Weak Compositions and Their Applications to Polynomial Lower-Bounds for Kernelization

Danny Hermelin ${ }^{1}$ and Xi Wu ${ }^{2}$
${ }^{1}$ Max Plank Institute for Informatics, Stuhlsatzenhausweg 85, Saarbrücken 66123 - Germany
E-mail: hermelin@mpi-inf.mpg.de
${ }^{2}$ School of Computer Science, IIPL, Fudan University, Shanghai 201203-China
E-mail: wuxi@fudan.edu.cn

Abstract

We introduce a new form of composition called weak composition that allows us to obtain polynomial kernelization lower-bounds for several natural parameterized problems. Let $d \geq 2$ be some constant and let $L_{1}, L_{2} \subseteq\{0,1\}^{*} \times \mathbb{N}$ be two parameterized problems where the unparameterized version of L_{1} is NP-hard. Assuming coNP $\nsubseteq \mathrm{NP} /$ poly, our framework essentially states that composing $t L_{1}$ instances each with parameter k, to an L_{2}-instance with parameter $k^{\prime} \leq t^{1 / d} k^{O(1)}$, implies that L_{2} does not have a kernel of size $O\left(k^{d-\varepsilon}\right)$ for any $\varepsilon>0$. Using this tool, we derive the following lower-bounds for kernel sizes when the parameter is the solution size k (assuming coNP $\nsubseteq \mathrm{NP} /$ poly):

- d-Set Packing, d-Set Cover, d-Exact Set Cover, Hitting Set with d-Bounded Occurrences, and Exact Hitting Set with d-Bounded Occurrences have no kernels of size $O\left(k^{d-3-\varepsilon}\right)$ for any $\varepsilon>0$.
- K_{d} Packing and Induced $K_{1, d}$ Packing have no kernels of size $O\left(k^{d-4-\varepsilon}\right)$ for any $\varepsilon>0$.
- d-Red-Blue Dominating Set and d-Steiner Tree have no kernels of sizes $O\left(k^{d-3-\varepsilon}\right)$ and $O\left(k^{d-4-\varepsilon}\right)$, respectively, for any $\varepsilon>0$.

To obtain these lower-bounds, we first prove kernel lower bound for the d-Bipartite Regular PerFECT CODE parameterized by the solution size k, and then reduce from it using linear parametric transformations. Our results give a negative answer to an open question raised by Dom, Lokshtanov, and Saurabh [ICALP2009] regarding the existence of uniform polynomial kernel for the problems above. Up to a polylogarithmic factor, all our lower bounds transfer automatically to compression lower bounds, a notion defined by Harnik and Naor [SICOMP2010] to study the compressibility of NP instances with cryptographic applications. We believe weak composition can be used to obtain polynomial kernelization lower bounds for other interesting parameterized problems.

1 Introduction

In parameterized complexity [12], a kernelization algorithm for a parameterized problem $L \subseteq$ $\{0,1\}^{*} \times \mathbb{N}$ is a polynomial time algorithm that transforms a given instance $(x, k) \in\{0,1\}^{*} \times \mathbb{N}$ to an instance $\left(x^{\prime}, k^{\prime}\right) \in\{0,1\}^{*} \times \mathbb{N}$ such that:
$-(x, k) \in L \Longleftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L$, and

- $\left|x^{\prime}\right|+k^{\prime} \leq f(k)$ for some arbitrary function f.

In other words, a kernelization algorithm (or kernel) is a polynomial-time reduction from a problem onto itself that compresses the problem instance to a size depending only on the parameter. Appropriately, the function f above is called the size of the kernel. It is customary in many cases to not insist on the kernelization to be a reduction from a problem onto itself, but rather to allow the reduction to be between two different problems. This has been referred to as bikernelization in [2]. In this present paper, we will not distinguish between the two notions.

Kernelization is the central technique in parameterized complexity. Not only is it one of the most successful techniques for showing that a problem is fixed-parameter tractable, it also provides an equivalent way of defining fixed-parameter tractability [8]. Furthermore, it gives the only known mathematical framework for studying and analyzing the ancient and ubiquitous technique of preprocessing (data reduction). For these reasons, kernelization has become a research topic in its own right, with many papers on the topic appearing each year, and an annual international workshop devoted entirely to it. Notable success stories include the linear kernels for Vertex Cover [23] and Planar Dominating Set [1], a quadratic kernel for Feedback Vertex Set [24], and the meta-theorems for kernelization on bounded genus graphs [5] (see also the surveys in [3|18).

Recently, there has been an effort in developing tools that allow showing lower-bounds for kernel sizes. This started with the work of Bodlaender et al. [4] which developed a machinery for showing evidence for the non-existence of polynomial size kernels. The key component of this machinery is the notion of a composition algorithm for parameterized problems. Roughly speaking, a composition algorithm for a parameterized problem L takes as input an arbitrarily long sequence of instances of L, each with the same parameter value k, and outputs an instance of L with parameter bounded by $k^{O(1)}$ such that the output is a yes-instance of L iff one of the inputs is also a yes-instance. Using a lemma by Fortnow and Santhanam [15], this machinery was used to show that problems such as Path and Clique parameterized by treewidth do not have a polynomial-size kernels unless $\operatorname{coNP} \subseteq \mathrm{NP} /$ poly [4].

Extensions of the framework in [4] were not late to appear. Chen, Flum, and Müller [9] extended this framework to allow exclusion of kernelizations with sizes that are sublinear in the original input size, i.e. kernelizations of size $k^{O(1)} \cdot|x|^{1-\varepsilon}$. Following this, several new lower-bounds for kernel sizes were obtained using appropriately defined reductions called polynomial parameter transformations. These reductions were used to show that problems such as Leaf Out Branching 14 and Disjoint Cycles [7]. Polynomial parameter transformations have since been used extensively, e.g. in [17|21. Recently, Bodlaender et al. [6] extended the kernelization lower-bounds machinery in a new direction by introducing the notion of so-called cross composition.

Dom et al. [11] took the notion of polynomial parameter transformations a step further and developed a general schema for combining these with compositions. Their schema first transforms the given problem to a colored variant, and then uses this color variant for composition by assigning IDs to the different problem instances. Using their schema, Dom et al. [11] were able to show that important problems such as Connected Vertex Cover and Subset Sum are unlikely to have polynomial kernels. Later their technique was used for showing several important results, including dichotomy theorems for CSP kernelization [20|22].

A common aspect of all the lower bound techniques mentioned above is that they only allow super-polynomial lower-bounds for kernel sizes. This feature has been superseded by a recent breakthrough result of Dell and van Melkebeek [10]. Dell and van Melkebeek extended the framework of [4] to a communication model, and showed using their scheme that the Vertex Cover problem does not have a kernel with $O\left(k^{2-\varepsilon}\right)$ edges unless coNP \subseteq NP/poly. They also showed several other kernelization lower-bounds, including an extension of the above result to a $\Omega\left(k^{d-\varepsilon}\right)$ lower-bound for the d-Hitting Set problem (the Hitting Set problem restricted to families of sets of size d).

