
Efficient Probabilistically Checkable Debates

Andrew Drucker∗

Abstract

Probabilistically checkable debate systems (PCDSs) are debates between two com-
peting provers, in which a polynomial-time verifier inspects a constant number of bits of
the debate. It was shown by Condon, Feigenbaum, Lund, and Shor that every language
in PSPACE has a PCDS in which the debate length is polynomially bounded. Using this
result, they showed that the approximation versions of some natural PSPACE-complete
problems are also PSPACE-complete.

We give an improved construction of these debates: for any language L that has an
ordinary debate system definable by uniform circuits of size s = s(n), we give a PCDS
for L whose debate is of total bitlength Õ(s), with a verifier that uses only log2 s +
log2(polylog(s)) bits of randomness. This yields a much tighter connection between
the time complexity of natural PSPACE-complete problems and the time complexity of
their approximation versions.

Our key ingredient is a novel application of error-resilient communication protocols,
as developed by Schulman; we use the more recent protocol of Braverman and Rao.
We show that by requiring ordinary debates to be encoded in an error-resilient fashion,
we can endow them with a useful “stability” property. Stable debates can then be
transformed into PCDSs, by applying efficient PCPPs (as given by Dinur). Our main
technical challenge in building stable debates is to enforce error-resilient encoding by
the debaters. To achieve this, we show that there is a constant-round debate system,
with a very efficient verifier, to debate whether a communication transcript follows the
Braverman-Rao protocol.

1 Introduction

1.1 Debate Systems

For many years, debate systems have played an important role in the study of complex-
ity classes (e.g., in [CKS81, LFKN90, Sha92, BFL90, CFLS95]). A debate system is an
interaction between two competing, computationally-unbounded debaters, supervised by a
computationally-bounded verifier. Debate systems are often equivalently described in terms
of alternation or alternating nondeterminism [CKS81].

In a debate system for a language L, an input x ∈ {0, 1}n is given; the first debater
(Player 1) tries to convince the verifier that x ∈ L, while the second debater (Player 0)

∗CSAIL, MIT. Email: adrucker@mit.edu. Supported by a DARPA YFA grant.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2011)

tries to convince the verifier that x /∈ L. To this end, the debaters supply a sequence of
strings y = (y1, . . . , yk(n)). Here, each yi is of a prespecified length depending only on n; yi is
supplied by a prespecified debater type(i) ∈ {0, 1}, and is allowed to depend on y1, . . . , yi−1.
(We assume that k(n), type(i), and the lengths |yi| are all computable in time poly(n).)

Finally, the verifier applies a deterministic predicate V (x, y) to determine an output
b ∈ {0, 1}. We say V defines a debate system for L if Player 1 can force b = 1 exactly when
x ∈ L. If moreover |y| ≤ poly(n) and V is a polynomial-time algorithm, we say that V
defines a polynomial-time debate system for L.

An important parameter is k = k(n), the number of turns in the debate. If k ≥ 1 is a
constant, L has a k-round polynomial-time debate system if and only if L lies in the kth level
of the Polynomial Hierarchy (i.e., Σp

k ∪Πp
k), as was essentially shown by Stockmeyer [Sto76]

and Wrathall [Wra76]. Chandra and Stockmeyer [CS76] (see also [CKS81]) showed that
when k is allowed to grow polynomially in the input length, polynomial-time debate systems
characterize PSPACE:

Theorem 1. [CS76, CKS81] A language L has a polynomial-time debate system if and only
if L ∈ PSPACE.

Later Shamir [Sha92], building on [LFKN90], showed that every language L ∈ PSPACE

has an interactive proof—a polynomial-time debate system in which Player 0 plays com-
pletely random strings. If x ∈ L, then some Player 1 strategy causes the verifier to accept
with probability 1, while if x /∈ L, any Player 1 strategy causes the verifier to accept with
probability at most 1/2.

These results, as well as debate characterizations of other complexity classes, have been
instrumental in determining the complexity of many natural computational problems—
particularly 2-player games, which are readily expressed as debates. See [For05] for a fuller
discussion of the importance of debate systems in complexity theory.

1.2 Probabilistically checkable debates

One of the most significant and surprising discoveries about debate systems is that they
retain essentially all of their computational power under severe restrictions on the verifier V .

This discovery has its roots in the study of probabilistically checkable proofs (PCPs) for NP
languages. We say that a randomized polynomial-time algorithm V (x, y) is an [r(n), q(n)]-
restricted probabilistically checkable proof system for the language L (with input x ∈ {0, 1}n

and proof string y of length poly(n)), if:

1. For all x ∈ L there is a y with Pr[V (x, y) accepts] = 1;

2. For all x /∈ L and all y, Pr[V (x, y) accepts] < 1− Ω(1);

3. V uses r(n) bits of randomness and nonadaptively queries at most q(n) bits of y.

The famous PCP Theorem of [ALM+98] states that we can provide an [O(log n), O(1)]-
restricted probabilistically checkable proof system for any L ∈ NP. That is, there exists a
special proof format that allows one to efficiently verify membership claims for L, while only
looking at a constant number of bits of the proof!

2

An NP verifier for a language L ∈ NP can be viewed in the debate framework, as a
debate system consisting of a single turn by Player 1. So, single-turn debates can be made
probabilistically checkable with O(1) queries, and it is natural to wonder whether the same
can be done for more general classes of debates. To formalize this, let V (x, y) be a polynomial-
time verifier, where as before y = (y1, . . . , yk) are supplied by the competing debaters (we
assume |y| ≤ poly(n)). Now, however, V uses randomness. We call V an [r(n), q(n)]-
restricted probabilistically checkable debate system (PCDS) for the language L if:

1. For all x ∈ L, there is a Player 1 strategy that forces Pr[V (x, y1, . . . , yk) accepts] = 1
(note, we insist on perfect completeness);

2. For all x /∈ L, there is a Player 0 strategy that forces Pr[V (x, y1, . . . , yk) accepts] <
1− Ω(1);

3. V uses r(n) bits of randomness and nonadaptively queries at most q(n) bits of y.

How powerful are PCDSs when we allow k to grow polynomially in n, but require q(n) =
O(1)? Intuitively, this restriction seems quite severe, since only a constant number of the
debate strings y1, . . . , yk will receive any queries at all. However, this intuition is deceptive:
in [CFLS95], Condon, Feigenbaum, Lund, and Shor proved that PCDSs are essentially as
strong as arbitrary polynomial-time debate systems:

Theorem 2. [CFLS95] Every L ∈ PSPACE has an [O(log n), O(1)]-restricted PCDS.

Their proof used the PCP Theorem as a building block, along with several interesting
new ideas. This result was complemented by several other works that studied various classes
of debates; in each case it was shown that restricting the verifier to make O(1) queries to
the debate string does not reduce the power of the debates in question. Ko and Lin [KL94]
showed that for any k ≥ 1, if L is in Σp

k ∪ Πp
k (the kth level of the Polynomial Hierarchy),

then there is a k-round PCDS either for L or for L. Condon, Feigenbaum, Lund, and
Shor [CFLS97], in a follow-up to their original work, showed that the interactive proofs in
Shamir’s result can be made probabilistically checkable; in their PCDSs, the verifier looks at
only a constant number of the random bits written by Player 0 as well as a constant number
of Player 1’s bits. A corresponding result for AM protocols was shown in [Dru10].

1.3 The inapproximability connection

In addition to their inherent interest, probabilistically checkable debates also have a close
connection to the complexity of approximation problems. The PCP Theorem (along with
its many subsequent refinements) was the key to proving most of the known NP-hardness-of-
approximation results for optimization problems whose decision versions lie in NP. Similarly,
Theorem 2 implies that a number of reasonably natural computational problems lying in
PSPACE are in fact PSPACE-hard to approximate, as was shown in [CFLS95]. As one simple
example, suppose we are given a 3-CNF formula ψ(x1, . . . , xn), and we consider the game
in which two players take turns in assigning values to the variables, with xi assigned on
the ith round. Player 1 wants to maximize the fraction of satisfied clauses, while Player

3

0 wants to minimize this fraction. Let Val(Gψ) ∈ [0, 1] denote the value of this game to
Player 1. Using Theorem 1, one can show that it is PSPACE-complete to decide whether
Val(Gψ) = 1. However, from Theorem 2, the authors of [CFLS95] showed that for some
constant ε > 0, it is PSPACE-hard even to distinguish formulas with Val(Gψ) = 1 from
formulas with Val(Gψ) < 1− ε.1

While this is a remarkable result, it is not completely satisfactory because the reduction
involved, though polynomial-time, causes a large polynomial blowup of the 3-CNF instance
sizes.2 This blowup leads to somewhat weak conditional hardness results. Assume that any
algorithm to correctly decide whether Val(Gψ) = 1 for a 3-CNF ψ of description length n,
requires time ≥ T (n) infinitely often (“i.o.”), for some time bound T (n) = nω(1). Then,
Theorem 2 implies that for small enough ε > 0, any algorithm achieving an ε-approximation
to Val(Gψ) has a worst-case runtime T (na) on length-n instances, for some explicit absolute
constant a < 1.

We note that the reduction in the original PCP Theorem also incurred a similar blowup in
parameters. However, in recent work Dinur [Din07, Thm. 8.1] gave a [log2 n+log2(polylog(n)),
O(1)]-probabilistically checkable proof system for length-n SAT instances. This yields much
tighter conditional hardness statements for SAT: from an i.o.-lower bound T (n) = nω(1) on
the runtime of algorithms for SAT, we get an i.o.-lower bound of T (n/ logc(n)) on the run-
time of algorithms to ε-approximate the maximum fraction of satisfiable clauses in a 3-CNF
of description length n (for explicit constants c, ε > 0).

1.4 Our result

Our main result is the following quantitative strengthening of Theorem 2, which shows
that polynomial-time debates can be made probabilistically checkable in a randomness-
efficient way, with a debate string whose size is nearly-linear in the circuit complexity of
the original verifier:

Theorem 3 (Main). Suppose L has a polynomial-time debate system with a verifier im-
plementable by polynomial-time-constructible Boolean circuits of size s = s(n) ≤ poly(n).
Then L has a [log2 s+ log2(polylog(s)), O(1)]-restricted PCDS, with a debate string of total

bitlength Õ(s).

Many natural PSPACE-complete problems, like QBF-SAT (the set of true quantified
Boolean formulas, under any standard encoding), have ordinary debate systems with cir-

cuits of size s(n) = Õ(n), and for such problems Theorem 3 yields a PCDS with debate

string bitlength Õ(n) and randomness log2(n) + log2(polylog(n)).
3 Then using Theorem 3,

an i.o.-lower bound T (n) = nω(1) for determining whether Val(Gψ) = 1 for 3-CNFs ψ allows

1The technique is the same as that used to derive inapproximability results for Maximum Satisfiability
from PCP constructions.

2[CFLS95] does not provide an explicit polynomial bound. The bound arising in their work can be
brought down somewhat by substituting state-of-the-art PCPs from [Din07] into their applications of PCPs.
However, it appears that following their basic approach to leads to at least a cubic blowup.

3Actually, for QBF-SAT it is not hard to achieve s(n) = O(n); see [Wil08, p. 1].

4

us to infer an i.o.-lower bound of T (n/ logc(n)) on the runtime of algorithms to ε-approximate
Val(Gψ), for explicit constants c, ε > 0.

We also mention that any language solvable in space S(n) ≤ poly(n) has a polynomial-

time debate system definable by uniform circuits of size s(n) = Õ(S(n)2) [SM73, CKS81].

Thus, for such languages we get a PCDS with debate bitlength Õ(S(n)2).
The PCDS construction in Theorem 3 has close to the best randomness-efficiency we

can hope to achieve (for general L and s), barring a huge algorithmic breakthrough: if
the randomness complexity could be brought down to (1 − Ω(1)) log2(s), we could use the

resulting PCDS for QBF-SAT to solve length-n QBF-SAT instances in time 2n
1−Ω(1)

. Now, it
is also natural to wonder whether the debate string in the PCDS of Theorem 3 could always
be made to have bitlength bounded in terms of ℓ = ℓ(n), the bitlength of the ordinary
debate-string for L (which may be much smaller than s). Any bound of form poly(ℓ) would
be very interesting. However, this seems unlikely. In the theory of probabilistically checkable
proofs, the corresponding question is whether satisfiability of q-variable SAT instances can
be proved with a PCP of proof-length poly(q); Fortnow and Santhanam showed that this
cannot be done unless NP ⊆ coNP/poly [FS11].

1.5 Our techniques

To prove Theorem 3, we give a new method for converting standard debate systems into
probabilistically checkable ones. The method has two steps. In the first (and more novel)
step, we transform a standard debate into one that has a useful “stability” property; in the
second step, we transform a stable debate into a probabilistically checkable debate.

1.5.1 Stable debates via error-resilient communication

We say a debate system V (x, ·) for a language L is stable if for any x /∈ L, Player 0 can not
only force V (x, y) = 0, but can even force the debate string y to be Ω(1)-far in relative Ham-
ming distance from any y′ for which V (x, y′) = 1. (Thus, our stability notion is asymmetric
with respect to the players.) The notion of stability was used before, implicitly or explic-
itly, in several ways in [CFLS95, CFLS97, Dru10]. However, in the previous works building
many-round PCDSs [CFLS95, CFLS97], debates are endowed with a stability-like property4

in a fairly inefficient way: roughly speaking, on each turn of the debate, the current player
is asked to give a description of all previous moves along with their current move. This
contributes a quadratic blowup in the overall debate-string length (in addition to blowups
at other steps in the transformation).

In our transformation yielding a stable debate, we manage to avoid using such redun-
dancy. We do so by drawing a new connection to interactive coding—the theory of error-
resilient two-way communication. Interactive coding was pioneered by Schulman [Sch96],

4These papers’ first step is to transform an ordinary debate system into one in which a probabilistic
verifier inspects only a constant number of the individual player moves (yi), which may be of polynomial
length. Such debates play a role somewhat analogous to the role played by stable debates in our work; the
analogy is loose, however, and stable debates turn out to be more easily and efficiently turned into PCDSs.

5

who showed that any two-party communication protocol can be converted into one that suc-
ceeds even in the presence of a noticeable amount of adversarial noise (an adversary that may
adaptively corrupt a 1/240 fraction of the bits sent between the two parties). Moreover, this
conversion increases the total communication by only a constant factor. Schulman’s powerful
result seems not to be obtainable from standard tools for resilient one-way communication
(i.e., error-correcting codes).

Recently, Braverman and Rao [BR10] gave a new encoding method to achieve the same
goal. Their encoding corrects from a much larger fraction of adversarially corrupted symbols—
nearly 1/8 if bits are transmitted, or nearly 1/4 if a larger but constant-sized message al-
phabet is used. More importantly for us, their encoding is somewhat simpler and easier to
work with. (We do not know whether the protocol of [Sch96] could also be used to prove
our result.)

In our application of interactive coding, we begin with an ordinary debate system for a
language L, defined by a verifier V implemented by uniform circuits of size s(n). We then
transform V into a second verifier V stab, in which the two debaters are “forced” to encode
their debate using the Braverman-Rao encoding. We show that the error-resilience property
of the encoding can be used to ensure the stability property of V stab.

But how can we force the debaters to follow the desired encoding? To do this, we construct
an auxiliary “encoding-checker” debate system, that allows players to debate whether a
communication transcript corresponds to a faithful, noise-free execution of the Braverman-
Rao protocol.5 The encoding-checker debate we construct has two important properties.
First, it lasts for only O(1) turns. This is important because an O(1)-turn debate can fairly
easily be made stable, by asking for the moves to be encoded in an error-correcting code.
With this stable encoding-checker debate in hand, we can make the entire debate stable.
(Conceptually, this is the right picture; technically, we make the entire debate stable in one
step, rather than first making the auxiliary debate stable.)

The second important property of our encoding-checker debate is that it has a very
efficient verifier—one that is definable by a Boolean circuit of size O(ℓ), where ℓ is the
bitlength of the communication transcript being checked. As a result, our stable verifier
V stab can be implemented by a circuit of size Õ(s(n)) for length-n inputs. This near-linear
efficiency is important in the second step of our transformation, in which we make the debate
probabilistically checkable.

