
Weak Compositions and Their Applications to
Polynomial Lower Bounds for Kernelization

Danny Hermelin
Max Plank Institute for Informatics, Germany

hermelin@mpi-inf.mpg.de

Xi Wu†
University of Wisconsin-Madison, USA

xi4@wisc.edu

Abstract. We introduce a new form of composition called weak composition that allows us to obtain
polynomial kernelization lower-bounds for several natural parameterized problems. Let d ≥ 2 be some
constant and let L1, L2 ⊆ {0, 1}∗ × N be two parameterized problems where the unparameterized
version of L1 is NP-hard. Assuming coNP 6⊆ NP/poly, our framework essentially states that composing
t L1-instances each with parameter k, to an L2-instance with parameter k′ ≤ t1/dkO(1), implies that
L2 does not have a kernel of size O(kd−ε) for any ε > 0. We show two examples of weak composition
and derive polynomial kernelization lower bounds for d-Bipartite Regular Perfect Code and d-
Dimensional Matching, parameterized by the solution size k. By reduction, using linear parameter
transformations, we then derive the following lower-bounds for kernel sizes when the parameter is the
solution size k (assuming coNP 6⊆ NP/poly):

– d-Set Packing, d-Set Cover, d-Exact Set Cover, Hitting Set with d-Bounded Oc-
currences, and Exact Hitting Set with d-Bounded Occurrences have no kernels of size
O(kd−3−ε) for any ε > 0.

– Kd Packing and Induced K1,d Packing have no kernels of size O(kd−4−ε) for any ε > 0.
– d-Red-Blue Dominating Set and d-Steiner Tree have no kernels of sizes O(kd−3−ε) and
O(kd−4−ε), respectively, for any ε > 0.

Our results give a negative answer to an open question raised by Dom, Lokshtanov, and
Saurabh [ICALP2009] regarding the existence of uniform polynomial kernels for the problems above.
All our lower bounds transfer automatically to compression lower bounds, a notion defined by Harnik
and Naor [SICOMP2010] to study the compressibility of NP instances with cryptographic applications.
We believe weak composition can be used to obtain polynomial kernelization lower bounds for other
interesting parameterized problems.
In the last part of the paper we strengthen previously known super-polynomial kernelization lower

bounds to super-quasi-polynomial lower bounds, by showing that quasi-polynomial kernels for com-
positional NP-hard parameterized problems implies the collapse of the exponential hierarchy. These
bounds hold even the kernelization algorithms are allowed to run in quasi-polynomial time.

†Work done during the research visit at MPII.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 72 (2011)

mailto:hermelin@mpi-inf.mpg.de
mailto:xi4@wisc.edu

1

1 Introduction

In parameterized complexity [12], a kernelization algorithm for a parameterized problem L ⊆
{0, 1}∗ ×N is a polynomial time algorithm that transforms a given instance (x, k) ∈ {0, 1}∗ ×N to
an instance (x′, k′) ∈ {0, 1}∗ × N such that:

– (x, k) ∈ L ⇐⇒ (x′, k′) ∈ L, and
– |x′|+ k′ ≤ f(k) for some arbitrary function f .

In other words, a kernelization algorithm (or kernel) is a polynomial-time reduction from a prob-
lem onto itself that compresses the problem instance to a size depending only on the parameter.
Appropriately, the function f above is called the size of the kernel. It is customary in many cases
to not insist on the kernelization to be a reduction from a problem onto itself, but rather to allow
the reduction to be between two different problems. This has been referred to as bikernelization
in [2]. In this present paper, we will not distinguish between the two notions.

Kernelization is the central technique in parameterized complexity. Not only is it one of the
most successful techniques for showing that a problem is fixed-parameter tractable, it also provides
an equivalent way of defining fixed-parameter tractability: a parameterized problem is solvable in
f(k)·nO(1) time iff it has a kernel [8]. Furthermore, kernelization gives the only known mathematical
framework for studying and analyzing the ancient and ubiquitous technique of preprocessing (data
reduction). For these reasons, kernelization has become a research topic in its own right, with many
papers on the topic appearing each year, and an annual international workshop devoted entirely
to it. Notable success stories include the linear kernels for Vertex Cover [23] and Planar
Dominating Set [1], a quadratic kernel for Feedback Vertex Set [25], and the meta-theorems
for kernelization on bounded genus graphs [5] (see also the surveys in [3,18]).

Recently, there has been an effort in developing tools that allow showing lower-bounds for
kernel sizes. This started with the work of Bodlaender et al. [4] which developed a machinery
for showing evidence for the non-existence of polynomial size kernels. The key component of this
machinery is the notion of a composition algorithm for parameterized problems. Roughly speaking,
a composition algorithm for a parameterized problem L takes as input a sequence of instances of
L, each with the same parameter value k, and outputs an instance of L with parameter bounded
by kO(1) such that the output is a yes-instance of L iff one of the inputs is also a yes-instance.
Using a lemma by Fortnow and Santhanam [15], this machinery was used to show that problems
such as Path and Clique parameterized by treewidth do not have a polynomial-size kernels unless
coNP ⊆ NP/poly [4].

Extensions of the framework in [4] were not late to appear. Chen, Flum, and Müller [9] extended
this framework to allow exclusion of kernelizations with sizes that are sublinear in the original input
size, i.e. kernelizations of size kO(1) · |x|1−ε. Following this, several new lower-bounds for kernel sizes
were obtained using appropriately defined reductions called polynomial parameter transformations.
These reductions were used to show that problems such as Leaf Out Branching [14] and Dis-
joint Cycles [7] do not have polynomial size kerels. Polynomial parameter transformations have
since been used extensively, e.g. in [17,21]. Recently, Bodlaender et al. [6] extended the kernelization
lower bounds machinery in a new direction by introducing the notion of so-called cross composition.

Dom et al. [11] took the notion of polynomial parameter transformations a step further and
developed a general schema for combining these with compositions. Their schema first transforms
the given problem to a colored variant, and then uses this color variant for composition by assigning
IDs to the different problem instances. Using their schema, Dom et al. [11] were able to show that
important problems such as Connected Vertex Cover and Subset Sum are unlikely to have

2

polynomial kernels. Later their technique was used for showing several important results, including
dichotomy theorems for CSP kernelization [20,22].

A common aspect of all the lower bound techniques mentioned above is that they only allow
super-polynomial lower-bounds for kernel sizes. This feature has been superseded by a recent break-
through result of Dell and van Melkebeek [10]. Dell and van Melkebeek extended the framework
of [4] to a communication model, and showed using their scheme that the Vertex Cover problem
does not have a kernel with O(k2−ε) edges unless coNP ⊆ NP/poly. They also showed several other
kernelization lower-bounds, including an extension of the above result to a Ω(kd−ε) lower-bound
for the d-Hitting Set problem (the Hitting Set problem restricted to families of sets of size
d). However, their key technical tool for deriving these lower bounds, namely the Packing Lemma,
requires sharing vertices and does not seem to extend directly to natural problems like packing and
covering problems.

1.1 Our results

In this paper, we introduce a new form of composition called weak composition. In weak composi-
tions, the output parameter is allowed to depend also on the length of the input sequence, and not
only on the parameter. Building on the framework of of Dell and van Melkebeek [10], we show that
weak compositions yield polynomial kernelization lower-bounds, as opposed to the super-polynomial
lower-bounds given by the previously used compositions. We note that the composition algorithm
of Dell and van Melkebeek [10] for Vertex Cover can be viewed as weak-composition where the
parameter is the number of vertices in the graph.

We proceed by showing two examples of weak-composition. Specifically, we show that d-
Bipartite Regular Perfect Code (d-BRPC) and d-Dimensional-Matching have weak
composition, and prove both problems have no kernel of size O(kd−3−ε) for any ε > 0 unless
coNP ⊆ NP/poly. Our construction is inspired by the composition algorithm of Dom et al. [11],
but also differs from it quite substantially, requiring several novel ideas to make it work.

