easily that e∆

(1+∆)(1+∆) < e−∆ ln(∆/3), which implies the above form.
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• G′(xz) = 0 if the number of 1’s in xz is > 8 |B|·nK ,

If the number of 1’s is between the two bounds, the circuit G′ outputs either 0 or 1.
The circuit G on input a table of E, will first build the string xz for each z ∈ {0, 1}k,

then has a copy of G′ for each z, with the z-th copy running on xz and then connects the
outputs of all the copies to an AND gate, which is the output gate of G.

Claim 3.6 . If we pick at random a function E : {0, 1}n × {0, 1}logn → {0, 1}k, with
probability at least 0.99, G(E) = 1.

Proof. This follows from Claim 3.4 and from Claim 3.5 (b).
Let Ñ = N · n · k. Let d be the depth of the circuit G. We denote ñ = log2d+6Ñ . Note

that ñ = poly(n). We consider the Nisan-Wigderson pseudo-random generator for depth d
given by Theorem 2.3. Thus,

NW-gen : {0, 1}ñ → {0, 1}Ñ .

For any string s of length ñ, we view NW-gen(s) as the table of a function E : {0, 1}n ×
{0, 1}logn → {0, 1}k.

Claim 3.7 . If we pick at random s ∈ ñ, with probability of s at least 0.9, it holds that
NW-gen(s) is 8-balanced.

Proof. Since G is a circuit of constant depth and polynomial size, by Theorem 2.3, the
probability of the event “G(NW-gen(s)) = 1” is within 0.01 of the probability of the event
“G(E) = 1,” and the second probability is at least 0.99 by Claim 3.6. Thus the first prob-
ability is greater than 0.9. Taking into account that if G(NW-gen(s)) = 1 then NW-gen(s)
is 8-balanced, the conclusion follows.

Claim 3.8 . Let T = {s ∈ {0, 1}ñ | NW-gen(s) is 8-balanced}. Then T is in PSPACE.

Proof. We need to count for every z ∈ {0, 1}k, the number of z-cells in the rectangle
B=n × {0, 1}logn of the table of NW-gen(s). Since B is in PSPACE and since each entry in
the table of NW-gen(s) can be computed in time polynomial in ñ, it follows that the above
operation can be done in PSPACE.

Claim 3.9 . Assume H1. There exists a constant c and a function H : {0, 1}c log ñ →
{0, 1}ñ, computable in time poly(ñ) = poly(n), such that if σ is a string chosen at random
in {0, 1}c log ñ, with probability at least 0.8, it holds that NW-gen(H(σ))) is 8-balanced.

Proof. Under assumption H1, there exists a pseudo-random generator H : {0, 1}c log ñ →
{0, 1}ñ such that for any set A in PSPACE,

|Probσ∈{0,1}c log ñ [H(σ) ∈ A]− Probs∈{0,1}ñ [s ∈ A]| < 0.1.

Since the set T is in PSPACE, Probσ∈{0,1}c log ñ [NW-gen(H(σ)) is 8-balanced] is within 0.1
from Probs∈{0,1}ñ [NW-gen(s) is 8-balanced]. Since the latter probability is at least 0.9, the
conclusion follows.

We can now finish the proof of Theorem 3.2.
Fix σ ∈ {0, 1}c log ñ such that NW-gen(H(σ))) is 8-balanced. Note that |σ| = O(log n).

Given σ, each entry in the table of NW-gen((H(σ))) can be computed in time poly(n). Thus
the function E : {0, 1}n×{0, 1}logn → {0, 1}k, whose table is NW-gen((H(σ))), satisfies the
goal (∗).
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4 Variations around the main result

We analyze here the polynomial-time bounded distinguishing Kolmogorov of strings in a set
B that is in P or in NP. We start with the case B ∈ P. The following is the analog of
Theorem 3.1 and its main point is that assumption H1 can be replaced by the presumably
weaker assumption H2.

Theorem 4.1 Assuming H2, the following holds: For every set B in P, there exists a
polynomial p such that, for every length n, and for every string x ∈ B=n, there exists a
string z with the following properties:

(1) |z| = dlog(|B=n|)e,
(2) Cp(z | x) = O(log n),
(3) CDp(x | z) = O(log n).