1.1 Our results

In this paper, we introduce a new form of composition called weak composition. In weak compositions, the output parameter is allowed to depend also on the length of the input sequence. Building on the framework of of Dell and van Melkebeek [10], we show that weak compositions yield polynomial kernelization lower-bounds, as opposed to the super-polynomial lower-bounds given by the
previously used compositions. We then show that the d-Bipartite Regular Perfect Code (d-BRPC) problem has a weak composition algorithm, proving that this problem has no kernel of size $O\left(k^{d-3-\varepsilon}\right)$ for any $\varepsilon>0$, unless coNP \subseteq NP/poly. We note that our construction is inspired by the composition algorithm of Dom et al. [11, but also differs from it quite substantially, requiring several novel ideas to make it work.

After obtaining the kernelization lower-bound for d-BRPC, we used a variant of polynomial parameter transformations called linear parameter transformations to obtain new lower-bounds for several other problems, which include d-Set Packing, d-Set Cover, Hitting Set with d-Bounded Occurrences, K_{d} Packing, d-Steiner Tree, among several others. These new lower-bounds are very close to being tight, and give a negative answer to the main open question posed in Dom et al. [11] regarding what they referred to as uniform polynomial kernelizations for the problems listed above. Furthermore, up to a polylogarithmic factor, all our lower bounds transfer automatically to compression lower bounds, an notion defined by Harnik and Naor [19] that has important cryptographic applications.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our modified notion, namely weak composition, and prove that it allows obtaining polynomial lower-bounds for kernelization. Section 3 then presents the main composition algorithm for d-BRPC, and Section 4 presents our remaining kernelization lower-bound results. Finally we conclude the paper in Section 5

2 Kernelization Lower Bounds Framework

In this section we present our extended framework for proving our kernelization lower bounds. In particular, we introduce the notions of weak compositions and linear parametric transformations.

2.1 The Dell and van Melkebeek framework

We begin by first discussing the communication framework presented by Dell and van Melkebeek. All definitions and results in this section are taken from [10].

Definition 1 (oracle communication protocol). An oracle communication protocol for a (unparameterized) language $L \subseteq\{0,1\}^{*}$ is a communication protocol between two players. The first player is given the input $x \in\{0,1\}^{*}$ and is allowed to run polynomial-time with respect to $|x|$; the second player is computationally unbounded but is not given any part of x. At the end of the protocol the first player should be able to decide whether $x \in L$. The cost of the protocol is the number of bits of communication from first player to the second player.

For a language $L \subseteq\{0,1\}^{*}$, we let $\mathrm{OR}_{n, t}(L)$ denote the language

$$
\mathrm{OR}_{n, t}(L):=\left\{\left\langle x_{1}, x_{2}, \ldots, x_{t}\right\rangle:\left|x_{i}\right|=n \text { for all } i, \text { and } x_{i} \in L \text { for some } i\right\} .
$$

We next introduce the so-called Complementary Witness Lemma that forms the basis of the framework of Dell and van Melkebeek. The proof of the lemma closely follows the arguments given by Fortnow and Santhanam in [15].

Lemma 1 (Complementary Witness Lemma). Let $L \subseteq\{0,1\}^{*}$ be a language and t : $N \rightarrow N \backslash\{0\}$ be polynomially bounded. If there is an oracle communication protocol that decides $\mathrm{OR}_{n, t(n)}(L)$ with cost $O(t(n) \log t(n))$, then $L \in \mathrm{coNP} /$ poly. This holds even when the first player runs in conondeterministic polynomial time.

The following lemma gives the connection between oracle communication protocols for classical problems and kernels for parameterized problems. For a parameterized problem $L \subseteq\{0,1\}^{*} \times \mathbb{N}$, we let $\widetilde{L}:=\left\{x \# 1^{k}:(x, k) \in L\right\}$ denote the unparameterized version of L.

Lemma 2. If $L \subseteq\{0,1\}^{*} \times \mathbb{N}$ has a kernel of size $f(k)$, then \widetilde{L} has an oracle communication protocol of cost $f(k)$.

2.2 Our modified framework

One of the main components of the kernelization lower bounds engine of Bodlaender et al. [4] is the notion of a composition algorithm for a parameterized problem. This notion has been extended to the notion of a cross-composition in [6. However, both compositions and cross compositions are suitable for showing super-polynomial lower-bounds. Below we introduce a new variant of compositions that allow showing polynomial lower-bounds.

Definition 2 (weak d-composition). Let $d \geq 2$ be a constant, and let $L_{1}, L_{2} \subseteq\{0,1\}^{*} \times \mathbb{N}$ be two parameterized problems. A weak d-composition from L_{1} to L_{2} is an algorithm \mathbb{A} that on input $\left(x_{1}, k\right), \ldots,\left(x_{t}, k\right) \in\{0,1\}^{*} \times \mathbb{N}$, outputs an instance $\left(y, k^{\prime}\right) \in\{0,1\}^{*} \times \mathbb{N}$ such that:
$-\mathbb{A}$ runs in conondeterministic polynomial time with respect to $\sum_{i}\left(\left|x_{i}\right|+k\right)$.

- $\left(y, k^{\prime}\right) \in L_{2} \Longleftrightarrow\left(x_{i}, k\right) \in L_{1}$ for some i, and
$-k^{\prime} \leq t^{1 / d} k^{O(1)}$.
Note that in the regular compositions the output parameter is required to be polynomially bounded by the input parameter, while in d-compositions it is also allowed to depend on the number of inputs t.

Lemma 3. Let $d \geq 2$ be a constant, and let $L_{1}, L_{2} \subseteq\{0,1\}^{*} \times \mathbb{N}$ be two parameterized problems such that $\widetilde{L_{1}}$ is NP-hard. Also assume NP \nsubseteq coNP/poly. A d-composition from L_{1} to L_{2} implies that L_{2} has no kernel of size $O\left(k^{d-\varepsilon}\right)$ for all $\varepsilon>0$.

Proof. Assume for the sake of contradiction that L_{2} has a kernel of size $O\left(k^{d-\varepsilon}\right)$ for some $\varepsilon>0$. By Lemma 2 this implies that L_{1} has a communication protocol of cost $O\left(k^{d-\epsilon}\right)$. We show that this yields a low cost oracle communication protocol for $\mathrm{OR}_{n, t(n)}\left(\widetilde{L_{1}}\right)$ for some polynomial t. Because $\widetilde{L_{1}}$ is assumed to be NP-hard, this results in a contradiction to the assumption that NP \nsubseteq coNP/poly by applying the Complementary Witness Lemma.