Achieving these two strong properties in our encoding-checker debate is our main tech-
nical challenge. We will return to the issue of how this challenge can be met.

1.5.2 From stable to probabilistically checkable debates

In our second transformation step, we extend our stable debate y = (y1, . . . , yk) by a single,
final turn, in which Player 1 gives a “proof” string z purporting to show that V stab

x (y) :=
V stab(x, y) = 1. We then define a verifier V ∗ that, given x, probabilistically checks O(1)
bits of y and z. For this proof/verification task, we use a powerful variant of PCPs known

5More precisely, they can debate whether a particular player is following the Braverman-Rao protocol.
Checking one player’s behavior turns out to be sufficient; the other player can be indirectly “incentivized”
to follow the protocol. This is important for achieving perfect completeness in our PCDSs.

6

as probabilistically checkable proofs of proximity (PCPPs) [BSGH+06, DR06], applied to the
circuit for the stable verifier V stab

x . We mention that PCPPs were put to a similar use
in [Dru10], and closely related techniques were used in [CFLS95, CFLS97].

If x ∈ L, then Player 1 is able to win the stable debate (y1, . . . , yk), so that V stab
x (y) = 1,

and then some proof z causes V ∗ to accept with certainty. On the other hand, if x /∈ L, then
by stability, Player 0 can guarantee that y is not even close to the set of debate strings for
which V stab

x = 1. This is precisely the condition in the definition of PCPPs that guarantees
that V ∗ will reject with noticeable probability for any setting to z. Thus the probabilistic
verifier V ∗ defines our desired PCDS for L.

How efficient is this verifier? The length of the final proof-string z and the randomness
complexity of V ∗ are determined by two factors: the efficiency of the PCPP construction we
use, and the size of the circuit for V stab

x to which we apply the PCPP. We are fortunate in both
respects. A very efficient construction of PCPPs is available, due to Dinur [Din07] (building
on [BSS06]); also, our efficient construction of stable debates ensures that the circuit for

V stab
x is of size Õ(s(n)). This yields a verifier and debate-string with the properties claimed

in Theorem 3.

1.5.3 Building encoding-checker debates

Recall that our approach requires us to build “encoding-checker” debates, to check that
a given party’s (Alice’s) behavior on a communication transcript corresponds to a correct
execution of the Braverman-Rao protocol [BR10] for error-resilient communication.

A first complication is that the Braverman-Rao protocol is not even known to have an
implementation in polynomial time, let alone nearly-linear time. Like Schulman’s earlier
protocol [Sch96], the protocol crucially relies on a special type of codes called tree codes,
defined by Schulman. Tree codes have a “distance” parameter, that is loosely analogous
to the minimum-distance parameter for error-correcting codes. No explicit construction
is known of tree codes with distance large enough to run the protocols of [BR10, Sch96]
(see [Bra11] for a recent subexponential-time construction). However, in [Sch96] an elegant
probabilistic construction of tree codes was given. Importantly for us, this construction is
very randomness-efficient, so that good tree codes exist with succinct representations. This
is enough for our purposes: in our debate system, a computationally unbounded debater may
succinctly propose a tree code, and establish through debate that it has the needed distance
property.

The protocols of [Sch96, BR10] require the communicating parties to decode corrupted
tree-code-encoded messages. In the model in which communication is corrupted adversarially
(the relevant model for us), it is not known whether this decoding can be performed in
polynomial time. However, we are again able to use the power of computationally unbounded
debaters, this time to debate the correct values of tree-code encodings and decodings.

We mention in passing that tree codes are not known to be necessary for interactive
coding. Indeed, in very recent papers by Moitra [Moi11] and, independently, Gelles and
Sahai [GS11], it was shown that the tree-code definition can be relaxed to a weaker but
still-useful kind of object that is easier to construct, yielding interactive coding schemes
that are computationally efficient in the random channel-noise model. The papers use dif-

7

ferent relaxations and achieve similar but incomparable results. Achieving efficiency in the
adversarial-noise model remains an important open question.

Now in the Braverman-Rao protocol, correct behavior for each player is defined relative
to some input to the communication task. In our application, the intended input is a player-
strategy in the original debate V for L (Alice is allowed to choose her input/strategy). Such
a strategy is an object of exponential size, and cannot even be written down in the encoding-
checker debate. Fortunately, any particular execution of the Braverman-Rao protocol only
depends on a much smaller portion of the strategy. This crucially helps us, although naively
encoding the relevant portion is not succinct enough for our purposes.

The player Alice, while executing the Braverman-Rao protocol, maintains data, and this
data needs to be represented in the encoding-checker debate. We are fortunate that the data
takes the simple form of a sequence (a1, a2, . . .) of symbols over a constant-size alphabet,
with ai being defined on the ith round of communication and never modified. This allows
a debater to succinctly present a global description of Alice’s execution. However, ai is
defined in a complex way from previous values and from the messages received from Bob.
To understand how to efficiently debate the proper settings to ai, we will make a detailed
study of a method used by the Braverman-Rao protocol to succinctly describe subsets of
edges in a complete binary tree. Our encoding-checker debate system will be built up from
a sequence of simpler debates used to reason about this description method and its use in
the protocol.

1.6 Organization of the paper

Section 2 gives preliminaries that will be used throughout the paper. In Section 3, we show
how Theorem 3 follows from an efficient construction of stable debate systems from ordinary
ones. In Section 4, we present the necessary background about communication protocols
and error-resilient communication, and we define the Braverman-Rao protocol we use.

The next two sections are the heart of the paper. In Section 5, we state our lemma
on “encoding-checker” debates for the Braverman-Rao protocol, and use it to build stable
debates. In Section 6 we build the needed encoding-checker debates. Finally, in Section 7
we conclude with some open problems.

2 Preliminaries

Given k ≥ 1, an alphabet Σ, and u, v ∈ Σk, let ∆(u, v) := {i ∈ [k] : ui 6= vi} denote the
generalized Hamming distance between u and v. We say that u is d-far from a set S ⊆ Σk

if ∆(u, v) ≥ d for all v ∈ S.
Throughout the paper, when we refer to “uniform” circuit families {Cn}n>0, we mean

“polynomial-time constructible”: there is an algorithm A that, on input 1n, outputs a de-
scription of Cn in time poly(n).

8

2.1 Constraint Satisfaction Problems and Debate CSPs

For k ≥ 1, a k-local Constraint Satisfaction Problem, or k-CSP, over finite alphabet Σ is a
collection ψ(x) = (ψ1(x), . . . ψm(x)) of Boolean-valued functions (“constraints”) on the input
x = (x1, . . . xn) ∈ Σn, where each ψj depends only on some k variables of x. Formally, ψj is
specified by a k-tuple Ij ⊆ [n] and a truth-table on these k variables. For an assignment x,
define Valψ(x), the value of ψ on x, as the fraction of constraints ψj which are “satisfied”,
i.e., for which ψj(x) = 1.

We use CSPs to define 2-player debates, as follows. A t-turn debate CSP is a CSP ψ(y),
whose variables are partitioned into t designated debate-blocks, y = (y1, . . . , yt). The blocks
yj may be of unequal size, and each debate-block is designated a “0-block” or a “1-block”;
we let type(j) ∈ {0, 1} indicate the type of block yj. (These types need not be strictly
alternating.) Note that if k = O(1) and ψ(y) is a debate k-CSP of with m constraints, a
natural description of ψ containing its block-information can be given using n = O(m logm)
bits, similar to the description length of an ordinary k-CSP. We abuse notation and let “ψ”
refer to the formula ψ along with its block-information.

To a debate CSP ψ we associate a turn-based, perfect-information game Gψ between two
players, Player 0 and Player 1. In this game, Player 1 tries to maximize the fraction of
satisfied constraints, while Player 0 tries to minimize this fraction. On the jth turn, Player
type(j) assigns values to the variables in yj. We let Val(Gψ) ∈ [0, 1] denote the fraction of
satisfied constraints under optimal play by both players. (This generalizes our definition of
Val(Gψ) for 3-CNFs in the Introduction.)

2.2 Debate circuits

One can use circuits to define 2-player debates, similarly to the way we defined debates on
CSPs. A t-turn debate circuit is a bounded-fanin Boolean circuit Φ(x, y) with two types of
inputs: “start-variables” x, and “debate-variables” y. The debate-variables are partitioned
into t designated debate-blocks, y = (y1, . . . , yt). We let type(j) ∈ {0, 1} indicate the type
of block yj. If Φ(x) is a debate circuit of size m, a natural description of Φ containing its
block information can be given using O(m logm) bits, similar to the description length of
an ordinary circuit.

To a debate circuit Φ and any assignment x to the start-variables, we associate a game
GΦ[x] between two players, Player 0 and Player 1. On the jth turn, Player type(j) assigns
values to the variables in yj. After t turns have been played and all debate-variables have
been assigned, Player 1 wins the game if Φ(x, y) = 1, otherwise Player 0 wins. We let
Val(GΦ[x]) ∈ {0, 1} denote the winner of this game under optimal play by both players.

2.3 PCPPs and error-correcting codes

Following Dinur [Din07], we will actually give a CSP-based definition of PCPPs.6 The
probabilistic-verifier description of PCPPs (as used in the Introduction) is essentially equiv-
alent to this one.

6In [Din07], PCPPs are referred to as assignment testers.

9

Say we are given a Boolean circuit C(x) on N input bits, a finite alphabet Σ, and a value
β > 0. We assume that {0, 1} ⊆ Σ. We say that a k-CSP ψ acting on variables over Σ is a
PCPP for C over Σ with security β if:

1. ψ has variable-set (x, z), where x are the Boolean input variables to C and z are
so-called “proof”-variables, taking values over Σ;

2. If C(x) = 1 then there exists a setting of z such that Valψ(x, z) = 1;

3. If C(x) = 0, then for all z, Valψ(x, z) ≤ 1− β ·∆(x, C−1(1))/N .

The proof size of ψ is the number of variables in z.
We will use the following efficient construction of PCPPs, due to Dinur:

Theorem 4. [Din07, Cor. 8.4] There is a constant-size alphabet Σ0, a constant β > 0, and
a polynomial-time algorithm that, given a description of a circuit C(x) of size t, produces a
2-CSP ψC(x, z) that is a PCPP for C over Σ0 with security β. Moreover, the proof size of

ψC and the number of constraints in ψC are each at most Õ(t).

Next we review error-correcting codes and the efficiently decodable codes we will use. A
(binary) code is an injective map Enc : {0, 1}N → {0, 1}N

′

(so N ′ ≥ N). The minimum
distance of the code is the minimum over distinct codewords u = Enc(x), v = Enc(y) of
∆(u, v). An algorithm Dec : {0, 1}N

′

→ {0, 1}N decodes Enc from an η fraction of errors
if, whenever ∆(w,Enc(x)) ≤ ηN ′, we have Dec(w) = x. Note that such for such a decoder
algorithm to exist, the minimum distance of E must be greater than 2ηN ′.

We will use a family of codes due to Spielman [Spi96] with highly efficient decoders:

Theorem 5. [Spi96] There is an η > 0 and a family of codes {EncN}N>0 for all input
lengths N , with output length N ′ = O(N), such that EncN can be decoded from an η fraction
of errors by a uniform circuit DecN of size O(N logN). Also, EncN can be computed by
uniform circuits of size O(N).

In Spielman’s work, the “decoder algorithm” attempts to output an error-free codeword,
rather than a pre-encoded message. Spielman shows how to efficiently recover any codeword
that has been corrupted by an η fraction of errors. However, the codes he constructs are
systematic, that is, every message x ∈ {0, 1}N appears in a fixed location within its own
codeword EncN(x). Thus from his work, we easily obtain Theorem 5.

3 Constructing PCDSs from stable debates

In this section we show how to derive the PCDSs claimed in Theorem 3 for the language L,
from efficient debate systems for L with the “stability” property described in the Introduction
(formally defined in Section 3.2). Subsequent sections will be devoted to constructing these
stable debates.

10

3.1 A CSP formulation of the main theorem

We will actually show that stable debates imply an alternative form of our main result,
stated in terms of debate CSPs. We will show:

Theorem 6. There is a finite alphabet Σ and an absolute constant ε > 0 such that the
following is true. Let L be any language with a polynomial-time debate system whose verifier
is implementable by uniform Boolean circuits of size s = s(n) ≤ poly(n). Then there is a
polynomial-time reduction R that takes as input a string x ∈ {0, 1}n and outputs a debate
2-CSP ψ with variables over Σ. We have:

1. If x ∈ L, then Val(Gψ) = 1;

2. if x /∈ L, then Val(Gψ) < 1− ε.

Moreover, the number of constraints in ψ is at most Õ(s).

Theorem 3 follows readily from Theorem 6, by a standard technique:

Proof of Theorem 3. Define a PCDS for L as follows. Given an input x ∈ {0, 1}n, the
verifier V ∗ applies the reduction R of Theorem 6 to x, yielding a 2-CSP debate ψ(y) with
debate-blocks y = (y1, . . . , ym). V ∗ expects the debaters to supply (binary encodings of)
assignments to y1, y2, . . . in turn, where Player type(j) chooses the assignment to yj. V ∗

then chooses a uniformly random constraint ψi of ψ, queries the assignments to the two
variables appearing in ψi, and outputs ψi(y) ∈ {0, 1}.

Observe that under optimal play by the debaters, Pr[V ∗ outputs 1] = Val(Gψ); this equals
1 if x ∈ L, and is less than 1 − ε otherwise. Also, V ∗ makes O(log2 |Σ|) = O(1) queries to
y. Finally, the number of random bits needed to select a random constraint of ψ is at most
log2 c = log2 s + log2(polylog(s)), where c = Õ(s) is the number of constraints in ψ. Thus
V ∗ is the desired [log2 s+ log2(polylog(s)), O(1)]-restricted PCDS for L.

3.2 Stability and PCDSs

Consider a (deterministic) algorithm V (x, y) with block-information for y defining a polynomial-
time debate system for some language L. Fixing δ > 0, say that V (x, y) is a 0-stable debate
system with security δ if for all inputs x /∈ L, there is a Player 0 strategy such that for all
Player 1 strategies, the resulting debate string y is at Hamming distance at least δ|y| from
any y′ for which V (x, y′) = 1.

In later sections we will prove the following lemma, implementing “step 1” of the debate
transformation described in Section 1.5 of the Introduction:

Lemma 7. There is a δ > 0 for which the following holds. Let L be any language with a
polynomial-time debate system whose verifier is implementable by uniform Boolean circuits of
size s = s(n) ≤ poly(n). Then there is a 0-stable polynomial-time debate system V stab(x, y)
for L with security δ. Moreover, for inputs x of length n, V stab(x, y) is implementable by a
uniform circuit CV stab,n of size O(s log s).

11

The log-factor arises due to our use of Spielman’s quasilinear-size decoder circuits (Theo-
rem 5). If we had a family of binary codes with constant rate, decoded from an Ω(1) fraction
of errors by a linear-size circuit family, this would bring the size of CV stab,n down to O(s(n)),
and save a hidden log factor in Theorems 3 and 6. However, it seems to be unknown whether
such codes exist.

We now derive Theorem 6 from Lemma 7. (This is “step 2” of our transformation.)

Proof of Theorem 6. Given an input x of length n, let V stab(·, ·) be the 0-stable debate system

for L as given by Lemma 7, and CV stab,n the uniform circuit of size Õ(s(n)) implenting V stab

on length n. Define the specialized circuit C[x](y) := CV stab,n(x, y).
Let ψ(y, z) := ψC[x]

(y, z) be the PCPP 2-CSP for C[x] given by Theorem 4, with alphabet
Σ0. We turn ψ into a debate CSP, by arranging its debate-blocks as follows:

1. First, the blocks of y are assigned Boolean values by the players, exactly as in the
debate circuit CV stab,n(·, ·);

7

2. Second, Player 1 assigns values to z (from the full alphabet Σ0).

We let ψ, with these debate-blocks, be the output of our reduction R. Note, ψ is constructible
in polynomial time from x since CV stab,n is uniform, and ψ has a constant-size alphabet
Σ = Σ0 as needed.