Proof. We follow the proof of Theorem 3.1. First note that since B ∈ P, the universal
machine does not need oracle access to B. We still need to justify that assumption H1 can
be replaced by the weaker assumption H2.

Assumption H1 was used in Claim 3.9. The point was that the set T = {s |
NW-gen(s) is 8-balanced} is in PSPACE and H1 was used to infer the existence of a
pseudo-random generator H that fools T . If B ∈ P, we can check that NW-gen(s) is
sufficiently balanced using less computational power than PSPACE. Basically we need to
check that for all z ∈ {0, 1}k,

|NW-gen(s)−1(z) ∩B=n × {0, 1}logn| ≤ ∆ · |B
=n| · n
K

,

for some constant ∆. Using Sipser’s method from [Sip83], there is a Σp2 predicate R such
that

• R(s, z) = 1 implies |NW-gen(s)−1(z) ∩B=n × {0, 1}logn| ≤ 16 · n,

• R(s, z) = 0 implies |NW-gen(s)−1(z) ∩B=n × {0, 1}logn| ≥ 64 · n.

Thus there is a set T ′ ⊆ {0, 1}ñ in Σp3 such that for all s ∈ T ′, NW-gen(s) is 64-balanced
and T ′ contains all s such that NW-gen(s) is 8-balanced. Note that the second property
implies that |T ′| ≥ 0.99 · 2ñ.

Now assumption H2 implies that there exists a pseudo-random generator H :
{0, 1}c log(ñ) → {0, 1}ñ that fools T ′. In particular it follows that with probability of
σ ∈ {0, 1}c log(ñ) at least 0.8, H(σ) ∈ T ′ and thus NW-gen(H(σ)) is 64-balanced. The rest
of the proof is identical with the proof of Theorem 3.2.

The next result is the analog of Theorem 3.2 for the case when the set B is in P.

Theorem 4.2 Assuming H2, the following holds: For every B ∈ P, there exists a polyno-
mial p such that for all n, and for all x ∈ B=n,

CDpoly(x) ≤ log(|B=n|) + O(log n).

Proof. This is an immediate consequence of (1) and (3) in Theorem 4.1.
Next we consider the case when the set B is in NP. The main point is that the assumption

H1 can be replaced by H2, and that the distinguishing program does not need access to the
oracle B=n provided it is nondeterministic.

Theorem 4.3 Assuming H2, the following holds: For every set B in NP, there exists a
polynomial p such that for every length n, and for every string x ∈ B=n, there exists a
string z with the following properties:

(1) |z| = dlog(|B=n|)e,
(2) Cp(z | x) = O(log n),

(3) CDp,B=n

(x | z) = O(log n).
(4) CNDp(x | z) = O(log n).
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Proof. (1), (2) and (3). We only need to show that in the proof of Theorem 3.1, in case
B ∈ NP, the assumption H1 can be replaced by the weaker assumption H2. This is done
virtually in the same way as in the proof of Theorem 4.2. The predicate R also needs this
time to check that certain strings are in B and this involves an additional quantifier, but
that quantifier can be merged with the existing quantifiers and R remains in Σp2.

(4). We need to show that, at the price of replacing CD by CND, the use of the oracle
B=n is no longer necessary. Note that the distinguisher procedure given in the proof of
Theorem 3.1, queries the oracle only once, and if the answer to that query is NO, then
the algorithm rejects immediately. Thus, instead of making the query, a nondeterministic
distinguisher can just guess a witness for the single query it makes.

The following is the analog of Theorem 3.2 in case the set B is in NP.

Theorem 4.4 Assuming H2, the following holds:
(a) For every B ∈ NP, there exists a polynomial p, such that for all n, and for all

x ∈ B=n,
CDp,B=n

(x) ≤ log(|B=n|) + O(log n).

(b) For every B ∈ NP, there exists a polynomial p, such that for all n, and for all
x ∈ B=n,

CNDp(x) ≤ log(|B=n|) + O(log n).

Proof. Statement (a) follows from (1) and (3) in Theorem 4.3, and (b) follows from (1) and
(4) in Theorem 4.3.
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