Consider a sequence of $\widetilde{L_{1}}$ instances $\left(\tilde{x}_{1}, \ldots, \tilde{x}_{t}\right)$ with $\left|\tilde{x}_{i}\right|=n$ and $t:=t(n)$, where t is some sufficiently large polynomial. Let the corresponding parameterized problem sequence be $\left(\left(x_{1}, k_{1}\right), \ldots,\left(x_{t}, k_{t}\right)\right)$. The low cost protocol proceeds as follows:

1. Divide the parameterized problem sequence into subsequences, where each subsequence consists of instances with equal parameter values. Clearly there are at most $k:=\max _{i} k_{i} \leq n$ subsequences.
2. For each subsequence, apply the d-composition from L_{1} to L_{2}. This results in at most n instances of L_{2}, each with parameter bounded by $k^{\prime} \leq t^{1 / d} k^{O(1)}$.
3. For each instance of L_{2}, apply the assumed $O\left(k^{(d-\epsilon)}\right)$ protocol to decide it. If one of the composed instances is a YES instance, then accept, otherwise reject.

It is clear that the protocol has cost $O\left(n \cdot k^{(d-\epsilon)}\right)$, plug in that $k^{\prime} \leq t^{1 / d} k^{c}$ for some $c>0$, and write $t=t(n)$. We have:

$$
\begin{aligned}
O\left(n \cdot k^{\prime(d-\epsilon)}\right) & =O\left(n \cdot\left(t^{1 / d} k^{c}\right)^{d-\epsilon}\right) \\
& =O\left(n \cdot t^{(1-\epsilon / d)} k^{c(d-\epsilon)}\right) \\
& =O\left(n \cdot t^{(1-\epsilon / d)} n^{c(d-\epsilon)}\right) \quad(\text { as } k \leq n) \\
& =O\left(n^{1+c d-c \epsilon} \cdot t^{(1-\epsilon / d)}\right) \\
& =O(t) \quad(\text { since } t \text { is sufficiently large }) \\
& =O(t \log t) .
\end{aligned}
$$

By the Complementary Witness Lemma it follows that $\widetilde{L_{1}} \in$ coNP/poly, causing the desired contradiction.

2.3 Linear parametric transformations

Bodlaender et al. [7] introduced the notion of polynomial parametric transformations to obtain new kernelization lower-bound results from existing ones. However these type of reductions are suitable for super-polynomial lower-bounds. Here we introduce the notion of linear parametric transformations that facilitate polynomial lower-bounds.

Definition 3 (linear parametric transformation). Let L_{1} and L_{2} be two parameterized problems. We say that L_{1} is linear parameter reducible to L_{2}, written $L_{1} \leq_{l t p} L_{2}$, if there exists a polynomial time computable function $f:\{0,1\}^{*} \times \mathbb{N} \rightarrow\{0,1\}^{*} \times \mathbb{N}$, such that for all $(x, k) \in \Sigma^{*} \times \mathbb{N}$, if $\left(x^{\prime}, k^{\prime}\right)=f(x, k)$ then:
$-(x, k) \in L_{1} \Longleftrightarrow\left(x^{\prime}, k^{\prime}\right) \in L_{2}$, and

- $k^{\prime}=O(k)$.

The function f is called linear parameter transformation.
Lemma 4. Let L_{1} and L_{2} be two parameterized problems, and let $d \in \mathbb{N}$ be some constant. If $L_{1} \leq_{l p t} L_{2}$ and L_{2} has a kernel of size $O\left(k^{d}\right)$, then L_{2} also has a kernel of size $O\left(k^{d}\right)$.

Proof. The composition of the linear parametric transformation from L_{1} to L_{2}, along with the kernel of size $O\left(k^{d}\right)$ of L_{2}, gives an $O\left(k^{d}\right)$-size kernel for L_{1}.

The application of Lemma 4 above is to obtain a polynomial lower-bound for any kernelization of L_{2}, assuming we already know a similar lower-bound for L_{1}. In Section 4 we will see several applications of this lemma. It is easy to see that the $\leq_{l p t}$ relation is transitive.

3 Main Composition Algorithm

In this section we present our main weak d-composition algorithm from which we will derive all of our kernelization lower-bound results. Throughout this section, we let d be some fixed integer with $d \geq 3$.

Our weak d-composition algorithm will be for the d-Bounded Regular Perfect Code (d BRPC) problem. In this problem, we are given a bipartite graph $G:=(N \uplus T, E)$ along with a parameter k, such that the degree of each vertex in N is exactly d. The set N is called the set of
non-terminal vertices and the set T is referred to as the set of terminal vertices. The goal is to find a subset of non-terminal vertices $N^{\prime} \subseteq N$ of size k such that each terminal vertex in T has exactly one neighbor in N^{\prime}. For a solution set $N^{\prime} \subseteq N$, we say that $v \in N^{\prime}$ dominates $u \in T$ if $\{u, v\} \in E(G)$. The main result of this section is stated in the following theorem.

Theorem 1. Unless $\mathrm{NP} \subseteq$ coNP/poly, the d-BRPC problem has no kernel of size $O\left(k^{d-3-\varepsilon}\right)$ for any $\varepsilon>0$.

We mention that the d-BRPC problem is one of the central problems used by Dom et al. in [11] for obtaining their super-polynomial kernelization lower-bound results. Indeed, the construction we present in this section is very much inspired by the construction in [11], but it also differs from it quite substantially in order to confirm with all requirements of a d-composition (Definition 22).

To prove Theorem 1, we will be working with a colored variant of d-BRPC called Colored d Bipartite Regular Perfect Code (Col- d-BRPC), where the input is appended by a surjective color function col : N $\rightarrow\{1, \ldots, k\}$, and the goal is to find a solution $N^{\prime} \subseteq N$ that consists of exactly one vertex of each color. Our d-composition will be from Col-3-BRPC to $(d+3)$-BRPC. Overall, our construction proceeds in two stages:

- In the first step we will compose to an instance of Bipartite Perfect Code (BPC); that is, to an instance where the vertices of N do not all have degree $d+3$, but a few of them have high degree (actually degree k).
- In the second step, we will split the vertices of high degree into many vertices of degree $d+3$, using an equality gadget that preserves the correctness of our construction.

For ease of notation, we will assume that our composition algorithm is given a sequence of t^{d} instances with parameter k, and the goal is to output a single instance with parameter bounded by $t \cdot k^{O(1)}$. We can assume that $k>d$, since otherwise all instances can be solved in polynomial-time, and a trivial instance of size $O(1)$ can be used as output. We will also assume that $k \equiv 0(\bmod d)$ (and justify this assumption later on).

3.1 First step of the composition

Let $\left(G_{1}, \operatorname{col}_{1}, k\right), \ldots,\left(G_{t^{d}}\right.$, col $\left._{t^{d}}, k\right)$ be the input sequence of CoL-3-BRPC instances, where the $G_{i}=\left(N_{i} \uplus T_{i}, E_{i}\right)$. Observe that if $\left|T_{i}\right| \neq 3 k$ for some i, then $\left(G_{i}, k\right) \notin$ Col-3-BRPC, and so we can assume that $\left|T_{i}\right|=3 k$ for all i. For $i \in\{1, \ldots, t\}$, we let $T_{i}=\left\{u_{1}^{i}, \ldots, u_{3 k}^{i}\right\}$ and $N_{i}=\left\{v_{1}^{i}, \ldots, v_{n_{i}}^{i}\right\}$. We will use $G=(N \uplus T, E)$ and k^{\prime} to denote the instance of BPC which is the output of our composition. The set of terminal vertices will consist of $k+1$ terminal components $T=T^{\prime} \cup W_{1} \cup \cdots \cup W_{k}$ and the set of non-terminals will consist of all sets of non-terminals N_{i}, in addition to another set X; that is, $N=\left(\bigcup_{i} N_{i}\right) \cup X$. We proceed in describing each of these terminal and non-terminal components in detail.