We analyze R. First, suppose x ∈ L. Then as V stab is a polynomial-time debate system
for L, there exists a Player 1 debate-strategy forcing CV stab,n(x, y) = 1; call this strategy
S1. For any Player 0 strategy played against S1, the outcome C[x](y) = CV stab,n(x, y) = 1
along with property 2 in the definition of PCPPs implies that there exists a z such that
Valψ(y, z) = 1. We conclude that Val(Gψ) = 1.

Suppose next that x /∈ L. Then by the 0-stability property of V stab, there exists a Player
0 strategy S0 that forces y to be δ|y|-far from any y′ for which C[x](y

′) = 1. In this outcome,
property 3 from the definition of PCPPs implies that for any z, Valψ(y, z) ≤ 1 − βδ. It
follows that Val(Gψ) ≤ 1− βδ in this case.

Thus conditions 1 and 2 of Theorem 6 are met, if we set ε < βδ. Finally, by the efficiency
property of Theorem 4, the number of constraints in ψ is at most Õ

(∣∣C[x]

∣∣) = Õ (s(n)), as
needed. This proves Theorem 6.

4 Error-resilient communication

In this section we review the definitions of communication protocols and error-resilient
communication. We will then carefully describe the Braverman-Rao protocol for error-
resilient communication [BR10]. Combinatorial objects called tree codes are central to the
Braverman-Rao protocol, and we review their definition as well.

7Technically, in the definition of debate CSPs we have no way of forcing the players to use Boolean values
rather than general values from Σ0. However, in constraints ψi of ψ in which variables from y appear, we
can modify ψi to simply interpret all symbols in Σ0 \ {0, 1} as representing 0s.

12

4.1 Communication protocols

First we formally define communication protocols. In our application, it is important that
the communication protocols we study define the behavior of each party on each possible
transcript of previously sent messages, even when these previous messages deviate from the
protocol. We will call such protocols total.

In a communication problem, two parties, Alice and Bob, hold inputs x and y respectively
from respective domains DA, DB. They wish to evaluate some function f(x, y), which may
not be Boolean-valued. To do so, the parties executive a communication protocol, defined
next, with the goal that after the protocol’s execution both parties know the value f(x, y).
We focus on protocols lasting for a predetermined number T > 0 of steps, with a shared,
possibly non-Boolean alphabet Σ for the messages. On an odd-numbered step i ≤ T , Alice
sends a symbol ui ∈ Σ to Bob; on an even-numbered step i, Bob sends a symbol wi ∈ Σ to
Alice.

Formally, we define a (deterministic) T -bit communication protocol P as a pair

P = (PA,PB),

consisting of an Alice-protocol PA and a Bob-protocol PB. An Alice-protocol is a mapping

PA : (DA × Σ∗) → Σ ∪ {⊥},

where ⊥ means “undefined”. We say that PA is total if PA(x, z) ∈ Σ for all z ∈ Σ2i with
0 ≤ 2i < T . Similarly, a Bob-protocol is a mapping PB : (DB × Σ∗) → Σ∪ {⊥}, and we say
that PB is total if PA(x, z) ∈ Σ for all z ∈ Σ2i+1 with 0 ≤ 2i + 1 < T . We say P is total if
PA,PB are both total.

We let ui, wi denote the ith messages of Alice and Bob respectively. The semantics on
inputs x, y are as follows: to begin, Alice sends the symbol u1 := PA(x, λ) to Bob, where λ
denotes the empty string. Bob replies with w1 := PB(y, u1). On step 2i − 1 ∈ {3, . . . , T},
Alice sends the symbol ui := PA(x, u1, . . . , ui−1, w1, . . . , wi−1); on step 2i ∈ {2, . . . , T}, Bob
sends the symbol wi := PB(x, u1, . . . , ui, w1, . . . , wi−1).

Alice and Bob each produce an output after the T th step, which depends on their in-
put and the communication transcript. Formally, Alice’s output is given by an evaluation
function

EvalA : DA × ΣT → range(f)

applied to (x, u, w), where (u, w) = (u1, . . . , u⌈T/2⌉, w1, . . . , w⌊T/2⌋). Similarly, Bob’s output
is given by some EvalB : DB × ΣT → range(f), applied to (y, u, w).

Let Eval := (EvalA, EvalB); we will freely use the term protocol to refer jointly to the
pair (P , Eval). We say the protocol computes f if on any inputs x, y, the process above
leads both Alice and Bob to output f(x, y).

4.2 The pointer-jumping problem

The pointer-jumping problem is a fundamental problem in the study of communication. To
describe the problem we need some setup. Fix a T > 0, and let T be the complete binary

13

tree of depth T . The tree T has edge-set X ∪ Y , where X and Y denote the edges at odd
and even depths of T respectively. (The depth of an edge e is the length of the path from
the root of T ending at the child vertex of e. So, the edges leaving the root are of depth 1,
and lie in X .) A subset Z ⊆ X ∪Y is called consistent, if no two edges in Z share a common
parent. For any consistent edge-set Z, there exists a unique vertex in T of maximal depth,
reachable from the root by a path contained in Z; we let v(Z) denote this vertex.

In the pointer-jumping problem, Alice receives as input a maximal consistent subset
X ⊆ X ; that is, every vertex with outgoing edges in X has exactly one outgoing edge in X.
Bob receives a maximal consistent subset Y ⊆ Y . Observe that X ∪ Y is consistent. The
pointer-jumping function (with parameter T) is defined as

PJT (X, Y) := v(X ∪ Y).

PJT is computable by a T -bit communication protocol. Also, it is easy to see that any
function f(x, y) computable by a T -bit communication protocol is reducible (in a natural
sense) to PJT : there exist a pair of mappings mA,mB where (X, Y) = (mA(x),mB(y)) is a
valid input to PJT , and such that the value f(x, y) can be determined from PJT (X, Y).

4.3 Faithful behavior in communication protocols

Suppose that (P , Eval) is a 2T -bit protocol to compute some function f(x, y), us-
ing messages in alphabet Σ. Let x ∈ DA be an input to Alice. Say that the tran-
script (u, w) ∈ Σ2T is PA-faithful for x if PA(x, λ) = u1 and, for each i ∈ {2, . . . , T},
PA(x, u1, . . . , ui−1, w1, . . . , wi−1) = ui. That is, Alice behaves according to PA(x, ·) under
the message-sequence w from Bob (even though Bob might not be following the protocol
correctly). Say that the transcript (u, w) is PA-faithful if it is PA-faithful for some input x.

Similarly, given y ∈ DB, say that (u, w) is PB-faithful for y if PB(y, u1) = w1 and, for
each i ∈ {2, . . . , T}, PB(y, u1, . . . , ui, w1, . . . , wi−1) = wi. Say that (u, w) is PB-faithful if it
is PB-faithful for some y. If the transcript (u, w) is both PA-faithful and PB-faithful, we call
it a perfect execution of P .

4.4 Error-resilient communication

We consider the scenario in which messages sent between Alice and Bob are sometimes
corrupted in transmission. Define a noisy transcript as a 4-tuple (u, u′, w, w′) ∈ Σ4T . The
interpretation is that Alice sends the sequence of symbols u = (u1, . . . , uT), but they are re-
ceived by Bob as the corrupted sequence u′ = (u′1, . . . , u

′
T); similarly, Bob sends the sequence

w, and Alice receives the corrupted sequence w′.
Let f be a function on domain DA×DB. A very desirable property of a communication

protocol for f is that the protocol succeeds in computing f(x, y) whenever the number of
transmission errors is not too large; that is, each of Alice and Bob can deduce the value
of f(x, y) from their own part of the input, along with the sequence of corrupted messages
received. Formally, let (P , Eval) be a 2T -bit communication protocol for f . Say that the

14

evaluation rule Eval is resilient for f with respect to inputs x, y ∈ DA × DB and noisy
transcript (u, u′, w, w′) ∈ Σ4T , if

EvalA(x, u, w
′) = EvalB(y, u

′, w) = f(x, y).

That is, Alice and Bob both succeed in evaluating f correctly when they apply their evalu-
ation functions to their actual sent messages, and their corrupted received messages. Note,
there is no assumption here that Alice and Bob are following P .

Say that (P , Eval) is δ-error-resilient for f if for any x, y ∈ DA ×DB, Eval is resilient
for f with respect to x, y, and any noisy transcript (u, u′, w, w′) satisfying

1. (u, w′) is PA-faithful for x, and (u′, w) is PB-faithful for y;

2. ∆(u, u′) + ∆(w,w′) ≤ 2δT .

That is, whenever Alice and Bob both follow the protocol P , and the total fraction of
transmission errors is at most δ, both players succeed in evaluating f(x, y) correctly.

Braverman and Rao proved the following result:

Theorem 8. [BR10, Theorem 1] Suppose there is a T -bit protocol to compute the (possibly
non-Boolean) function f . Then for any ε > 0, there is an O(T/ε)-bit protocol (Pε, Evalε),
that is (1/4−ε)-error-resilient for f and uses messages over a constant-size alphabet Σ = Σε.

They prove Theorem 8 for the case where f is the pointer-jumping problem, f := PJT ,
from which the result for general f follows easily. Their result improves on an earlier result
of Schulman [Sch96], who defined error-resilient communication protocols and gave a sim-
ilar result, sending binary messages and tolerating a 1/240 fraction of transmission errors.
(In [BR10] the authors also construct (1/8 − ε)-error-resilient protocols using binary mes-
sages. The protocols from Theorem 8 will be easier for us to use, however.) The quantitative
improvement in the more recent work is not needed for our work, but the algorithmic details
of the Braverman-Rao protocol make it easier to apply.

4.5 Sensibleness

Related to error-resilience is a property of communication protocols we call sensibleness.
Suppose that P = (PA,PB, EvalA, EvalB) is a T -bit communication protocol computing
some function f : DA×DB → S, with message alphabet Σ. Given x ∈ DA, define PossA(x) ⊆
S, the possible outcomes for Alice with respect to x, as

PossA(x) := {s ∈ S : ∃y ∈ DB such that f(x, y) = s}.

Similarly for y ∈ DB, define the possible outcomes for Bob with respect to y as PossB(y) :=
{s ∈ S : ∃x ∈ DA such that f(x, y) = s}. We say that PA is sensible with respect to some
S ′ ⊆ S if, for any input x ∈ DA to Alice and any transcript (α, β) that is PA-faithful with
respect to x, we have

EvalA(x, α, β) ∈ PossA(x) ∪ S ′.

15

That is, no matter how much Bob deviates from the protocol (or has his messages corrupted
in transmission), Alice will never produce a guess s for f(x, y) that lies in S ′, unless that
guess is consistent with some value y that might be held by Bob.

We define sensibleness for PB with respect to S ′ analogously. We say P is sensible with
respect to S ′ if PA,PB are both sensible with respect to S ′. When we define it in Section 4.8,
we will observe that the Braverman-Rao protocol has a useful sensibleness property.

4.6 Tree Codes

A d-ary tree code of depth n and alphabet Σ is defined by an encoding function C : [d]≤n → Σ.
For (v1, . . . , vk) ∈ [d]≤n, define

C(v1, . . . , vk) := (C(v1), C(v1, v2), . . . , C(v1, v2, . . . , vk)).

The definition can be interpreted as follows. A sequence (v1, . . . , vk) defines a path of length
k ≤ n in the complete, rooted, directed d-ary tree of depth n (call this tree T): we begin at
the root, and on the jth step of the path, we follow the outgoing edge index by vj. We may
view C as a labeling of the edges of T : namely, C(v1, . . . , vk) gives the label of the final edge
followed on path (v1, . . . , vk), and C(v1, . . . , vk) ∈ Σk gives the full sequence of labels seen
along this path.

Given two sequences u, v ∈ [d]k, where k ≤ n, let ℓ(u, v) := k + 1 − minj{uj 6= vj}.
Considering u, v as vertices in T (where a length-k path is identified with its terminal vertex),
ℓ(u, v) indicates the distance from w to u, where w is the closest common ancestor of u and
v. We say the tree code C has distance µ > 0 if for all k ≤ n and u, v ∈ [d]k, we have

∆(C(u), C(v)) ≥ µ · ℓ(u, v).

(In words: C(u) and C(v) differ in at least a µ fraction of the positions where they could
possibly differ, namely, in their final ℓ(u, v) symbols.)

In the protocols we study, tree codes are intended to be decoded in the presence of errors.
Given C as above, and given an arbitrary string σ = (σ1, . . . , σk) ∈ Σk where k ≤ n, define

D(σ) := argmin
u∈[d]k

∆
(
C(u), σ

)

as the message u whose encoding is closest to σ. In case of ties, D breaks ties nonde-
terministically; for the application of the tree codes in the Braverman-Rao protocol, such
nondeterministic decoding suffices to give the desired behavior. However, to promote clarity
we will work with a deterministic refinement of the decoder: we define

Dlex(σ) ∈ [d]k

as the lexicographically smallest u that minimizes ∆
(
C(u), σ

)
.

The following theorem on the existence of tree codes was proved by Schulman in [Sch96],
where the tree code and analysis given are attributed to collaboration with Rabani and
Goldreich.

16

Theorem 9. [Sch96, Lemma 1B] For every µ ∈ (0, 1) and n > 0, there is a d-ary tree code
C = Cµ,n of distance µ for depth n, with alphabet size |Σ| = Od,µ(1).

The code Cµ,n in [Sch96] is constructed probabilistically. No explicit construction is
known; however, this will not be a major obstacle for our purposes, since we are working with
computationally unbounded debaters. We will, however, need some constructive properties
of the code. To establish these properties, we review the definition of the code from [Sch96].

To define Cµ,n, we fix a prime number p ≥ d, and a sequence r = (r1, . . . , rn) of elements
of the finite field Fp. We take Σ := Fp, and define a code C(r) : [d]

≤n → Σ by the encoding
rule

C(r)(u1, . . . , uk) :=
k∑

j=1

(uj − 1)rk+1−j,

with arithmetic over Fp. It is shown in [Sch96] that if p = Od,µ(1) is large enough, then the
above code is a tree code of distance µ, for some “good” choice of (r1, . . . , rn). Importantly
for us, such a code requires only Od,µ(n) bits to specify.

4.7 Edge encodings for the Braverman-Rao protocol

A central ingredient in the pointer-jumping protocol of Braverman and Rao (specifically, the
protocol that appears in [BR10, Section 5], with which the authors prove Theorem 8) is a
method of encoding consistent subsets of the edges of a complete binary tree T of depth
T > 0. In this subsection we describe the encoding method. While we follow [BR10] closely,
we will also introduce a few new notations.

The tree T has edge-set X ∪Y , where X and Y are the edges at odd and even depths of
T respectively. (The depth of an edge e is the length of the path from the root of T ending
at the child vertex of e. So, the edges leaving the root are of depth 1, and lie in X .)

Given an edge e ∈ X ∪ Y and a sequence h ∈ {0, 1}>0, we define

edge(e;h) ∈ X ∪ Y ∪ {⊥}

as the final edge visited if we start at the child vertex of e, then following the path described
by h. For example, edge(e; 0) is the left edge out of the child vertex of e. If, in either case,
the path described by h is ill-defined (because we hit a leaf node of T with additional steps
left to take), we set edge(e;h) := ⊥. We also define edge(∅;h) similarly to edge(e;h), except
we start our walk at the root vertex of T .

Finally, define vertex(e;h) as the child vertex of edge(e;h), and similarly for vertex(∅;h).
Fix a parameter R > 0. (In the proof of Theorem 8, Braverman and Rao set R = O(T/ε);

we will use ε := 1/8, so R = O(T).) Define the finite alphabet

Π := {0, 1, 2, . . . , R} × {0, 1}∈{1,2},

where {0, 1}∈{1,2} are the binary strings of length 1 or 2. The first step in defining the
Braverman-Rao encoding is to define a map8

E : Π≤R → P(X ∪ Y),

8The definition we give is equivalent to the map E in [BR10, Section 4].