By reduction from d-BRPC, we use a variant of polynomial parameter transformations called
linear parameter transformations to obtain new lower-bounds for several other problems, including
d-Set Packing, d-Set Cover, Hitting Set with d-Bounded Occurrences, Kd Packing,
and d-Steiner Tree among several others. These new lower-bounds are very close to being tight,
and give a negative answer to the main open question posed in Dom et al. [11] regarding what they
referred to as uniform polynomial kernelizations for the problems listed above. Furthermore, up to
a polylogarithmic factor, all our lower bounds transfer automatically to compression lower bounds,
an notion defined by Harnik and Naor [19] that has important cryptographic applications.

Finally, in the last part of the paper, we show that all current super-polynomial kernelization
lower bounds can be extended to super-quasi-polynomial lower bounds under the assumption that
the exponential hierarchy does not collapse.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2 we introduce our modified notion,
namely weak composition, and prove that it allows obtaining polynomial lower-bounds for kernel-
ization. Section 3 then presents the main composition algorithm for d-BRPC, Section 4 presents
a weak composition for d-Dimensional-Matching, and Section 5 presents our remaining kernel-
ization lower-bound results. In Section 6 we discuss quasi-polynomial kernelization lower bounds,
and in Section 7 we conclude the paper.

3

2 Kernelization Lower Bounds Framework

In this section we present our extended framework for proving our kernelization lower bounds. In
particular, we introduce the notions of weak compositions and linear parametric transformations.

2.1 The Dell and van Melkebeek framework

We begin by first discussing the communication framework presented by Dell and van Melkebeek.
All definitions and results in this section are taken from [10].

Definition 1 (oracle communication protocol). An oracle communication protocol for a (un-
parameterized) language L ⊆ {0, 1}∗ is a communication protocol between two players. The first
player is given the input x ∈ {0, 1}∗ and is allowed to run polynomial-time with respect to |x|; the
second player is computationally unbounded but is not given any part of x. At the end of the protocol
the first player should be able to decide whether x ∈ L. The cost of the protocol is the number of
bits of communication from first player to the second player.

For a language L ⊆ {0, 1}∗, we let ORn,t(L) denote the language

ORn,t(L) :=
{
〈x1, x2, . . . , xt〉 : |xi| = n for all i, and xi ∈ L for some i

}
.

We next introduce the so-called Complementary Witness Lemma that forms the basis of the frame-
work of Dell and van Melkebeek. The proof of the lemma closely follows the arguments given by
Fortnow and Santhanam in [15].

Lemma 1 (Complementary Witness Lemma). Let L ⊆ {0, 1}∗ be a language and t :
N → N\{0} be polynomially bounded. If there is an oracle communication protocol that decides
ORn,t(n)(L) with cost O(t(n) log t(n)), then L ∈ coNP/poly. This holds even when the first player
runs in conondeterministic polynomial time.

The following lemma gives the connection between oracle communication protocols for classical
problems and kernels for parameterized problems. For a parameterized problem L ⊆ {0, 1}∗ × N,
we let L̃ := {x#1k : (x, k) ∈ L} denote the unparameterized version of L.

Lemma 2. If L ⊆ {0, 1}∗ × N has a kernel of size f(k), then L̃ has an oracle communication
protocol of cost f(k).

2.2 Our modified framework

One of the main components of the kernelization lower bounds engine of Bodlaender et al. [4] is
the notion of a composition algorithm for a parameterized problem. This notion has been extended
to the notion of a cross-composition in [6]. However, both compositions and cross compositions
are suitable for showing super-polynomial lower-bounds. Below we introduce a new variant of
compositions that allow showing polynomial lower-bounds.

Definition 2 (weak d-composition). Let d ≥ 2 be a constant, and let L1, L2 ⊆ {0, 1}∗ × N be
two parameterized problems. A weak d-composition from L1 to L2 is an algorithm A that on input
(x1, k), . . . , (xt, k) ∈ {0, 1}∗ × N, outputs an instance (y, k′) ∈ {0, 1}∗ × N such that:

– A runs in conondeterministic polynomial time with respect to
∑
i(|xi|+ k).

– (y, k′) ∈ L2 ⇐⇒ (xi, k) ∈ L1 for some i, and

4

– k′ ≤ t1/dkO(1).

Note that in the regular compositions the output parameter is required to be polynomially bounded
by the input parameter, while in d-compositions it is also allowed to depend on the number of
inputs t.

Lemma 3. Let d ≥ 2 be a constant, and let L1, L2 ⊆ {0, 1}∗ × N be two parameterized problems
such that L̃1 is NP-hard. Also assume NP * coNP/poly. A weak-d-composition from L1 to L2
implies that L2 has no kernel of size O(kd−ε) for all ε > 0.

Proof. Assume for the sake of contradiction that L2 has a kernel of size O(kd−ε) for some ε > 0.
By Lemma 2 this implies that L̃2 has a communication protocol of cost O(kd−ε). We show that this
yields a low cost oracle communication protocol for ORn,t(n)(L̃1) for some polynomial t. Because L̃1
is assumed to be NP-hard, this results in a contradiction to the assumption that NP * coNP/poly
by applying the Complementary Witness Lemma.

Consider a sequence of L̃1 instances (x̃1, . . . , x̃t) with |x̃i| = n and t := t(n), where t is
some sufficiently large polynomial. Let the corresponding parameterized problem sequence be
((x1, k1), . . . , (xt, kt)). The low cost protocol proceeds as follows:

1. Divide the parameterized problem sequence into subsequences, where each subsequence con-
sists of instances with equal parameter values. Clearly there are at most k := maxi ki ≤ n
subsequences.

2. For each subsequence, apply the d-composition from L1 to L2. This results in at most n instances
of L2, each with parameter bounded by k′ ≤ t1/dkO(1).

3. For each instance of L2, apply the assumed O(k′(d−ε)) protocol to decide it. If one of the
composed instances is a YES instance, then accept, otherwise reject.

It is clear that the protocol has cost O(n · k′(d−ε)), plug in that k′ ≤ t1/dkc for some c > 0, and
write t = t(n). We have:

O(n · k′(d−ε)) = O(n · (t1/dkc)d−ε)
= O(n · t(1−ε/d)kc(d−ε))
= O(n · t(1−ε/d)nc(d−ε)) (as k ≤ n)
= O(n1+cd−cε · t(1−ε/d))
= O(t) (since t is sufficiently large)
= O(t log t).

By the Complementary Witness Lemma it follows that L̃1 ∈ coNP/poly, causing the desired con-
tradiction. ut

2.3 Linear parametric transformations

Bodlaender et al. [7] introduced the notion of polynomial parametric transformations to obtain
new kernelization lower-bound results from existing ones. However these type of reductions are
suitable for super-polynomial lower-bounds. Here we introduce the notion of linear parametric
transformations that facilitate polynomial lower-bounds.

5

Definition 3 (linear parametric transformation). Let L1 and L2 be two parameterized prob-
lems. We say that L1 is linear parameter reducible to L2, written L1 ≤ltp L2, if there exists a
polynomial time computable function f : {0, 1}∗×N→ {0, 1}∗×N, such that for all (x, k) ∈ Σ∗×N,
if (x′, k′) = f(x, k) then:

– (x, k) ∈ L1 ⇐⇒ (x′, k′) ∈ L2, and
– k′ = O(k).

The function f is called linear parameter transformation.

Lemma 4. Let L1 and L2 be two parameterized problems, and let d ∈ N be some constant. If
L1 ≤lpt L2 and L2 has a kernel of size O(kd), then L2 also has a kernel of size O(kd).

Proof. Composing the linear parametric transformation from L1 to L2 with the kernel of size O(kd)
of L2, gives an O(kd)-size kernel for L1. ut

The application of Lemma 4 above is to obtain a polynomial lower-bound for any kernelization
of L2, assuming we already know a similar lower-bound for L1. In Section 5 we will see several
applications of this lemma. There we will use implicitly the easily seen fact that ≤lpt is transitive.

3 Main Composition Algorithm

In this section we present our main weak d-composition algorithm from which we will derive all
of our kernelization lower-bound results. Throughout this section, we let d be some fixed integer
with d ≥ 3.