- The set T^{\prime} consists of $3 k$ vertices $\left\{u_{1}, \ldots, u_{3 k}\right\}$. These are connected to the nonterminals in N_{i}, $1 \leq i \leq t^{d}$, in a way that matches the adjacency between the terminals and non-terminals in G_{i}. That is, $\left\{u_{\alpha}, v_{\beta}^{i}\right\} \in E(G) \Longleftrightarrow\left\{u_{\alpha}^{i}, v_{\beta}^{i}\right\} \in E\left(G_{i}\right)$.
- For each $i \in\left\{1, \ldots, t^{d}\right\}$, we assign to N_{i} a unique identifier $\mathrm{ID}_{i} \subseteq\{1, \ldots, t+d\}$ with $\left|\mathrm{ID}_{i}\right|=d$. This is possible since $\binom{t+d}{d}>t^{d}$.
- The set X of non-terminals consists of $t+d$ vertices, and we write $X=\left\{x_{1}, \ldots, x_{t+d}\right\}$.
- For each $j \in\{1, \ldots, k\}$, the set W_{j} consists of $t+d$ vertices, and we write $W_{j}=\left\{w_{1}^{j}, \ldots, w_{t+d}^{j}\right\}$.
- For each $i \in\left\{1, \ldots, t^{d}\right\}$ and $j \in\{1, \ldots, k\}$, we add edges between the edges between the nonterminal component N_{i} and the terminal component W_{j} as follows: For each vertex $v \in N_{i}$ with $\operatorname{col}_{i}(v)=j$, we connect v to all vertices in W_{j} that have indices belonging to ID_{i}; that is, we add the edge $\left\{v, w_{\ell}^{j}\right\}$ to $E(G)$ for all $\ell \in \mathbb{D}_{i}$.
- For each $\ell \in\{1, \ldots, t+d\}$ and $j \in\{1, \ldots, k\}$, add the edge $\left\{x_{i}, w_{\ell}^{j}\right\}$ to $E(G)$.
- Set $k^{\prime}=k+t$.

This completes the construction of the first stage (see Fig. 1). It is clear that it can be carried out in polynomial time. The general idea is that the selection of t vertices from X encodes an the selection of an ID which uniquely identifies some non-terminal component N_{i}. The terminal sets W_{1}, \ldots, W_{k} then enforce that the remainder k vertices of the solution will be selected from only from N_{i}. The next lemma makes this more precise, and proves the correctness of the first step of our construction.

Fig. 1. A graphical description of the construction in the first step. The white boxes represent components of terminal vertices, the gray boxes represent components of non-terminal vertices.

Lemma 5. $\left(G, k^{\prime}\right) \in \operatorname{BPC} \Longleftrightarrow\left(G_{i}, k\right) \in$ CoL-3-BRPC for some $i \in\left\{1, \ldots, t^{d}\right\}$.
Proof. (\Leftarrow) This is the easy direction. Suppose $\left(G_{i}, k\right) \in$ Col-3-BRPC for some $i \in\left\{1, \ldots, t^{d}\right\}$, and let $N_{i}^{\prime} \subseteq N_{i}$ be a solution of size k. We take $N^{\prime}=\left\{v_{j} \in N: v_{j}^{i} \in N_{i}^{\prime}\right\}$ and $X^{\prime}=\left\{x_{j} \in X: j \in \overline{\mathrm{ID}_{i}}\right\}$ to be our solution for $\left(G, k^{\prime}\right)$, where $\overline{\mathrm{ID}_{i}}=\{1, \ldots, t+d\} \backslash \overline{\mathrm{ID}}$. Observe that $\left|N^{\prime} \cup X^{\prime}\right|=k+t=k^{\prime}$. Furthermore, each vertex in T^{\prime} is dominated by exactly one vertex in N^{\prime}, by definition of N_{i}^{\prime} and by our construction. Also, for each $j \in\{1, \ldots, k\}$, a vertex w_{ℓ}^{j} is dominated by exactly one vertex in N^{\prime} in case $\ell \in \mathrm{ID}_{i}$ (the vertex corresponding to the vertex in N_{i}^{\prime} with color j), and dominated by exactly one vertex in X^{\prime} if $\ell \notin \mathrm{ID}_{i}$.
(\Rightarrow) This is the more interesting direction. Let S denote a solution for $\left(G, k^{\prime}\right)$ with $|S|=k^{\prime}=k+$ t. The first observation is that, because the terminal component T^{\prime} is only connected to $N_{1}, \ldots, N_{t^{d}}$ but not to X, and has size exactly $3 k$, any solution for $\left(G, k^{\prime}\right)$ has to pick exactly k vertices from $N_{1}, \ldots, N_{t^{d}}$. This implies that S contains precisely t vertices from X, since $k^{\prime}=k+t$. Let $X^{\prime} \subseteq S \cap X$
denote this set of t vertices, and let $N^{\prime}=S \backslash X^{\prime}$. Since $\left|X^{\prime}\right|=t$, we know that N^{\prime} includes vertices from k different colors (in their CoL-3-BRPC instances), because if color $j \in\{1, \ldots, k\}$ is not present, some vertices in W_{j} will not be dominated. Write $\overline{\mathrm{ID}}=\left\{\ell \in\{1, \ldots, t+d\}: x_{\ell} \in X^{\prime}\right\}$, and let $\mathrm{ID}=\{1, \ldots, t+d\} \backslash \overline{\mathrm{ID}}$. Observe that $|\overline{\mathrm{ID}}|=t$ and $|\mathrm{ID}|=d$.

We argue that ID must equal some ID_{i} for some $i \in\left\{1, \ldots, t^{d}\right\}$. To see this, assume for contradiction that $\mathrm{ID} \neq \mathrm{ID}_{i}$ for all $i \in\left\{1, \ldots, t^{d}\right\}$. Consider a vertex $v \in N^{\prime}$, and suppose $v \in N_{i}$. Let $j=\operatorname{col}_{i}(v)$. Recall that the set of neighbors of v in W_{j} is precisely $\left\{w_{\ell}^{j} \in W_{j}: \ell \in \mathrm{ID}_{i}\right\}$. Now as $\mathrm{ID} \neq \mathrm{ID}_{i}$, it must be that $\overline{\mathrm{ID}} \cup \mathrm{ID}_{i} \neq\{1, \ldots, t+d\}$; that is, there is some $\ell^{*} \in\{1, \ldots, t+d\} \backslash\left(\overline{\mathrm{ID}} \cup \mathrm{ID}_{i}\right)$. But then, by our construction, S does not dominate $w_{\ell^{*}}^{j}$, a contradiction.

