
On Approximating the Number of Relevant Variables

in a Function

Dana Ron∗

School of EE
Tel-Aviv University
Ramat Aviv, Israel
danar@eng.tau.ac.il

Gilad Tsur
School of EE

Tel-Aviv University
Ramat Aviv, Israel

gilad.tsur@gmail.com

May 9, 2011

Abstract

In this work we consider the problem of approximating the number of relevant variables in
a function given query access to the function. Since obtaining a multiplicative factor approx-
imation is hard in general, we consider several relaxations of the problem. In particular, we
consider relaxations in which we have a promise that the function belongs to a certain family
of functions (e.g., linear functions), and we consider a relaxation of the property testing variant
of the problem. In the latter relaxation the task is to distinguish between the case that the
number of relevant variables is at most k, and the case in which it is far from any function in
which the number of relevant variable is more than (1 + γ)k for a parameter γ. We give both
upper bounds and almost matching lower bounds for the relaxations we study.

∗This work was supported by the Israel Science Foundation (grant number 246/08).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2011)

1 Introduction

In many scientific endeavors, an important challenge is making sense of huge datasets. In particular,
when trying to make sense of functional relationships we would like to know or estimate the number
of variables that a function depends upon. This can be useful both as a preliminary process for
machine learning and statistical inference and independently, as a measure of the complexity of the
relationship in question. We mainly focus on Boolean functions over the Boolean hypercube, which
is endowed with the uniform distribution. In the last section we discuss extensions to other finite
domains and ranges (as well as other product distributions).

For a function f : {0, 1}n → {0, 1}, we let r(f) denote the number of variables that f depends
on, which we shall also refer to as the number of relevant variables. A variable xi is relevant to a
function f if there exists an assignment to the input variables such that changing the value of just
the variable xi causes the value of f to change. Given query access to f , computing r(f) exactly
may require a number of queries that is exponential in n (linear in the size of the domain).1

Thus, we would like to consider relaxed notions of this computational task. One natural relax-
ation is to compute r(f) approximately. Namely, to output a value r̂ such that r(f)/B ≤ r̂ ≤ B·r(f)
for some approximation factor B. Unfortunately, this relaxed task may still require an exponential
number of queries (see the example in Footnote 1).

A different type of relaxation that has been studied in the past, is the one defined by property
testing [RS96, GGR98]. We shall say that f is a k-junta if r(f) ≤ k. A property testing algorithm
is given k and a distance parameter 0 < ε < 1. By performing queries to f , the algorithm should
distinguish between the case that f is a k-junta and the case that it differs from every k-junta
on at least an ε-fraction of the domain (in which case we shall say that it is ε-far from being a
k-junta). This problem was studied in several papers [FKR+04, CG06, Bla08, Bla09]. The best
upper bound on the number of queries that the algorithm performs (in terms of the dependence on
k) is O(k log k) [Bla09], where this upper bound almost matches the lower bound of Ω(k)[CG06].

A third possible relaxation is to consider restricted classes of functions. For example, suppose
that we are given the promise that f is a linear function. Since it is possible to exactly learn f (with
high constant probability) by performing O(r(f) log n) queries, it is also possible to exactly compute
r(f) in this case using this number of queries. On the other hand, building on work by Goldre-
ich [Gol10], Chakraborty et al. [CMS10] show that it is necessary to perform Ω(r(f)/polylog(r(f)))
queries.

In this work we study the problem of estimating the number of relevant variables where we
combine the first relaxation with one of the other two. We state our results as solutions to decision
problems, and they can be adapted in the standard way to solve the corresponding approximation
problems. Specifically, our main results are:

1. Given the promise that f is a linear function and parameters k ≥ 1 and 0 < γ < 1, it is
possible to distinguish (with high constant probability) between the case that r(f) ≤ k and
the case that r(f) > (1 + γ)k, by performing O

(
log(1/γ)

γ2

)
queries to f . As noted above, this

result should be contrasted with the fact that it is not possible to distinguish with constant
success probability between the case that r(f) ≤ k and r(f) > k + 1 using o(k/polylog(k))
queries (when f is a linear function) [Gol10, CMS10].

1Consider for example the family of functions, where each function in the family takes the value 0 on all points
in the domain but one. Such a function depends on all n variables, but a uniformly selected function in the family
cannot be distinguished (with constant probability) from the all-0 function, which depends on 0 variables.

1

2. More generally, for any d ≥ 1, given the promise that f is a degree-d polynomial (over
GF (2)) and parameters k ≥ 1 and 0 < γ < 1, it is possible to distinguish (with high constant
probability) between the case that r(f) ≤ k and the case that r(f) > (1+γ)k, by performing
O

(
2d log(1/γ)

γ2

)
queries. We also prove that for any d < log k the exponential dependence on

d cannot be reduced significantly.

3. Turning to general functions, and combining the first two types of relaxations, on the positive
side we show the following: Given parameters k ≥ 1 and 0 < ε, γ < 1, it is possible to
distinguish (with high constant probability) between the case that f is a k-junta and the case
that f is ε-far from any (1+γ)k-junta, by performing O

(
k log(1/γ)

εγ2

)
queries. Thus, for constant

γ and ε, we save a factor of log k as compared to the best result known for the standard notion
of property testing [Bla09]. While this improvement is not dramatic, we show that a much
better improvement cannot be achieved: That is, we show that it is necessary to perform
Ω(k/ log k) queries for constant γ and ε. A similar lower bound holds when we consider only
monotone functions (except that it holds for ε = O(1/ log(k)) rather than constant ε).

The last type of relaxation was suggested by Fischer et al. [FKR+04], who noted that the complexity
of one of their algorithms for testing k-juntas can be improved to have a quadratic dependence on k
if the algorithm is only required to reject functions that are far from being 2k-juntas. This relaxation
was also recently considered by Blais et al. [BBM11]. They apply a general new technique that they
develop for obtaining lower bounds on property testing problems via communication complexity
lower bounds. Specificaly, they give a lower bound of Ω

(
min{(k

t)
2, k} − log k

)
on the number of

queries necessary for distinguishing between functions that are k-juntas and functions that are ε-far
from (k + t)-juntas (for a constant ε). Using our formulation, this implies a lower bound linear in
k for γ = O(1/

√
k).

We also note that results in the spirit of these results (which allow a further relaxation to
that defined by “standard” property testing) have been studied in the past (e.g., [PR02, KR00,
ADPR03]) for other problems.

Techniques. Assume we have a promise that the function f is a linear function, and we want to
distinguish between the case that it depends on at most k variables and the case that it depends on
more than 2k variables. Suppose we select a subset S of the variables by including each variable in
the subset, independently, with probability 1/2k. The first basic observation is that the probability
that S contains at least one of the relevant variables of f when f depends on more than 2k
variables, is some constant multiplicative factor (greater than 1) larger than the probability that
this occurs when f depends on at most k relevant variables. The second observation is that given
the promise that f is a linear function, using a small number of queries we can distinguish with
high constant probability between the case that S contains at least one relevant variable of f , and
the case that it contains no such variable. By quantifying the above more precisely, and repeating
the aforementioned process a sufficient number of times, we can obtain the first result mentioned
above, for linear functions.