17

where P(X ∪ Y) denotes the set of subsets of X ∪ Y . For a = (a1, . . . , ak) ∈ Πk, we will
define a sequence e1, . . . , ek of edges of T ; some ei’s may remain undefined, an outcome we
will indicate by [ei = ⊥]. Each ei will be determined by a1, . . . , ai. Then, we take

E(a) := {ei | i ∈ [k], ei 6= ⊥}.

Following [BR10, Section 4], we inductively define the edges ei for i = 1, . . . , k. Given
a ∈ Πk, let ai = (ri, si) ∈ {0, 1, . . . , R}× {0, 1}∈{1,2}. (The idea is that ri is a pointer to ari .)

1. If ri = 0, define e′i := edge(∅; si).

2. If ri < i and eri 6= ⊥, set e′i := edge(eri ; si).

3. If e′i 6= ⊥, and there is no j < i for which ej, e
′
i have a common parent, set ei := e′i.

Otherwise, set ei := ⊥.

Next, following [BR10, Section 5], we build on the mapping E to give a second encoding of
consistent edge-sets, where edge-sets are now to be encoded by sequences over the constant-
sized alphabet

Γ := {<, 0, 1, >, ∅}.

We again fix some R > 0. We also fix some binary encoding of elements of Π, which we’ll
denote desc : Π → {0, 1}∗. desc is selected so that the description desc((ℓ, s)) is at most
c0 log ℓ bits long, for each (ℓ, s) ∈ Π and for some fixed c0 > 0.

For k ≤ R, a sequence γ = (γ1, . . . , γk) ∈ Γk defines a sequence z(γ) = (z1, . . . , zk) ∈ Πk.
The definition of zi given below may appear mysterious; the basic idea is that the encoding
rule makes it possible to encode a value zi = (ri, si) ∈ Π with ri < i, using a string w that is
short whenever ri is not too much smaller than i. This allows the Braverman-Rao protocol
to make progress quickly.

For i = 1, . . . , k, we define zi ∈ Π as follows:

1. First suppose (γ1, . . . , γi) is of form (γ′, <, w,>), where γ′ ∈ Γ∗ and w ∈ {0, 1}∗. In
this case let j < i be the index immediately preceding the substring w, so that γj =
“<” and γi = “>”.

If, additionally, w = desc((ℓ, s)) for some (ℓ, s) ∈ Π, then set

zi := (max{j − ℓ, 0}, s).

In this case we say that i is a viable index for γ.

2. If either of the two conditions in part 1 are not met (i is not viable), set zi := (i, 00).

Using this definitions, we define a second mapping9

E ′ : Γ≤R → P(X ∪ Y),

by the rule
E ′(γ) := E(z(γ)).

Note that from the definition of the edges e1, . . . , ek defined by z(γ), it follows that ei = ⊥
whenever i is not a viable index for γ. However, some viable indices i for γ may still have
ei = ⊥. If ei 6= ⊥, we say that i is an effective index for γ.

9The map E′ is also denoted E in [BR10, Section 5]; we introduce a separate notation.

18

4.8 The Braverman-Rao protocol

We are now ready to define the Braverman-Rao protocol that we will use in our work
(following [BR10, Section 5]). This is the error-resilient protocol (PBR,ε, Evalε) used to
prove Theorem 8 for the case where f = PJT is the pointer-jumping problem.

The protocol proceeds in R = O(T/ε) rounds, where each round i consists of a message
αi ∈ Σ sent by Alice to Bob, followed by a message βi ∈ Σ sent by Bob to Alice. (We will
define Σ = Σε shortly.) We let α, β ∈ ΣR denote the sequences of messages sent by Alice
and Bob. As the protocol is designed to be error-resilient, it is helpful to state the behavior
of the two parties as determined by a (possibly-corrupted) sequence of received messages.
We will use α′

i ∈ Σ to denote the possibly-corrupted ith message received by Bob, and β′
i to

denote the ith message received by Alice.
Recall the tree codes C(r) from Section 4.6. We will apply these codes to sequences

over the alphabet Γ (so, d = 5). We take n := R, µ := 1 − ε, and let p = Oε(1) be an
appropriately large prime number. Then we fix any “good” sequence r ∈ FRp , i.e., one such
that C(r) : Γ

≤R → Fp is a 5-ary tree code of distance 1 − ε. Let Dlex
(r) be the deterministic

decoding function for C(r), as defined in Section 4.6. We set Σ := Fp.
In the protocol, Alice will maintain a sequence (a1, a2, . . .) ∈ Γ∗, as well as a sequence

A1, A2, . . . of subsets of X∪Y . The values of ai, Ai will be defined on the ith round and be used
to determine Alice’s ith message αi. Similarly, Bob will maintain sequences (b1, b2, . . .) ∈ Γ∗,
and B1, B2, . . . ⊆ X ∪ Y , with bi, Bi defined on the ith round. We define these sequences
first; the protocol will then be simple to state.

Specifically, we define10

Ai :=

{
∅ if i = 1,

(E ′(a1, . . . , ai−1) ∩ X) ∪
(
E ′(Dlex

(r) (β
′
1, . . . , β

′
i−1)) ∩ Y

)
else,

(1)

and similarly, we set

Bi :=

{
∅ if i = 1,

(E ′(b1, . . . , bi−1) ∩ Y) ∪
(
E ′(Dlex

(r) (α
′
1, . . . , α

′
i−1)) ∩ X

)
else.

(2)

Observe that Ai is indeed computable by Alice at and Bob respectively at the beginning of
round i, since a1, . . . , ai−1 and b1, . . . , bi−1 are held by Alice and Bob respectively at that
time.

For any (a1, . . . , ai−1, β
′
1, . . . , β

′
i−1), the set Ai is the union of a consistent subset of X

with a consistent subset of Y ; so Ai is itself consistent. Similarly, Bi is consistent. Thus, the
vertices v(Ai), v(Bi) are each well-defined (recall the definitions from Section 4.2).

10The definition is equivalent to the one in [BR10], but stated slightly differently. In particular, when-
ever a1, . . . , ai−1 are produced according to the Braverman-Rao protocol (under any amount of noise in
the communication channel), we always have E′(a1, . . . , ai−1) ⊆ X and so intersecting with X is unneces-
sary. However, we wish to have a version of the protocol whose behavior is well-defined on all sequences
(a1, . . . , ai−1) ∈ Γi−1.
We also differ slightly from [BR10] in that we work with the tree-code decoding function Dlex from

Section 4.6. This does not affect correctness of the protocol, since Dlex is a deterministic refinement of the
original decoder.

19

Next, the symbol ai ∈ Γ is defined in terms of (a1, . . . , ai−1, Ai), by the rule below. The
definition appears complicated, but the idea is simple: if v(Ai) 6= v(Ai ∪X), Alice is trying
to encode the edge e ∈ X that will extend the path in Ai. She can’t do this in one step,
since e takes several bits to encode; so, she extends the encoding one symbol at a time. Here
is the formal definition:

1. If v(Ai) = v(Ai ∪X), let ai := “∅”.

2. If v(Ai) 6= v(Ai ∪X), let e be the edge of X whose parent is v(Ai). Now inspect the
form of (a1, . . . , ai−1). First, suppose it is of form (u,<,w) where u is of some length
j − 1 ≥ 0, and such that:

(a) w ∈ {0, 1}∗ is a (possibly empty) prefix of a string w′ = desc((ℓ, s)), for some
(ℓ, s) ∈ Π; and,

(b) Either v(Ai) is the root of T , ℓ = j, and edge(∅; s) = e;
or, e is a descendant of ej−ℓ = ej−ℓ(a1, . . . , aj−ℓ), with ej−ℓ ∈ X and e =
edge(ej−ℓ; s).

11

In this case, set ai so as to extend w according to w′ (or, if w = w′, let ai := “>”).12

3. If v(Ai) 6= v(Ai ∪X) but (a1, . . . , ai−1) is not of the form described in item 2, set ai :=
“<”.

The definition of bi for Bob is perfectly analogous; moreover, this definition is not even
needed for our work. However, we state it below for completeness:

1. If v(Bi) = v(Bi ∪ Y), let bi := “∅”.

2. If v(Bi) 6= v(Bi ∪ Y), let e be the edge of Y whose parent is v(Bi). Now inspect the
form of (b1, . . . , bi−1). First, suppose it is of form (u,<,w) where u is of some length
j − 1 ≥ 0, and such that:

(a) w ∈ {0, 1}∗ is a prefix of a string w′ = desc((ℓ, s)), for some (ℓ, s) ∈ Π; and,

(b) Either v(Bi) is the root of T , ℓ = j, and edge(∅; s) = e;
or, e is a descendant of ej−ℓ = ej−ℓ(b1, . . . , bj−ℓ), with ej−ℓ ∈ Y and e = edge(ej−ℓ; s).

In this case, set bi so as to extend w according to w′ (or, if w = w′, let bi := “>”).

3. If v(Bi) 6= v(Bi ∪X) but (b1, . . . , bi−1) is not of the form described in item 2, set bi :=
“<”.

Now we can state the protocol.

11Again, when a1, . . . , ai−1 are produced according to PA, we will always have ej−ℓ ∈ X if this edge is
defined.

12Note that w,w′ are uniquely determined, since we can have e = edge(ej−ℓ; s) for at most one pair (ℓ, s)
with s ∈ {0, 1}∈1,2 and ej−ℓ ∈ X . Here we are using that for any sequence a1, . . . , ai−1 whatsoever, the
defined edges among e1, . . . , ei−1 are distinct.

20

Protocol PBR,ε: For i = 1, . . . , R:

1. Alice transmits αi := C(r)(a1, . . . , ai);

2. Bob transmits βi := C(r)(b1, . . . , bi).

Evaluation functions Evalε = (EvalA, EvalB):

1. Alice outputs EvalA := v(AR);

2. Bob outputs EvalB := v(BR).

In [BR10] it is shown that (PBR,ε, Evalε) is an (1/4− ε)-error-resilient protocol for PJT ,
when C(r) is a tree code of distance 1 − ε. However, note that the protocol is at least well-
defined for any setting of r ∈ FRp . (This is useful since in our debate systems, the debaters
will have to supply the values of r themselves, and they may provide values that do not yield
a good tree code.)

The output of both players’ evaluation function in PBR,ε is always some vertex of T .
Recalling the definition of sensibleness from Section 4.5, we have:

Claim 10. The protocol (PBR,ε, Evalε) defined above is sensible with respect to the set S ′

consisting of all leaf vertices of T .

Proof. We show sensibleness for Alice with respect to S ′; Bob is handled similarly. It is not
hard to see that for any sequence β ∈ ΣR, the set Ai ∩ X = E ′(a1, . . . , ai−1) ∩ X is always
contained in X for each i ∈ [R]; this is because, when following PA, Alice only encodes edges
of X with a1, . . . , aR. It follows that the vertex EvalA(X,α, β) = v(AR) is always reachable
by some path P in T whose intersection with X is contained in X. Thus if v(AR) is a leaf
vertex v, we must have v ∈ PossA(X). So PA is sensible with respect to S ′.

5 Building stable debate systems

In this section we state our technical lemma (Lemma 11) on the existence of “encoding-
checkers” for the Braverman-Rao protocol, and use it to prove Lemma 7 from Section 3.2,
completing the proof of Theorem 6. Lemma 11 will be proved in Section 6.

5.1 Debate circuits for the Braverman-Rao protocol

Our main technical tool is Lemma 11 below, which exhibits a family of constant-turn
debate circuits. Given a sequence r and communication transcript (α, β), this debate allows
the players to debate whether Alice is faithfully following the Braverman-Rao protocol in
(α, β) with respect to C(r), with a “good” choice of r.

21

Remark. In our work with debate circuits, we will frequently use a space-saving shorthand.
We sometimes say that a debate circuit Φ takes as part of its start-variables an input sequence
h ∈ S≤t, for some alphabet S and parameter t ≥ 1. More formally, the actual input is a
binary representation of a sequence h′ ∈ (S ∪ {⊥})t, where we choose any fixed-length
binary representation of the alphabet S ∪{⊥} and use a concatenated encoding for h′. The
debate circuit Φ expects h′ to be of the form {S}k × {⊥}t−k, for some k ∈ {0, 1, . . . , t}. In
Lemma 12 of Section 6.1, we will show that there is a linear-sized circuit that checks that h′

is of this form, and also computes the value k.
The debate circuit Φ will be understood to output 0 if h′ is not of the expected form.

Similarly, we will often design debate circuits in which some Player b ∈ {0, 1} is asked to
give a sequence h ∈ S≤t. The implicit understanding is that Player b is expected to supply
a sequence h′ ∈ Sk × {⊥}t−k for some k ≤ t. The debate circuit tests this condition, and
immediately outputs 1 − b if it is not satisfied. Thus, we may assume that under optimal
play by both players, the sequences supplied are of the expected form.

Lemma 11. Fix any ε ∈ (0, 1/4) with finite binary expansion, and let p = Oε(1) be chosen as
in Section 4.8. For T > 0, let R = RT,ε = O(T/ε) be as in Section 4.8, and let Σ = Σε = Fp.
Given a sequence r ∈ FRp , let

PBR,ε = PBR,ε[r] = (PA,PB), Evalε = (EvalA, EvalB)

be the protocol defined in Section 4.8 relative to tree code C(r) and parameter T (we suppress
the dependence on r in our notation).

There exists a family
{
ΦBR,ε
T

}
T>0

of debate circuits, where ΦBR,ε
T has as start-variables

a transcript (α, β) ∈ Σ2R, along with sequences h ∈ {0, 1}≤T and r ∈ FRp .
We have Val(GΦBR,ε

T
[α, β, h, r]) = 1 if and only if:

1. C(r) is a tree code of distance at least 1− ε;

2. There exists a maximal consistent set X ⊂ X , for which (α, β) is PA-faithful with
respect to X;

3. The set X meeting condition 2 can be chosen to satisfy EvalA(X,α, β) = vertex(∅;h).

Also, ΦBR,ε
T has O(1) debate-blocks, is of size Oε(T), and is constructible in time polyε(T).

We will only need to apply Lemma 11 for one arbitrary choice of ε ∈ (0, 1/4), but proving
it for all ε in this range presents no extra difficulty.

5.2 Proof of Lemma 7

Proof. Let V (x, y) be a verifier defining a polynomial-time debate system for L. By assump-
tion, for length-n inputs, V can be implemented by a uniform circuit CV,n of size s(n).

By modifying the debate for CV,n, we may ensure that the debate-blocks y1, . . . , yk are
strictly alternating between the players and consist of a single bit each, with Player 1 getting
the first block (type(1) = 1). We do this by padding the debate with irrelevant bits as

22

necessary; this doesn’t affect the debate length or the efficiency of the verifier by more than
a constant factor.13

Let T = Tn ≤ O(s(n)) be the number of turns used by the modified debate circuit CV,n.
Let ε := 1/8; let p be a sufficiently large prime and let R = RT,ε = O(T) be as in Section 4.8.

Let N = O(T) be defined as the total size of the circuit ΦBR := ΦBR,ε
T from Lemma 11.

Let EncN : {0, 1}N → {0, 1}N
′

be the code given by Theorem 5 (we have N ′ = O(T)),
and η > 0 the constant from that Theorem. We can encode and decode messages of variable
length m ≤ N/2 under EncN , by simply fixing a 2-bit encoding of {0, 1,⊥}. In doing so, we
will abuse notation and regard EncN as a mapping from {0, 1}≤N/2 → {0, 1}N

′

, and similarly
will regard DecN as a mapping from {0, 1}N

′

→ {0, 1}≤N/2. Often when we apply DecN ,
we will have an “expected” length of the decoded message; if the actual decoded message
is of a different length, the implicit convention is that we will either truncate it or pad it
with arbitrary values to get a message of the desired length. (The intention here is that,
by encoding messages of various lengths with the same codeword length N ′, we make them
“count equally”; this will help us to establish the 0-stability property.)