Our weak d-composition algorithm will be for the d-Bounded Regular Perfect Code (d-
BRPC) problem. In this problem, we are given a bipartite graph G := (N] T,E) along with a
parameter k, such that the degree of each vertex in N is exactly d. The set N is called the set of
non-terminal vertices and the set T is referred to as the set of terminal vertices. The goal is to
find a subset of non-terminal vertices N ′ ⊆ N of size k such that each terminal vertex in T has
exactly one neighbor in N ′. For a solution set N ′ ⊆ N , we say that v ∈ N ′ dominates u ∈ T if
{u, v} ∈ E(G). The main result of this section is stated in the following theorem.

Theorem 1. Unless NP ⊆ coNP/poly, the d-BRPC problem has no kernel of size O(kd−3−ε) for
any ε > 0.

We mention that the d-BRPC problem is one of the central problems used by Dom et al. in [11]
for obtaining their super-polynomial kernelization lower-bound results. Indeed, the construction we
present in this section is very much inspired by the construction in [11], but it also differs from it
quite substantially in order to confirm with all requirements of a d-composition (Definition 2).

To prove Theorem 1, we will be working with a colored variant of d-BRPC called Colored d-
Bipartite Regular Perfect Code (Col-d-BRPC), where the input is appended by a surjective
color function col : N → {1, . . . , k}, and the goal is to find a solution N ′ ⊆ N that consists of exactly
one vertex of each color. Our d-composition will be from Col-3-BRPC to (d+3)-BRPC. Overall,
our construction proceeds in two stages:

– In the first step we will compose to an instance of Bipartite Perfect Code (BPC); that is,
to an instance where the vertices of N do not all have degree d+3, but a few of them have high
degree (actually degree k).

– In the second step, we will split the vertices of high degree into many vertices of degree d+ 3,
using an equality gadget that preserves the correctness of our construction.

6

For ease of notation, we will assume that our composition algorithm is given a sequence of
m = td/d! instances with parameter k, and the goal is to output a single instance with parameter
bounded by t · kO(1). We can assume that k > d, since otherwise all instances can be solved in
polynomial-time, and a trivial instance of size O(1) can be used as output. We will also assume
that k ≡ 0 (mod d+ 3) (and justify this assumption later on).

3.1 First step of the composition

Let (G1, col1, k), . . . , (Gm, colm, k) be the input sequence of Col-3-BRPC instances, where m =
td/d! and Gi = (Ni] Ti, Ei). Observe that if |Ti| 6= 3k for some i, then (Gi, k) /∈ Col-3-BRPC,
and so we can assume that |Ti| = 3k for all i. For i ∈ {1, . . . , t}, we let Ti = {ui1, . . . , ui3k} and
Ni = {vi1, . . . , vini}. We will use G = (N] T,E) and k′ to denote the instance of BPC which is the
output of our composition. The set of terminal vertices will consist of k + 1 terminal components
T = T ′ ∪W1 ∪ · · · ∪Wk and the set of non-terminals will consist of all sets of non-terminals Ni,
in addition to another set X; that is, N = (

⋃
iNi) ∪ X. We proceed in describing each of these

terminal and non-terminal components in detail.

– The set T ′ consists of 3k vertices {u1, . . . , u3k}. These are connected to the nonterminals in Ni,
1 ≤ i ≤ m, in a way that matches the adjacency between the terminals and non-terminals in
Gi. That is, {uα, viβ} ∈ E(G) ⇐⇒ {uiα, viβ} ∈ E(Gi).

– For each i ∈ {1, . . . ,m}, we assign to Ni a unique identifier IDi ⊆ {1, . . . , t+ d} with |IDi| = d.
This is possible since

(t+d
d

)
> td/d! = m.

– The set X of non-terminals consists of t+ d vertices, and we write X = {x1, . . . , xt+d}.
– For each j ∈ {1, . . . , k}, the set Wj consists of t+d vertices, and we write Wj = {wj1, . . . , w

j
t+d}.

– For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, we add edges between the nonterminal component
Ni and the terminal component Wj as follows: For each vertex v ∈ Ni with coli(v) = j, we
connect v to all vertices in Wj that have indices belonging to IDi; that is, we add the edge
{v, wj`} to E(G) for all ` ∈ IDi.

– For each ` ∈ {1, . . . , t+ d} and j ∈ {1, . . . , k}, add the edge {x`, wj`} to E(G).
– Set k′ = k + t.

This completes the construction of the first stage (see Fig. 1). It is clear that it can be carried
out in polynomial time. The general idea is that the selection of t vertices from X encodes the
selection of an ID which uniquely identifies some non-terminal component Ni. The terminal sets
W1, . . . ,Wk then enforce that the remaining k vertices of the solution will be selected only from a
single Ni. The next lemma makes this more precise, and proves the correctness of the first step of
our construction.

Lemma 5. (G, k′) ∈ BPC ⇐⇒ (Gi, k) ∈ Col-3-BRPC for some i ∈ {1, . . . ,m}.

Proof. (⇐) This is the easy direction. Suppose (Gi, k) ∈ Col-3-BRPC for some i ∈ {1, . . . ,m}, and
let N ′i ⊆ Ni be a solution of size k. We take N ′ = {vj ∈ N : vij ∈ N ′i} and X ′ = {xj ∈ X : j ∈ IDi}
to be our solution for (G, k′), where IDi = {1, . . . , t+ d} \ IDi. Observe that |N ′ ∪X ′| = k+ t = k′.
Furthermore, each vertex in T ′ is dominated by exactly one vertex in N ′, by definition of N ′i and
by our construction. Also, for each j ∈ {1, . . . , k}, a vertex wj` is dominated by exactly one vertex
in N ′ in case ` ∈ IDi (the vertex corresponding to the vertex in N ′i with color j), and dominated
by exactly one vertex in X ′ if ` /∈ IDi.

(⇒) This is the more interesting direction. Let S denote a solution for (G, k′) with |S| = k′ = k+
t. The first observation is that, because the terminal component T ′ is only connected to N1, . . . , Nm

7

X x

1N iN
!dtdN2N

T

1W 2W jW
kW

jvcolv )(:

iID1

w 2

w jw
kw

Fig. 1. A graphical description of the construction in the first step. The white boxes represent
components of terminal vertices, the gray boxes represent components of non-terminal vertices.

but not to X, and has size exactly 3k, any solution for (G, k′) has to pick exactly k vertices from
N1, . . . , Nm. This implies that S contains precisely t vertices fromX, since k′ = k+t. LetX ′ ⊆ S∩X
denote this set of t vertices, and let N ′ = S \X ′. Since |X ′| = t, we know that N ′ includes vertices
from k different colors (in their Col-3-BRPC instances), because if color j ∈ {1, . . . , k} is not
present, some vertices in Wj will not be dominated. Write ID = {` ∈ {1, . . . , t+ d} : x` ∈ X ′}, and
let ID = {1, . . . , t+ d} \ ID. Observe that |ID| = t and |ID| = d.

We argue that ID must equal some IDi for some i ∈ {1, . . . ,m}. To see this, assume for contra-
diction that ID 6= IDi for all i ∈ {1, . . . ,m}. Consider a vertex v ∈ N ′, and suppose v ∈ Ni. Let
j = coli(v). Recall that the set of neighbors of v in Wj is precisely {wj` ∈ Wj : ` ∈ IDi}. Now as
ID 6= IDi, it must be that ID ∪ IDi 6= {1, . . . , t+d}; that is, there is some `∗ ∈ {1, . . . , t+d}\(ID∪IDi).
But then, by our construction, S does not dominate wj`∗ , a contradiction.