The algorithm for degree-d polynomials is essentially the same, except that the sub-test for
determining whether S contains any relevant variables is more costly. The same ideas are also the
basis for the algorithm for general functions, only we need a more careful analysis since in a general
function we may have relevant variables that have very small influence. Indeed, as in previous work
on testing k-juntas [FKR+04, Bla08, Bla09], the influence of variables (and subsets of variables),

2

plays a central role (and we use some of the claims presented in previous work).
Our lower bounds build on reductions from the Distinct Elements problem: Given query access

to a sequence of length n, the goal is approximate the number of distinct elements in the sequence.
This problem is equivalent to approximating the support size of a distribution where every element
in the support of the distribution has probability that is a multiple of 1/n [RRSS09]. Several
works [RRSS09, Val08, VV10a] gave close to linear lower bounds for distinguishing between support
size at least n/d1 and support size at most n/d2 (for constant d1 and d2), where the best lower
bound of Valiant and Valiant [VV10a] is Ω(n/ log(n)), and this bound is tight [VV10b].

Organization. We start by introducing several definitions and basic claims in Section 2. In
Section 3 we describe and analyze our algorithm for distinguishing between the case that (a general
function) f is a k-junta and the case that it is ε-far from every (1 + γ)k-junta. In the same section
we give the almost matching (in terms of k) lower bound. In Section 4 we describe our results
for restricted function classes, where the algorithms for linear functions and more generally, for
degree-d polynomials, can be viewed as special cases of a slight variant of the algorithm for general
functions. Finally, in Section 5 we discuss extending the results to general finite domains and
ranges, with arbitrary product distributions.

2 Preliminaries

For two functions f, g : {0, 1}n → {0, 1}, we define the distance between f and g as Prx[f(x) 6= g(x)]
where x is selected uniformly in {0, 1}n. For a family of functions F and a function f , we define
the distance between f and F as the minimum distance over all g ∈ F of the distance between f
and g. We say that f is ε-far from F , if this distance is at least ε.

Our work refers to the influence of sets of variables on the output of a Boolean function (in
a way that will be described presently). As such, we often consider the values that a function f
attains conditioned on a certain fixed assignment of some of its variables, e.g., the values f may
take when the variables x1 and x3 are set to 0. For an assignment σ to a set of variables S we will
denote the resulting restricted function by fS=σ. Thus, fS=σ is a function of {0, 1}n−|S| variables.
When we wish to relate to the variables {x1, . . . , xn} \ S we use the notation S̄.
We now give a definition that is central for this work:

Definition 2.1 For a function f : {0, 1}n → {0, 1} we define the influence of a set of variables
S ⊆ {x1, . . . , xn} as Prσ,y,y′ [fS̄=σ(y) 6= fS̄=σ(y′)] where σ is selected uniformly at random from
{0, 1}n−|S| and y, y′ are selected uniformly at random from {0, 1}|S|. For a fixed function f we
denote this value by I(S). When the set S consists of a single variable xi we may use the notation
I(xi) instead of I({xi}).
The following two claims can be found in [FKR+04]. The first claim tells us that the influence of
sets of variables is monotone and subadditive:

Claim 2.1 Let f be a function from {0, 1}n to {0, 1}, and let S and T be subsets of the variables
x1, . . . , xn. It holds that I(S) ≤ I(S ∪ T) ≤ I(S) + I(T).

Definition 2.2 For a fixed function f the marginal influence of set of variables T with respect to
a set of variables S is I(S ∪ T)− I(S). We denote this value by IS(T).

3

The marginal influence of a set of variables is diminishing:

Claim 2.2 Let S, T , and W be disjoint sets of variables. For any fixed function f it holds that
IS(T) ≥ IS∪W (T).

The next claim relates between the distance to being a k-junta and the influence of sets of
variables.

Claim 2.3 Let f be a function that is ε-far from being a k-junta. Then for every subset S of f ’s
variables of size at most k, the influence of {x1, . . . , xn} \ S is at least ε.

The converse of Claim 2.3 follows from the definition of influence:

Claim 2.4 Let f be a function such that for every subset S of f ’s variables of size at most k, the
influence of {x1, . . . , xn} \ S is at least ε. Then f is ε-far from being a k junta

3 Distinguishing between k-Juntas and Functions Far From Every
(1 + γ)k-Junta

In this section we prove the following theorems:

Theorem 3.1 There exists an algorithm that, given query access to f : {0, 1}n → {0, 1} and
parameters k ≥ 1, and 0 < ε, γ < 1, distinguishes with high constant probability between the case
that f is a k-junta and the case that f is ε-far from any (1 + γ)k-junta. The algorithm performs
O

(
k log(1/γ)

εγ2

)
queries.

Theorem 3.2 Any algorithm that distinguishes between the case that f is a k-junta and the case
that f is ε-far from any (1 + γ)k-junta for constant ε and γ must perform Ω(k/ log(k)) queries.

3.1 The Algorithm

In this subsection we present the algorithm referred to in Theorem 3.1. This algorithm uses the
procedure Test-for-relevant-variables (given in Figure 1), which performs repetitions of the
independence test defined in [FKR+04]. The number of repetitions depends on the parameters η
and δ, which the algorithm receives as input.

Claim 3.1 When given access to a function f , a set S, and parameters η and δ, where S has
influence of at least η, Test-for-relevant-variables returns true with probability at least 1 − δ.
When S contains no relevant variables, Test-for-relevant-variables returns false with probability
1. It performs Θ(log(1/δ)/η) queries.

Claim 3.1 follows directly from the definition of influence and a standard amplification argument.
Our algorithm for distinguishing between k-juntas and functions that are far from every (1+γ)k-

junta is given in Figure 2. This algorithm is the subject of Theorem 3.1.
Proof of Theorem 3.1: We prove that the statement in the theorem holds for Algorithm
Separate-k-from-(1 + γ)k. For a function f that has at most k relevant variables (i.e., is a
k-junta), the probability that S (created in Step 1a of Separate-k-from-(1 + γ)k) contains at

4

Test-for-relevant-variables
Input: Oracle access to a function f , a set S of variables to examine, an influence parameter
η and a confidence parameter δ.

1. Repeat the following m = Θ(log(1/δ)/η) times:

(a) Select σ ∈ {0, 1}n−|S| uniformly at random.

(b) Select two values y, y′ ∈ {0, 1}|S| uniformly at random. If fS̄=σ(y) 6= fS̄=σ(y′) return
true.

2. Return false.

Figure 1: Test-for-relevant-variables.