Thus $\mathrm{ID}=\mathrm{ID}_{i}$ for some $i \in\left\{1, \ldots, t^{d}\right\}$. We argue next that $N^{\prime} \subseteq N_{i}$. Assume for contradiction that this is not the case; that is, there is some $v \in N^{\prime} \cap N_{i^{*}}$ for $i^{*} \neq i$. Let $j=c o l_{i^{*}}(v)$. The set of neighbors of v in W_{j} is $\left\{w_{\ell}^{j} \in W_{j}: \ell \in \mathrm{ID}_{i^{*}}\right\}$. Since $\mathrm{ID}=\mathrm{ID}_{i} \neq \mathrm{ID}_{i^{*}}$, there is some $\ell^{*} \in\{1, \ldots, t+d\} \backslash\left(\overline{\mathrm{ID}} \cup \mathrm{ID}_{i^{*}}\right)$, and S does not dominate $w_{\ell^{*}}^{j}$. We have therefore established that $N^{\prime} \subseteq N_{i}$. Since N^{\prime} dominates all vertices in T^{\prime}, and $\left|N^{\prime}\right|=k$, it follows that N^{\prime} is also a solution for $\left(G_{i}, k\right)$. Thus, $\left(G_{i}, k\right) \in$ Col-3-BRPC, and the lemma follows.

3.2 Second step of the composition

We next alter the output instance $\left(G, k^{\prime}\right)=\left((N \uplus T, E), k^{\prime}\right)$ of the composition algorithm in the previous section so that it becomes an instance of $(d+3)$-BRPC. That is, we create an instance $\left(G^{*}, k^{*}\right)=\left(\left(N^{*} \uplus T^{*}, E^{*}\right), k^{*}\right)$ where all non-terminal vertices in N^{*} have degree $d+3$, and $\left(G^{*}, k^{*}\right) \in$ $(d+3)$-BRPC $\Longleftrightarrow\left(G, k^{\prime}\right) \in \mathrm{BPC}$. Initially we will start with $G^{*}=G$, and then we modify G^{*} so that it fits our requirements. Note that we require all non-terminals in N^{*} to have degree exactly $d+3$, and not merely a degree bounded by $d+3$. This actually introduces some complications, but will prove useful in showing our other kernelization lower-bounds in Section 4 .

Recall that the set of non-terminals in the BPC instance of the previous section is composed of several components, i.e. $N=\left(\bigcup_{i \in\left\{1, \ldots, t^{d}\right\}} N_{i}\right) \cup X$. Observe that the degree of each non-terminal vertex $v \in \bigcup_{i} N_{i}$ is precisely $d+3$, and that the degree of each non-terminal vertex $x \in X$ is precisely k. Thus, we only need to fix the degree of vertices in $X=\left\{x_{1}, \ldots, x_{t+d}\right\}$. The goal of these vertices is to encode the selection of an ID which identifies some non-terminal component N_{i}. This ID is then verified in the k different terminal components W_{1}, \ldots, W_{k}. For this reason, the naive approach of splitting the vertices in X to vertices of bounded degree might result in the selection of k different IDs. In the following we introduce an equality gadget that enforces the selection k IDs which are actually the same.

Let $\ell \in\{1, \ldots, t+d\}$, and consider $x_{\ell} \in X$. Recall that we assume that $k \equiv 0(\bmod d+3)$. We replace x_{ℓ} with k vertices $x_{1}^{\ell}, \ldots, x_{k}^{\ell}$ in N^{*}, and we add the edges $\left\{x_{j}^{\ell}, w_{\ell}^{j}\right\}$ to E^{*}. We then add to N^{*} a set of additional non-terminals $\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\}$. Each one of these new non-terminal vertices will be connected to a distinct set of $d+2$ new terminal vertices. This gives us $k-1$ disjoint sets of new terminals, $Z_{1}^{\ell}, \ldots, Z_{k-1}^{\ell}$, with $\left|Z_{j}^{\ell}\right|=d+2$. Now we connect x_{j}^{ℓ} to the first 2 vertices of Z_{j}^{ℓ}, and the last d vertices of Z_{j-1}^{ℓ}, for all $j \in\{2, \ldots, k-1\}$. We also connect x_{1}^{ℓ} to the first 2 vertices of Z_{1}^{ℓ}, and x_{k}^{ℓ} to the last d vertices of Z_{k-1}^{ℓ}. (See Fig. 2 for a graphical depiction of this construction.)

Note that all for each $\ell \in\{1, \ldots, t+d\}$, the non-terminal vertices $\left\{x_{2}^{\ell}, \ldots, x_{k-1}^{\ell}\right\}$ have degree $d+3$ as required. Vertex x_{1}^{ℓ} has degree $3, x_{k}^{\ell}$ has degree $d+1$, and all non-terminals $\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\}$ have degree $d+2$. We next add some additional terminals so that all non-terminals have degree $d+3$. First we add a new set of terminals Z_{k}^{ℓ} of size $d+2$. We connect x_{1}^{ℓ} to the first d terminals of this set, and x_{k}^{ℓ} to the last 2 terminals. We also connect the non-terminals $y_{1}^{\ell}, \ldots, y_{d+2}^{\ell}$ to Z_{k}^{ℓ} by a perfect matching. This fixes the degree of $x_{1}^{\ell}, x_{k}^{\ell}$, and $\left\{y_{1}^{\ell}, \ldots, y_{d+2}^{\ell}\right\}$. To fix the remaining

Fig. 2. A graphical description of the main part of the equality gadget used to replace x_{ℓ}.
non-terminals, we add $p=(k-d-3) /(d+3)$ new disjoint sets of terminals, $Z_{k+1}^{\ell}, \ldots, Z_{k+p}^{\ell}$, each of size $d+3$. Note that p is in fact an integer since we assume $k>d$ and $k \equiv 0(\bmod d+3)$. We then add p new non-terminal vertices, $x_{k+1}^{\ell}, \ldots, x_{k+p}^{\ell}$, and connect x_{k+i}^{ℓ} to all vertices in Z_{k+i}^{ℓ}, for $i \in\{1, \ldots, p\}$. Finally, we group the the non-terminals $\left\{y_{d+3}^{\ell}, \ldots, y_{k-1}^{\ell}\right\}$ into p groups of size $d+3$ each, and connect group $i, 1 \leq i \leq p$, to Z_{k+i}^{ℓ} by a perfect matching.

We do the above for each $\ell \in\{1, \ldots, t+d\}$. This gives us our graph $G^{*}=\left(N^{*} \uplus T^{*}, E^{*}\right)$. It is easy to see that all non-terminals in G^{*} have degree $d+3$, and that constructing G^{*} can be done in polynomial-time. Observe that the size of $\bigcup_{\ell \in\{1, \ldots, t+d\}}\left(\left\{w_{\ell}^{1}, \ldots, w_{\ell}^{k}\right\} \cup \bigcup_{i \in\{1, \ldots, k+p\}} Z_{i}^{\ell}\right)$ or equivalently the total number of terminal vertices except those in T^{\prime}, is:

$$
\begin{aligned}
(t+d)(k+(d+2) k+(d+3) p) & =(t+d)((d+3) k+(d+3) p) \\
& =(t+d)(d+3)(k+p) .
\end{aligned}
$$

To conclude our construction we set $k^{*}=k+t(k+p)+d(k-1)$. The next two lemmas prove the correctness of our construction.