Our debate system V stab(x, ·) works in phases, as follows:

Phase 1: Player 1 is asked for a string r̂ ∈ {0, 1}N
′

. (Player 1’s implicit claim is that
r̂ = EncN(r) encodes some sequence r ∈ FRp for which C(r) is a tree code with distance
≥ 1− ε = 7/8. We have chosen N large enough that a sequence r ∈ FRp can be so encoded.)

Next, V stab computes r := DecN(r̂), as well as r̂
′ := EncN(r). If ∆(r̂, r̂′) ≥ ηN ′/2, then

V stab immediately outputs 0. Otherwise, we proceed to Phase 2.

Phase 2: The players are asked to write down binary descriptions of symbols (α1, β1, . . . , αR, βR)
∈ Σ2R in that order, where each αi is written by Player 1 and each βi is written by Player
0. Let (α, β) := (α1, . . . , αR, β1, . . . , βR).

Next, Player 1 provides a string ĥ ∈ {0, 1}N
′

. (The implicit claim here is that Player 1 was
following PA for some maximal consistent input X, and that EvalA(X,α, β) = vertex(∅;h),
where h ∈ {0, 1}≤T and ĥ = EncN(h).)

V stab computes h := DecN(ĥ), as well as ĥ
′ := EncN(h). If ∆(ĥ, ĥ′) ≥ ηN ′/2 then V stab

immediately outputs 0. Otherwise, we proceed to Phase 3.

Phase 3: Player 1 is asked to provide a string t̂rans ∈ {0, 1}N
′

. The verifier computes

(α∗, β∗) := DecN(t̂rans), where (α∗, β∗) are (binary encodings of) two sequences in Σ2R.

V stab computes t̂rans′ := EncN((α
∗, β∗)). If ∆(t̂rans, t̂rans′) ≥ ηN ′/2, then V stab im-

mediately outputs 0.14

Next, if ∆Σ((α
∗, β∗), (α, β)) ≥ R/100, then V stab immediately outputs 0. Otherwise, we

proceed to Phase 4.

13It may, however, blow up the total number of turns by a large amount; we do not attempt to minimize
turns in this paper (but see question 2 in Section 7).

14Here, we write ∆Σ(·, ·) to clarify that our Hamming distances are taken over the message alphabet Σ.

23

Phase 4: Let v denote the debate variables for ΦBR, and let (v1, . . . , vk) be the debate-
blocks of v in their order of assignment (Lemma 11 tells us that k = O(1)). For j ∈ [k], let
type(j) ∈ {0, 1} be the player who gets to assign vj in the debate circuit ΦBR.

In Phase 4, the players provide strings v̂1, . . . , v̂k ∈ {0, 1}N
′

, in that order, with Player
type(j) providing v̂j. (The idea is that the players are to be encoding an execution of the
debate ΦBR.) V stab computes vj := DecN(v̂

j) for each j ∈ [k], as well as ŵj := EncN(v
j).

If for some j we have ∆(v̂j, ŵj) ≥ ηN ′/2, then let j0 be the minimal such value; V stab

immediately outputs 1− type(j0). Otherwise, we proceed to Phase 5.

Phase 5: V stab evaluates ΦBR applied to start-variables r (as produced in Phase 1) along
with (α∗, β∗, h) (from Phase 2), and with the assignments (v1, . . . , vk) to the debate-variables
produced in Phase 3. Let b ∈ {0, 1} denote the output of ΦBR. If b = 0 then V stab

immediately outputs 0. If b = 1, V stab outputs 1 if either of the following two conditions
hold:

(i) The sequence h ∈ {0, 1}≤T is of length less than T ;

(ii) h is of length T , and CV,n(x, h) = 1.

If neither of (i), (ii) holds, V stab outputs 0.

This completes the description of the verifier V stab. First we will analyze the efficiency
properties of V stab; then, we will show it has the desired 0-stability property. For effi-
ciency, V stab can certainly be implemented in polynomial time, since ΦBR, EncN , DecN all
have uniform circuits (and N, T = O(s) ≤ poly(n)). But observe that V stab can also be
implemented as a uniform circuit of size O(N) = O(T), given oracle access to circuits
ΦBR, EncN , DecN , CV,n. (The only significant computation required is to compute Hamming
distances, and we will show in Section 6.1 that this can be done by linear-sized circuits.) Since

ΦBR, EncN , DecN are all computable by uniform circuits of size at most Õ(T) ≤ Õ(s(n)),
and the (modified) circuit CV,n is uniform of size O(s(n)), we conclude that V stab is imple-

mentable by a uniform circuit CV stab,n of size Õ(s(n)) as required.
We now argue that V stab defines a 0-stable debate system for L, with security parameter

δ = Ω(1) to be determined.
First, suppose x ∈ L. Then the debate CV,n(x, y) can be won by Player 1, with some

strategy S1. Recall that CV,n has a debate consisting of T strictly alternating 1-bit turns, with
Player 1 playing first. Let T be the complete binary tree of depth T . We may view S1 as a
consistent subset of X , the odd-depth edges of T : namely, for (h1, . . . , h2k+1) ∈ {0, 1}2k+1≤T ,
the condition edge(∅; (h1, . . . , h2k+1)) ∈ S1 means that, if the first 2k variables of the debate
y1, . . . , y2k have been assigned as h1, . . . , h2k, then the strategy S1 directs Player 1 to set
y2k+1 := h2k+1. If necessary, we can extend S1 to be defined on every sequence h1, . . . , h2k+1,
so that S1 is a maximal consistent subset of X . Note, this expansion doesn’t alter the fact
that S1 is a winning strategy.

Define a Player 1 strategy S ′
1 for V stab(x, ·), as follows:

24

1. In Phase 1, provide an encoding r̂ = ENCN(r) for some r ∈ FRp for which C(r) is a tree
code with distance 7/8. Such an r exists for our sufficiently large setting of p. Note,
this guarantees that we reach Phase 2.

2. In Phase 2, faithfully execute the Alice-protocol PA defined relative to C(r), with
S1 ⊂ X used as Alice’s “input.” (Recall that PA’s behavior is well-defined for any
behavior by Bob in setting the values of the sequence β.) After (α, β) have been
defined, set ĥ := EncN(h), where h ∈ {0, 1}ℓ≤T satisfies EvalA(X,α, β) = vertex(∅;h).
Note that we will reach Phase 3.

3. In Phase 3, set t̂rans := EncN((α, β)). Thus, we have (α∗, β∗) = (α, β), and we reach
Phase 4.

4. In Phase 4, simulate an optimal Player-1 strategy for the debate ΦBR, with start-
variables r, α, β, h as defined previously. If in the simulation type(j) = 1 and the
simulated Player 1 strategy wants to set vj := uj, we set v̂j := EncN(u

j). If type(j) =
0, then to obtain a Player 0 move for the simulated ΦBR-debate turn j, Player 1 looks
at v̂j and decodes to the closest codeword encoding some valid assignment uj to vj,
using uj as the simulated move by Player 0.

5. (Phase 5: there is nothing for either player to do.)

We now argue that S ′
1 is winning for V stab. Consider any strategy used by Player 0

against S ′
1. In Phase 2, S ′

1 follows PA faithfully with respect to S1. Now, PA is sensible with
respect to the set S ′ of leaf vertices of T (Claim 10). Also, S1 is winning for CV,n(x, ·). Thus,
the resulting value EvalA(S1, α, β) = vertex(∅;h) is either (i) a non-leaf vertex, or (ii) is a
leaf vertex for which CV,n(x, h) = 1.

In Phase 4, Player 1’s honest behavior in the previous phases implies that properties
1-3 of Lemma 11 all hold. Also, Player 1 always encodes valid moves in Phase 4, so he is
not punished at this stage. Since he is following an optimal strategy, Player 1 wins his own
simulated debate in Phase 4.

If any move v̂j by Player 0 in Phase 4 (type(j) = 0) is at distance ≥ ηN ′/2 from a valid
codeword, V stab will output 1 in Phase 4. So assume the contrary. Then, for the Player-0
moves uj used by Player 1 in his simulation in Phase 4, we have uj = DecN(v̂

j) = vj. That
is, the moves used by Player 1 in his own simulation are exactly those used by V stab in
evaluating ΦBR in Phase 5. Thus in Phase 5, b = 1 (if we do not output 1 already in Phase
4). Also, our analysis of Phase 2 implies that one of conditions (i)-(ii) from Phase 5 holds.
Thus, V stab outputs 1. So V stab(x, ·) is winnable by Player 1 in this case, as needed.

Next, suppose x /∈ L. Then the debate V (x, ·) can be won by Player 0 with some strategy
S0. As before, we can regard S0 as a consistent subset of edges in T , this time a maximal
consistent subset of Y .

Define a Player 0 strategy S ′
0 for V stab(x, ·), as follows:

1. Phase 1: there is nothing for Player 0 to do. If Player 1 passes Phase 1, let r ∈ Fqp be
as computed by V stab in this phase.

25

2. In Phase 2, faithfully execute the Bob-protocol PB defined relative to C(r), with S0 ⊂ Y
used as Bob’s “input.” (PB’s behavior is well-defined for any partial setting by Alice
to α.)

3. (Phase 3: nothing for Player 0 to do.)

4. In Phase 4, simulate an optimal Player 0 strategy for the debate ΦBR, with start-
variables r, α∗, β∗, h as defined previously. The simulation and resulting settings to vj

(with type(j) = 0) are carried out analogously to the process in step 4 of the strategy
S ′
1 defined earlier.

Now consider any Player 1 strategy played against S ′
0. Let z ∈ {0, 1}M denote the

complete resulting debate-string, where M denotes the debate-string length for V stab; we
have M ≤ Kn for some constant K > 1. We set δ := η/(100K) = Ω(1). Let z′ ∈ {0, 1}M

be any string at Hamming distance at most δM from z; we will show that V stab(x, z′) = 0.
This will establish that V stab is a 0-stable debate system for L with security δ, as needed.

For any debate-variable (or set of variables) u for V stab, we let u[z], u[z′] denote the assign-
ments to u under z, z′ respectively. We define u[z], u[z′] similarly if u is some value computed
by V stab on computations V stab(x, z), V stab(x, z′) respectively.

Note that if ∆(r̂[z′], r̂
′
[z′]) = ∆(r̂[z′], EncN(r[z′])) > ηN ′/2, then V stab(x, z′) outputs 0 on

Phase 1. On the other hand, if ∆(r̂[z′], EncN(r[z′])) ≤ ηN ′/2 (we may assume this holds),
then ∆(r̂[z], EncN(r[z′])) ≤ ηN ′/2 + δM < ηN ′. Now, DecN decodes from an η fraction of
errors, so we then must have r[z] = DecN(r̂[z]) = r[z′].

Similarly, in Phase 2 on (x, z′), either V stab outputs 0 or else we have h[z] = h[z′]; and
in Phase 3 on (x, z′), either V stab outputs 0 or else (α∗, β∗)[z] = (α∗, β∗)[z′]. In each case we
assume the latter outcome.

In Phase 4 on (x, z), all of Player 0’s assignments v̂j[z] (with type(j) = 0) are valid encod-

ings of assignments v̂j[z] = EncN(v
j
[z]), so that v̂j[z] = ŵj[z]. We then have ∆(v̂j[z′], EncN(v

j
[z])) ≤

δM < ηN , so that vj[z′] = vj[z] and ŵ
j
[z] = ŵj[z′]. Then, ∆(v̂j[z′], ŵ

j
[z′]) ≤ δM < ηN ′/2. It follows

that in Phase 4 on (x, z′), the verifier V stab cannot punish Player 0 by outputting 1.
Having established this, we can now conclude that, unless V stab(x, z′) outputs 0 in Phase

4, we must have vj[z′] = vj[z] for all j ∈ [k] with type(j) = 1. This is shown by the same
argument we used to get r[z] = r[z′]; we may assume the equality holds for each such j. We

also draw attention again to the fact that vj[z′] = vj[z] when type(j) = 0. Summarizing, we
have

(r, α∗, β∗, h, v1, . . . , vk)[z] = (r, α∗, β∗, h, v1, . . . , vk)[z′]. (3)

If r[z] = r[z′] defines a tree code C(r) of distance < 7/8, then condition 1 in Lemma 11 is
violated by (r, α∗, β∗, h)[z], and for the debate defined by ΦBR we have

Val(GΦBR [(r, α∗, β∗, h)[z]]) = Val(GΦBR [(r, α∗, β∗, h)[z′]]) = 0.

Now in S ′
0, Player 0 follows an optimal strategy in this debate, and (v1, . . . , vk)[z] = (v1, . . . , vk)[z′],

so b[z] = b[z′] = 0 and V stab(x, z′) = 0.
So suppose now that r[z] does define a tree code of distance ≥ 7/8. We distinguish two

further cases:

26

Case 1: (α∗, β∗)[z] is not PA-faithful. In this case, on (x, z), Player 0 wins the debate
ΦBR with the start-variables (r, α∗, β∗, h)[z], and the settings (v1, . . . , vk)[z]; i.e., in Phase 5
we have b[z] = 0. Then Player 0 also wins the same debate on (x, z′), by the equalities in
Eq. (3). Thus V stab(x, z′) = 0.

Case 2: (α∗, β∗)[z] is PA-faithful, with respect to some Alice-input X. In this case, let
us return our attention to Phase 3. On (x, z′), the second test in that phase implies
that, for Player 1 to avoid losing in Phase 3, we must have ∆Σ((α

∗, β∗)[z′], (α, β)[z′]) =
∆Σ((α

∗, β∗)[z], (α, β)[z′]) < R/100. Assume this holds. Then, as ∆(z, z′) ≤ δM , we have
∆Σ((α

∗, β∗)[z], (α, β)[z]) < R/100 + δM < R/4 = 2(1/4− ε)R.
Now, examine the noisy transcript15 (α∗, α, β, β∗)[z]; by our work above, it has fewer than

2(1/4− ε)R transmission errors. The transcript (α∗, β∗)[z] is PA-faithful with respect to X,
and by the definition of S ′

0, the transcript (α, β)[z] is PB-faithful with respect to Bob-input
S0. As PBR,ε is (1/4− ε)-error-resilient, we conclude that

EvalA(X, (α
∗, β∗)[z]) = EvalB(S0, (α, β)[z]) = PJT (X,S0).

(This is the first and only time we use the error-resilience property of PBR,ε.)
The value PJT (X,S0) is a leaf vertex of T , since X,S0 are maximal consistent subsets

of X ,Y ; we have PJT (X,S0) = vertex(∅;h∗) for some h∗ ∈ {0, 1}T . Also, because S0 is a
winning strategy for CV,n(x, ·) for Player 0, we have CV,n(x, h

∗) = 0.
Now, there are two options for Player 1’s behavior in the debate V stab(x, z): either he

supplies an ĥ[z] that decodes to the “correct” value h[z] = h∗, or he supplies an ĥ[z] that
decodes to some other value h[z] 6= h∗. In the first option, V stab(x, z) must output 0 in Phase
5 since conditions (i), (ii) of Phase 5 are violated by h[z]. In the second option, Player 0
can and will win the debate ΦBR on (x, z), as condition 3 in Lemma 11 is violated by the
start-variables (r, α∗, β∗, h)[z]. In either event, V stab(x, z) = 0. But then in either event, we
also have V stab(x, z′) = 0, due to the equalities in Eq. (3).

Combining Cases 1 and 2 above, we conclude that V stab(x, z′) = 0, as was to be shown.
This completes the proof of Lemma 7.

6 Building encoding-checker debates

In this (fairly lengthy) section we prove Lemma 11 from Section 5.1.

6.1 Some functions computable by linear-size circuits

We will build up the debate circuits of Lemma 11 from simpler component debates. In all
the debate circuits we construct, we will use certain basic circuits as building blocks. These
building blocks are collected in the next lemma.

Lemma 12. Let S be a finite set, and fix some standard binary encoding of S ∪ {⊥}. The
following functions can be computed by uniform circuits of size O(n):

15(as defined in Section 4.4)

27

(i) Input: A pair (v, k), where v ∈ Sn, k ∈ [n];

Output: the value vk ∈ S.