Thus ID = IDi for some i ∈ {1, . . . ,m}. We argue next that N ′ ⊆ Ni. Assume for contradiction
that this is not the case; that is, there is some v ∈ N ′ ∩ Ni∗ for i∗ 6= i. Let j = coli∗(v). The
set of neighbors of v in Wj is {wj` ∈ Wj : ` ∈ IDi∗}. Since ID = IDi 6= IDi∗ , there is some
`∗ ∈ {1, . . . , t+ d} \ (ID ∪ IDi∗), and S does not dominate wj`∗ . We have therefore established that
N ′ ⊆ Ni. Since N ′ dominates all vertices in T ′, and |N ′| = k, it follows that N ′ is also a solution
for (Gi, k). Thus, (Gi, k) ∈ Col-3-BRPC, and the lemma follows. ut

3.2 Second step of the composition

We next alter the output instance (G, k′) = ((N] T,E), k′) of the composition algorithm in the
previous section so that it becomes an instance of (d + 3)-BRPC. That is, we create an instance
(G∗, k∗) = ((N∗]T ∗, E∗), k∗) where all non-terminal vertices in N∗ have degree d+3, and (G∗, k∗) ∈
(d+3)-BRPC ⇐⇒ (G, k′) ∈ BPC. Initially we will start with G∗ = G, and then we modify G∗ so
that it fits our requirements. Note that we require all non-terminals in N∗ to have degree exactly
d+3, and not merely a degree bounded by d+3. This actually introduces some complications, but
will prove useful in showing our other kernelization lower-bounds in Section 5.

Recall that the set of non-terminals in the BPC instance of the previous section is composed
of several components, i.e. N = (

⋃
i∈{1,...,m}Ni)∪X. Observe that the degree of each non-terminal

8

vertex v ∈
⋃
iNi is precisely d + 3, and that the degree of each non-terminal vertex x ∈ X is

precisely k. Thus, we only need to fix the degree of vertices in X = {x1, . . . , xt+d}. The goal of
these vertices is to encode the selection of an ID which identifies some non-terminal component
Ni. This ID is then verified in the k different terminal components W1, . . . ,Wk. For this reason,
the naive approach of splitting the vertices in X to vertices of bounded degree might result in
the selection of k different ID’s. In the following we introduce an equality gadget that enforces the
selection k ID’s which are actually the same.

Let ` ∈ {1, . . . , t+ d}, and consider x` ∈ X. Recall that we assume that k ≡ 0 (mod d+ 3). We
replace x` with k vertices x`1, . . . , x`k in N∗, and we add the edges {x`j , w

j
`} to E∗. We then add to

N∗ a set of additional non-terminals {y`1, . . . , y`k−1}. Each one of these new non-terminal vertices
will be connected to a distinct set of d+2 new terminal vertices. This gives us k− 1 disjoint sets of
new terminals, Z`1, . . . , Z`k−1, with |Z`j | = d+2. Now we connect x`j to the first 2 vertices of Z`j , and
the last d vertices of Z`j−1, for all j ∈ {2, . . . , k − 1}. We also connect x`1 to the first 2 vertices of
Z`1, and x`k to the last d vertices of Z`k−1. (See Fig. 2 for a graphical depiction of this construction.)

d2


1x


kZ

d 2


2kx 

1kx


kx


1y


2y 

2ky


1ky

1

w 2

w 3

w 2kw
1kw 

kw 


1Z 

2Z 
2kZ 

1kZ


3x


2x

Fig. 2. A graphical description of the main part of the equality gadget used to replace x`.

Note that all for each ` ∈ {1, . . . , t + d}, the non-terminal vertices {x`2, . . . , x`k−1} have degree
d+ 3 as required. Vertex x`1 has degree 3, x`k has degree d+ 1, and all non-terminals {y`1, . . . , y`k−1}
have degree d + 2. We next add some additional terminals so that all non-terminals have degree
d+ 3. First we add a new set of terminals Z`k of size d+ 2. We connect x`1 to the first d terminals
of this set, and x`k to the last 2 terminals. We also connect the non-terminals y`1, . . . , y`d+2 to Z`k
by a perfect matching. This fixes the degree of x`1, x`k, and {y`1, . . . , y`d+2}. To fix the remaining
non-terminals, we add p = (k − d− 3)/(d+ 3) new disjoint sets of terminals, Z`k+1, . . . , Z

`
k+p, each

of size d + 3. Note that p is in fact an integer since we assume k > d and k ≡ 0 (mod d + 3). We
then add p new non-terminal vertices, x`k+1, . . . , x

`
k+p, and connect x`k+i to all vertices in Z`k+i, for

i ∈ {1, . . . , p}. Finally, we group the the non-terminals {y`d+3, . . . , y
`
k−1} into p groups of size d+ 3

each, and connect group i, 1 ≤ i ≤ p, to Z`k+i by a perfect matching.
We do the above for each ` ∈ {1, . . . , t + d}. This gives us our graph G∗ = (N∗] T ∗, E∗). It

is easy to see that all non-terminals in G∗ have degree d + 3, and that constructing G∗ can be

9

done in polynomial-time. Observe that the size of
⋃
`∈{1,...,t+d}

(
{w1

` , . . . , w
k
` } ∪

⋃
i∈{1,...,k+p} Z

`
i

)
or

equivalently the total number of terminal vertices except those in T ′, is:

(t+ d)(k + (d+ 2)k + (d+ 3)p) = (t+ d)((d+ 3)k + (d+ 3)p)
= (t+ d)(d+ 3)(k + p).

To conclude our construction we set k∗ = k + t(k + p) + d(k − 1). The next two lemmas prove
the correctness of our construction.

Lemma 6. Let S ⊆ N∗ be any solution for (G∗, k∗). For each ` ∈ {1, . . . , t+d}, exactly one of the
following cases occur:

– {x`1, . . . , x`k+p} ⊆ S and {y`1, . . . , y`k−1} ∩ S = ∅.
– {y`1, . . . , y`k−1} ⊆ S and {x`1, . . . , x`k+p} ∩ S = ∅.

Proof. Let ` ∈ {1, . . . , t + d}, and consider some i ∈ {1, . . . , k − 1}. Clearly, either x`i , x`i+1 ∈ S or
y`i ∈ S, since otherwise S would not dominate the terminals in Z`i . Furthermore, if {x`i , y`i , x`i+1} ⊆ S
then vertices of Z`i would have two neighbors in S, contradicting the fact that S is indeed a solution.
From this it follows that either

– {x`1, . . . , x`k} ⊆ S and {y`1, . . . , y`k−1} ∩ S = ∅.
– {y`1, . . . , y`k−1} ⊆ S and {x`1, . . . , x`k} ∩ S = ∅.

Furthermore, in the latter case, we must have that {x`k+1, . . . , x
`
k+p} ∩ S = ∅ since otherwise

some of the terminals in Z`k, . . . , Z`k+p would have more than one neighbor in S. In the former case,
we it must be that {x`k+1, . . . , x

`
k+p} ⊆ S since otherwise some of the terminals in Z`k, . . . , Z

`
k+p

would not be dominated by any vertex in S. The lemma follows. ut

Lemma 7. (G, k′) ∈ BPC ⇐⇒ (G∗, k∗) ∈ (d+ 3)-BRPC.

Proof. (⇒) Suppose S is a solution for (G, k′). Then as argued in Lemma 5, S consists of a subset
k vertices N ′ ⊆ Ni, for some i ∈ {1, . . . ,m}, and a subset of t vertices X ′ ⊆ X. It is not difficult to
verify that

S∗ = N ′ ∪ {x`1, . . . , x`k+p : x` ∈ X ′} ∪ {y`1, . . . , y`k−1 : x` /∈ X ′}

is a solution for (G∗, k∗).
(⇐) Assume that S∗ is a solution for (G∗, k∗), and letN ′ = S∗∩(

⋃
i∈{1,...,m}Ni) and S′ = S∗\N ′.

Since |T ′| = kd and the degree of each non-terminal vertex is d, we must have |N ′| = k, which implies
that |S′| = k∗−k = t(k+p)+d(k−1). Observe that for any vertex v ∈

⋃
i∈{1,...,m}Ni, its number of

neighbors in
⋃
j∈{1,...k}Wj is precisely d, hence N ′ can dominate at most kd vertices in

⋃
j∈{1,...k}Wj .

Therefore the number of terminal vertices S′ dominates is at least (t+ d)(d+ 3)(k + p)− kd.
By Lemma 6, we get that for each ` ∈ {1, . . . , t + d}, either {x`1, . . . , x`k+p} ⊆ S′ or

{y`1, . . . , y`k−1} ⊆ S′, and if one set is contained in S′, the other must be completely disjoint from S′.
Let ID = {` : {x`1, . . . , x`k+p} ⊆ S′}. Observe that if ` ∈ ID, then all the terminals in {w1

` , . . . , w
k
` }

are dominated, and otherwise none of them are dominated.
Let k1 = |{w1

` , . . . , w
k
` } ∪ (

⋃
i∈{1,...,k+p} Z

`
i)| = k+(d+2)k+(d+3)p and k2 = |

⋃
i∈{1,...,k+p} Z

`
i | =

(d+ 2)k + (d+ 3)p.

