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Abstract The present paper generalises results by Lutz and Ryabko.
We prove a martingale characterisation of exact Hausdorff dimension.
On this base we introduce the notion of exact constructive dimension of
(sets of) infinite strings.
Furthermore, we generalise Ryabko’s result on the Hausdorff dimension
of the set of strings having asymptotic Kolmogorov complexity ≤ α to
the case of exact dimension.

The papers [13,14,16,17,7,8] show a close connection between Haus-
dorff dimension and constructive dimension or, equivalently, asymptotic
Kolmogorov complexity of (sets of) infinite strings. In all these papers,the
Hausdorff dimension of a set is defined as usual (cf. [3,4]) to be a real
number. It is interesting to observe that already Hausdorff in his paper
[6] defined the (fractal) dimension of a set to be a real function of a special
shape. To distinguish it from the “usual” Hausdorff dimension Hausdorff’s
original definition is referred to as exact Hausdorff dimension [9,5,10].

The aim of the present paper is to generalise results by Lutz [7,8]
and Ryabko [13] to the case of this exact dimension. First we deal with
the martingale characterisation of Hausdorff dimension [7,8]. This leads
in a natural way to a definition of exact constructive dimension. From
this we derive the particularly interesting fact that the exact dimension
of an infinite string ξ can be identified with Levin’s [22] universal left
computable continuous semi-measure restricted to the set of finite prefixes
of ξ. As a further consequence we obtain a connection to the a priori
complexity (cf. [20,21]) of finite strings yielding just another proof that
constructive dimension equals Kolmogorov complexity (cf. [18]).

Having a priori complexity in mind we generalise Ryabko’s result that
the set of infinite strings having asymptotic Kolmogorov complexity ≤ α
has Hausdorff dimension α to the case of exact dimensions. Finally we ap-
ply our results to the family of functions of the logarithmic scale, as con-
sidered by Hausdorff [6]. Here we show that, unlike the case of asymptotic
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Kolmogorov complexity, the results involving exact dimensions depend on
the kind of complexity (cf. [20,21]) of finite strings.

1 Notation and Preliminaries

In this section we introduce the notation used throughout the paper. By
N = {0, 1, 2, . . .} we denote the set of natural numbers and by Q the set
of rational numbers. Let X be an alphabet of cardinality |X| = r ≥ 2. By
X∗ we denote the set of finite words on X, including the empty word e,
and Xω is the set of infinite strings (ω-words) over X.

For w ∈ X∗ and η ∈ X∗ ∪ Xω let w · η be their concatenation. This
concatenation product extends in an obvious way to subsetsW ⊆ X∗ and
B ⊆ X∗ ∪Xω.
|w| is the length of the word w ∈ X∗ and pref(B) is the set of all finite

prefixes of strings in B ⊆ X∗∪Xω. We shall abbreviate w ∈ pref(η) (η ∈
X∗∪Xω) by w v η, and η[0..n] is the n-length prefix of η provided |η| ≥ n.
A language W ⊆ X∗ is referred to as prefix-free if w v v and w, v ∈ W
imply w = v. If W ⊆ X∗ then MinvW := {w : w ∈ W ∧ ∀v(v ∈ W →
v 6@ w)} is the (prefix-free) set of minimal w.r.t. v elements of W .

A super-martingale is a function V : X∗ → [0,∞) which satisfies
V(e) ≤ 1 and the super-martingale inequality

r · V(w) ≤
∑

x∈X V(wx) for all w ∈ X∗ . (1)

If Eq. (1) is satisfied with equality V is called a martingale. Closely realted
with (super-)martingales are continuous (or cylindrical) (semi-)measures
µ : X∗ → [0, 1] where µ(e) ≤ 1 and µ(w) ≤

∑
x∈X µ(wx) for all w ∈ X∗.