Lemma 6. Let $S \subseteq N^{*}$ be any solution for $\left(G^{*}, k^{*}\right)$. For each $\ell \in\{1, \ldots, t+d\}$, exactly one of the following cases occur:

$$
\begin{aligned}
& -\left\{x_{1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \subseteq S \text { and }\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\} \cap S=\emptyset . \\
& -\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\} \subseteq S \text { and }\left\{x_{1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \cap S=\emptyset .
\end{aligned}
$$

Proof. Let $\ell \in\{1, \ldots, t+d\}$, and consider some $i \in\{1, \ldots, k-1\}$. Clearly, either $x_{i}^{\ell}, x_{i+1}^{\ell} \in S$ or $y_{i}^{\ell} \in S$, since otherwise S would not dominate the terminals in Z_{i}^{ℓ}. Furthermore, if $\left\{x_{i}^{\ell}, y_{i}^{\ell}, x_{i+1}^{\ell}\right\} \subseteq S$ then vertices of Z_{i}^{ℓ} would have two neighbors in S, contradicting the fact that S is indeed a solution. From this it follows that either
$-\left\{x_{1}^{\ell}, \ldots, x_{k}^{\ell}\right\} \subseteq S$ and $\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\} \cap S=\emptyset$.
$-\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\} \subseteq S$ and $\left\{x_{1}^{\ell}, \ldots, x_{k}^{\ell}\right\} \cap S=\emptyset$.
Furthermore, in the latter case, we must have that $\left\{x_{k+1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \cap S=\emptyset$ since otherwise some of the terminals in $Z_{k}^{\ell}, \ldots, Z_{k+p}^{\ell}$ would have more than one neighbor in S. In the former case, we
it must be that $\left\{x_{k+1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \subseteq S$ since otherwise some of the terminals in $Z_{k}^{\ell}, \ldots, Z_{k+p}^{\ell}$ would not be dominated by any vertex in S. The lemma follows.

Lemma 7. $\left(G, k^{\prime}\right) \in \mathrm{BPC} \Longleftrightarrow\left(G^{*}, k^{*}\right) \in(d+3)$-BRPC.
Proof. (\Rightarrow) Suppose S is a solution for $\left(G, k^{\prime}\right)$. Then as argued in Lemma $5, S$ consists of a subset k vertices $N^{\prime} \subseteq N_{i}$, for some $i \in\left\{1, \ldots, t^{d}\right\}$, and a subset of t vertices $X^{\prime} \subseteq X$. It is not difficult to verify that

$$
S^{*}=N^{\prime} \cup\left\{x_{1}^{\ell}, \ldots, x_{k+p}^{\ell}: x_{\ell} \in X^{\prime}\right\} \cup\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}: x_{\ell} \notin X^{\prime}\right\}
$$

is a solution for $\left(G^{*}, k^{*}\right)$.
(\Leftarrow) Assume that S^{*} is a solution for $\left(G^{*}, k^{*}\right)$, and let $N^{\prime}=S^{*} \cap\left(\bigcup_{i \in\left\{1, \ldots, t^{d}\right\}} N_{i}\right)$ and $S^{\prime}=S^{*} \backslash N^{\prime}$. Since $\left|T^{\prime}\right|=k d$ and the degree of each non-terminal vertex is d, we must have $\left|N^{\prime}\right|=k$, which implies that $\left|S^{\prime}\right|=k^{*}-k=t(k+p)+d(k-1)$. Observe that for any vertex $v \in \bigcup_{i \in\left\{1, \ldots, t^{d}\right\}} N_{i}$, its number of neighbors in $\bigcup_{j \in\{1, \ldots k\}} W_{j}$ is precisely d, hence N^{\prime} can dominate at most $k d$ vertices in $\bigcup_{j \in\{1, \ldots k\}} W_{j}$. Therefore the number of terminal vertices S^{\prime} dominates is at least $(t+d)(d+3)(k+p)-k d$.

By Lemma 6, we get that for each $\ell \in\{1, \ldots, t+d\}$, either $\left\{x_{1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \subseteq S^{\prime}$ or $\left\{y_{1}^{\ell}, \ldots, y_{k-1}^{\ell}\right\} \subseteq S^{\prime}$, and if one set is contained in S^{\prime}, the other must be completely disjoint from S^{\prime}. Let $\overline{\mathrm{ID}}=\left\{\ell:\left\{x_{1}^{\ell}, \ldots, x_{k+p}^{\ell}\right\} \subseteq S^{\prime}\right\}$. Observe that if $\ell \in \overline{\mathrm{ID}}$, then all the terminals in $\left\{w_{\ell}^{1}, \ldots, w_{\ell}^{k}\right\}$ are dominated, and otherwise none of them are dominated. Let $k_{1}=\left|\left\{w_{\ell}^{1}, \ldots, w_{\ell}^{k}\right\} \cup\left(\cup_{i \in\{1, \ldots, k+p\}} Z_{i}^{\ell}\right)\right|=$ $k+(d+2) k+(d+3) p$ and $k_{2}=\left|\bigcup_{i \in\{1, \ldots, k+p\}} Z_{i}^{\ell}\right|=(d+2) k+(d+3) p$. We have:

$$
\begin{aligned}
k_{1}|\overline{\mathrm{D}}|+k_{2}(t+d-|\overline{\mathrm{D}}|) & =k|\overline{\mid \overline{\mathrm{D}}}|+((d+2) k+(d+3) p)(t+d) \\
& =k|\overline{\mathrm{D}}|+((d+3)(k+p)-k)(t+d) \\
& =k|\overline{\mathrm{D}}|+(t+d)(d+3)(k+p)-(t+d) k .
\end{aligned}
$$

This number must be at least $(t+d)(d+3)(k+p)-k d$, which means that $|\overline{\mathrm{D}}| \geq t$.
We next argue that $|\overline{\mathrm{ID}}| \leq t$. Assume for the sake of contradiction that this is not the case, then by construction, for some subset $H \subseteq\{1, \ldots, t+d\}$ of size at least $(t+1)$, we dominate $\left\{w_{\ell}^{j}: \ell \in H\right\}$ for $j=1, \ldots, k$. Consider any vertex $v \in N^{\prime}$, and suppose it connects to W_{j} for some $j \in\{1, \ldots, k\}$. The number of neighbors v has in $\left\{w_{1}^{j}, \ldots, w_{t+d}^{j}\right\}$ is d, and so some terminal in $\left\{w_{1}^{q}, \ldots, w_{t+d}^{q}\right\}$ must be dominated twice, a contradiction. It follows that $|\overline{\mathrm{ID}}|=t$, and so $S^{\prime}=N \cup\left\{x_{\ell}: \ell \in \overline{\mathrm{ID}}\right\}$ is a solution for $\left(G, k^{\prime}\right)$.

