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Abstract

Given a finite group G by its multiplication table as input, we give a deterministic
polynomial-time construction of a directed Cayley graph on G with O(log |G|) generators,
which has a rapid mixing property and a constant spectral expansion.

We prove a similar result in the undirected case, and give a new deterministic polynomial-
time construction of an expanding Cayley graph with O(log |G|) generators, for any group G
given by its multiplication table. This gives a completely different and elementary proof of a
result of Wigderson and Xiao [10].

For any finite group G given by a multiplication table, we give a deterministic polynomial-
time construction of a cube generating sequence that gives a distribution on G which is arbitrarily
close to the uniform distribution. This derandomizes the well-known construction of Erdös-Rényi
sequences [2].

1 Introduction

Let G be a finite group with n elements, and let J = 〈g1, g2, . . . , gk〉 be a generating set for the
group G.

The directed Cayley graph Cay(G, J) is a directed graph with vertex set G with directed edges
of the form (x, xgi) for each x ∈ G and gi ∈ J . Clearly, since J is a generating set for G, Cay(G, J)
is a strongly connected graph with every vertex of out-degree k.

The undirected Cayley graph Cay(G, J ∪ J−1) is an undirected graph on the vertex set G with
undirected edges of the form {x, xgi} for each x ∈ G and gi ∈ J . Again, since J is a generating set
for G, Cay(G, J ∪ J−1) is a connected regular graph of degree |J ∪ J−1|.

Let X = (V,E) be an undirected regular n-vertex graph of degree D. Consider the normalized
adjacency matrix AX of the graph X. It is a symmetric matrix with largest eigenvalue 1. For
0 < λ < 1, the graph X is an (n, D, λ)-spectral expander if the second largest eigenvalue of AX , in
absolute value, is bounded by λ.

The study of expander graphs and its properties is of fundamental importance in theoretical
computer science; the Hoory-Linial-Wigderson monograph is an excellent source [4] for current
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developments and applications. A central problem is the explicit construction of expander graph
families [4, 5]. By explicit it is meant that the family of graphs has efficient deterministic construc-
tions, where the notion of efficiency is often tailored to a specific application, e.g. [9]. Explicit
constructions with the best known (and near optimal) expansion and degree parameters are Cayley
expander families (the so-called Ramanujan graphs) [5].

Does every finite group have an expanding generator set? Alon and Roichman, in [1], answered
this in the positive using the probabilistic method. Let G be any finite group with n elements.
Given any constant λ > 0, they showed that a random multiset J of size O(log n) picked uniformly
at random from G is, with high probability, a spectral expander with second largest eigenvalue
bounded by λ. In other words, Cay(G, J∪J−1) is an O(log n) degree, λ-spectral expander with high
probability. The theorem also gives a polynomial (in n) time randomized algorithm for construction
of a Cayley expander on G: pick the elements of J independently and uniformly at random and
check that Cay(G, J ∪ J−1) is a spectral expander. There is a brute-force deterministic simulation
of this that runs in nO(log n) time by cycling through all candidate sets J . Wigderson and Xiao in
[10], give a very interesting nO(1) time derandomized construction based on Chernoff bounds for
matrix-valued random variables (and pessimistic estimators). Their result is the starting point of
the study presented in this paper.

In this paper, we give an entirely different and elementary nO(1) time derandomized construction
that is based on analyzing mixing times of random walks on expanders rather than on its spectral
properties. Our construction is conceptually somewhat simpler and also works for directed Cayley
graphs.

The connection between mixing times of random walks on a graph and its spectral expansion
is well studied. For undirected graphs we have the following.

Theorem 1.1 [8, Theorem 1] Let A be the normalized adjacency matrix of an undirected graph.
For every initial distribution, suppose the distribution obtained after t steps of the random walk
following A is ε-close to the uniform distribution in the L1 norm. Then the spectral gap (1− |λ1|)
of A is Ω(1

t log
(

1
ε

)
).