Indeed, if V is a super-martingale then µ(w) := r−|w| · V(w) is a con-
tinuous (semi-)measure, and vice versa. It should be mentioned that for
any continuous semi-measure µ and every prefix-free subset w ⊆ X∗ the
inequality

∑
w∈W µ(w) ≤ 1 holds. This proves also the corresponding

super-martingale inequality for prefix-free sets W ⊆ X∗.

V(e) ≥
∑

w∈W r−|w| · V(w) (2)

2 Hausdorff’s approach

A function h : (0,∞)→ (0,∞) is referred to as a gauge function provided
h is positive, right continuous and non-decreasing. The h-dimensional
outer measure of F on the space Xω is given by

Hh(F ) := lim
n→∞

inf{
∑
v∈V

h(r−|v|) : F ⊆ V ·Xω ∧min
v∈V
|v| ≥ n} . (3)



If limt→0 h(t) > 0 then Hh(F ) <∞ if and only if F is finite.
The usual α-dimensional Hausdorff measure Hα is defined by the fam-

ily of gauge functions hα(t) = tα, that is, Hα = Hhα . Here h0(t) = t0

defines the counting measure on Xω.
In this case it is possible to define the (usual) Hausdorff dimension of

a set F ⊆ Xω as

dimH F := sup{α : α = 0 ∨Hα(F ) =∞} = inf{α : α ≥ 0 ∧Hα(F ) = 0} .

As we see from Eq. (3) for our purposes the behaviour of gauge function
is of interest only in a small vicinity of 0. Moreover, in many cases we are
not interested in the exact value of Hh(F ) when 0 < Hh(F ) < ∞. Thus
we can often make use of scaling a gauge function and altering it in a
range (ε, 1] apart from 0.

The following properties of gauge functions h and the related measure
Hh are proved in the standard way.

Property 1. Let h, h′ be gauge functions.

1. If c1 ·h(r−n) ≤ h′(r−n) ≤ c2 ·h(r−n) for some c1, c2, 0 < c1 ≤ c2, then
c1 · Hh(F ) ≤ Hh′(F ) ≤ c2 · Hh(F ).

2. If lim
n→∞

h(r−n)
h′(r−n)

= 0 thenHh′(F ) <∞ impliesHh(F ) = 0, andHh(F ) >

0 implies Hh′(F ) =∞.

Here the first property could be called equivalence of gauge functions.
In fact, if h and h′ are equivalent in the sense of Property 1.1 then for
all F ⊆ Xω the measures Hh(F ) and Hh′(F ) are both zero, finite or
infinite. In the same way the second property gives an ordering of gauge
functions. The ordering is denoted by ≺ where h′ ≺ h is an abbreviation
for lim

n→∞
h(r−n)
h′(r−n)

= 0, that is, h(r−n) tends faster to 0 than h′(r−n) as n
tends to infinity.

By analogy to the change-over-point dimH F for Hα(F ) the partial
ordering ≺ yields a suitable notion of Hausdorff dimension in the range
of arbitrary gauge functions.

Definition 1. We refer to a gauge function h as exact Hausdorff dimen-
sion function for F ⊆ Xω provided

Hh′(F ) =
{
∞ , if h′ ≺ h , and
0 , if h ≺ h′ .

Remark that, since ≺ is not a total ordering, nothing is said about the
measure Hh′(F ) for functions h′ which are equivalent or not comparable



to h. Hausdorff called a function h dimension of F provided 0 < Hh(F ) <
∞. This case is covered by our definition and Property 1.

One easily observes that h0(t) := t yields Hh0(F ) ≤ 1, thus Hh′(F ) =
0 for all h′, h0 ≺ h′. Therefore, we can always assume that a gauge
function satisfies h(t) > t2, t ∈ (0, 1).

2.1 Exact Hausdorff dimension and martingales

In this section we show a generalisation of Lutz’s theorem to arbitrary
gauge functions. To obtain a transparent notation we do not use Lutz’s
s-gale notation but instead we follow Schnorr’s approach of combining
martingales with order functions. For a discussion of both approaches see
Section 13.2 of [2].