(ii) Input: A string x ∈ {0, 1}n;

Output: ||x||1, the number of 1s in x.

(iii) Input: A pair (u, v), where u, v ∈ Sn;

Output: the distance ∆(u, v) ∈ {0, 1, . . . , n}.

(iv) Input: v ∈ (S ∪ {⊥})n;

Output: a pair (b, k) ∈ {0, 1} × {0, 1, . . . , n}, where b := 1 iff v ∈ Sj × {⊥}n−j, for
some j ∈ {0, 1, . . . , n}. In this case k := j, otherwise k := 0.

Proof. We describe the circuit constructions; in each case the uniformity follows by inspec-
tion. (i): Assume, by padding if necessary, that n = 2t for some t ≥ 0. Also, it will be most
convenient to assume that v is indexed as v = (v0, . . . , vn−1) and that k ∈ {0, 1, . . . , n− 1}.

If n = 1, then k = 0 and we output v0. Otherwise, define v′ ∈ Sn/2 by the rule

v′j :=

{
vj if k ≤ n/2,

vn/2+j else.

Which of the two cases we are in can be determined by looking at the most significant bit
of the binary representation of k. Thus, v′j can be determined with reference to O(1) bits
of v and k. Let k′ ∈ {0, 1, . . . , n/2 − 1} be the number obtained from k by deleting the
most significant bit of k. Then observe that vk = v′k′ . Using a circuit of size O(n), we have
reduced from an instance of problem (i) with parameter n, to a single instance of problem
(i) with parameter n/2. Iterating this procedure for log n steps reduces us to the base case

n = 1, which we solve directly. The total circuit size is O
(∑

s≤logn n2
−s
)
= O(n).

(ii): Again we may assume that n = 2t for some t ≥ 0. Create a full binary tree T of depth
t, whose leaf nodes are the bits of x. Then ||x||1 is the result if we place an integer addition
gate at each non-leaf node of T , and output the value at the root.

The addition gates at distance s ≤ t from the leaf nodes take as inputs two integers in
the range {0, . . . , 2s−1}, which may be represented by bitstrings of length s. Addition of
two s-bit numbers can be implemented by a circuit of size O(s), and there are 2t−s = 2−sn
additions to perform at level s. Thus the total contribution to the circuit size at level s is
O(s2−sn). Summing over s ≤ t = log2 n, the total circuit size is O(n), since

∑
s>0 s2

−s <∞.

(iii): For each i ∈ [n], we compute xi := [ui 6= vi]. Each such bit can be computed using
O(1) operations. Then, ∆(u, v) ∈ {0, 1, . . . , n} is equal to ||x||1, so we can apply part (ii).

28

(iv): For i ∈ [n−1], let pi := ¬[vi = ⊥ ∧ vi+1 ∈ S]. Then pi can be computed from vi, vi+1

by a circuit of size O(1). We can express the desired bit b as b =
∧
i∈[n−1] pi, allowing us to

compute b with a circuit of size O(n).
Next, for j ∈ [n] let xj := [vi ∈ S]. Letting k ∈ {0, 1, . . . , n} be the value desired in

problem (iv), we have

k =

{
||x||1 if b = 1,

0 else.

Using our value b and our circuit from part (ii), we can compute k in size O(n).

6.2 Debate circuits to check tree-code encodings and decodings

The following lemma gives debate circuits to verify encodings under the tree codes C(r)

defined in Section 4.6. The lemma applies, not just to a “good” choice of r ∈ Fnp (i.e., one
that yields the tree-code distance property claimed in Theorem 9), but to any setting of r.

Lemma 13. Fix any d > 1 and a prime p ≥ d. For each n, there exists a uniform debate
circuit Φn, that takes as its start-variables a 3-tuple

r ∈ F
n
p , u ∈ [d]≤n, s ∈ F

≤n
p .

We have Val(GΦn
[r, u, s]) = 1 iff C(r)(u) = s. Also, Φn has 2 debate-blocks and is of total

size O(n).

Proof. Rather than building the debate circuit Φn gate by gate, we describe the debate on
a high level and argue that it can be implemented in size O(n).

First, using part (iv) of Lemma 12, Φn checks that u, s are of equal length as sequences.
If this test fails, Φn immediately outputs 0. Otherwise, suppose both are of length k ≤ n;
Φn retains the value k for future use. Next, Player 0 is asked to name a value k∗ ≤ k for
which he claims C(r)(u1, . . . , uk∗) 6= sk∗ . In support of his claim, Player 0 is also asked to
provide a sequence r′ ∈ Fk

∗

p , for which he claims r′ = (rk∗ , rk∗−1, . . . , r1).

Using the value k∗, Φn checks that
∑k∗

i=1(ui − 1)r′i 6= sk∗ over Fp. If this check fails, Φn

immediately outputs 1. Otherwise, Player 1 is given a chance to challenge Player 0’s claim
that r′ = (rk∗ , rk∗−1, . . . , r1). To do so, he names a value k′ ∈ [n]. The debate circuit then
outputs 1 iff k′ ≤ k∗ and r′k′ 6= rk∗+1−k′ .

Correctness of the debate follows immediately from the definition of C(r); also, Φn has
2 debate-blocks by construction. As for its efficiency, we just need to perform addition of
≤ n terms over a field of constant size; compare, add, and subtract (log n)-bit numbers; and
access the elements r′k′ , rk∗+1−k′ . The first two tasks are easily performed by a circuit of size
O(n), and for the third we use Lemma 12, part (i).

The next lemma gives two debaters a way to debate the claim that a sequence q ∈ Fkp
decodes to u ∈ [d]k under the code C(r), using the deterministic decoder Dlex

(r) .

29

Lemma 14. Fix d > 1 and a prime p ≥ d. For each n, there exists a uniform debate circuit
Λn, that takes as its start-variables three sequences

r ∈ F
n
p , q ∈ F

≤n
p , u ∈ [d]≤n.

We have Val(GΛn
[r, q, u]) = 1 iff Dlex

(r) (q) = u. Moreover, Λn has O(1) debate-blocks and is of

total size O(n).

Proof. First, using Lemma 12, part (iv), Λn checks that q, u are of equal length k ≤ n as
sequences; if not, Λn immediately outputs 0. Otherwise, we retain the value k.

In the first debate-block, Player 1 gives a sequence s ∈ F≤n
p , claiming that C(r)(u) = s.

This claim is then debated using the debate circuit Φn of Lemma 13. If Player 1 loses this
debate, Λn immediately outputs 0. Thus we may assume from now on that Player 1 provides
an s satisfying C(r)(u) = s.

Next, Player 0 is given a chance to name values v ∈ [d]≤n, s′ ∈ F≤n
p for which he claims

both of the following hold:

1. s′ = C(r)(v);

2. Either [∆ (s′, q) < ∆(s, q)], or [∆ (s′, q) = ∆ (s, q) and s′ < s in lexicographic order].

The players debate each of these conditions; Λn outputs 0 if Player 0 wins both debates,
otherwise Λn outputs 1. By definition of Dlex

(r) , then, the debate is winnable by Player 0 iff

Dlex
(r) (q) 6= u.
To debate condition 1, we use the debate circuit from Lemma 13, except that we now

reverse the roles of the players in that circuit. For condition 2, the Hamming distances
involved can be computed using Lemma 12, part (iii). The lexicographic comparison in
condition 2 can be performed by an O(n)-sized circuit using a simple idea: by recursively
comparing the first half of s with the first half of s′, and the second half of s with the second
half of s′, we can determine whether s′ < s. Thus we have |Λn| = O(n), and Λn has O(1)
debate-blocks.

6.3 Debate circuits for edge encodings

Next, we give efficient debate circuits that allow debaters to argue about the properties of
specific edge-sets specified by the mapping E ′ defined in Section 4.7. Recall that Γ is the
constant-sized alphabet used as inputs to E ′, and that elements of Π = {0, 1, . . . , R} ×
{0, 1}∈{1,2} are encoded by a mapping desc : Π → {0, 1}≤c0 logR.

Our ultimate goal in this (long) subsection will be to prove the following technical lemma,
which allows players to debate which edges are specified by an encoding over Γ∗.

Lemma 15. Let T be the full binary tree of depth T , and let R ≥ T . There exists a uniform
debate circuit ΨR that takes as start-variables sequences γ ∈ Γ≤R and h ∈ {0, 1}≤R. We have
Val(GΨR

[γ, h]) = 1 iff for the edge e := edge(∅;h) specified by h we have

e ∈ E ′(γ).

ΨR has O(1) debate-blocks, and is of size O(R).

30

Our first step is the next lemma, which allows the players to debate which indices of a
sequence γ are viable.

Lemma 16. There exists a uniform debate circuit ΥR that takes as start-variables sequences
γ ∈ Γ≤R, i ∈ [R], and w ∈ {0, 1}≤⌊c0 logR⌋. We have Val(GΥR

[γ, i, w]) = 1 iff i is a viable
index for γ, and w is equal to desc(zi), where zi = zi(γ). ΥR has a single debate-block, and
is of size O(R).

Proof. First, ΥR checks that i is at most the length of γ, and that w = desc(a), for some
a ∈ Π. The string w is O(logR) bits long, and this test can be performed by a circuit of
size O(logR), since we’re using a “reasonable” encoding function desc. If either test fails,
ΥR outputs 0. If both tests pass, we store a ∈ Π as well as the length |desc(a)|.

Note that if the tests above pass, then condition 2 in the Lemma holds iff

(γ1, . . . , γi) = (γ′, <, desc(a), >), (4)

for some γ′ ∈ Γ∗. Next, Player 0 is given a chance to provide a value t ∈ {0, 1, . . . , |desc(a)|+
1} for which either:

1. t ∈ {1, . . . , |desc(a)|} and γi−1−|desc(a)|+t 6= wt;

2. t = 0, and γi−1−|desc(a)| 6=“<”;

3. t = |desc(a)|+ 1, and γi 6=“>”.

Such a t can be found iff Eq. (4) is false. The values γi−|desc(a)|+t and wt can be computed
and compared in O(R) size, using part (i) of Lemma 12.

As the next step towards proving Lemma 15, we introduce an auxiliary encoding function

Ẽ : Π≤R → P(X ∪ Y).

Ẽ is defined similarly to E from the last subsection, except that Ẽ is more “permissive”
about allowing edges into the collections it defines. For a = (a1, . . . , ak) ∈ Πk, we define a
sequence ẽ1, . . . , ẽk of edges of T , some of which remain undefined (ẽi = ⊥). We take

Ẽ(a) := {ẽi | i ∈ [k], ẽi 6= ⊥}.

Let ai = (ri, si) ∈ {0, 1, . . . , R} × {0, 1}∈{1,2}. Inductively, for i = 1, . . . , k, define ẽi as
follows:

1. If ri = 0, let ẽi := edge(∅; si).

2. If ri < i and ẽri 6= ⊥, let ẽi := edge(ẽri ; si).

By analogy with E ′, we also define a mapping Ẽ ′ : Γ≤R → P(X ∪ Y) by

Ẽ ′(γ) := Ẽ(z(γ)).

Although Ẽ ′(γ) is a larger set than E ′(γ), the edges {ẽi} still hold useful information

about E ′(γ), and the mapping Ẽ ′ is simpler for the players for debate about than E ′. We

collect useful facts about Ẽ ′ in the next few lemmas. Lemma 17 below gives a debate circuit
to debate edges encoded by Ẽ ′.

31

Lemma 17. Let T be the full binary tree of depth T , and let R ≥ T . There exists a uniform
debate circuit Ψ̃R that takes as start-variables sequences γ ∈ Γk≤R, h ∈ {0, 1}≤T , and an
i ∈ [k]. We have Val(GΨ̃R

[γ, i, h]) = 1 if and only if the following condition holds: letting
ẽ1, . . . , ẽk be defined in terms of z(γ), we have

ẽi = edge(∅;h).

Ψ̃R has O(1) debate-blocks, and is of size O(R).

Proof. We collect some observations about Ẽ ′ before describing the the debate circuit. Let
z(γ1, . . . , γk) = (z1, . . . , zk), and for i ∈ [k], if zi 6= ⊥, let zi = (ri, si) ∈ Π. Observe that
ẽi 6= ⊥ iff there is a sequence 1 ≤ j1 < . . . < jt = i of viable indices for (γ1, . . . , γk), where:

1. rj1 = 0;

2. If t > 1, then for 1 < t′ ≤ t, rjt′ = jt′−1. That is, zt′ “points back” to zt′−1.

If these conditions are met, then we say that (j1, . . . , jt = i) is an i-chain. Observe also that
if (j1, . . . , jt = i) is an i-chain, then ẽi is obtained from the concatenated path sj1 . . . sjt :

ẽi = edge(∅; sj1 . . . sjt).

Using this observation, the main part of the debate proceeds in two main phases, as follows.

Phase 1: First, Player 1 provides a sequence 1 ≤ j1 < . . . < jt of indices, which he claims
is an i-chain. The sequence (j1, . . . , jt) is presented in the form of a string w ∈ {0, 1}R, where
wℓ = 1 encodes that ℓ is part of the chain. In the remainder of Phase 1, Player 0 is given an
opportunity to challenge the claim that w encodes an i-chain. He is allowed to choose one of
three ways of doing so, corresponding to the three possible ways that w may fail to encode
an i-chain:

Option 1: Player 0 may name a value ℓ > i, claiming that wℓ = 1 (so that w cannot
encode a proper i-chain); or, Player 0 may claim that wi = 0. Either type of claim can be
tested using part (i) of Lemma 12.

Option 2: Player 0 may claim that rj1 6= 0. To do this, he first provides a value ℓ ≤ R
for which he claims that wℓ = 1 and wℓ′ = 0 for all ℓ′ < ℓ (so that ℓ = j1). The debate circuit
may directly check that wℓ = 1; the claim that wℓ′ = 0 for all ℓ′ < ℓ can be challenged by
Player 1, who is given a chance to provide a counterexample value ℓ′.

If Player 0 passes this check, Player 0 then is asked to support his claim that rℓ 6= 0. To
do this, Player 0 may either claim that zℓ = ⊥, or that zℓ = (rℓ, sℓ) where rℓ 6= 0. In either
case, the claim can be evaluated using the debate circuit ΥR from Lemma 16 (with roles
assigned appropriately).

Option 3: Player 0 can argue that in the sequence (j1, . . . , jt) encoded by w, some value
t′ ≤ t fails condition 2 in the definition of an i-chain. Note that such a value t′ exists exactly
if there are indices ℓ < ℓ′ such that:

1. wℓ = wℓ′ = 1;

32

2. for all ℓ′′ ∈ {ℓ+ 1, . . . , ℓ′}, wℓ′′ = 0;

3. Either ℓ′ is not a viable index for (γ1, . . . , γk), or ℓ
′ is viable but rℓ′ 6= ℓ.

In Option 3, Player 0 is asked to provide indices ℓ < ℓ′ satisfying 1-3 above. Each condition
can be tested efficiently by Ψ̃R: for the first condition we use part (i) of Lemma 12; for the
second condition we ask Player 1 to provide a counterexample ℓ′′; for the third condition, we
apply the debate circuit ΥR from Lemma 16.

If Player 0’s challenge (using one of Options 1-3 above) succeeds, then Ψ̃R outputs 0.
Otherwise, we consider Player 1 to have established that w encodes an i-chain, and we
proceed to Phase 2. Observe that Player 1 can withstand Player 0’s challenge (under optimal
play) exactly if w does encode an i-chain. Therefore, we will assume in the next phase that
Player 1 does provide an i-chain (so in particular we have ẽi 6= ⊥), and successfully defends
his claim.