In particular, if the graph is Cay(G, J ∪ J−1) for any n element group G, such that a C log n
step random walk is 1

nc -close to the uniform distribution in L1 norm, then the spectral gap is a
constant c

C .
Even for directed graphs a connection between mixing times of random walks and the spectral

properties of the underlying Markov chain is known.

Theorem 1.2 [6, Theorem 5.9] Let λmax denote the second largest magnitude (complex valued)
eigenvalue of the normalized adjacency matrix P of a strongly connected aperiodic Markov Chain.
Then the mixing time is lower bounded by τ(ε) ≥ log(1/2ε)

log(1/|λmax|) , where ε is the difference between the
resulting distribution and the uniform distribution in the L1 norm.

In [7], Pak uses this connection to prove an analogue of the Alon-Roichman theorem for directed
Cayley graphs: Let G be an n element group and J = 〈g1, . . . , gk〉 consist of k = O(log n) group
elements picked independently and uniformly at random from G. Pak shows that for any initial
distribution on G, the distribution obtained by an O(log n) steps lazy random walk on the directed
graph Cay(G, J) is 1

poly(n) - close to the uniform distribution. Then, by Theorem 1.2, it follows
that the directed Cayley graph Cay(G, J) has a constant spectral expansion. Crucially, we note
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that Pak considers lazy random walks, since his main technical tool is based on cube generating
sequences for finite groups introduced by Erdös and Rényi in [2].

Definition 1.3 Let G be a finite group and J = 〈g1, . . . , gk〉 be a sequence of group elements. For
any δ > 0, J is said to be a cube generating sequence for G with closeness parameter δ, if the
probability distribution DJ on G given by gε1

1 . . . gεk
k , where each εi is independently and uniformly

distributed in {0, 1}, is δ-close to the uniform distribution in the L2-norm.

Erdös and Rényi [2] proved the following theorem.

Theorem 1.4 Let G be a finite group and J = 〈g1, . . . , gk〉 be a sequence of k elements of G
picked uniformly and independently at random. Let DJ be the distribution on G generated by J , i.e
DJ(x) = Pr{εi∈R{0,1} : 1≤i≤k}[g

ε1
1 . . . gεk

k = x] for x ∈ G, and U be the uniform distribution on G.
Then the expected value EJ‖DJ − U‖2

2 = 1/2k(1− 1/n).

In particular if we choose k = O(log n), the resulting distribution DJ is 1
poly(n) -close to the

uniform distribution in L2 norm.

Our Results

Let G be a finite group with n elements given by its multiplication table. Our first result is a
derandomization of a result of Pak [7]. We show a deterministic polynomial-time construction
of a generating set J of size O(log |G|) such that a lazy random walk on Cay(G, J) mixes fast.
Throughout the paper, we measure the distance between two distributions in L2 norm.

Theorem 1.5 For any constant c > 1, there is a deterministic poly(n) time algorithm that com-
putes a generating set J of size O(log n) for the given group G, such that given any initial distri-
bution on G the lazy random walk of O(log n) steps on the directed Cayley graph Cay(G, J) yields
a distribution that is 1

nc -close (in L2 norm) to the uniform distribution.

Theorem 1.5 and Theorem 1.2 together yield the following corollary.

Corollary 1.6 Given a finite group G and any ε > 0, there is a deterministic polynomial-time
algorithm to construct an O(log n) size generating set J such that Cay(G, J) is a spectral expander
(i.e. its second largest eigenvalue in absolute value is bounded by ε).

Our next result yields an alternative proof of the Wigderson-Xiao result [10]. In order to
carry out a similar approach as the proof of Theorem 1.5 for undirected Cayley graphs, we need
a suitable generalization of cube generating sequences, and in particular, a generalization of [2].
Using this generalization, we can give a deterministic poly(n) time algorithm to compute J =
〈g1, g2, . . . , gk〉 where k = O(log n) such that a lazy random walk of length O(log n) on Cay(G, J ∪
J−1) is 1

poly(n) -close to the uniform distribution. Here the lazy random walk is described by the
symmetric transition matrix AJ = 1

3I + 1
3k (PJ + PJ−1) where PJ and PJ−1 are the adjacency

matrices of the Cayley graphs Cay(G, J) and Cay(G, J−1) respectively.