Separate-k-from-(1 + γ)k
Input: Oracle access to a function f , an approximation parameter γ < 1 and a distance
parameter ε.

1. Repeat the following m = Θ(1/γ2) times:

(a) Select a subset S of the variables, including each variable in S independently with
probability 1/2k.

(b) Run Test-for-relevant-variables on f and S, with influence parameter η =
Θ(ε/k) and with confidence parameter δ = 1/8m.

2. If the number of times Test-for-relevant-variables returned true passes a threshold t,
return more-than-(1 + γ)k. Otherwise return up-to-k. We determine t in the analysis.

Figure 2: Separate-k-from-(1 + γ)k.

least one such relevant variable is (at most) pk = 1 − (1 − 1
2k)k (note that 1/4 < pk ≤ 1/2). It

follows from the one-sided error of Test-for-relevant-variables that the probability that it will
return true in Step 1b is at most this pk. We will show that if f is ε-far from every (1 + γ)k-
junta, then the probability of Test-for-relevant-variables returning true in Step 1b is at least
p′k = pk + Ω(γ). Having established this, the correctness of Separate-k-from-(1 + γ)k follows by
setting the threshold t to t = (pk + p′k)/2.

In the following we assume that when applied to a subset of the variables with influence at least
η, Test-for-relevant-variables executed with the influence parameter η, returns true. We will
later factor the probability of this not happening in even one iteration of the algorithm into our
analysis of the algorithm’s probability of success.

Consider a function f that is ε-far from every (1 + γ)k-junta. For such a function, and for any
constant c > 1, by Claim 2.3 one of the following must hold.

1. There are at least (1 + γ)k variables in f each with influence at least ε/c(1 + γ)k.

2. There are (more than c(1+γ)k) variables each with influence less than ε/c(1+γ)k that have,
as a set, an influence of at least ε.

5

To verify this, note that if Case 1 does not hold, then there are fewer than (1 + γ)k variables in
f with influence at least ε/c(1 + γ)k. Recall that by Claim 2.3, the variables of f except for the
(1 + γ)k most influential variables have a total influence of at least ε, giving us Case 2.

We first deal with Case 1 (which is the simpler case). We wish to show that the probability that
S (as selected in Step 1a) contains at least one variable with influence Ω(ε/(1 + γ)k) is pk + Ω(γ).
As there are at least (1 + γ)k variables with influence Ω(ε/(1 + γ)k), it suffices to consider the
influence attributed to these variables, and to bound from below the probability that at least one
of them appears in S. If we consider these (1 + γ)k variables one after the other (in an arbitrary
order), for the first k variables, the probability that (at least) one of them is assigned to S is pk

(as defined above). If none of these were assigned to S, an event that occurs with probability at
least 1− pk ≥ 1/2, we consider the additional γk variables. The probability of at least one of them
being selected is at least γpk, and so we have that the total probability of S containing at least one
variable with influence Ω(ε/(1 + γ)k) is at least pk(1 + γ/2). Given that pk > 1/4 we have that the
probability is at least pk + γ/8, as required.

For our analysis of Case 2 we will focus on the set of variables described in the case. Namely, this
set has influence of at least ε while every variable in the set has influence of less than ε/c(1 + γ)k.
We denote this set of variables by Y = {y1, . . . , y`}. We wish to bound from below the influence of
subsets of Y . To this end we assign to each variable from the set Y a value that bounds from below
the marginal influence it has when added to any subset of Y . By the premise of the claim we have
that I(Y) ≥ ε. We consider the values I(y1), I{y1}(y2), . . . , I{y1,...,y`−1}(y`). The sum of these must
be at least ε by the definition of marginal influence (Definition 2.2). Let us denote by I ′(yi) the
value I{y1,...,yi−1}(yi). We refer to this as the marginal influence of yi. If we consider adding (with
probability 1/2k) each element in Y to S in the order y1, . . . , y`, we get by Claim 2.2 that the total
influence of S is no less than the total of the marginal influences of those variables added to S. It
now suffices to show that the sum of marginal influences in S is likely to be at least ε/4k, and we
are done.

To see that the sum of marginal influences in S is likely to be Ω(ε/k), we first define the random
variables {χi}. The variable χi gets the value of c(1+γ)k

ε I ′(yi) if yi is selected and 0 otherwise. We
have:

Exp[χi] =
1
2k

c(1 + γ)k
ε

I ′(yi) =
c(1 + γ)

2ε
I ′(yi) . (1)

By the linearity of expectation we have

Exp

[∑̀

i=1

χi

]
=

∑̀

i=1

Exp[χi] =
c(1 + γ)

2ε

∑̀

i=1

I ′(yi) ≥ c

2
. (2)

Using a multiplicative form of the Chernoff bound we know that

Pr

[∑̀

i=1

χi <
1
2
Exp

[∑̀

i=1

χi

]]
≤ e−

c
16 . (3)

For an appropriately selected c this means we are unlikely to have
∑`

i=1 χi that is less than a
constant2, and therefore we are likely to have

∑

yi∈S

I ′(yi) =
ε

c(1 + γ)k

∑̀

i=1

χi = Ω(ε/k) , (4)

2Recall that we can select c. It determines the constant hidden in the algorithms Θ notation for ε′.

6

as required.
We now turn to lower bounding the probability of success. By the choice of δ = 1/8m, the

probability of any of the m runs of Test-for-relevant-variables failing to detect a set with
influence Ω(ε/(1 + γ)k) is at most 1/8. Conversely, when the set S contains no variables with
influence, Test-for-relevant-variables never accepts. Thus, for a function with at most k relevant
variables, Test-for-relevant-variables accepts with probability of at most pk, while for a function
that is ε-far from all functions with at most (1 + γ)k relevant variables it has a probability of at
least pk +γ/8 of accepting , and we can set the threshold t = pk +γ/16. Using an additive Chernoff
bound we see that with m = Θ(1/γ2) iterations we will fall on the wrong side of the threshold with
probability at most 1/8. Thus, with probability at least 3/4 our algorithm will return a correct
result.

Finally, we bound the query complexity of the algorithm. The algorithm perform m = Θ(1/γ2)
iterations. In each iteration it runs Test-for-relevant-variables with influence parameter η =
Θ(ε/k) and with confidence parameter δ = 1/8m. The query complexity of the procedure Test-
for-relevant-variables is Θ(log(1/δ)/η), giving a total of Θ(k log(1/γ2)

γ2ε
) queries.

3.2 The Lower Bound

The lower bound stated in Theorem 3.2 is achieved by a reduction from the Distinct Elements
problem. In the Distinct Elements problem an algorithm is given query access to a string s and
must compute approximately and with high probability the number of distinct elements contained
in s. For a string of length t, this problem is equivalent to approximating the support size of a
distribution where the probability for every event is in multiples of 1/t [RRSS09]. Valiant and
Valiant [VV10a] give the following theorem (paraphrased here):

Theorem 3.3 For any constant ε > 0, there exists a pair of distributions p+, p− for which each
domain element occurs with probability at least 1/t, satisfying:

1. |S(p+)− S(p−)| = ε · t, where S(D) def= |{x : PrD[x] > 0}|.
2. Any algorithm that distinguishes p+ from p− with probability at least 2/3 must obtain Ω(t

log(t))
samples.