3.3 Proof of Theorem 1

We are now in position to complete the proof of Theorem 1. We begin with the following lemma.
Lemma 8. Let d be a fixed positive integer. The CoL-3-BRPC problem restricted to the case where the solution size k satisfies $k \equiv 0(\bmod d)$ is NP-hard.

Proof. We first show that 3 -BRPC is NP-hard even when restricted to the case with $k \equiv 0$ $(\bmod d)$. This is done by a reduction from the 3-Dimensional Matching problem which is well known to be NP-complete [16]. In 3-Dimensional Matching, we are given 3 disjoint sets A, B, and C, each of size k, and a set $M \subseteq A \times B \times C$. The question is whether there exists a subset $M^{\prime} \subseteq M$ of size k which is pairwise disjoint. By padding k until $k \equiv 0(\bmod d)$ and padding M, we have that 3-Dimensional Matching restricted to the case that $k \equiv 0(\bmod d)$ is NP-complete.

3-Dimensional Matching can easily be reduced to 3-BRPC problem by letting $A \cup B \cup C$ be the set of terminals, and each set $S \in M$ be the neighborhood of a nonterminal vertex. Using next the reduction in Dom et al. [11] from 3-BRPC to Col-3-BRPC that preserves the solution size completes the proof of the lemma.

Proof (of Theorem 1). Let $d^{\prime}=d+3$, and let $t^{\prime}=t^{d}=t^{d^{\prime}-3}$. The composition algorithm presented above composes t^{\prime} Col-3-BRPC instances with parameter k such that $k \equiv 0\left(\bmod d^{\prime}\right)$ to a d^{\prime} BRPC instance with parameter $k^{*}=O(k t)=O\left(t^{\prime 1 / d^{\prime}-3} k\right)$. Thus, our composition is in fact a weak $\left(d^{\prime}-3\right)$-composition from Col-3-BRPC to d^{\prime}-BRPC. Since CoL-3-BRPC is NP-hard even when $k \equiv 0\left(\bmod d^{\prime}\right)($ Lemma 8), applying Lemma 3 shows that d-BRPC has no kernel of size $O\left(k^{d-3-\varepsilon}\right)$, for any $\varepsilon>0$, unless coNP $\subseteq \mathrm{NP} /$ poly.

4 Applications

In this section derive polynomial lower bounds for several problems using our lower bound for d-BRPC and linear parameter transformations discussed in Section 2.3. Some of the reductions appearing in this section appeared also in [11].

4.1 Set-theoretic problems

The d-Set Packing takes as input a set system (U, \mathcal{F}) with each set in \mathcal{F} having cardinality d, and a parameter k, and the goal is to determine whether there are k pairwise disjoint subsets in \mathcal{F}. The $d-$ Set Cover problem takes the same input as d-Set Packing, and the goal is to determine whether there exists a subfamily of \mathcal{F} with at most k sets whose union is U. If these sets are required to be pairwise disjoint, then the problem is known as d-Exact Set Cover. The Hitting Set with d-Bounded Occurrences problem takes as input a set system (U, \mathcal{F}) such that each element $u \in U$ appears in d sets of \mathcal{F}, and a parameter k, and the goal is to find a subset of U of size k that has non-empty intersection with each set in \mathcal{F}. When the size of this intersection is required to be precisely 1, we get the Exact Hitting Set with d-Bounded Occurrences problem. Observe that all these problems have a trivial kernel of size $\binom{k d}{d}=O\left(k^{d}\right)$ by removing identical sets. The following theorem shows that trivial kernelization cannot be substantially improved.

Theorem 2. Unless coNP \subseteq NP/poly, d-Set Packing, d-Set Cover, d-Exact Set Cover, Hitting Set with d-Bounded Occurrences, and Exact Hitting Set with d-Bounded Occurrences have no kernels of size $O\left(k^{d-3-\varepsilon}\right)$ for any $\varepsilon>0$.

Proof. We present a linear parametric transformation from d-BRPC to all of the problems mentioned in the theorem. The theorem will then follow from Theorem 1 and Lemma 4

Given a d-BRPC instance (G, k) with $G=(N \uplus T, E)$ and $|T|=k d$ terminals, we construct a d-Set Packing instance (U, \mathcal{F}, k) as follows. We let our universe U be $U=T$. For each nonterminal $v \in N$, construct set $S_{v}=N(v)$ in \mathcal{F}, where $N(v)$ is the neighbors of v in T. Obviously each set in the family has cardinality d, and every solution for (G, k) one to one corresponds to a solution for (U, \mathcal{F}, k). Thus, d-BRPC $\leq_{l p t} d$-Set Packing.

Note that any solution for the d-Set Packing instance (U, \mathcal{F}, k) constructed above is also a solution for d-Exact Set Cover with the same instance. This is because each set in \mathcal{F} is of cardinality d and $|U|=k d$. Thus, and k pairwise disjoint sets in \mathcal{F} must cover U. We therefore have d-BRPC $\leq_{l p t} d$-Еxact Set Cover, and since d-Exact Set Cover is special case of d-Set Cover, we also have d-BRPC $\leq_{l p t} d$-Set Cover. Finally, using the well-known reduction (which
can be viewed as linear parametric transformation) from d-Exact Set Cover to Exact Hitting Set with d-Bounded Occurrences, we get that d-BRPC $\leq_{l p t}$ Exact Hitting Set with d Bounded Occurrences and d-BRPC $\leq_{l p t}$ Hitting Set with d-Bounded Occurrences.

4.2 Graph-theoretic problems

In the d-Red-Blue Dominating Set problem, the input is a bipartite graph $G=(N \uplus T, E)$ with the degree of every vertex $v \in N$ at most d, and a parameter k. The goal is to determine whether there exists a subset $N^{\prime} \subseteq N$ of size at most k so that every vertex in T has at least one neighbor in N^{\prime}. Again, d-Red-Blue Dominating Set has a simple kernel of size $O\left(k^{d}\right)$ by assuring that each vertex in N has a unique set of neighbors in T. The d-Steiner Tree takes the same input but we are asked whether there is a subset $N^{\prime} \subseteq N$ of size at most k such that $G\left[T \cup N^{\prime}\right]$ is connected.
Theorem 3. Unless coNP $\subseteq \mathrm{NP} /$ poly, d-Red-Blue Dominating Set and d-Steiner Tree have no kernels of sizes $O\left(k^{d-3-\varepsilon}\right)$ and $O\left(k^{d-4-\varepsilon}\right)$, respectively, for any $\varepsilon>0$.
Proof. Observe that d-BRPC is a special case of d-Red-Blue Dominating Set, and so d-BRPC $\leq_{l p t} d$-Red-Blue Dominating Set. For the transformation from ($d-1$)-BRPC to d-Steiner Tree, we take an instance $((N \uplus T, E), k)$ of $(d-1)$-BRPC and create an instance $\left(\left(N^{\prime} \uplus T^{\prime}, E^{\prime}\right) k\right)$ of d-Steiner Tree by adding a new vertex \hat{u} and setting $N^{\prime}=N, T^{\prime}=T \cup\{\hat{u}\}$, and $E^{\prime}=$ $E \cup\{\{\hat{u}, v\}: v \in N\}$. Clearly this is a d-Steiner Tree instance since all vertices in N have degree d. It is easy to see that any solution for the $(d-1)$-BRPC one-to-one corresponds to a solution for the d-Steiner Tree instance, and so $(d-1)$-BRPC $\leq_{l p t} d$-Steiner Tree. Applying Theorem 1 and Lemma 4, the proof follows.