Theorem 1.7 Let G be a finite group of order n and c > 1 be any constant. There is a deterministic
poly(n) time algorithm that computes a generating set J of size O(log n) for G, such that an O(log n)
step lazy random walk on G, governed by the transition matrix AJ described above, is 1

nc -close to
the uniform distribution, for any given initial distribution on G.
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Theorem 1.7 and the connection between mixing time and spectral expansion for undirected
graphs given by Theorem 1.1 yields the following.

Corollary 1.8 (Wigderson-Xiao) [10] Given a finite group G by its multiplication table, there
is a deterministic polynomial (in |G|) time algorithm to construct a generating set J such that
Cay(G, J ∪ J−1) is a spectral expander.

Finally, we show that the construction of cube generating sequences can also be done in deter-
ministic polynomial time.

Theorem 1.9 For any constant c > 1, there is a deterministic polynomial (in n) time algorithm
that outputs a cube generating sequence J of size O(log n) such that the distribution DJ on G,
defined by the cube generating sequence J , is 1

nc -close to the uniform distribution.

1.1 Organization of the paper

The paper is organized as follows. We prove Theorem 1.5 and Corollary 1.6 in Section 2. The proof
of Theorem 1.7 and Corollary 1.8 are given in Section 3. We prove Theorem 1.9 in Section 4.
Finally, we summarize in Section 5.

2 Expanding Directed Cayley Graphs

Let D1 and D2 be two probability distributions over the finite set {1, 2, . . . , n}. We use the L2 norm

to measure the distance between the two distributions: ‖D1−D2‖2 =
[∑

x∈[n] |D1(x)−D2(x)|2
] 1

2 .
Let U denote the uniform distribution on [n]. We say that a distribution D is δ-close to the

uniform distribution if ‖D − U‖2 ≤ δ.

Definition 2.1 The collision probability of a distribution D on [n] is defined as Coll(D) =∑
i∈[n] D(i)2. It is easy to see that Coll(D) ≤ 1/n + δ if and only if ‖D − U‖2

2 ≤ δ and Coll(D)
attains its minimum value 1/n only for the uniform distribution.

We prove Theorem 1.5 by giving a deterministic construction of a cube generating sequence J
such that a random walk on Cay(G, J) mixes in O(log n) steps. We first describe a randomized
construction in Section 2.1, which shows the existence of such a sequence. The construction is
based on analysis of [7]. This is then derandomized in Section 2.2.

2.1 Randomized construction

For a sequence of group elements J = 〈g1, . . . , gk〉, we consider the Cayley graph Cay(G, J), which
is, in general, a directed multigraph in which both in-degree and out-degree of every vertex is
k. Let A denote the adjacency matrix of Cay(G, J). The lazy random walk is defined by the
probability transition matrix (A+I)/2 where I is the identity matrix. Let QJ denote the probability
distribution obtained after m steps of the lazy random walk. Pak [7] has analyzed the distribution
QJ and shown that for a random J of O(log n) size and m = O(log n), QJ is 1/nO(1)-close to the
uniform distribution. We note that Pak works with the L∞ norm. Our aim is to give an efficient
deterministic construction of J . It turns out for us that the L2 norm and the collision probability
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are the right tools to work with since we can compute these quantities exactly as we fix elements
of J one by one.