10

We have:

k1|ID|+ k2(t+ d− |ID|) = k|ID|+ ((d+ 2)k + (d+ 3)p)(t+ d)
= k|ID|+ ((d+ 3)(k + p)− k)(t+ d)
= k|ID|+ (t+ d)(d+ 3)(k + p)− (t+ d)k.

This number must be at least (t+ d)(d+ 3)(k + p)− kd, which means that |ID| ≥ t.
We next argue that |ID| ≤ t. Assume for the sake of contradiction that this is not the case, then

by construction, for some subset H ⊆ {1, . . . , t+d} of size at least (t+1), we dominate {wj` : ` ∈ H}
for j = 1, . . . , k. Consider any vertex v ∈ N ′, and suppose it connects toWj for some j ∈ {1, . . . , k}.
The number of neighbors v has in {wj1, . . . , w

j
t+d} is d, and so some terminal in {wq1, . . . , w

q
t+d} must

be dominated twice, a contradiction. It follows that |ID| = t, and so S′ = N ∪ {x` : ` ∈ ID} is a
solution for (G, k′). ut

3.3 Proof of Theorem 1

We are now in position to complete the proof of Theorem 1. We begin with the following lemma.

Lemma 8. Let d be a fixed positive integer. The Col-3-BRPC problem restricted to the case where
the solution size k satisfies k ≡ 0 (mod d) is NP-hard.

Proof. We first show that 3-BRPC is NP-hard even when restricted to the case with k ≡ 0
(mod d). This is done by a reduction from the 3-Dimensional Matching problem which is well
known to be NP-complete [16]. In 3-Dimensional Matching, we are given 3 disjoint sets A,B,
and C, each of size k, and a set M ⊆ A × B × C. The question is whether there exists a subset
M ′ ⊆M of size k which is pairwise disjoint. By padding k until k ≡ 0 (mod d) and padding M , we
have that 3-Dimensional Matching restricted to the case that k ≡ 0 (mod d) is NP-complete.
3-Dimensional Matching can easily be reduced to 3-BRPC problem by letting A ∪ B ∪ C be
the set of terminals, and each set S ∈M be the neighborhood of a nonterminal vertex. Using next
the reduction in Dom et al. [11] from 3-BRPC to Col-3-BRPC that preserves the solution size
completes the proof of the lemma. ut

Proof (of Theorem 1). Let d′ = d + 3, and let t′ = m = td/d! = td
′−3/(d′ − 3)!. The composition

algorithm presented above composes t′ Col-3-BRPC instances with parameter k such that k ≡ 0
(mod d′) to a d′-BRPC instance with parameter k∗ = O(kt) = O(k(t′d!)1/d) = O(t′1/(d′−3)k).
Thus, our composition is in fact a weak (d′ − 3)-composition from Col-3-BRPC to d′-BRPC.
Since Col-3-BRPC is NP-hard even when k ≡ 0 (mod d′) (Lemma 8), applying Lemma 3 shows
that d-BRPC has no kernel of size O(kd−3−ε), for any ε > 0, unless coNP ⊆ NP/poly. ut

4 Composition for d-Dimensional Matching

In this section we present another example of weak d-composition. Specifically, we derive polynomial
kernelization lower bound for d-Dimensional Matching (d-DM) using weak composition. In d-
DM, we are given a set S ⊆ A = A1 × · · · ×Ad for some collection A1, . . . , Ad of pair-wise disjoint
sets. The parameter is a positive integer k. The question is whether there is a subset P ⊆ S of size
k that are pairwise disjoint. The d-DM problem is a natural generalization of maximum matching
in bipartite graphs to high dimensions, and is known to be NP-hard for every d ≥ 3 [16].

11

Theorem 2. Unless NP ⊆ coNP/poly, d-DM has no kernel of size O(kd−3−ε) for any ε > 0.

To prove this theorem we will be working with a variant of d-DM called Colored d-
Dimensional Perfect Matching (Col-d-PDM), where the input is appended by a surjective
color function col : S 7→ {1, . . . , k}, and each dimension Ai, i ∈ {1, . . . , d}, has exactly k elements.
The goal is to find a solution P ⊆ S that sets in P has distinct colors. Note each such solution cor-
responds to a perfect matching of elements across different dimensions. The Col-d-PDMproblem
is also known to be NP-hard for every d ≥ 3 [16]. Our d-composition will be from Col-3-PDM
to (d + 3)-DM. Similar to the construction for BRPC, the construction for (d + 3)-DM has two
steps. In the first step we will compose to an instance of Set Packing, where the sets can have
arbitrary size and are allowed to include more than one element from the same Ai. In the second
step, we will transform the Set Packing instance to a (d + 3)-DM instance. First, we will split
and pad the sets of high cardinality into many sets of cardinality exactly (d + 3) which include
exactly one set of each dimension. Again, we use an equality gadget to preserve the correctness of
our construction.

Our composition algorithm will compose a sequence of td instances with parameter k, and its
output will be a single instance with parameter bounded by t · kO(1). Again, we assume that k > d,
since otherwise all instances can be solved in polynomial-time by brute force, and a trivial instance
of size O(1) can be used as output.

4.1 First step

In this step we will compose to the Set Packing problem. Consider input sequence {I` = (S` ⊆
X` × Y` × Z`, col`, k) : 1 ≤ ` ≤ td} of Col-3-PDM instances, where X` = {x`1, . . . , x`k}, Y` =
{y`1, . . . , y`k}, and Z` = {z`1, . . . , z`k} are pairwise disjoint sets. We will use I = (S, k′) to denote
the instance of Set Packing, which is the output of our composition. We proceed by describing
dimensions and sets of S in detail.

– We first create pairwise-disjoint dimensions X,Y, Z of k elements each. Let X = {x1, . . . , xk},
Y = {y1, . . . , yk}, and Z = {z1, . . . , zk}. Then for each set R ∈ S`, we create the same set using
elements in X,Y, Z in a way that matches R. That is (xa, yb, zc) ∈ S ⇔ (x`a, y`b, z`c) ∈ S` for all
a, b, c ∈ {1, . . . , k}. In the following when we mention R ∈ S` in I, we mean the set created in
S in this manner.

– Create d new dimensions, P1, . . . , Pd where each dimension has kt new elements. Every dimen-
sion is organized as k layers, with each layer t elements. That is, for i ∈ {1, . . . , d}:

Pi =
⋃

j∈{1,...,k}
{cij,1, · · · , cij,t}.

– For ` ∈ {1, . . . , td}, assign instance I` a unique d-tuple as its identifier ID`. This is done by
picking an element from {1, . . . , t}d. Let ID`(i) be the value at index i ∈ {1, . . . , d}.

– For ` ∈ {1, . . . , td}, consider R ∈ S` of color j ∈ {1, . . . , k}. We extend R by adding elements
from P1, . . . , Pd, such that for i ∈ {1, . . . , d}, R(Pi) = cij,α where α = ID`(i). After this, every
set R ∈ S` has exactly (d+ 3) elements.

– Now we construct gadget sets. For r ∈ {1, . . . , t}, and i ∈ {1, . . . , d}, construct W i
r = {cij,r :

1 ≤ j ≤ k}. Basically W i
r occupies every position r of each of the k layers in dimension i. It

is straightforward to check that each of the td gadget sets has unbounded size k. Further the
elements of W i

r are from the same dimension Pi.
– To conclude the construction, we set k′ = k + (t− 1)d.

12

Lemma 9. I ∈ Set Packing if and only if I` ∈ Col-3-PDM for some ` ∈ {1, . . . , td}.

Proof. (⇐) Suppose (S`, k) ∈ Col-3-PDM for some ` ∈ {1, . . . , td}, and let P` ⊆ S` be a solution
of size k for (S`, k). We take P` and X = {W i

r : r 6= ID`(i), r ∈ {1, . . . , t}, i ∈ {1, . . . , d}} to
be our solution for (S, k′). It is easy to check that all sets in X are pairwise disjoint and that
|P` ∪X| = k + (t− 1)d.