Phase 2: Player 1 is asked to support his claim that ẽi = edge(∅;h). To do so, he first
provides a sequence x ∈ {0, 1}2R. For ℓ ∈ [R], the variables (x2ℓ−1, x2ℓ) are “intended” under
honest play to be set to (0, 0) if wℓ = 0. If wℓ = 1, the intention is that they are set to (1, 0)
if sℓ is of length 1, and set to (1, 1) if sℓ is of length 2. Player 0 is given an opportunity to
challenge Player 1’s assignment to x, using debate circuit ΥR from Lemma 16. If Player 0’s
challenge succeeds, Ψ̃R outputs 0. Thus, we may assume x is set honestly by Player 1. Note
that in this case, ||x||1 is equal to the depth of ẽi in T .

Next, Ψ̃R uses part (ii) of Lemma 12 to compute ||x||1 and compare it to j, the length
of h. If ||x||1 6= j, then ẽi and edge(∅;h) are of different depths and cannot be equal; in this

case, Ψ̃R outputs 0. Otherwise, Player 0 is given a chance to argue that ẽi and edge(∅;h)
are specified by different paths in T . To do this, Player 0 provides a value q ∈ [j], claiming
that the two edges’ defining paths differ at depth q—one follows an edge in T labeled “0”,
the other follows an edge labeled “1”.

The value hq, giving the behavior of the path specifying edge(∅;h) at depth q, can be
computed in O(R) size using Lemma 12, part (i). To compare this to the qth bit specifying

ẽi, Player 0 is asked to provide a string w′ ∈ {0, 1}R. Ψ̃R expects w′ to be a prefix of w,
followed by 0s, with at least one 1 in w′. It tests this condition (easily done in O(R) size),
outputting 1 if the test fails; so we may assume that Player 0 supplies such a prefix, with
ℓ∗ ∈ [R] denoting the last 1-index in w′. (Player 0’s implicit claim here is that ℓ∗ is the
i-chain index for which zℓ∗ = (rℓ∗ , sℓ∗) determines the qth step in the path specifying ẽi.)

Player 0 is also asked to provide a string z′, intended to be a description of zℓ∗ under
desc. The accuracy of the description z′ can be tested using the circuit ΥR from Lemma 16,
so assume it is correct. In particular, we have access to the string sℓ∗ ∈ {0, 1}∈{1,2}.

Using w′, the debate circuit computes a string x′ ∈ {0, 1}2R, where

(x′2ℓ−1, x
′
2ℓ) :=

{
(x2ℓ−1, x2ℓ) if w′

ℓ = 1,

(0, 0) else.

Note that x′ can be computed from x and w′ in O(R) size. Also note that under our
assumption on the forms of w′ and of x, the Hamming weight ||x′||1 equals the depth D of

33

the edge ẽℓ∗ . The debate circuit expects ẽℓ∗ to determine the qth edge of the path specifying
e: namely, it expects that D − |sℓ∗ | < q while D ≥ q. The circuit Ψ̃R tests this condition,
outputting 1 if the test fails. If the test succeeds, the qth bit of the path specifying ẽi can
be determined from the values D and sℓ∗ , and compared to hq. Ψ̃R outputs 0 if these bits
differ, and outputs 1 otherwise.

Assuming honest play by Player 1 in Phases 1 and 2 (which we’ve argued is an optimal
strategy), Player 0 can win exactly if he can give an index q for which hq differs from the

qth step specifying ẽi. This is possible iff edge(∅;h) 6= ẽi. Thus Ψ̃R has the desired behavior.
Also, by construction it has O(1) debate-blocks, and is of O(R) size as needed.

The next two lemmas relate the mappings Ẽ ′ and E ′.

Lemma 18. Fix γ ∈ Γ≤R, and suppose that i is an effective index for γ (that is, ei 6= ⊥).
Then, ẽi = ei.

Proof. The proof is by induction on i. The base case is immediate from the definitions.
Assume the statement holds for all i′ < i, and suppose ei 6= ⊥. Then zi = (ri, si) where
ri < i and eri 6= ⊥. By inductive assumption, ẽri = eri . Then from the definitions of ei, ẽi it
follows that the two are equal, as claimed.

Lemma 19. Fix γ ∈ Γk, where k ≤ R, and let I ⊆ [k]. We have I = {i : i is an effective
index for γ} iff the following two conditions hold:

1. For every i ∈ I, we have:

(a) i is a viable index for γ;

(b) zi = (ri, si) satisfies ri < i, and either ri = 0 or ri ∈ I;

(c) there is no i′ ∈ I with i′ < i, for which ẽi′ has the same parent vertex in T as ẽi.

2. For every j /∈ I, at least one of conditions (a), (b), (c) above fails for i := j.

Proof. First, suppose that indeed I = {i : i is an effective index for γ}, and consider any
i ∈ I. Conditions 1.(a) and 1.(b) follow immediately from the definitions. Also, given i ∈ I
with i′ < i, Lemma 18 tells us that ẽi = ei and ẽi′ = ei′ , so condition 1.(c) must hold as well.
So condition 1 is true for I.

Now consider any j /∈ I, which by assumption is a non-effective index (for γ, implicit
from now on); we show one of conditions (a), (b), (c) must fail for i := j. Suppose that (a),
(b) hold for j: that is, j is viable, and zj = (rj, sj) where rj < j and either rj = 0 or rj ∈ I
is effective.

Assume rj ∈ I; the case rj = 0 is handled similarly. Now for ej = ⊥ to hold (as it does),
it must be the case that e′j is defined (6= ⊥), but shares a parent vertex with some ej′ 6= ⊥
for which j′ < j. (For otherwise, we would have ej = e′j.) Then j′ is an effective index, and
by Lemma 18, ẽj′ = ej′ .

Consult the definition of ẽj: it is obtained by starting from the child vertex of ẽrj(= erj ,
since rj is an effective index), and taking the steps described by sj. Now, e

′
j is obtained by

taking the steps si starting from erj , so in fact e′j = ẽj. Thus ẽj shares a common parent
with ẽj′ , so condition (c) fails for j. Thus, condition 2 is true for I.

34

For the converse direction, suppose I 6= {i : i is an effective index for γ}, and let ℓ ∈ [k]
be the minimal index for which the equality fails. Let us first suppose that ℓ is an effective
index but ℓ /∈ I. Then by definition, ℓ is viable (so, condition (a) holds for i := ℓ). Let
zℓ = (rℓ, sℓ). If rℓ = 0, then condition (b) holds for ℓ. On the other hand, if rℓ > 0, then
rℓ must be an effective index, with rℓ < ℓ. By the minimality of ℓ, it must be the case that
rℓ ∈ I. Thus condition (b) holds for ℓ whether or not rℓ = 0.

The fact eℓ 6= ⊥ implies that eℓ has no common parent with eℓ′ , for any effective index
ℓ′ < ℓ. But by Lemma 18, eℓ = ẽℓ, and so for any effective ℓ′ < ℓ, ẽℓ has no common parent
with eℓ′ = ẽℓ′ . Thus condition 2.(c) holds for ℓ. Since each of conditions (a)-(c) hold for
i := ℓ but ℓ /∈ I, condition 2 fails for I.

Suppose now that ℓ, the minimal index chosen earlier, is in I but is not effective. If
condition (a) or (b) fails for i := ℓ, we are done, so assume that ℓ is viable, rℓ < ℓ, and either
rℓ = 0 or rℓ ∈ I. By minimality of ℓ, rℓ < ℓ is an effective index: erℓ is defined. Then for
eℓ = ⊥ to hold (as it does), e′ℓ must share a parent vertex with some edge eℓ′ where ℓ

′ < ℓ.
By Lemma 18, we have eℓ′ = ẽℓ′ ; also, arguing as in a previous case, we find that e′ℓ = ẽℓ.
Thus ẽℓ shares a parent vertex with ẽℓ′ , and condition (c) fails for ℓ ∈ I. Thus condition 1
fails for I. This completes the proof.

We can now prove Lemma 15.

Proof of Lemma 15. The debate proceeds in phases.

Phase 1: The circuit computes k ≤ R, the length of γ. Player 1 is asked to give a set
I ⊆ [k] which he claims is the set of effective indices for γ. The set I is specified by a
sequence x ∈ {0, 1}k.

Now we use Lemma 19 to debate Player 1’s claim. Player 0 is asked to give, either an
i ∈ I for which one of conditions (a)-(c) in Lemma 19 fails, or an i /∈ I for which (a)-(c) all
hold. By Lemma 19, such an i can be found iff I is not the set of effective indices for γ.

For the index i chosen by Player 0, it can be checked whether the index lies in I or not
using Lemma 12, part (i). First suppose that i ∈ I. Then the players debate in turn whether
each of conditions (a)-(c) in Lemma 19 hold for i, with with Player 1 attempting to argue
that each of these conditions do hold. Call these three sub-debates Debate (a), Debate (b),
and Debate (c). We will explain how Debates (a)-(c) are to be implemented shortly. ΨR

outputs 0 if Player 1 loses any of Debates (a)-(c). Otherwise the debate moves on to Phase
2 below.

If, on the other hand, i /∈ I, then the players again debate whether each of conditions
(a)-(c) hold for i, this time with Player 1 attempting to argue that each of these conditions
do not hold. ΨR outputs 0 if Player 1 loses all of these (role-reversed) Debates (a)-(c).
Otherwise the debate moves on to Phase 2.

As for the implementations of Debates (a)-(c), a debate subcircuit of size O(R) for
Debates (a) and (b) can be defined using Lemma 16. For Debate (c), suppose that for
b ∈ {0, 1}, Player b wishes to argue that condition (c) in Lemma 19 fails for i. To do so,
he is asked to name an i′ ∈ I with i′ < i, for which he claims ẽi′ , ẽi have the same parent
vertex. He then gives representations g, g′ for which he claims

ẽi = edge(∅; g), ẽi′ = edge(∅; g′). (5)

35

ΨR may easily verify in O(R) size that i′ ∈ I, i′ < i, and that the edges defined by g, g′ share
a parent. The claims in Eq. (5) above may then be debated in O(R) size, using Lemma 17.
Thus Phase 1 can be implemented in O(R) size.

Lemma 19 implies that, under optimal play by Player 0, Player 1 can reach Phase 2 iff
he sets I = I(x) as the set of all effective indices for γ. In Phase 2 we will assume that he
does so.

Phase 2: Player 1 specifies an index i∗ ∈ I (this membership claim can be easily tested,
so assume it holds). He claims that the edge ei∗ , determined by γ, satisfies

ẽi∗ = edge(∅;h). (6)

The claim that Eq. (6) holds is then debated using the circuit Ψ̃R from Lemma 17. Whoever
wins that sub-debate is named as the final winner by ΨR.

Since I equals the effective indices for γ (by our assumption in Phase 2), Lemma 18 tells us
that ei = ẽi for i ∈ I. Thus an i∗ ∈ I satisfying Eq. (6) can be found iff edge(∅;h) ∈ E ′(γ). It
follows that the debate defined by ΨR is winnable by Player 1 iff edge(∅;h) ∈ E ′(γ). Finally,
ΨR has O(1) debate-blocks and is of O(R) size, by construction. This proves Lemma 15.

6.4 Characterizing faithful behavior in the Braverman-Rao pro-
tocol

Our next lemma will give a useful alternative characterization of faithful behavior in the
protocol PBR,ε of Section 4.8. We focus on characterizing faithful behavior for Alice (an
analogous characterization holds for Bob, but we don’t need it). First we need some notation.
In that protocol, we defined the set Ai in terms of the sequences a1, . . . , ai−1 and β

′
1, . . . , β

′
i−1;

let
Ai = Ai

(
a1, . . . , ai−1, β

′
1, . . . , β

′
i−1

)

denote the rule defining Ai in Eq. (1). This rule implicitly depends on the choice of tree code
C(r) used (but is well-defined for any r ∈ FRp). Note, the rule Ai does not depend on Alice’s
input X. Note also that we can apply the rule Ai to arbitrary sequences from Γi−1 × Σi−1;
the resulting set Ai ⊆ X ∪Y will always be consistent, since the mapping E ′ always outputs
consistent sets.

We also defined ai in terms of Ai, a1, . . . , ai−1, and the input X. An important obser-
vation, however, is that the dependence on X is very limited. Namely, given Ai, the rule
defining ai depends only on one question about X: is v(Ai) distinct from v(Ai ∪X), and if
so, does X extend the path in Ai ending at v(Ai) by a left or a right outgoing edge?

For a vertex v of T , define

θ(v,X) :=





⊥ if X contains no outgoing edges of v,

0 if X contains a 0-outgoing edge of v,

1 if X contains a 1-outgoing edge of v,

36

and note the definition is consistent since X is a consistent set. Then, we can express the
definition of ai in the protocol of Section 4.8 as a rule of form

ai = ai (Ai, a1, . . . , ai−1,θ(v(Ai), X)) .

Formally, ai = ai (C, c1, . . . , ci−1, θ) takes as inputs any consistent subset C ⊂ X ∪ Y , any
sequence c1, . . . , ci−1 ∈ Γi−1, and a θ ∈ {0, 1,⊥}. Modifying the protocol statement appro-
priately, the output of ai is defined as follows:

1. If θ = ⊥, let ai := “∅”.

2. Else, if v(C) has outgoing edges from X , let e be the θ-outgoing edge of v(C). Now
inspect the form of (c1, . . . , ci−1). Suppose it is of form (u,<,w) where u is of some
length j − 1 ≥ 0, and such that:

(a) w ∈ {0, 1}∗ is a (possibly empty) prefix of a string w′ = desc((ℓ, s)), for some
(ℓ, s) ∈ Π; and,

(b) Either v(C) is the root of T , ℓ = j, and edge(∅; s) = e;
or, e is a descendant of ej−ℓ = ej−ℓ(c1, . . . , cj−ℓ), with ej−ℓ ∈ X and e =
edge(ej−ℓ; s).

In this case, set ai so as to extend w according to w′ (or, if w = w′, let ai := “>”).

3. Else, set ai := “<”.

Our next lemma uses the mappings Ai and ai to characterize faithful behavior for Alice
in PBR,ε.

Lemma 20. Let PBR,ε = (PA,PB). The transcript (α, β) is PA-faithful, if and only if there
exists a pair of sequences

ã = (ã1, . . . , ãR) ∈ ΓR, (θ1, . . . , θR) ∈ {0, 1,⊥}R,

such that the following conditions hold for all i ∈ [R]:

1. αi = C(r)(ã1, . . . , ãi);

2. We have
ãi = ai

(
Ãi, ã1, . . . , ãi−1, θi

)
,

where we define
Ãi := Ai (ã1, . . . , ãi−1, β1, . . . , βi−1) ;

3. θi = ⊥ iff v(Ãi) has no outgoing edges from X ;

4. For all j ∈ [R] for which v(Ãi) = v(Ãj), we have θi = θj.

Moreover, if ã and (θ1, . . . , θR) exist satisfying 1-4 above, then (α, β) is PA-faithful with
respect to some valid input X for which the sequence a = (a1, . . . , aR) defined by PA (with
respect to X and the sequence β of received messages from Bob) satisfies a = ã.

37

Proof. One direction is easy. Suppose (α, β) is PA-faithful with respect to some inputX ⊂ X ,
with the associated sequences (a1, . . . , aR, A1, . . . , AR). Then for i ∈ [R], let ãi := ai, and let
θi := θ(v(Ai), X). Conditions 1-4 above follow immediately from the definition of PA.

Next, suppose that for the transcript (α, β), there exist sequences (ã1, . . . , ãR) , (θ1, . . . , θR)
satisfying conditions 1-4 above; we will define a maximal consistent subset X ⊂ X and argue
that (α, β) is PA-faithful with respect to X. First, define

Vterm := {v(Ãi) : i ∈ [R]} ⊆ V (T)

as the set of terminal vertices on the maximal paths from the root within Ã1, . . . , ÃR. Define
X∗ as the union of all b-outgoing edges, for every v = v(Ãi) ∈ Vterm with θi = b (for

b ∈ {0, 1}). By condition 3, X∗ ⊂ X and every vertex in Ṽ with outgoing edges in X
also has an outgoing edge in X∗. Also, by condition 4, X∗ is consistent. Next, extend X∗

arbitrarily to a maximal consistent set X satisfying X∗ ⊆ X ⊂ X .
Let a1, . . . , aR, A1, . . . , AR be the sequences defined by PA relative to input X and the

received messages (β1, . . . , βR) (which need not be PB-faithful). We claim, and show by
induction on i, that (ãi, Ãi) = (ai, Ai) for each i ∈ [R]. It will follow from condition 1 of our
assumptions that (α, β) is PA-faithful for X, proving the lemma.