Let, for a super-martingale V : X∗ → [0,∞), a gauge function h and a
value c ∈ (0,∞] be Sc,h[V] := {ξ : ξ ∈ Xω ∧ lim supn→∞

V(ξ[0..n])
rn·h(r−n)

≥ c}. In
particular, S∞,h[V] is the set of all ω-words on which the super-martingale
V is successful w.r.t. the order function f(n) = rn · h(r−n) in the sense of
Schnorr [15].

Now we can prove the analogue to Lutz’s theorem. In view of Prop-
erty 1 we split the assertion into two parts.

Lemma 1. Let F ⊆ Xω and h, h′ be gauge functions such that h ≺ h′

and Hh(F ) <∞. Then F ⊆ S∞,h′ [V] for some martingale V.

Proof. First we follow the lines of the proof of Theorem 13.2.3 in [2] and
show the assertion for Hh(F ) = 0. Thus there are prefix-free subsets
Ui ⊆ X∗ such that F ⊆

⋂
i∈N Ui ·Xω and

∑
u∈Ui h(r

−|u|) ≤ 2−i.

Define Vi(w) :=
{
r|w| ·

∑
wu∈Ui h(r

−|wu|), if w ∈ pref(Ui) \ Ui , and
sup{r|v| · h(r−|v|) : v v w ∧ v ∈ Ui}, otherwise1.

In order to prove that Vi is a martingale we consider three cases:

w ∈ pref(Ui) \ Ui : Since then Ui ∩w ·X∗ =
⋃
x∈X Ui ∩wx ·X∗, we have

Vi(w) = r|w|·
∑

wu∈Ui h(r
−|wu|) = r−1·

∑
x∈X r

|wx|∑
wxu∈Ui h(r

−|wxu|) =
r−1 ·

∑
x∈X Vi(wx).

w ∈ Ui ·X∗ : Let w ∈ v · X∗ where v ∈ Ui. Then Vi(w) = Vi(wx) =
r|v| · h(r−|v|) whence Vi(w) = r−1 ·

∑
x∈X Vi(wx).

w /∈ pref(Ui) ∪ Ui ·X∗ : Here Vi(w) = Vi(wx) = 0.

1 This yields Vi(w) = 0 for w /∈ pref(Ui) ∪ Ui ·X∗.



Now, set V(w) :=
∑

i∈N Vi(w).
Then, for ξ ∈

⋂
i∈N Ui · Xω there are ni ∈ N such that ξ[0..ni] ∈ Ui

and we obtain V(ξ[0..ni])
rni ·h′(r−ni ) ≥

Vi(ξ[0..ni])
rni ·h′(r−ni ) = h(r−ni )

h′(r−ni )
which tends to infinity

as i tends to infinity.
Now let Hh(F ) < ∞. Then h ≺

√
h · h′ ≺ h′. Thus H

√
h·h′(F ) = 0

and we can apply the first part of the proof to the functions
√
h · h′ and

h′. �

The next lemma is in some sense a converse to Lemma 1

Lemma 2. Let h be a gauge function, c ∈ (0,∞] and V be a super-
martingale. Then Hh(Sc,h[V]) ≤ V(e)

c .

Proof. It suffices to prove the assertion for c <∞.
Define Vk := {w : w ∈ X∗ ∧ |w| ≥ k ∧ V(w)

r|w|·h(r−|w|) ≥ c− 2−k} and set
Uk := MinvVk. Then Sc,h[V] ⊆

⋂
k∈N Uk ·Xω.

Now
∑
w∈Uk

h(r−|w|) ≤
∑
w∈Uk

h(r−|w|) · V(w)

r|w|·h(r−|w|) ·
1

c−2−k
= 1

c−2−k
·∑

w∈Uk

V(w)

r|w|
≤ V(e)

c−2−k
(cf. Eq. (2)). Thus Hh(

⋂
k∈N Uk ·Xω) ≤ V(e)

c . �

Lemmata 1 and 2 yield the following martingale characterisation of exact
Hausdorff dimension functions.