While the construction in the proof of this theorem relates to distributions where the probability
of events is not necessarily a multiple of 1/t, it carries to the Distinct Elements problem [Val11].

In our work we use the following implication of this theorem - Ω(t/ log(t)) queries are required
to distinguish between a string of length t with t

2 distinct elements and one with fewer than t
16

distinct elements (for a sufficiently large t).3

In what follows we assume k = Θ(n), and later we explain how to (easily) modify the argument
to the case that k = O(n) by “padding”. Using terminology from Raskhodnikova et al. [RRSS09],
we refer to each distinct element in the string as a “color”. We show a reduction that maps strings
of length t = Θ(n) to functions from {0, 1}n to {0, 1} such that the following holds: If there exists
an algorithm that can distinguish (with high constant probability) between functions that are k-
juntas and functions that are ε-far from any 2k-junta (for a constant ε) using q queries, then the

3We note that allowing a bigger gap between the number of distinct elements (e.g., distinguishing between strings
with at least t/d distinct elements for some constant d and strings with at most t1−α distinct elements for a (small)
constant α), does not make the distinguishing task much easier: Ω(t1−o(1)) queries are still necessary [RRSS09].

7

algorithm can be used to distinguish between strings with at most k−Θ(log(k)) colors and strings
with at least 8k −Θ(log(k)) colors using q queries.

We begin by describing a parameterized family of functions, which we denote by Fn
m. Each

function in Fn
m depends on the first log(n) variables and on an additional subset of m variables.4

The first log(n) variables are used to determine the identity of one of these m variables, and
the value of the function is the assignment to this variable. More formally, for each subset U ⊂
{log(n) + 1, . . . , n} of size m and each surjective function ψ : {0, 1}log(n) → U , we have a function
fU,ψ in Fn

m where fU,ψ(y1, . . . , yn) = yψ(y1,...,ylog(n)). For a given function fU,ψ we call the variables
{xi}i∈U active variables.

Claim 3.2 Every function in Fn
t/2 is ε-far from all t/4-juntas, for a constant value ε.

Proof: From Claim 2.4 we know that it suffices to show that for every function f ∈ Fn
t/2, and

for every set of variables S ⊂ {x1, . . . , xn} having size at most t/4, the set of variables S̄ =
{x1, . . . , xn} \ S has influence at least ε for a constant ε.

Consider a particular function f ∈ Fn
t/2. For any set S of size at most t/4, the set S̄ contains

at least t/8 active variables (for a sufficiently large t). We show that the influence of a set T of
t/8 active variables is at least 1/16, and by the monotonicity of the influence (Claim 2.1) we are
done. The influence of T is defined as Prσ,y,y′(fT̄=σ(y) 6= fT̄=σ(y′)) where σ is selected uniformly at
random from {0, 1}n−|T | and y, y′ are selected uniformly at random from {0, 1}|T |. The probability
of xψ(σ1,...,σlog(n)) belonging to T is at least 1/8. The probability of this coordinate having different
values in y and y′ is 1/2, and the claim follows.

We now introduce the reduction R(s), which maps a string of colors (a potential input to the
distinct elements problem) to a function from {0, 1}n to {0, 1} (a potential input to the “k-junta
vs. far from (1 + γ)k-junta” problem):

Let s be a string of length n, where every element i in s gets a color from the set {1, . . . , n −
log(n)}, which we will denote by s[i]. The mapping R(s) = f maps a string with m colors to
a function in Fn

m. Informally, we map each color to one of the variables xlog(n)+1, . . . , xn in f ’s
input, and compute f(y1, . . . , yn) by returning the value of the variable that corresponds to the
color of the element in s indexed by the values y1, . . . , ylog(n). More precisely, let b : {0, 1}log(n) →
{0, . . . , n−1} be the function that maps the binary representation of a number to that number, e.g.,
b(010) = 2. We define the function f (that corresponds to a string s) as follows: f(y1, . . . , yn) =
ys[b(y1,...,ylog(n))]+log(n) (recall that the colors of s range from 1 to n− log(n)).
The next claim follows directly from the definition of the reduction.

Claim 3.3 The reduction R(s) has the following properties:

1. For a string s, each query to the function f = R(s) of the form f(y1, . . . , yn) can be answered
by performing a single query to s.

2. For a string s with n/2 colors the function f = R(s) belongs to Fn
n/2.

3. For a string s with n/16 colors the function f = R(s) belongs to Fn
n/16.

4In fact, it depends on an integer number of variables, and thus depends, e.g., on the dlog ne first variables. We
ignore this rounding issue throughout the paper, as it makes no difference asymptotically.

8

By Claims 3.2 and 3.3, any algorithm that can distinguish (with high constant probability) between
functions that are n/8-juntas and functions that are ε-far from all n/4-juntas can be used to
distinguish (with high constant probability) between strings with n/2 distinct elements and strings
with n/16 distinct elements. Given the lower bound from [VV10a] we have that any algorithm
that distinguishes (with high constant probability) between functions with at most n/8 relevant
variables and functions that are ε-far from all functions with at most n/4 relevant variables must
perform Ω(n/ log(n)) queries.

Dealing with general k = O(n): In the reduction R described above we have a number of
relevant variables linear in n. We wish to show that we cannot distinguish in better time between k-
Juntas and functions far from every 2k-Junta when k = o(n). This can be established by “padding”
the function in the reduction as follows: Let the input to the reduction now be a string s of length
t = Θ(k). The reduction in the setting described above maps such a string to a function f from
{0, 1}t to {0, 1}. We can define a modified function f ′, with gets as input y ∈ {0, 1}n and return
f(y1, . . . , yt).

Given the reduction above and the generalization to k = O(n) we obtain Theorem 3.2.

4 Restricting the Problem to Classes of Functions

Given that in general, distinguishing between functions that are k-juntas and functions that are
ε-far from (1 + γ)k juntas requires an almost linear dependence on k, we ask whether this task can
be performed more efficiently for restricted function classes (and possibly without the introduction
of the distance parameter ε). In particular, let Cη be the class of functions where every variable has
influence at least η. As we shall see later, there are natural families of functions that are subclasses
of Cη.

Theorem 4.1 Given query access to a function f ∈ Cη, it is possible to distinguish with high
constant probability between the case that f has at most k relevant variables and the case that f
has more than (1 + γ)k relevant variables by performing Θ(log(1/γ)

γ2η
) queries.