(⇒) We show that if I has a pairwise-disjoint solution of size k+ (t− 1)d, then I` has a perfect
matching for some ` ∈ {1, . . . , td}. For this, fix one i ∈ {1, . . . , d}, and consider the number of
sets in the solution for I which are from {W i

r : r ∈ {1, . . . , t}}. Clearly, the solution can contain
at most t of them. However, if we pick t of them into solution, then we cannot pick any set from
S1, . . . , Std into the solution due to the disjointness constraint. This means the solution can have
at most td < k + (t − 1)d pairwise-disjoint sets, which cannot satisfy the number of disjoint sets
required by the solution.

Therefore there can be at most (t− 1) sets in the solution which are from {W i
r : r ∈ {1, . . . , t}}.

This gives us at most (t − 1)d pairwise-disjoint sets from td gadget sets. Hence by requirement of
the size of the solution, it indicates that we have to pick at least k sets from S1, . . . , Std . The crucial
observation now is that, we can pick at most k pairwise disjoint sets from S1, . . . , Std , because
|X| = |Y | = |Z| = k. Therefore the only possibility is that we pick k sets from S1, . . . , Std , and pick
(t− 1)d gadget sets, with (t− 1) sets from {W i

r : r ∈ {1, . . . , t}} for each i ∈ {1, . . . , d}.
Now the observation is that, after we fix (t− 1) gadget sets for each i ∈ {1, . . . , d}. It leaves, for

each dimension, exactly the same position in each of the k layers not used. That is there exists a set
ID = {α1, . . . , αd} ∈ {1, . . . , t}d such that cij,αi is not used for j ∈ {1, . . . , k}. By the requirement of
disjointness, now the k sets from S1, . . . , Std must come from S` where ID` = ID. Further for any
color j ∈ {1, . . . , k}, cij,αi cannot be matched twice, hence these sets must have distinct colors. This
gives that I` ∈Col-3-PDM, which completes the proof. ut

4.2 Second step

Now we transform the Set Packing instance I = (S, k′) into an equivalent (d + 3)-DM instance
I∗ = (S∗, k∗). Note the Set Packing instance derived in the last section fails the requirement of
d-DM in two ways. First, gadget sets W i

r (i ∈ {1, . . . , d}, r ∈ {1, . . . , t}) are of size k. Second, the
elements of W i

r come from the same dimension Pi. Initially let S∗ be S. Fix arbitrary W i
r , we show

how to modify W i
r so that it is of dimension (d + 3) and each of its element comes from different

dimension, while preserving the correctness of the construction. Recall thatW i
r = {cij,r : 1 ≤ j ≤ k}.

First, we split W i
r into W i

1,r,W
i
2,r, . . . ,W

i
k,r, where W i

j,r = {cij,r}. In the following, when we
mention elements of the form x∗∗ (∗ is the wild-card symbol), it means to extend X with this
new element, similar for y∗∗ and z∗∗ . Now we begin to construct constraints among {W i

j,r : j ∈
{1, . . . , k}}. We use two operations, extend means extending an existing set with new elements,
add means adding a new set into S∗. The gadgets are modified as follows, extend W i

1,r with xik+1,r,
add U i1,r = (xik+1,r, y

i
k+1,r), extend W i

2,r with yik+1,r, z
i
k+2,r, add U i2,r = (zik+2,r, x

i
k+2,r), and so on

until we extend W i
k,r. Now it is clear that the size of all gadget sets is bounded by 3. Further

the elements of every gadget set come from different dimensions. Finally to make each gadget set
of dimension exactly (d + 3), we simply pad each gadget set. To conclude the construction we set
k∗ = k+(t−1)kd+(k−1)d. The following lemma shows that the construction preserves correctness.

Lemma 10. (S∗, k∗) ∈ (d+ 3)-DM ⇐⇒ (S, k′) ∈ Set Packing.

Proof. (⇐) Assume we found a solution P ⊆ S of k′ = k + (t − 1)d pairwise-disjoint sets in S.
As we have argued, the solution must consist of k sets from some S` for some ` ∈ {1, . . . , td} with

13

ID` = {α1, . . . , αd} ∈ {1, . . . , t}d, and W i
r ∈ P for i ∈ {1, . . . , d}, r 6= αi. Hence for (S∗, k∗), we

choose W i
1,r, . . . ,W

i
k,r for r 6= αi, and choose U i1,r, . . . , U ik−1,r for r = αi. This gives a solution in S∗

of size k + [(t− 1)k + (k − 1)] · d = k + (t− 1)kd+ (k − 1)d = k∗.
(⇒) Suppose there is a set of k∗ pairwise-disjoint sets in S∗. Fix i ∈ {1, . . . , d} and r ∈ {1, . . . t}

and consider W i
1,r, U

i
1,r, . . . , U

i
k−1,r,W

i
k,r. The first observation is that, by our construction, we can

pick at most k pairwise disjoint sets from W i
1,r, U

i
1,r, . . . , U

i
k−1,r,W

i
k,r. And if we pick k of them, the

k sets must be W i
1,r,W

i
2,r, . . . ,W

i
k,r.

Now if we pick W i
1,r,W

i
2,r, . . . ,W

i
k,r for every r ∈ {1, . . . , t}, S∗ cannot contain any set from

S1, . . . , Std . This indicates that the solution size is at most tkd < k∗, contradiction. Therefore for
every i ∈ {1, . . . , d}, there are at most k(t − 1) + (k − 1) sets in S∗. Hence S∗ contains at most
[k(t− 1) + (k − 1)] · d = (t− 1)kd+ (k − 1)d from gadget sets.

Therefore we have to pick k sets from S1, . . . , Std . Let Q be this family of k sets. Further, after
fixing W i

1,r, . . . ,W
i
k,r for (t − 1) different r’s and for every i ∈ {1, . . . , d}. There exists a set ID =

{α1, . . . , αd} ∈ {1, . . . , t}d such that cij,αi is not matched for j ∈ {1, . . . , k}. Now all sets of Q must
come from S` with ID` = ID and of different colors. Choosing Q and {W i

r : r 6= αi, i ∈ {1, . . . , d}}
gives a solution in (S, k′). This completes the proof. ut

4.3 Proof of Theorem 2

We are now in position to complete the proof of Theorem 2.

Proof (of Theorem 2). Let d′ = d+3, and let t′ = td = td
′−3. The composition algorithm presented

above composes t′ Col-3-PDM instances with parameter k to a d′-DM instance with parameter
k∗ = O(kt) = O(t′1/d′−3k). Thus, our composition is in fact a weak (d′ − 3)-composition from
Col-3-PDM to d′-DM. Since Col-3-PDM is NP-hard, applying Lemma 3 shows that d-DM has
no kernel of size O(kd−3−ε), for any ε > 0, unless coNP ⊆ NP/poly. ut

5 Applications

In this section we derive polynomial lower bounds for several problems using our lower bound for
d-BRPC and linear parameter transformations discussed in Section 2.3. Some of the reductions
appearing in this section appeared also in [11].

5.1 Set-theoretic problems

The d-Set Packing takes as input a set system (U,F) with each set in F having cardinality d, and a
parameter k, and the goal is to determine whether there are k pairwise disjoint subsets in F . The d-
Set Cover problem takes the same input as d-Set Packing, and the goal is to determine whether
there exists a subfamily of F with at most k sets whose union is U . If these sets are required to be
pairwise disjoint, then the problem is known as d-Exact Set Cover. The Hitting Set with
d-Bounded Occurrences problem takes as input a set system (U,F) such that each element
u ∈ U appears in d sets of F , and a parameter k, and the goal is to find a subset of U of size k that
has non-empty intersection with each set in F . When the size of this intersection is required to be
precisely 1, we get the Exact Hitting Set with d-Bounded Occurrences problem. Observe
that all these problems have a trivial kernel of size

(kd
d

)
= O(kd) by removing identical sets. The

following theorem shows that trivial kernelization cannot be substantially improved.