Theorem 1. Let F ⊆ Xω. Then a gauge function h is an exact Hausdorff
dimension function for F if and only if

1. for all gauge functions h′ with h ≺ h′ there is a super-martingale V
such that F ⊆ S∞,h′ [V], and

2. for all gauge functions h′′ with h′′ ≺ h and all super-martingales V it
holds F 6⊆ S∞,h′′ [V].

Lemmata 1 and 2 also show that we can likewise formulate Theorem 1 for
martingales instead of super-martingales.

3 Constructive dimension: the exact case

The constructive dimension is a variant of dimension defined analogously
to Theorem 1 using only left computable super-martingales. For the usual
family of gauge functions hα(t) = tα it was introduced by Lutz [7] and
resulted, similarly to dimH in a real number assigned to a subset F ⊆ Xω.
In the case of left computable super-martingales the situation turned out
to be simpler because the results of Levin [22] and Schnorr [15] show that



there is an optimal left computable super-martingale U , that is, every
other left computable super-martingale V satisfies V(w) ≤ cV · U(w) for
all w ∈ X∗ and some constant cV > 0 not depending on w. Thus we may
define

Definition 2. Let F ⊆ Xω. We refer to h : R→ R as an exact construc-
tive dimension function for F provided F ⊆ S∞,h′ [U ] for all h′, h ≺ h′ and
F 6⊆ S∞,h′′ [U ] for all h′′, h′′ ≺ h.

Originally, Levin showed that there is an optimal left computable continu-
ous semi-measure M on X∗. As usual, we call a function µ : X∗ → [0,∞)
a continuous (or cylindrical) semi-measure on X∗ provided µ(e) ≤ 1 and
µ(w) ≥

∑
x∈X µ(wx) for all w ∈ X∗. One easily verifies that µ is a contin-

uous semi-measure if and only if V(w) := r|w| ·µ(w) is a super-martingale.
Thus we might use UM with UM(w) := r|w| ·M(w) as our optimal left

computable super-martingale. The proof of the next theorem makes use
of this fact and of the inequality M(w) ≥M(w · v).

Theorem 2. The function hξ defined by hξ(r−n) := M(ξ[0..n]) is an
exact constructive dimension function for the set {ξ}.

Closely related to Levin’s optimal left computable semi-measure is the
a priori entropy (or complexity) KA : X∗ → N defined by

KA(w) := b− logr M(w)c (4)

First we mention the following bound from [11].

Theorem 3. Let F ⊆ Xω, h be a gauge function and Hh(F ) > 0.
Then for every c > 0 with Hh(F ) > c ·M(e) there is a ξ ∈ F such

that KA(ξ[0..n]) ≥a.e. − logr h(r−n)− logr c.

This lower bound on the maximum complexity of an infinite string in F
yields a set-theoretic lower bound on the success sets Sc,h[U ] of U .

Theorem 4. Let −∞ < c <∞ and let h be a gauge function. Then there
is a c′ > 0 such that

{ξ : ∃∞n(KA(ξ[0..n]) ≤ logr h(r−n) + c)} ⊆ Sc′,h[U ].

Corollary 1. Let h, h′ be gauge functions such that h ≺ h′. Then

1. {ξ : ∃c∃∞n(KA(ξ[0..n]) ≤ logr h(r−n) + c)} ⊆ S∞,h′ [U ], and
2. Hh′({ξ : ∃c∃∞n(KA(ξ[0..n]) ≤ − logr h(r−n) + c)}) = 0.



4 Complexity

In this section we are going to show that, analogously to Ryabko’s and
Lutz’s results for the “usual” dimension the bound given in Corollary 1
is tight for a large class of (computable) gauge functions. To this end
we prove that certain sets of infinite strings diluted according to a gauge
function h have positive Hausdorff measure Hh.