Proof: We will use the exact same algorithm as we use in the general case (that is, Separate-k-
from-(1 + γ)k given in Figure 2) with the following exception. In Step 1b, instead of setting the
influence parameter to Θ(ε/k), we set it to Θ(η). The proof of correctness follows Case 1 in the
general proof of correctness.

4.1 Linear Functions

A well studied class of functions for which we can test whether a function in the class has k relevant
variables or more than (1+γ)k relevant variables, by performing a number of queries that depends
only on γ, is the class of linear functions. For each function in the class, every influential variable
has influence 1/2. As a corollary of Theorem 4.1 we get:

Theorem 4.2 Given query access to a linear function f , it is possible to distinguish with high
constant probability between the case that f has at most k relevant variables and the case that f
has more than (1 + γ)k relevant variables by performing Θ(log(1/γ)/γ2) queries.

9

A natural question is whether this result can be improved to distinguish between, e.g., linear
functions that depend on at most k variables and linear functions that depends on more than k
variables. While distinguishing between linear functions that depend on k vs. k+1 variables is easy
(simply compare f(~0) to f(~1)), Goldreich [Gol10] presents two families of linear functions, one with
n/2 relevant variables and one with n/2 + 2 variables, and shows they can’t be distinguished with
o(
√

n) queries. Building on another result of Goldreich [Gol10], Chakraborty et al. [CMS10] show
that it is not possible to distinguish with constant success probability between linear functions with
at most k variables and linear functions with at least k +2 variables by performing o(k/polylog(k))
queries (where k ≤ n/2). Finally, Blais et al. [BBM11] show that Ω(min(k, n − k)) queries are
required to distinguish between such functions.

4.2 Polynomials over GF (2)

It is well known that every Boolean function can be represented by a polynomial over GF (2). Such
a polynomial is the parity of several monomials. That is, a function f can be written as

⊕
i φ

i

where every monomial φi is the product of variables, i.e., φi = Πj∈Jixj where Ji ⊆ [n]. Monomials
over GF (2) have a natural logical interpretation, and from here on we think of monomials as
conjunctions of variables, that is, φi =

∧
j∈Ji

xj where Ji ⊆ [n]. The degree of a polynomial p is
the number of variables in the largest monomial in p. It is convenient for us to work with a small
variation on the concept of monomials.

Definition 4.1 A Generalized Monomial over GF (2) is a conjunction of literals (variables and
their negations).

We note that if a function f can be computed as the parity of generalized monomials with a
number of variables at most d in each such generalized monomial, it can also be computed by a
“standard” polynomial with degree at most d. As polynomials in this section are characterized by
their degree, we describe them without loss of generality as the parity of generalized monomials.

We first wish to show (using Theorem 4.1) that we can distinguish between polynomials of degree
at most d with at most k variables and those with at least (1+γ)k variables using O(2d log(1/γ)/γ2)
queries. We will then show that the exponential dependence on d cannot be significantly improved.

The following is a well known fact:

Claim 4.1 Let us denote by Ph the probability of a function h to take the value 1 when the input
is chosen uniformly at random, and let p be a polynomial of degree d that isn’t the 0 polynomial. It
holds that Pp ≥ 2−d.

The proof follows by induction on d. We include the proof of the following claim for the sake
of completeness:

Claim 4.2 Let p be a polynomial of degree d. For every variable xj in p such that I(xj) 6= 0 it
holds that I(xj) ≥ 2−d.

Proof: Let p =
∑m

i=1 φi be a polynomial of degree d. We consider, without loss of generality, the
influence of the variable x1 that appears in the monomials φ1, . . . , φk. The variable x1 effects the
value of p (given an assignment to all other variables) when the polynomial p′ =

∑k
i=1 φi

x1=1 does
not equal 0. Indeed, the influence of x1 is exactly half the probability that p′ does not equal 0. As

10

p′ is of degree at most d − 1 this happens with probability at least 2−d+1 by Claim 4.1, and thus
I(xj) ≥ 2−d as required.
The next theorem now follows from Claim 4.2 and Theorem 4.1:

Theorem 4.3 There exists an algorithm that distinguishes between polynomials of degree at most
d with at most k relevant variables and polynomials of degree at most d that have at least (1 + γ)k
relevant variables by performing O

(
2d log(1/γ)

γ2

)
queries.

Given Theorem 3.1, Theorem 4.3 gives a better result for d < log(k). A natural question is
whether in this case we can do even better in terms of the dependence on d. We next show that it
is not possible to do much better.

Theorem 4.4 For fixed values of ε (for sufficiently small ε), and for d < log(k), any algorithm
that distinguishes between polynomials of degree d with k relevant variables and those that are ε-far
from all degree-d polynomials with 2k relevant variables must perform Ω(2d/d) queries.

As in the proof of Theorem 3.2 we perform a reduction from the Distinct Elements problem.
We now describe a parameterized family of functions, which we denote Fn

m,d.
5 Each function in

Fn
m,d : {0, 1}n → {0, 1} is a polynomial of degree d that depends on the first d− 1 variables and on

an additional subset of m variables. The setting of the first d− 1 variables determines a particular
subset of the m variables, of size r = (n − d + 1)/2d−1, and the value of f is the parity of the
variables in this subset. More formally, let the sets U1, . . . , U2d−1

be consecutive sets of variables
from the variables xd, . . . , xn. That is, U1 = {xd, . . . , xd+r−1}, U2 = {xd+r, . . . , xd+2r−1} etc. Let
Ψ : {0, 1}d−1 → {1, . . . , 2d−1} be a function that maps an assignment of the first d− 1 variables to
m/r values in the range {1, . . . , 2d−1}. All functions of the form f(x1, . . . , xn) =

⊕
UΨ(x1,...,xd−1)

(and only these functions) are members of Fn
m,d, where

⊕
U is used to denote the parity of all

variables in a set U . We refer to variables in {xd, . . . , xn} that are relevant variables as active
variables. Observe that the total number of relevant variables for each function in Fn

m,d is m+d−1.
Here we consider m = Θ(n), so that the number of relevant variables in Θ(n) as well. As in the
case of the lower bound for general functions, the argument can be easily adapted to a number of
relevant variables that is significantly smaller than n using “padding”.

Claim 4.3 Each function in Fn
m,d is realizable by a degree-d polynomial.

Proof: To prove the claim consider a polynomial that has, for every assignment y1, . . . , yd−1 to the
first d− 1 variables, and for the set U that corresponds to it, |U | generalized monomials. Each of
these generalized monomial has d literals - a variable in U and for each 1 ≤ i ≤ d− 1, the literal xi

if yi = 1, and the literal x̄i if yi = 0. Such a polynomial is of degree d (as all generalized monomials
in it are over d literals) and computes a function in Fn

m,d (since for the assignment y1, . . . , yd−1, by
the definition of polynomials, the function takes the value

⊕
U). Furthermore, such a polynomial

exists for every function in Fn
m,d.