For i = 1, by inspection we have Ã1 = ∅ = A1 and ã1 = “<” = a1 (using condition 2 of
our assumptions). Now for i > 1, assume (ã1, . . . , ãi−1) = (a1, . . . , ai−1). Then, Ãi = Ai is
immediate from the definition of Ãi.

We have v(Ai) = v(Ai ∪ X) iff v(Ai) has no outgoing edges in X . This holds iff v(Ãi)
has no such edges either, and by condition 3, this occurs iff θi = ⊥. Thus, case 1 from PA
applies in defining ai iff case 1 applies in defining ãi, and ai = ãi = “∅” in this outcome.

If v(Ai) 6= v(Ai ∪X), then by construction of X, θi ∈ {0, 1} identifies the outgoing edge
e in X from v(Ãi) = v(Ai); that is, θi = θ(v(Ai), X). Thus in this case,

ãi = ai(Ãi, ã1, . . . , ãi−1, θ(v(Ai), X)) = ai(Ai, a1, . . . , ai−1, θ(v(Ai), X)) = ai.

This extends the induction to i, completing the proof.

Lemma 21. There exists a uniform debate circuit ΞR, that takes as its start-variables se-
quences

r ∈ F
R
p , β ∈ F

R
p , ã ∈ ΓR, θ ∈ {0, 1, ⊥}R,

and a value i ∈ [R]. We have Val(GΞR
[r, β, ã, θ, i]) = 1 iff

ãi = ai

(
Ãi, ã1, . . . , ãi−1, θi

)
,

where as in Lemma 20, Ãi := Ai(ã1, . . . , ãi−1, β1, . . . , βi−1), and where PBR,ε is defined rela-
tive to C(r). The debate circuit ΞR has O(1) debate-blocks and is of total size O(R).

Proof. If θi = ⊥, the task is trivial: ΞR simply needs to check that ai = “∅”. So assume
θi ∈ {0, 1}. Similarly, the task is trivial if i = 1, so assume i > 1. First, Player 1 is asked to
provide a sequence u ∈ Γi−1 for which he claims

u = Dlex
(r) (β1, . . . , βi−1).

38

This claim can be debated using the debate circuit ΛR from Lemma 14. We let ΞR output
0 if Player 1 loses this debate; thus, we may assume in what follows that Player 1 supplies
the true value of Dlex

(r) (β1, . . . , βi−1).
Next, the circuit ΞR asks Player 1 to provide a description of a vertex v, in the form

of a path h ∈ {0, 1}≤T such that v = vertex(∅;h). The implicit claim by Player 1 is that
v = v(Ãi). Player 0 is then given an opportunity to dispute the value v provided. There are
two ways v could fail to equal v(Ãi): either some edge e along the path h does not lie in Ãi,
or some child-edge e of v lies in Ãi. Player 0 claims one of these two options hold; in either
case, he specifies the relevant edge e = edge(∅;h′) in the form of a path h′ that is either a
subpath of h, or extends h by a single step. (That h has this form can easily be checked by
an O(R)-sized circuit.) Using the definition

Ãi = (E ′ (ã1, . . . , ãi−1)) ∩ X) ∪
(
E ′(Dlex

(r) (β1, . . . , βi−1)) ∩ Y
)
,

and the assumed fact that Player 1 has provided the true value of Dlex
(r) (β1, . . . , βi−1), the two

players may debate whether edge(∅;h′) ∈ Ãi using the debate circuit ΨR from Lemma 15.
(If h′ is a subpath of h, Player 0 must argue e = edge(∅;h′) /∈ Ãi; if h

′ extends h, Player
0 must argue e ∈ Ãi. Depending on which case we are in, we assign debater roles in ΨR

accordingly.)
If Player 0 successfully defends the claim that v 6= v(Ãi), then we let ΞR output 0.

Thus we may assume in what follows that Player 1 provides the true value v = v(Ãi), and
successfully defends his claim.

Recall that θi ∈ {0, 1}, so Player 1 must argue that case 2 or 3 in the definition of ai

holds when we evaluate ai

(
Ãi, ã1, . . . , ãi−1, θi

)
. If ãi 6= “<”, Player 1 must argue that case 2

holds; otherwise Player 1 must argue that case 3 holds, and Player 0 is given an opportunity
to argue that, on the contrary, case 2 holds. In either case, one of the two players must
argue that case 2 holds, so we will just describe the alternative where Player 1 must argue
that case 2 holds (the other alternative is handled similarly with roles reversed).

To argue that case 2 holds in the definition of ai, and that ai = ãi, Player 1 is asked
to provide the strings w,w′ ∈ {0, 1}∗ from case 2. These strings can be restricted to have
length O(logR), since the descriptions produced by desc are of length O(logR), so the claim
that w is a prefix of w′ can be checked directly by ΞR, and the claim that ã1, . . . , ãi−1 is of
form (u,<,w) can be easily debated. ΞR outputs 0 if Player 1 loses either of these tests, so
we may assume the Player 1 provides w honestly and a w′ extending w.

Next, ΞR checks whether w′ = desc((ℓ, s)) for some (ℓ, s) ∈ Π, and if so stores the values
ℓ, s. This can be done efficiently since w′ is of length O(logR) and we’re using a “reasonable”
encoding desc. So we may assume the w′ Player 1 provides is such a valid description, if this
is possible.

Now Player 1 must argue that condition (b) in case 2 of the definition of ai holds for
w,w′. In the case where v(Ãi) is the root of T , it is easy to decide whether condition (b)
holds. Otherwise, Player 1 must argue that e, the θi-outgoing edge of v(Ãi), is a descendant
of ej−ℓ = ej−ℓ(ã1, . . . , ãi−1), with ej−ℓ ∈ X and e = edge(ej−ℓ; s). This can be debated using
our circuit ΨR from Lemma 15. If Player 1 loses this debate, ΞR will immediately output 0;
thus, Player 1 can pass this part of the debate iff case 2 of the definition of ai holds, for his

39

chosen pair w,w′. We may assume that if case 2 holds, Player 1 chooses w,w′ correctly and
defends his choice successfully.

Finally, we let ΞR output 1 exactly if ãi extends w according to w′ (or, in the case w = w′,
ΞR outputs 1 iff ãi = “>”). Thus, in the event that Player 1 must argue (truthfully) that

case 2 in the definition of ai holds, then Player 1 can win iff ãi = ai

(
Ãi, ã1, . . . , ãi−1, θi

)
.

On the other hand, Player 1 cannot win if he claims falsely that case 2 in the definition of ai
holds. As mentioned earlier, the case where Player 0 is arguing that case 2 holds is handled
similarly. This proves correctness of ΞR. Also, by construction, ΞR is of size O(R) and has
O(1) debate-blocks.

6.5 Proof of Lemma 11

We are finally ready to prove our main technical lemma from Section 5.1, Lemma 11.

Proof of Lemma 11. The debate circuit ΦBR = ΦBR,ε
T operates in three phases, as follows:

Phase 1: In this phase, the players use the debate circuits to debate whether C(r) : Γ
≤R →

Fp is a tree code of distance ≥ 1− ε. For this, Player 0 is asked to supply a pair u, v of some
equal length k ≤ R. The implicit claim is that u, v form a counterexample to the tree code
distance property (defined in Section 4.6).

Player 0 is also asked to supply the index i ≤ k on which he claims u, v first differ. This
claim can easily be debated (by a circuit of size O(R)) using Lemma 12, part (i). If Player 0
lies and is caught, ΦBR will immediately output 1; thus, we may assume Player 0 truthfully
supplies the correct value i. From this, the circuit can easily compute the quantity ℓ(u, v)
from Section 4.6.

Next, Player 1 supplies w,w′ for which he claims C(u) = w,C(v) = w′. The players
use the debate circuit Φ = ΦR from Lemma 13 to debate this claim. If Player 1 loses this
debate, ΦBR will immediately output 0, so we may assume the values w,w′ are correct and
defended successfully by Player 1. ΦBR then uses Lemma 12, part (iii) to compute ∆(w,w′).
If ∆(w,w′) < (1 − ε)ℓ(u, v), then ΦBR immediately outputs 0; otherwise we move on to
Phase 2. (ΦBR can store the dyadic rational value ε for this use.) By construction, Player 1
can avoid losing in Phase 1 iff C(r) is a tree code of distance 1− ε.

Phase 2: In this phase, the players debate whether (α, β) is PA = PA[r]-faithful (we
suppress the dependence on r in our notation). To this end, Player 1 first provides sequences
ã = (ã1, . . . , ãR) ∈ ΓR, θ = (θ1, . . . , θR) ∈ ΓR. His first implicit claim, to be debated in Phase
2, is that conditions 1-4 in Lemma 20 hold for ã, θ and for all i ∈ [R]. His second claim, to
be debated in Phase 3, is that for the input X guaranteed to exist for ã by Lemma 20, we
have

EvalA(X,α, β) = edge(∅;h).

First, Player 0 is given the opportunity to give an i0 ∈ [R] and a c ∈ {1, 2, 3, 4} for which
he claims condition c in Lemma 20 fails for i = i0.

If c = 1, Player 0’s claim can be debated using the circuit ΦR from Lemma 13. If c = 2,
the claim can be debated using the circuit ΞR from Lemma 21. If c ∈ {3, 4}, the claim is

40

easily debated once we can establish the value of v(Ãi). We have already described (in the
proof of Lemma 21) how the players may debate to determine v(Ãi).

If Player 0 successfully defends his claim specified by (i0, c), Φ
BR immediately outputs

0; otherwise we move on to Phase 3. Thus under optimal play, Player 1 can pass through
Phase 2 without losing iff there is a pair ã, θ for which conditions 1-4 of Lemma 20 hold for
all i. By that Lemma, such a pair exists iff (α, β) is PA-faithful with respect to some input
X for which a = ã.

Phase 3: In this phase, the players debate whether EvalA(X,α, β) = vertex(∅;h) for the
X guaranteed to exist for ã by Lemma 20. Recall that EvalA(X,α, β) = v(AR), where AR is
as defined by (a1, . . . , aR, β1, . . . , βR) = (ã, β) in Eq. (1). We showed in the proof of Lemma 21
how the players can debate to determine v(AR). We reapply that debate; Player 1 is named
the winner by ΦBR iff Player 1 successfully defends the claim that v(AR) = vertex(∅;h).

Thus, Player 1 can win the debate ΦBR iff C(r) is a tree code of distance ≥ 1 − ε and
(α, β) is PA-faithful with respect to some input X for which EvalA(X,α, β) = vertex(∅;h),
as desired. Finally, ΦBR has O(1) debate-blocks by construction, and is of size O(R).

7 Conclusion

There are several possible directions for future work:

1. Can our probabilistically checkable debate systems be made even more efficient? De-
veloping good error-correcting codes decodable by linear -sized circuits (improving on
the O(n log n)-sized circuits from [Spi96]) would shave a log factor from our debate-
string lengths. If we could do this, then our PCDSs could be made to essentially match
the efficiency of the best PCPPs.

2. In this paper we did not attempt to minimize the increase in the number of turns in
our debate transformation. Our approach gives no improvement over [CFLS95] in this
respect: both approaches increase the number of turns by a constant factor, if the
starting debate has strictly-alternating turns, each consisting of a single bit. If not,
the number of turns may increase by a much larger amount.

To our knowledge, there also has been no in-depth study of the number of rounds
required for error-resilient communication, when the communication protocol to be
simulated lasts a bounded number of rounds (with several bits transmitted per round).
Can we make communication error-resilient, while increasing each of the number of
rounds and the total communication by only a constant (or at least slowly-growing)
factor? The challenging case seems to be when rounds are of variable bitlength. Under-
standing this question would clarify the situation for PCDSs, and would be of interest
in its own right.

3. Recall that our PCDSs for L are of bitlength nearly-linear in s(n), the circuit size
of the verifier for an ordinary debate system for L. We left open whether the PCDS

41

bitlength could be polynomial in the bitlength of the original debate. Can we derive
unlikely consequences of this? To explore this, one might try to work by analogy with
Fortnow and Santhanam’s results on infeasibility of succinct PCPs for SAT [FS11] (see
Section 1.4).

4. As mentioned earlier, the same authors who first built PCDSs in [CFLS95] also showed
in [CFLS97] that interactive proofs (i.e., debates between a maximizing Player 1 and
a completely random Player 0) can also be made probabilistically checkable. It would
be very interesting to know whether this reduction can be carried out with efficiency
comparable to our reduction for ordinary debate systems in this paper. This would
yield improved conditional hardness statements for the complexity of approximating
stochastic sequential optimization problems on CSPs. The difficulty in applying our
methods is that we appear to have no effective way to make the random player “follow”
the Braverman-Rao protocol.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. J.
ACM, 45(3):501–555, 1998.

[BFL90] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. In FOCS, pages 16–25, 1990.

[BR10] Mark Braverman and Anup Rao. Towards coding for maximum errors in in-
teractive communication. Electronic Colloquium on Computational Complexity
(ECCC), TR10-166, 2010. To appear in STOC 2011.

[Bra11] Mark Braverman. Towards deterministic tree code constructions. Electronic
Colloquium on Computational Complexity (ECCC), TR11-064, 2011.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P.
Vadhan. Robust PCPs of proximity, shorter PCPs, and applications to coding.
SIAM J. Comput., 36(4):889–974, 2006.

[BSS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products
of codes. Random Struct. Algorithms, 28(4):387–402, 2006.

[CFLS95] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. Proba-
bilistically checkable debate systems and nonapproximability of PSPACE-hard
functions. Chicago J. Theor. Comput. Sci., 1995, 1995.

[CFLS97] Anne Condon, Joan Feigenbaum, Carsten Lund, and Peter W. Shor. Ran-
dom debaters and the hardness of approximating stochastic functions. SIAM J.
Comput., 26(2):369–400, 1997.

42

[CKS81] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J.
ACM, 28(1):114–133, 1981.

[CS76] Ashok K. Chandra and Larry J. Stockmeyer. Alternation. In FOCS, pages
98–108, 1976.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial
proof of the PCP theorem. SIAM J. Comput., 36(4):975–1024, 2006.

[Dru10] Andrew Drucker. A PCP characterization of AM. Electronic Colloquium on
Computational Complexity (ECCC), TR10-019, 2010. To appear in ICALP
2011.

[For05] Lance Fortnow. Beyond NP: the work and legacy of Larry Stockmeyer. In
STOC, pages 120–127, 2005.

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and
succinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011.

[GS11] Ran Gelles and Amit Sahai. Potent tree codes and their applications: Coding
for interactive communication, revisited. ArXiv e-prints, April 2011, 1104.0739.

[KL94] Ker-I Ko and Chih-Long Lin. Non-approximability in the polynomial-time hi-
erarchy. Technical Report 94-2, Dept. of Computer Science, SUNY at Stony
Brook, 1994.

[LFKN90] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic
methods for interactive proof systems. In FOCS, pages 2–10, 1990.

[Moi11] Ankur Moitra. Efficiently coding for interactive communication. Electronic
Colloquium on Computational Complexity (ECCC), TR11-042, 2011.

[Sch96] Leonard J. Schulman. Coding for interactive communication. IEEE Trans. Inf.
Theory, 42(6):1745–1756, 1996.

[Sha92] Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

[SM73] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential
time(preliminary report). In STOC, pages 1–9, 1973.

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting
codes. IEEE Trans. Inf. Theory, 42(6):1723–1731, 1996.

[Sto76] Larry J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci.,
3(1):1–22, 1976.

43

[Wil08] Ryan Williams. Non-linear time lower bound for (succinct) quantified Boolean
formulas. Electronic Colloquium on Computational Complexity (ECCC), TR08-
076, 2008.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Com-
put. Sci., 3(1):23–33, 1976.

44

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