Consider any length-m sequence I = 〈i1, . . . , im〉 ∈ [k]m, where ijs are indices that refer to
elements in the set J . Let RJ

I denote the following probability distribution on G. For each x ∈ G:
RJ

I (x) = Prε̄[gε1
i1
· . . . · gεm

im
= x], where ε̄ = (ε1, . . . , εm) and each εi ∈ {0, 1} is picked independently

and uniformly at random. Notice that for each x ∈ G we have: QJ(x) = 1
km

∑
I∈[k]m RJ

I (x).
Further, notice that RJ

I is precisely the probability distribution defined by the cube generating
sequence 〈gi1 , gi2 , . . . , gim〉, and the above equation states that the distribution QJ is the average
over all I ∈ [k]m of the RJ

I .
In general, the indices in I ∈ [k]m are not distinct. Let L(I) denote the sequence of distinct

indices occurring in I, in the order of their first occurrence in I, from left to right. We refer to L(I)
as the L-subsequence of I. Clearly, the sequence L(I) will itself define a probability distribution
RJ

L(I) on the group G.
Suppose the elements of J are independently, randomly picked from G. The following lemma

shows for any I ∈ [k]m that if RJ
L(I) is δ-close to uniform distribution (in L2 norm), in expectation,

then so is RJ
I . We state it in terms of collision probabilities.

Lemma 2.2 For a fixed I, If EJ [Coll(RJ
L(I))] = EJ [

∑
g∈G RJ

L(I)(g)2] ≤ 1/n+δ then EJ [Coll(RJ
I )] =

EJ [
∑

g∈G RJ
I (g)2] ≤ 1/n + δ.

A proof of Lemma 2.2 is in the appendix to keep our presentation self-contained. A similar
lemma for the L∞ norm is shown in [7, Lemma 1] (though it is not stated there in terms of the
expectation).

When elements of J are picked uniformly and independently from G, by Theorem 1.4,
EJ [Coll(RJ

L(I))] = EJ [
∑

g∈G RJ
L(I)(g)2] = 1

n + 1
2` (1− 1

n), where ` is the length of the L-subsequence.
Thus the expectation is small provided ` is large enough. It turns out that most I ∈ [k]m have
sufficiently long L-subsequences (Lemma 2.3). A similar result appears in [7]. We give a proof of
Lemma 2.3 in the appendix.

Lemma 2.3 [7] Let a = k
`−1 . The probability that a sequence of length m over [k] does not have

an L-subsequence of length ` is at most (ae)
k
a

am .

To ensure the above probability is bounded by 1
2m , it suffices to choose m > (k/a) log(ae)

log(a/2) .
The following lemma (which is again an L2 norm version of a similar statement from [7]), we

observe that the expected distance from the uniform distribution is small, when I ∈ [k]m is picked
uniformly at random. The proof of the lemma is given in the appendix.

Lemma 2.4 EJ [Coll(QJ)] = EJ [
∑

g∈G QJ(g)2] ≤ 1
n + 1

2Θ(m) .

We can make 1
2Θ(m) < 1

nc for some c > 0, by choosing m = O(log n). That also fixes k to be
O(log n) suitably.
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2.2 Deterministic construction

Our goal is to compute, for any given constant c > 0, a multiset J of k group elements of G such
that Coll(QJ) =

∑
g∈G QJ(g)2 ≤ 1/n + 1/nc, where both k and m are O(log n). For each J

observe, by Cauchy-Schwarz inequality, that

Coll(QJ) =
∑
g∈G

QJ(g)2 ≤
∑
g∈G

1
km

∑
I∈[k]m

RJ
I (g)2 =

1
km

∑
I∈[k]m

Coll(RJ
I ). (1)

Our goal can now be restated: it suffices to construct in deterministic polynomial time a multiset
J of group elements such that the average collision probability 1

km

∑
I∈[k]m Coll(RJ

I ) ≤ 1/n + 1/nc.
Consider the random set J = {X1, . . . , Xk} with each Xi a uniformly and independently dis-

tributed random variable over G. Combined with the proof of Lemma 2.4 (in particular from
Equation 17), we observe that for any constant c > 1 there are k and m, both O(log n) such that

EJ [Coll(QJ)] ≤ = EJ [EI∈[k]mColl(RJ
I )] ≤ 1

n
+

1
nc

. (2)

Our deterministic algorithm will fix the elements in J in stages. At stage 0 the set J = J0 =
{X1, X2, . . . , Xk} consists of independent random elements Xi drawn from the group G. Suppose
at the jth stage, for j < k, the set we have is J = Jj = {x1, x2, . . . , xj , Xj+1, . . . , Xk}, where each
xr(1 ≤ r ≤ j) is a fixed element of G and the Xs(j + 1 ≤ s ≤ k) are independent random elements
of G such that

EJ [EI∈[k]mColl(RJ
I )] ≤ 1/n + 1/nc.