Claim 4.4 Functions in Fn
n/2,d are ε-far from all functions with at most n/4 relevant variables, for

a constant value ε.
5We assume that m is a multiple of (n− d + 1)/2d−1.

11

Proof: From Claim 2.4 we know that it suffices to show that for every function f ∈ Fn
n/2,d, and

for every subset S ⊂ {x1, . . . , xn} of size at most n/4, the set S̄ = {x1, . . . , xn} \ S has influence at
least ε.

Consider a particular function f ∈ Fn
n/2,d. For any set S of size at most n/4 the set S̄ contains

more than n/8 active variables (for a sufficiently large n). These variables must belong to at least
n/8
r > n/8

n/2d−1 = 2d−1

8 different sets {U i}. As these are active variables, each such set U i has at least
one assignment x1, . . . , xd−1 = y1, . . . , yd−1 such that f{x1,...,xd−1}=y1,...,yd−1

=
⊕

U i. Let us denote
the set of such assignments Y . That is,

Y = {y1, . . . , yd−1 : Uψ(y1,...,yd−1) ∩ S̄ 6= ∅} .

In such a restricted function f{x1,...,xd−1}=y1,...,yd−1
the set S̄ has influence 1/2. Therefore we have

that

I(S̄) ≥ 1
2
Pry∈{0,1}n [y1 . . . yd−1 ∈ Y] ≥ 1

2
2d−1

8
/2d−1 =

1
16

,

as required.
We now introduce the reduction R(s), which maps a string of colors (a potential input to the
distinct elements problem) to a degree-d polynomial from {0, 1}n to {0, 1} (a potential input to the
“k vs. (1 + γ)k-junta problem” for degree-d polynomials):

Let s be a string of length 2d−1, where every element i in s gets a color from the set {1, . . . , 2d−1},
which we will denote by s[i]. We denote the number of distinct colors in s as χ(s). For a fixed
value n the mapping R(s) = f maps s to a function in Fn

χ(s)r,d. We map each color to one of the

sets U1, . . . , U2d−1
in f ’s input, and compute f ’s output on an input y ∈ {0, 1}n by returning the

parity of the input variables that correspond to the color of the element in s indexed by the values
y1, . . . , yd−1. More precisely, let b : {0, 1}d−1 → {0, . . . , 2d−1 − 1} be the function that maps the
binary representation of a number to that number, e.g., b(010) = 2. We define the function f that
corresponds to a string s as follows: f(y1, . . . , yn) =

⊕
U s[b(y1,...,yd−1)+1].

The next claim follows directly from the definition of the reduction:

Claim 4.5 The reduction R(s) has the following properties:

1. For a string s, each query to the function f = R(s) of the form f(y1, . . . , yn) can be answered
by performing a single query to s.

2. For a string s with 2d−1/2 colors, the function f = R(s) belongs to Fn
(n−d+1)/2,d.

3. For a string s with 2d−1/16 colors, the function f = R(s) belongs to Fn
(n−d+1)/16,d.

As in the general case (and using Claims 4.3 and 4.4), this means that any algorithm that
can distinguish (with high constant probability) between degree-d polynomials with at most n/8
relevant variables and degree-d polynomials that are ε-far from all degree-d polynomials with at
least n/4 relevant variables can be used to distinguish strings of length 2d−1 that either have
at most 2d−1/16 distinct elements or that have at least 2d−1/2 distinct elements. Given the lower
bound from [VV10a] we have that any algorithm that distinguishes (with high constant probability)
degree-d polynomials with at most n/8 relevant variables from those that are ε-far from all degree-d
polynomials with at least n/4 relevant variables must perform Θ(2d/d) queries. Theorem 4.4 (which
is stated for general k) follows by applying a “padding” argument as in the general case.

12

4.3 Monotone Functions

In this subsection we give a lower bound for the number of queries required to determine whether
a monotone function depends on at most k variables or is ε-far from every function that depends
on 2k variables. Here monotone functions are defined in the standard manner - we say a function
f : {0, 1}n → {0, 1} is monotone if for all y, y′ ∈ {0, 1}n it holds that y > y′ ⇒ f(y′) > f(y′). The
relation y > y′ holds when yi ≥ y′i for all i, and yi > y′i for some i. One could hope that restricting
the family of functions we’re dealing with to monotone functions could significantly decrease the
number of required queries. This is the case for at least one property of Boolean functions - average
influence [RRSW10]. We show:

Theorem 4.5 Any algorithm that distinguishes (with constant probability) between monotone func-
tions with k variables and monotone functions that are Θ(1/

√
log(k))-far from all those with 2k

variables must perform Ω(k/ log(k)) queries.

It follows from Theorem 4.5 that any algorithm for the problem (stated in the claim) whose
dependence on 1/ε is polynomial, must perform a number of queries that is almost linear in k.

The construction for monotone functions is similar to that for general functions. The con-
structions differ in one aspect, leading the lower bound (for monotone functions) to hold only
for algorithms that can distinguish between monotone functions that depend on k variables and
functions that are Θ(1/

√
log(k))-far from those depending on (1 + γ)k variables.

Due to this similarity we only state the points where it differs from the general construction. We
again describe a parameterized family of functions, which we denote Mn

m. Each function in Mn
m is

monotone, and depends on the first log(n) variables and on an additional subset of m variables. For
a function f ∈ Mn

m and a value y ∈ {0, 1}n, if
∑log(n)

i=1 yi < blog(n)/2c we have f(y) = 0. Likewise,
if

∑log(n)
i=1 yi > blog(n)/2c we have f(y) = 1. When we have exactly

∑log(n)
i=1 yi = blog(n)/2c, then

the first log(n) variables are used to determine the identity of one of the m additional variables, and
the value of the function is the assignment to this variable. More specifically, denoting by {0, 1}`

1/2

bit strings of length ` that contain exactly b`/2c values of 1, for each subset U ⊂ {log(n)+1, . . . , n}
of size m and each surjective function ψ : {0, 1}log(n)

1/2 → U we have a function fU,ψ in Mn
m where

fU,ψ(y1, . . . , yn) = yψ(y1,...,ylog(n)). For a given function fU,ψ we call the variables in the set U active
variables.

The next claim follows directly from the definition of Mn
m.

Claim 4.6 Functions in Mn
m are monotone.

Claim 4.7 Functions in Mn
n/2 are Θ(1/

√
log(n))-far from all n/4-juntas.

To see that Claim 4.7 holds, observe that the distance of interest is only on assignments y ∈ {0, 1}n

where
∑log(n)

i=1 yi = blog(n)/2c. These constitute Θ(1/
√

log(n)) of all assignments. Claim 4.7 follows
from an analysis similar to that of Claim 3.2.

The reduction from the Distinct Elements problem follows the same lines as the general case,
with obvious modifications - the string we reduce from is of length Θ(n/

√
log(n)), and the positive

and negative families of functions (as stated above) are Θ(1/
√

log(n))-far from each other. The
proof of Theorem 4.5 follows lines similar to those used in the general case.