4.1 A generalised dilution principle

We are going to show that for a large family of gauge functions set of finite
positive measures can be constructed. Our construction is a generalisation
of Hausdorff’s 1918 construction. Instead of his method of cutting out
middle thirds in the unit interval we use the idea of dilution functions as
presented in [19]. In fact dilution appears much earlier (see e.g. [1,16,8])

We consider prefix-monotone mappings, that is, mappings ϕ : X∗ →
X∗ satisfying ϕ(w) v ϕ(v) whenever w v v. We call a function g : N→ N
a modulus function for ϕ provided |ϕ(w)| = g(|w|) for all w ∈ X∗. This,
in particular, implies that |ϕ(w)| = |ϕ(v)| for |w| = |v| when ϕ has a
modulus function.

Every prefix-monotone mapping ϕ : X∗ → X∗ defines as a limit a
partial mapping ϕ :⊆ Xω → Xω in the following way: pref(ϕ(ξ)) =
pref(ϕ(pref(ξ))) whenever ϕ(pref(ξ)) is an infinite set, and ϕ(ξ) is un-
defined when ϕ(pref(ξ)) is finite.

If, for some strictly increasing function g : N → N, the mapping ϕ
satisfies the conditions |ϕ(w)| = g(|w|) and for every v ∈ pref(ϕ(X∗))
there are wv ∈ X∗ and xv ∈ X such that

ϕ(wv) @ v v ϕ(wv · xv) ∧ ∀y(y ∈ X ∧ y 6= xv → v 6v ϕ(wv · y)) (5)

then we call ϕ a dilution function with modulus g. If ϕ is a dilution
function then ϕ is a one-to-one mapping. For the image ϕ(Xω) we obtain
the following bounds on its Hausdorff measure.

Theorem 5. Let g : N → N be a strictly increasing function, ϕ a corre-
sponding dilution function and h : (0,∞) → (0,∞) be a gauge function.
Then

1. Hh(ϕ(Xω)) ≤ lim inf
n→∞

h(r−g(n))
r−n

2. If c · r−n ≤ae h(r−g(n)) then c ≤ Hh(ϕ(Xω)).



Proof. The first assertion follows from ϕ(Xω) ⊆
⋃
|w|=n ϕ(w) · Xω and

|ϕ(w)| = g(|w|).
The second assertion is obvious forHh(ϕ(Xω)) =∞. LetHh(ϕ(Xω)) <

∞, ε > 0, and V ·Xω ⊇ ϕ(Xω) such that
∑

v∈V h(r
−|v|) ≤ Hh(ϕ(Xω))+ε.

The set WV := {wv · xv : v ∈ V ∧ ϕ(wv) @ v v ϕ(wv · xv)} (see
Eq. (5)) is prefix-free and it holds WV · Xω ⊇ Xω. Thus WV is finite
and

∑
w∈WV

r−|w| = 1.
Assume now min{|v| : v ∈ V } large enough such that c · r−|v| ≤ae

h(r−|v|) for all v ∈ V .
Then

∑
v∈V h(r

−|v|) ≥
∑

wx∈WV
h(r−|ϕ(wx)|) =

∑
wx∈WV

h(r−g(|wx|))
≥
∑

wx∈WV
c · r−|wx| = c .

As ε > 0 is arbitrary, the assertion follows. �

Corollary 2. If c ·r−n ≤ae h(r−g(n)) ≤ c′ ·r−n then c ≤ Hh(ϕ(Xω)) ≤ c′.

In connection with Theorem 5 and Corollary 2 it is of interest which gauge
functions allow for a construction of a set of positive finite measure via
dilution. Hausdorff’s cutting out was demonstrated for upwardly convex2

gauge functions. We consider the slightly more general case of functions
fulfilling the following.

Lemma 3. If a gauge function h is upwardly convex on some interval
(0, ε) and limt→0 h(t) = 0 then there is an n0 ∈ N such that for all n ≥ n0

there is an m ∈ N satisfying

r−n < h(r−m) ≤ r−n+1 . (6)

In particular, Eq. (6) implies that the gauge function h does not tend
faster to 0 than the identity function id : R→ R.