14

Theorem 3. Unless coNP ⊆ NP/poly, d-Set Packing, d-Set Cover, d-Exact Set Cover,
Hitting Set with d-Bounded Occurrences, and Exact Hitting Set with d-Bounded
Occurrences have no kernels of size O(kd−3−ε) for any ε > 0.

Proof. We present a linear parametric transformation from d-BRPC to all of the problems men-
tioned in the theorem. The theorem will then follow from Theorem 1 and Lemma 4.

Given a d-BRPC instance (G, k) with G = (N] T,E) and |T | = kd terminals, we construct a
d-Set Packing instance (U,F , k) as follows. We let our universe U be U = T . For each nonterminal
v ∈ N , construct set Sv = N(v) in F , where N(v) is the neighbors of v in T . Obviously each set in
the family has cardinality d, and every solution for (G, k) one to one corresponds to a solution for
(U,F , k). Thus, d-BRPC ≤lpt d-Set Packing.

Note that any solution for the d-Set Packing instance (U,F , k) constructed above is also a
solution for d-Exact Set Cover with the same instance. This is because each set in F is of
cardinality d and |U | = kd. Thus, and k pairwise disjoint sets in F must cover U . We therefore
have d-BRPC ≤lpt d-Exact Set Cover, and since d-Exact Set Cover is special case of d-Set
Cover, we also have d-BRPC ≤lpt d-Set Cover. Finally, using the well-known reduction (which
can be viewed as linear parametric transformation) from d-Exact Set Cover to Exact Hitting
Set with d-Bounded Occurrences, we get that d-BRPC ≤lpt Exact Hitting Set with d-
Bounded Occurrences and d-BRPC ≤lpt Hitting Set with d-Bounded Occurrences. ut

5.2 Graph-theoretic problems

In the d-Red-Blue Dominating Set problem, the input is a bipartite graph G = (N]T,E) with
the degree of every vertex v ∈ N at most d, and a parameter k. The goal is to determine whether
there exists a subset N ′ ⊆ N of size at most k so that every vertex in T has at least one neighbor in
N ′. Again, d-Red-Blue Dominating Set has a simple kernel of size O(kd) by assuring that each
vertex in N has a unique set of neighbors in T . The d-Steiner Tree takes the same input but we
are asked whether there is a subset N ′ ⊆ N of size at most k such that G[T ∪N ′] is connected.

Theorem 4. Unless coNP ⊆ NP/poly, d-Red-Blue Dominating Set and d-Steiner Tree
have no kernels of sizes O(kd−3−ε) and O(kd−4−ε), respectively, for any ε > 0.

Proof. Observe that d-BRPC is a special case of d-Red-Blue Dominating Set, and so d-BRPC
≤lpt d-Red-Blue Dominating Set. For the transformation from (d − 1)-BRPC to d-Steiner
Tree, we take an instance ((N]T,E), k) of (d−1)-BRPC and create an instance ((N ′]T ′, E′)k)
of d-Steiner Tree by adding a new vertex û and setting N ′ = N , T ′ = T ∪ {û}, and E′ =
E∪{{û, v} : v ∈ N}. Clearly this is a d-Steiner Tree instance since all vertices in N have degree
d. It is easy to see that any solution for the (d− 1)-BRPC one-to-one corresponds to a solution for
the d-Steiner Tree instance, and so (d− 1)-BRPC ≤lpt d-Steiner Tree. Applying Theorem 1
and Lemma 4, the proof follows. ut

Let us next consider two graph packing problems. In the Kd Packing problem we are given
graph G and a parameter k, and the question is whether G contains at least k vertex-disjoint cliques
of size d. This problem has a kernel of size O(kd) due to [13]. The Induced K1,d Packing takes
the same input but asks whether there are k pairwise disjoint subset of vertices, each inducing a
d-star in G.

Theorem 5. Unless coNP ⊆ NP/poly, Kd Packing and Induced K1,d Packing have no kernels
of size O(kd−4−ε) for any ε > 0.

15

Proof. Let (G, k) be an instance of (d−1)-BRPC instance with G = (N]T,E) and |T | = k(d−1).
We transform (G, k) to an instance of Kd Packing by connecting every pair of vertices in T to
make it a clique. Let the resulting graph be G′. Clearly a solution for (G, k) of size k corresponds
to a packing of k vertex-disjoint d-cliques. In the other direction, observe that the non-terminal
component N is an independent set, therefore at most k non-terminals can appear in the clique
packing. Further, k vertex-disjoint d-cliques require kd vertices but |T | = k(d−1), hence we have to
pick k vertices from N , with each of them in a different clique. Thus every k vertex-disjoint cliques
of size d in G′ corresponds to a perfect code in (G, k).

To reduce (d− 1)-BRPC to Induced K1,d Packing, first we add a set of k new nonterminal
vertices, X = {x1, . . . , xk}. Then we make N ∪X a clique by connecting every pair of nonterminal
vertices. Let the resulting instance be G′. Observe that X is only connected to nonterminal vertices.
It is now straightforward to check that the k star-centers must come from N . Consider any of these
centers, say v ∈ N . We argue that in the d-star centered at v, (d− 1) star petals come from T and
the remaining one comes from N ∪X. Indeed because G′[N ∪X] is clique, we cannot pick u,w ∈ N
into the star because this gives a triangle, contradicted with requirement that every star must be
an induced subgraph. Now because the number of neighbors of any vertex of N in T is exactly
(d− 1), it is clear every k vertex-disjoint K1,d in G′ corresponds to a perfect code in (G, k). ut

Indeed the above argument for Induced K1,d Packing works for Induced Ks,d Packing for
any constant s ≥ 1. To reduce (d−1)-BRPC to Induced Ks,d Packing, we split each nonterminal
vertex in N into s vertices, add a set X of k new nonterminal vertices, and make N ∪X a clique.
Then the same argument above shows that the s centers of Ks,d must come from N , and indeed
correspond to the same nonterminal before splitting. Hence k vertex-disjoint Ks,d packing one-to-
one corresponds to perfect code in the (d− 1)-BRPC instance. Hence we have:

Corollary 1. Let s ≥ 1 be a constant. Unless coNP ⊆ NP/poly, Induced Ks,d Packing has no
kernels of size O(kd−4−ε) for any ε > 0.

6 Quasi-polynomial Lower Bounds

In this section we extend the state of the art of the kernelization lower bounds mechanically in
another direction. We will show that essentially all previously known super-polynomial lower bound
results can be strengthen to super-quasi-polynomial lower bounds, assuming that the exponential
hierarchy is proper. For this, we will use a recent quasi-polynomial analog of Yap’s Theorem due
to Pavan et al. [24]:

Lemma 11 ([24]). If NP ⊆ coNP/qpoly then the exponential hierarchy collapses to its third level.

The above result of Pavan et al. implies that to obtain quasi-polynomial kernelization lower
bounds under the assumption that the exponential hierarchy is proper, a quasi-polynomial analog
of the Complementary Witness Lemma of Dell and van Melkebeek is needed. Fortunatlly, Dell and
van Melkebeek’s arguments, which extend the ideas of Fortnow and Santhanam [15], can easily be
adapted to the quasi-polynomial case.

Lemma 12. Let L ⊆ {0, 1}∗ be a language and t : N → N\{0} be quasi-polynomially bounded. If
there is a quasi-polynomial time oracle communication protocol that decides ORn,t(n)(L) with cost
O(t(n) log t(n)), then L ∈ coNP/qpoly. This holds even when the first player runs in conondeter-
ministic quasi-polynomial time.

16

Proof. To prove the lemma, we need to make use of the concept of oracle-query Turing machine and
communication transcript, both of which are defined in [10]. Essentially a communication transcript
logs the history of communications between the first player and the second player: this includes
each query he sends to the oracle along with the answers for all query.

We call a communication transcript τ valid if the answers to all queries are correct, and call
τ consistent with input sequence (x1, . . . , xt) of L instances if simulating the first player with this
input sequence and τ causes no inconsistency with the answers of the oracle. The key idea of the
proof hinges on constructing, as advice, a small set of valid transcripts S of those communications
where the input sequence (x1, . . . , xt) is in AND(L), such that:

– If x ∈ L, then there exists a sequence (x1, . . . , xt) where x = xi for some i and there exists a
transcript τ ∈ S consistent with (x1, . . . , xt), such that the simulation of the first player halts
and rejects. This indicates that xi ∈ L for all i, and hence x ∈ L.