13

5 Extending the results to general finite domains and ranges

In this section we show that Theorem 3.1 extends to the more general case of functions over finite
domains and ranges over product distributions, and that the same holds for Theorem 4.1. We also
observe that Theorems 4.2 and 4.3 extend to linear functions and degree-d polynomials over finite
fields, respectively.

5.1 Preliminaries

Let f : Y → R where Y = Y1 × · · · × Yn is a finite domain and R is a finite range. An input
y1, . . . , yn ∈ Y to the function f is drawn according to a product distribution D = D1×D2×· · ·×Dn.
We assume that we can draw an input y ∈ Y according to D (though it is not assumed that D is
known). A case of special interesting, which we have dealt with up till now, is when Yi = {0, 1} for
each i, R = {0, 1}, and D is the uniform distribution over Y = {0, 1}n.

Given the underlying distribution D, for two functions f, g : Y → R, we define the distance
between f and g (with respect to D) as Prx[f(x) 6= g(x)] where x is selected from Y according to
D. For a family of functions F and a function f , we define the distance between f and F as the
minimum distance over all g ∈ F of the distance between f and g (with respect to D). We say that
f is ε-far from F (with respect to D), if this distance is greater or equal to ε.

We next extend the notion of the influence of a set of variables where we shall use the following
notation: For a set S of variables, we let YS be the domain restricted to S (i.e., for S = {xi1 , . . . , xi`}
we have YS = Yi1 × . . .× Yi`), and let DS be the product distribution induced on the variables in
the set S.

Definition 5.1 For a function f : Y → R we define the influence of a set of variables S ⊆
{x1, . . . , xn} as Prσ,y,y′ [fS̄=σ(y) 6= fS̄=σ(y′)] where σ is selected from YS̄ according to DS̄ and y
and y′ are selected from YS according to DS. For a fixed function f and distribution D we denote
this value by I(S). When the set S consists of a single variable xi we may use the notation I(xi)
instead of I({xi}).
While Fischer et al. [FKR+04] address in some of their claims the case of general domains and
ranges, they consider the notion of the variation of a set rather than the influence (as in Defini-
tion 5.1). When the function is a Boolean function, the two notions essentially coincide, but this
is not the case for a larger range. However, Blais [Bla09] considers the notion of the influence of a
set, and hence we build on the claims that he establishes (and in one case provide a proof that we
have not found elsewhere). In particular, Claim 2.1 extends to the general case of finite domains
and ranges [Bla09]:

Claim 5.1 Let f : Y → R be a function and let S and T be subsets of the variables x1, . . . , xn. It
holds that I(S) ≤ I(S ∪ T) ≤ I(S) + I(T).

The same holds for Claim 2.3 (whose proof can also be found in [Bla09]), and the simple proof of
Claim 2.4 is easily extended. We restate them here for the sake of completeness.

Claim 2.3. Let f be a function that is ε-far from being a k-junta. Then for every subset S of f ’s
variables of size at most k, the influence of {x1, . . . , xn} \ S is at least ε.

Claim 2.4. Let f be a function such that for every subset S of f ’s variables of size at most k,
the influence of {x1, . . . , xn} \ S is at least ε. Then f is ε-far from being a k junta.

14

The definition of the marginal influence of a set of variables (Definition 2.2) remains as is:
IS(T) def= I(S ∪ T) − I(S) (for the extended notion of the influence). It only remains to prove
Claim 2.2 for the general case.

Claim 2.2. Let S, T , and W be disjoint sets of variables. For any fixed function f : Y → R it
holds that IS(T) ≥ IS∪W (T).

Proof: For a set S of variables and an assignment σ to S from YS , we let pS(σ) be the probability
that σ is selected according to the underlying distribution DS . observe that:

I(T) = Prσ,y,y′ [fT̄=σ(y) 6= fT̄=σ(y′)]

= 1−
∑

σ

pT̄ (σ) · Pry,y′ [fT̄=σ(y) = fT̄=σ(y′)]

= 1−
∑

σ

pT̄ (σ) ·
∑

ρ∈R

Pry,y′ [fT̄=σ(y) = ρ and fT̄=σ(y′) = ρ]

(where σ ∈ YT̄ is selected according to DT̄ and y, y′ ∈ YT are selected according to DT). We would
like to show that

I(S ∪ T)− I(S) ≥ I(S ∪W ∪ T)− I(S ∪W) .

Let Q = S ∪W ∪ T . We introduce one more notation: For σ ∈ YQ, α ∈ YT , β ∈ YW and an output
value ρ ∈ R, let pσ,α,β

Q,T,W (ρ) denote the probability that the output of the function f is ρ, conditioned
on Q = σ, T = α, and W = β, where the probability is taken over all assignments to the variables
in S. Using this notation we have:

I(S ∪W ∪ T) = 1−
∑

σ∈YQ

pQ(σ)
∑

ρ∈R


 ∑

α∈YT

∑

β∈YW

pT (α)pW (β)pσ,α,β
Q,T,W (ρ)




2

,

I(S ∪ T}) = 1−
∑

σ∈YQ

pQ(σ)
∑

β∈YW

pW (β)
∑

ρ∈R


 ∑

α∈YT

pT (α)pσ,α,β
Q,T,W (ρ)




2

,

I(S ∪W}) = 1−
∑

σ∈YQ

pQ(σ)
∑

α∈YT

pT (α)
∑

ρ∈R


 ∑

β∈YW

pW (β)pσ,α,β
Q,T,W (ρ)




2

,

I(S) = 1−
∑

σ∈YQ

pQ(σ)
∑

α∈YT

pT (α)
∑

β∈YW

pW (β)
∑

ρ∈R

(pσ,α,β
Q,T,W (ρ))2 .

Therefore,

I(S ∪ T)− I(S)

=
∑

σ∈YQ

pQ(σ)
∑

ρ∈R

∑

β∈YW

pW (β)


 ∑

α∈YT

pT (α)(pσ,α,β
Q,T,W (ρ))2 −


 ∑

α∈YT

pT (α)pσ,α,β
Q,T,W (ρ)




2
 .

15

Similarly,

I(S ∪W ∪ T)− I(S ∪W)

=
∑

σ∈YQ

pQ(σ)
∑

ρ∈R


 ∑

α∈YT

pT (α)


 ∑

β∈YW

pW (β)pT (α)pσ,α,β
Q,T,W (ρ)




2

−

 ∑

α∈YT

pT (α)
∑

β∈YW

pW (β)pσ,α,β
Q,T,W (ρ)




2
 .