Proof. If h is monotone, upwardly convex on (0, ε) and h(0) = 0 then,
in particular, h(γ) ≥ γ · h(γ′)/γ′ whenever 0 ≤ γ ≤ γ′ ≤ ε. Let n ∈ N
and let m ∈ N be the largest number such that r−n < h(r−m). Then
h(r−m−1) ≤ r−n < h(r−m) ≤ r · h(r−m−1) ≤ r−n+1. �

Remark 1. Using the scaling factor c = rn0 , that is, considering c · h
instead of h and taking h′(t) = min{c · h(t), r} one can always assume
that n0 = 0 and h′(1) > 1. Defining then g(n) := max{m : m ∈ N∧r−n <
h(r−m)} we obtain via Property 1 and Corollary 2 that for every gauge
function h fulfilling Eq. (6) there is a subset Fh of Xω having finite and
positive Hh-measure.
2 A function f : R→ R is called upwardly convex if f(a+t(b−a)) ≥ f(a)+t(f(b)−f(a))
for all t ∈ [0, 1].



4.2 Computable gauge functions

The aim of this section is to show that the modulus function g and thus the
dilution function ϕ can be chosen computable if only the gauge function
h fulfilling Eq. (6) is computable.

For a computable domain D, such as N, Q or X∗, we refer to a function
f : D → R as left computable (or approximable from below) provided the
set {(d, q) : d ∈ D∧ q ∈ Q∧ q < f(d)} is computably enumerable. Accord-
ingly, a function f : D → R is called right computable (or approximable
from above) if the set {(d, q) : d ∈ D ∧ q ∈ Q ∧ q > f(d)} is computably
enumerable, and f is computable if f is right and left computable.

If we refer to a function f : D → Q as computable we usually mean
that it maps the domain D to the domain Q, that is, it returns the exact
value f(d) ∈ Q.

Lemma 4. Let h : Q→ R be a computable gauge function satisfying the
conditions that 1 < h(1) < r and for every n ∈ N there is an m ∈ N
such that r−n < h(r−m) ≤ r−n+1. Then there is a computable strictly
increasing function g : N→ N such that r−n−1 < h(r−g(n)) < r−n+1.

Proof. We define g inductively. To this end we compute for every n ≥ 1 a
closed interval In such that h(r−g(n)) ∈ In ⊂ (r−n,min In−1)

We start with g(0) := 0 and I−1 = [r, r + 1] and estimate I0 as an
sufficiently small approximating interval of h(r−g(0)) > 1 satisfying I0 ⊆
(1, r).

Assume now that for n the value g(n) and the interval In satisfying
h(r−g(n)) ∈ In ⊂ (r−n,min In−1) are computed.

We search for an m and an approximating interval I(m), h(r−m) ∈
I(m), such that I(m) ⊂ (r−n−1,min In). Since lim inf

m→∞
h(r−m) = 0 and

∃m(r−n−1 < h(r−m) ≤ r−n) < min In this search will eventually be
successful. Define g(n+1) as the first such m found by our procedure and
set In := I(m).

Finally, the monotonicity of h implies g(n+ 1) > g(n). �

With Corollary 2 we obtain the following.

Corollary 3. Under the hypotheses of Lemma 4 there is a computable
dilution function ϕ : X∗ → X∗ such that r−1 ≤ Hh(ϕ(Xω)) ≤ r.

4.3 Complexity of diluted infinite strings

In the final part of this Section 4 we show that for a large class of com-
putable gauge functions h is an exact dimension function for the set



{ξ : ∃c∃∞n(KA(ξ[0..n]) ≤ − logr h(r−n) + c)}. This proves a converse
to Corollary 1.2. To this end we use the following lower bound on the
maximum a priori complexity of a diluted string from [19].

Theorem 6. Let ϕ : X∗ → X∗ be a one-to-one prefix-monotone recur-
sive function satisfying Eq (5) with strictly increasing modulus function g.
Then
|KA(ϕ(ξ)[0..g(n)])−KA(ξ[0..n])| ≤ O(1) for all ξ ∈ Xω and all n ∈ N .