– If x ∈ L, then for all sequences (x1, . . . , xt) where x = xi for some i, there is either no transcript
τ ∈ S consistent with (x1, . . . , xt), or we find a consistent transcript but then the simulation of
the first player must end up with accept (due to the correctness of the protocol).

Following the above discussion, an NP/qpoly machine M can decide whether an input x ∈
{0, 1}n is in L with the help of a quasi-polynomial-sized S, as follows:

1. Nondeterministically guess an input sequence (x1, . . . , xt) where x = xi for some i and each
instance is of length n.

2. Check whether there is a transcript τ consistent with (x1, . . . , xt) in S, and the simulation of
the first player on (x1, . . . , xt) with τ halts and rejects. If so, accept, otherwise reject.

It remains to construct the set S of valid transcripts, which is done by a standard averaging
argument. Because the communication protocol is of cost t log t, there are at most 2t log t transcripts.
Consider all input sequences (x1, . . . , xt) ∈ AND(L), there are at most 2tn of them. We say that
τ covers x if τ is consistent with (x1, . . . , xt) ∈ AND(L) and x = xi for some i. We construct S
iteratively, at each step consider X ⊆ L remained uncovered and pick τ that covers most elements.
Initially X = L and hence |X| ≤ 2tn. By averaging, there is one transcript τ covers at least:

t

√
|X|t
2t log t = |X|

2log t = |X|
t

This indicates that after each step, we have at most (1 − 1
t)|X| elements uncovered. Now after `

steps, there are (1− 1
t)
`|X| ≤ exp(− `

t)2
n elements uncovered. Hence all elements are covered after

` = O(tn) steps. Because t is quasi-polynomially bounded by n, the construction ends in at most
quasi-polynomial number of steps, which means S is of size quasi-polynomial in n.

This completes the proof for deterministic protocol. For conondeterministic protocol, the same
argument as in [10] carries over verbatim so we do not repeat them here. ut

Theorem 6. Let L1, L2 ⊆ {0, 1}∗ × N be two parameterized problems such that L̃1 is NP-hard. A
composition from L1 to L2 and a kernel of quasi-polynomial size for L2 implies that the exponential
hierarchy collapses to its third level.

Proof. Using a similar argument as in Lemma 3, one can obtain a quasi-polynomial cost com-
munication protocol for L1, using the assumed quasi-polynomial-size kernel for L2 along with the
composition from L1 to L2. Thus, by Lemma 12, we get that NP ⊆ coNP/qpoly, which in turn
implies that the exponential hierarchy collapses to its third level due to Lemma 11.

Since all previous super-polynomial lower bounds were obtained via compositions, along with
polynomial parametric transformations which also preserves quasi-polynomial kernels, the above
theorem implies the strengthening of all previous super-polynomial lower bounds to super-quasi-
polynomial lower bounds.

7 Conclusion

In this paper we introduced a new type of composition called weak composition that allows proving
polynomial kernelization lower-bounds, as opposed to the super-polynomial lower-bounds given by
the previously known compositions. Using weak compositions, we showed new kernelization lower-
bounds for several natural parameterized problems such as d-Dimensional-Matching, d-Set
Packing, d-Set Cover, and Kd Packing. We believe weak compositions could be used to obtain
further new lower-bounds.

There are many interesting directions for future research that stem from our work. The most
important one is to close the gap between the upper and lower bounds for the kernel sizes of the
problems we discussed. Recently we have learned that, independent of our work, Holger Dell and
Dániel Marx have made some progress on this issue.

Acknowledgments

We would like to thank Karl Bringmann and Karolina Soltys for fruitful discussions. In particular,
Karl provided several insights regarding the main composition algorithm presented in Section 3.
We would also like to thank Chandan Saha for referring us to [24].

References

1. Jochen Alber, Michael R. Fellows, and Rolf Niedermeier. Polynomial-time data reduction for dominating set.
Journal of the ACM, 51(3):363–384, 2004.

2. Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-SAT above a
tight lower bound. In Proc. of the 21st annual ACM-SIAM Symposium On Discrete Algorithms (SODA), pages
511–517, 2010.

3. Hans L. Bodlaender. Kernelization: New upper and lower bound techniques. In Proc. of the 4th International
Workshop on Parameterized and Exact Computation (IWPEC), pages 17–37, 2009.

4. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without
polynomial kernels. Journal of Computer and System Sciences, 75(8):423–434, 2009.

5. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M.
Thilikos. (Meta) kernelization. In Proc. of the 50th annual IEEE symposium on Foundations Of Computer
Science (FOCS), pages 629–638, 2009.

6. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Cross-composition: A new technique for kernelization
lower bounds. In Proc. of the 28th international Symposium on Theoretical Aspects of Computer Science (STACS),
pages 165–176, 2011.

7. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths.
In Proc. of the 17th annual European Symposium on Algorithms (ESA), pages 635–646, 2009.

8. Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. Advice classes of paramterized tractability.
Annals of Pure and Applied Logic, 84(1):119–138, 1997.

9. Yĳia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernelizations and other preprocessing procedures.
Theory of Computing Systems, 48(4):803–839, 2011.

10. Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification unless the polynomial-
time hierarchy collapses. In Proc. of the 42th annual ACM Symposium on Theory Of Computing (STOC), pages
251–260, 2010.

11. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility through colors and IDs. In Proc. of the
36th International Colloquium on Automata, Languages and Programming (ICALP), pages 378–389, 2009.

18

12. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
13. Michael R. Fellows, Christian Knauer, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Ulrike Stege,

Dimitrios M. Thilikos, and Sue Whitesides. Faster fixed-parameter tractable algorithms for matching and packing
problems. Algorithmica, 52(2):167–176, 2008.

14. Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket Saurabh, and Yngve Villanger. Ker-
nel(s) for problems with no kernel: On out-trees with many leaves. In Proc. of the 26th international Symposium
on Theoretical Aspects of Computer Science (STACS), pages 421–432, 2009.

15. Lance Fortnow and Raul Santhanam. Infeasibility of instance compression and succinct PCPs for NP. In Proc.
of the 40th annual ACM Symposium on Theory Of Computing (STOC), pages 133–142, 2008.

16. Michael R. Garey and David S. Johnson. Computers and intractability : A guide to the theory of NP-completeness.
W.H. Freeman, 1979.

17. Sylvain Guillemot, Christophe Paul, and Anthony Perez. On the (non-)existence of polynomial kernels for
Pl-free edge modification problems. In Proc. of the 5th International symposium on Parameterized and Exact
Computation (IPEC), pages 147–157, 2010.

18. Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization. SIGACT News,
38(1):31–45, 2007.

19. Danny Harnik and Moni Naor. On the compressibility of NP instances and cryptographic applications. SIAM
Journal on Computing, 39(5):1667–1713, 2010.

20. Stefan Kratsch, Dániel Marx, and Magnus Wahlström. Parameterized complexity and kernelizability of max
ones and exact ones problems. In Proc. of the 35th international symposium on Mathematical Foundations of
Computer Science (MFCS), pages 489–500, 2010.

21. Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polynomial kernels. In Proc.
of the 4th International Workshop on Parameterized and Exact Computation (IWPEC), pages 264–275, 2009.

22. Stefan Kratsch and Magnus Wahlström. Preprocessing of min ones problems: A dichotomy. In Proc. of the 37th
International Colloquium on Automata, Languages and Programming (ICALP), pages 653–665, 2010.

23. George L. Nemhauser and Leslie E. Trotter Jr. Vertex packings: Structural properties and algorithms. Mathe-
matical Programming, 8(2):232–248, 1975.

24. Aduri Pavan, Alan L. Selman, Samik Sengupta, and Vinodchandran N. Variyam. Polylogarithmic-round in-
teractive proofs for coNP collapse the exponential hierarchy. Theoretical Computer Science, 385(3):391–404,
2007.

25. Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms, 6(2), 2010.

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