Let us next consider two graph packing problems. In the K_{d} Packing problem we are given graph G and a parameter k, and the question is whether G contains at least k vertex-disjoint cliques of size d. This problem has a kernel of size $O\left(k^{d}\right)$ due to [13]. The Induced $K_{1, d}$ Packing takes the same input but asks whether there are k pairwise disjoint subset of vertices, each inducing a d-star in G.

Theorem 4. Unless coNP \subseteq NP/poly, K_{d} Packing and Induced $K_{1, d}$ Packing have no kernels of size $O\left(k^{d-4-\varepsilon}\right)$ for any $\varepsilon>0$.
Proof. Let (G, k) be an instance of $(d-1)$-BRPC instance with $G=(N \uplus T, E)$ and $|T|=k(d-1)$. We transform (G, k) to an instance of K_{d} Packing by connecting every pair of vertices in T to make it a clique. Let the resulting graph be G^{\prime}. Clearly a solution for (G, k) of size k corresponds to a packing of k vertex-disjoint d-cliques. In the other direction, observe that the non-terminal component N is an independent set, therefore at most k non-terminals can appear in the clique packing. Further, k vertex-disjoint d-cliques require $k d$ vertices but $|T|=k(d-1)$, hence we have to pick k vertices from N, with each of them in a different clique. Thus every k vertex-disjoint cliques of size d in G^{\prime} corresponds to a perfect code in (G, k).

To reduce $(d-1)$-BRPC to Induced $K_{1, d}$ Packing, first we add a set of k new nonterminal vertices, $X=\left\{x_{1}, \ldots, x_{k}\right\}$. Then we make $N \cup X$ a clique by connecting every pair of nonterminal vertices. Let the resulting instance be G^{\prime}. Observe that X is only connected to nonterminal vertices. It is now straightforward to check that the k star-centers must come from N. Consider any of these centers, say $v \in N$. We argue that in the d-star centered at $v,(d-1)$ star petals come from T and the remaining one comes from $N \cup X$. Indeed because $G^{\prime}[N \cup X]$ is clique, we cannot pick $u, w \in N$ into the star because this gives a triangle, contradicted with requirement that every star must be an induced subgraph. Now because the number of neighbors of any vertex of N in T is exactly $(d-1)$, it is clear every k vertex-disjoint $\mathrm{K}_{1, d}$ in G^{\prime} corresponds to a perfect code in (G, k).

5 Conclusion

In this paper we introduced a new type of composition called weak composition that allows proving polynomial kernelization lower-bounds, as opposed to the super-polynomial lower-bounds given by the previously known compositions. Using weak compositions, we showed new kernelization lowerbounds for several natural parameterized problems such as d-Set Packing, d-Set Cover, and K_{d} Packing. We believe weak compositions could be used to obtain further new lower-bounds.

There are many interesting directions for future research that stem from our work. The most important one is to close the gap between the upper and lower bounds for the kernel sizes of the problems we discussed. Recently we have learned that, independent of our work, Holger Dell and Dániel Marx have made some progress on this issue.

Acknowledgments

We would like to thank Karl Bringmann and Karolina Soltys for fruitful discussions. In particular, Karl provided several insights regarding the main composition algorithm presented in Section 3 .

References

1. Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for dominating set. Journal of the ACM, 51(3):363-384, 2004.
2. Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-SAT above a tight lower bound. In Proc. of the 21st annual ACM-SIAM Symposium On Discrete Algorithms (SODA), pages 511-517, 2010.
3. Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc. of the 4th International Workshop on Parameterized and Exact Computation (IWPEC), pages 17-37, 2009.
4. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423-434, 2009.
5. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. (Meta) kernelization. In Proc. of the 50th annual IEEE symposium on Foundations Of Computer Science (FOCS), pages 629-638, 2009.
6. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new technique for kernelization lower bounds. In Proc. of the 28th international Symposium on Theoretical Aspects of Computer Science (STACS), pages 165-176, 2011.
7. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. In Proc. of the 17th annual European Symposium on Algorithms (ESA), pages 635-646, 2009.
8. Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of paramterized tractability. Annals of Pure and Applied Logic, 84(1):119-138, 1997.
9. Yijia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernelizations and other preprocessing procedures. Theory of Computing Systems, 48(4):803-839, 2011.
10. Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomialtime hierarchy collapses. In Proc. of the 42th annual ACM Symposium on Theory Of Computing (STOC), pages 251-260, 2010.
11. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and IDs. In Proc. of the 36th International Colloquium on Automata, Languages and Programming (ICALP), pages 378-389, 2009.
12. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
13. Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Ulrike Stege, Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter tractable algorithms for matching and packing problems. Algorithmica, 52(2):167-176, 2008.
14. Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket Saurabh, and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves. In Proc. of the 26th international Symposium on Theoretical Aspects of Computer Science (STACS), pages 421-432, 2009.
15. Lance Fortnow and Raul Santhanam. Infeasibility of instance compression and succinct PCPs for NP. In Proc. of the 40th annual ACM Symposium on Theory Of Computing (STOC), pages 133-142, 2008.
16. Michael R. Garey and David S. Johnson. Computers and intractability : A guide to the theory of NP-completeness. W.H. Freeman, 1979.
17. Sylvain Guillemot, Christophe Paul, and Anthony Perez. On the (non-)existence of polynomial kernels for P_{l}-free edge modification problems. In Proc. of the 5th International symposium on Parameterized and Exact Computation (IPEC), pages 147-157, 2010.
18. Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News, 38(1):31-45, 2007.
19. Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic applications. SIAM Journal on Computing, 39(5):1667-1713, 2010.
20. Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized complexity and kernelizability of max ones and exact ones problems. In Proc. of the 35th international symposium on Mathematical Foundations of Computer Science (MFCS), pages 489-500, 2010.
21. Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. In Proc. of the 4th International Workshop on Parameterized and Exact Computation (IWPEC), pages 264-275, 2009.
22. Stefan Kratsch and Magnus Wahlström. Preprocessing of min ones problems: A dichotomy. In Proc. of the 37th International Colloquium on Automata, Languages and Programming (ICALP), pages 653-665, 2010.
23. George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and algorithms. Mathematical Programming, 8(2):232-248, 1975.
24. Stéphan Thomassé. A $4 k^{2}$ kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2), 2010.