We obtain our result.

Theorem 7. If h : Q → R is a computable gauge function satisfying
Eq. (6) then there is a c ∈ N such that

Hh({ζ : KA(ζ[0..`]) ≤a.e. − logr h(r−`) + c}) > 0.

Proof. From the gauge function h we construct a computable dilution
function ϕ with modulus function g such that r−(l+k+1) < g(r−g(l)) <
r−(l+k−1) for a suitable constant k (cf. Lemma 4 and Remark 1). Then,
according to Corollary 3, Hh(ϕ(Xω)) > 0.

Using Theorem 6 we obtain KA(ϕ(ξ)[0..g(l)]) ≤ KA(ξ[0..l])+ c1 ≤ l+
c2 for suitable constants c1, c2 ∈ N. Let n ∈ N satisfy g(l) < n ≤ g(n+1).
Then KA(ϕ(ξ)[0..n] ≤ KA(ϕ(ξ)[0..g(l + 1)] ≤ l + 1 + c2.

Now from l + k − 1 < − logr h(r−g(l)) ≤ − logr h(r−n) we obtain the
assertion KA(ϕ(ξ)[0..n] ≤ − logr h(r−n) + k + c2. �

5 Functions of the logarithmic scale

The final part of this paper is devoted to a generalisation of the “usual”
dimensions using Hausdorff’s family of functions of the logarithmic scale.
This family is, similarly to the family hα(t) = tα, also linearly ordered and,
thus, allows for more specific versions of Corollary 1.2 and Theorem 7.

A function of the form where the first non-zero exponent satisfies pi >
0

h(p0,...,pk)(t) = tp0 ·
∏k
i=1(logi 1

t )
pi (7)

is referred to as a function of the logarithmic scale (see [6]). Here we have
the convention that logi t = max{logr . . . logr︸ ︷︷ ︸

i times

t , 1}.

One observes that the lexicographic order on the tuples (p0, . . . , pk)
yields an order of the functions h(p0,...,pk) in sense that (p0, . . . , pk) >lex

(q0, . . . , qk) if and only if h(q0,...,qk)(t) ≺ h(p0,...,pk)(t).



This gives rise to a generalisation of the “usual” Hausdorff dimension
as follows.

dim(k)
H F := sup{(p0, . . . , pk) : Hh(p0,...,pk)(F ) =∞}

= inf{(p0, . . . , pk) : Hh(p0,...,pk)(F ) = 0}
(8)

When taking supremum or infimum we admit also values −∞ and ∞ al-
though we did not define the corresponding functions of the logarithmic
scale. E.g. dim(1)

H F = (0,∞) means thatHh(0,γ)(F ) =∞ butHh(α,−γ)(F ) =
0 for all γ ∈ (0,∞) and all α > 0.

The following theorems generalise Ryabko’s [13] result on the “usual”
Hausdorff dimension (case k = 0) of the set of strings having asymptotic
Kolmogorov complexity ≤ p0.

Let h(p0,...,pk) be a function of the logarithmic scale. We define its
first logarithmic truncation as βh(t) := − logr h(p0,...,pk−1). Observe that
βh(r−n) = p0 · n+

∑k−1
i=1 pi · logi n and − log h(p0,...,pk)(r

−n) = βh(r−n) +
pk · logk n, for sufficiently small t > 0.

Then from Corollary 1.2 we obtain the following result analogous to
Ryabko’s theorem.

Theorem 8 ([12]). Let k > 0, (p0, . . . , pk) be a (k+1)-tuple and h(p0,...,pk)

be a function of the logarithmic scale. Then
dim(k)

H

{
ξ : ξ ∈ Xω ∧ lim infn→∞

KA(ξ[0..n])−βh(2−n)

logk n
< pk

}
≤ (p0, . . . , pk) .