Fixing σ and ρ, let us simplify our notations as follows. Let |YT | = N and |YW | = M . For an
arbitrary order over YT , let ar = pT (α) for α that is the rth element in YT , and similarly define
bq = pW (β) and cr,q = pσ,α,β

Q,T,W (ρ). We would like to show the following:

M∑

q=1

bq




N∑

r=1

ar(cr,q)2 −
(

N∑

r=1

arcr,q

)2



≥
N∑

r=1

ar




M∑

q=1

bqcr,q




2

−



N∑

r=1

ar

M∑

q=1

bqcr,q




2

.

Let us denote:

Ψa1,...,aN (z1, . . . , zN) =
N∑

r=1

ar(zr)2 −
(

N∑

r=1

arzr

)2

Then we would like to show that:

M∑

q=1

bq ·Ψa1,...,aN (c1,q, . . . , cN,q) ≥ Ψa1,...,aN




M∑

q=1

bqc1,q, . . . ,
M∑

q=1

bqcN,q


 (5)

(where we may use
∑N

r=1 ar = 1 and
∑M

q=1 bq = 1). We next show that Ψ = Ψa1,...,aN is convex,
and hence Equation (5) follows by Jensen’s inequality.

In order to show that Ψ is convex, we consider the (Hessian) matrix H defined by Hi,j =
∂2Ψ(z1,...,zN)

∂zi∂zj
. We shall verify that H is positive semi-definite. We have that Hi,i = 2(ai − a2

i), and
Hi,j = −2aiaj for j 6= i. In order to establish that H is positive semidefinite, we consider any
vector ~y = y1, . . . , yN , and show that ~yH~yt ≥ 0. We start by computing ~w = ~yH. Observe that
the jth column of H, denoted Hj , is of the following form: Hj

j = 2aj − 2a2
j and Hj

i = −2aiaj for
i 6= j. Therefore,

wj = ~yHj = 2yjaj − 2yja
2
j −

∑

i6=j

2yiaiaj = 2ajyj − 2aj

n∑

i=1

yiai .

16

Now,

~yH~yt =
n∑

j=1

wjyj

= 2
N∑

j=1

ajy
2
j − 2

N∑

j=1

(
ajyj ·

N∑

i=1

yiai

)

= 2




N∑

j=1

ajy
2
j −

(n∑

j=N

ajyj

)2


 .

Since
∑N

i=1 ai = 1, by Jensen’s inequality we get a non-negative value.

5.2 Extending Theorem 3.1

We claim that Theorem 3.1 extends to general finite domains and ranges.

Theorem 5.1 There exists an algorithm that, given query access to f : Y → R, sampling access
to a product distribution D over Y , and parameters k ≥ 1, and 0 < ε, γ < 1, distinguishes with
high constant probability between the case that f is a k-junta and the case that f is ε-far from any
(1 + γ)k-junta. The algorithm performs O

(
k log(1/γ)

εγ2

)
queries.

The algorithm referred to in Theorem 5.1 is Algorithm Separate-k-from-(1 + γ)k, which remains
exactly as is. Algorithm Test-for-relevant-variables, which is called as a subroutine from Algo-
rithm Separate-k-from-(1 + γ)k remains as is except that σ is selected from YS̄ according to DS̄ ,
and y and y′ are selected from YS according to DS . The proof of Theorem 5.1 is the same as the
proof of Theorem 3.1 (where it relies on Claim 2.3 and Claim 2.2, which holds for general functions
over finite domains and ranges). Theorem 4.1 is established as before.

5.3 Extending Theorems 4.2 and 4.3

Let F be a finite field. Here we consider the case that Y = Fn, R = F , and D is the uniform
distribution over Fn. For every linear function f : Fn → F we have that each relevant variable
has influence 1− 1

|F | (where influence is measured with respect to the uniform distribution). As a
corollary of Theorem 4.1 we get:

Theorem 5.2 Given query access to a linear function f : Fn → F (with the uniform distribution
on inputs), it is possible to distinguish with high constant probability between the case that f has at
most k relevant variables and the case that f has more than (1+γ)k relevant variables by performing
Θ(log(1/γ)/γ2) queries.

Now consider a polynomial f : Fn → F of degree d. The probability such a polynomial takes

the value 0 is at most
(|F |−1

|F |
)d

, and thus, similarly to what was proved in Claim 4.2, every variable

in such a polynomial has influence at least
(|F |−1

|F |
)d

. As a corollary of Theorem 4.1 we get:

17

Theorem 5.3 Given query access to a polynomial f : Fn → F of degree d (with the uniform
distribution on inputs), it is possible to distinguish with high constant probability between the case
that f has at most k relevant variables and the case that f has more than (1+γ)k relevant variables
by performing O

(|F |d
(|F |−1)d · log(1/γ)

γ2

)
queries.

References

[ADPR03] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. SIAM Journal on
Discrete Math, 16(3):393–417, 2003.

[BBM11] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via commu-
nication complexity. To appear in the 26th Conference on Computational Complexity
(CCC), 2011.

[Bla08] Eric Blais. Improved bounds for testing juntas. In Proceedings of the Twelveth Inter-
national Workshop on Randomization and Computation (RANDOM), pages 317–330,
2008.

[Bla09] Eric Blais. Testing juntas nearly optimally. In Proceedings of the Fourty-First Annual
ACM Symposium on the Theory of Computing, pages 151–158, 2009.

[CG06] H. Chockler and D. Gutfreund. A lower bound for testing juntas. Information Processing
Letters, 90(6):301–305, 2006.

[CMS10] S. Chakraborty, A. Matsliah, and D. G. Soriano. Private communication. 2010.

[FKR+04] E. Fischer, G. Kindler, D. Ron, S. Safra, and S. Samorodnitsky. Testing juntas. Journal
of Computer and System Sciences, 68(4):753–787, 2004.

[GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45(4):653–750, 1998.

[Gol10] O. Goldreich. On testing computability by small width OBDDs. In Proceedings of the
Fifteenth International Workshop on Randomization and Computation (RANDOM),
pages 574–587, 2010.

[KR00] M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal
of Computer and System Sciences, 61(3):428–456, 2000.

[PR02] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and
Algorithms, 20(2):165–183, 2002.

[RRSS09] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bonds for approxi-
mating distributions support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

[RRSW10] D. Ron, R. Rubinfeld, M. Safra, and O. Weinstein. Approximating the influence of a
monotone boolean function in o(

√
n) query complexity. arXiv:1101.5345., 2010.

18

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[Val08] P. Valiant. Testing symmetric properties of distributions. In Proceedings of the Fourtieth
Annual ACM Symposium on the Theory of Computing, pages 383–392, 2008.

[Val11] P. Valiant. Private communications, 2011.

[VV10a] G. Valiant and P. Valiant. A CLT and tight lower bounds for estimating entropy.
Electronic Colloquium on Computational Complexity (ECCC), 17:179, 2010.

[VV10b] G. Valiant and P. Valiant. Estimating the unseen: A sublinear-sample cannonical es-
timator of distributions. Technical Report TR10-180, Electronic Colloquium on Com-
putational Complexity (ECCC), 2010.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