Using Theorem 7 we obtain a partial converse to Theorem 8 slightly
refining Satz 4.11 of [12].

Theorem 9. Let k > 0, (p0, . . . , pk) be a (k + 1)-tuple where p0 > 0 and
p0, . . . , pk−1 are computable numbers. Then for the function h(p0,...,pk) it
holds

dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim sup

n→∞

KA(ξ[0..n])− βh(2−n)
logk n

≤ pk
}

= (p0, . . . , pk) .

Ryabko’s [13] theorem is independent of the kind of complexity we use.
The following example shows that, already in case k = 1, Theorem 8 does
not hold for plain Kolmogorov complexity KS (cf. [20,21,2]).

Example 1. It is known that KS(ξ[0..n]) ≤ n−logr n+O(1) for all ξ ∈ Xω

(cf. [2, Corollary 3.11.3]). Thus every ξ ∈ Xω satisfies lim inf
n→∞

KS(ξ[0..n])−n
logr n

<

−1
2 . Consequently,
dim(1)

H {ξ : ξ ∈ Xω ∧ lim inf
n→∞

KS(ξ[0..n])−n
log|X| n

< −1
2} = (1, 0) >lex (1,−1

2).
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A Proofs

A.1 Proof of Theorem 1

Proof. Assume h to be exact for F and h ≺ h′. Then h ≺
√
h · h′ ≺ h′.

Thus H
√
h·h′(F ) = 0 and applying Lemma 1 to

√
h · h′ and h′ yields a

super-martingale V such that F ⊆ S∞,h′ [V].
If h′′ ≺ h then Hh′′(F ) =∞ and according to Lemma 2 F 6⊆ S∞,h′′ [V]

for all super-martingales V.
Conversely, let Conditions 1 and 2 be satisfied. Let h ≺ h′, and let

V be a super-martingale such that F ⊆ S∞,h′ [V]. Now Lemma 2 shows
Hh′(F ) ≤ Hh′(S∞,h′ [V]) = 0.

Finally, suppose h′′ ≺ h and Hh′′(F ) < ∞. Then H
√
h·h′′(F ) = 0

and Lemma 1 shows that there is a super-martingale V such that F ⊆
S∞,

√
h·h′′ [V]. This contradicts Condition 2. �

A.2 Proof of Theorem 4

Proof. If ξ has infinitely many prefixes such that M(ξ[0..n]) = hξ(r−n) ≥
c ·h(r−n) then, since U(w) ≥ c′′ ·rn ·M(w) for a suitable c′′ > 0, we obtain
lim supn→∞

U(ξ[0..n])
rn·h(r−n)

≥ lim supn→∞
c′′·rn·M(ξ[0..n])

rn·h(r−n)
≥ c′′

c �

A.3 Proof of Theorem 8

Proof. From lim infn→∞
KA(ξ[0..n])−βh(2−n)

logk n
< pk follows KA(ξ[0..n]) ≤

βh(2−n) + p′k · logk n+O(1) for some p′k < pk. Thus h(p0,...,p′k)
≺ h(p0,...,pk)

and the assertion follows from Corollary 1.2. �

A.4 Proof of Theorem 9

Proof. Let p′k < pk be a computable number. Then h(p0,...,p′k)
is a com-

putable gauge function, h(p0,...,p′k)
≺ h(p0,...,pk) and Hh({ξ : KA(ξ[0..n]) ≤

− logr h(r−n)+ch}) > 0 for h = h(p0,...,p′k)
and some constant ch. Moreover

KA(ξ[0..n]) ≤ − logr h(r−n) + ch implies lim sup
n→∞

KA(ξ[0..n])−βh(2−n)

logk n
≤ pk.

Thus dim(k)
H

{
ξ : ξ ∈ Xω ∧ lim sup

n→∞

KA(ξ[0..n])−βh(2−n)

logk n
≤ pk

}
≥ (p0, . . . , p

′
k).

As p′k can be made arbitrarily close to pk the assertion follows. �
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