Remark.

1. In the above expression, the expectation is over the random elements of J .

2. If we can compute in poly(n) time a choice xj+1 for Xj+1 such that EJ [EI∈[k]mColl(RJ
I )] ≤

1/n + 1/nc then we can compute the desired generating set J in polynomial (in n) time.

Given J = Jj = {x1, . . . , xj , Xj+1, . . . , Xk} with j fixed elements and k− j random elements, it
is useful to partition the set of sequences [k]m into subsets Sr,` where I ∈ Sr,` if and only if there
are exactly r indices in I from {1, . . . , j}, and of the remaining m− r indices of I there are exactly
` distinct indices. We now define a suitable generalization of L-subsequences.

Definition 2.5 An (r, `)-normal sequence for J is a sequence {n1, n2, . . . , nr, . . . , nr+`} ∈ [k]r+`

such that the indices ns, 1 ≤ s ≤ r are in {1, 2, . . . , j} and the indices ns, s > ` are all distinct and
in {j + 1, . . . , k}. I.e. the first r indices (possibly with repetition) are from the fixed part of J and
the last ` are all distinct elements from the random part of J .

Transforming Sr,` to (r, `)-normal sequences

We use the simple fact that if y ∈ G is picked uniformly at random and x ∈ G be any element
independent of y, then the distribution of xyx−1 is uniform in G.

Let I = 〈i1, . . . , im〉 ∈ Sr,` be a sequence. Let F = 〈if1 , . . . , ifr〉 be the subsequence of indices
for the fixed elements in I. Let R = 〈is1 , . . . , ism−r〉 be the subsequence of indices for the random
elements in I, and L = 〈ie1 , . . . , ie`

〉 be the L-subsequence in R. More precisely, notice that R is a
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sequence in {j + 1, . . . , k}m−r and L is the L-subsequence for R. The (r, `) normal sequence Î of
I ∈ Sr,` is the sequence 〈if1 , . . . , ifr , ie1 , . . . , ie`

〉.
We recall here that the multiset J = {x1, . . . , xj , Xj+1 . . . , Xk} is defined as before. For ease of

notation we denote the list of elements of J by gt, 1 ≤ t ≤ k. I.e. gt = xt for t ≤ j and gt = Xt for
t > j. Consider the distribution of the products gε1

i1
. . . gεm

im
where εi ∈ {0, 1} are independent and

uniformly picked at random. Then we can write

gε1
i1

. . . gεm
im

= z0g
εf1
if1

z1g
εf2
if2

z2 . . . zr−1g
εfr
ifr

zr, where

z0z1 . . . zr = g
εs1
is1

g
εs2
is2

. . . g
εsm−r

ism−r
.

By conjugation, we can rewrite the above expression as g
εf1
if1

zz1g
εf2
if2

z2 . . . g
εfr
ifr

zr, where z =

g
−εf1
if1

z0g
εf1
if1

.

We refer to this transformation as moving g
εf1
if1

to the left. Successively moving the elements

g
εf1
if1

, g
εf2
if2

, . . . , g
εfr
ifr

to the left we can write

gε1
i1

. . . gεm
im

= g
εf1
if1

. . . g
εfr
ifr

z′0z
′
1 . . . z′r,

where each z′t = utztu
−1
t , and ut is a product of elements from the fixed element set {x1, . . . , xj}. No-

tice that each zt is a product of some consecutive sequence of elements from 〈gεs1
is1

, g
εs2
is2

, . . . , g
εsm−r

ism−r
〉.

If zt =
∏c

a=b g
εsa
isa

then z′t =
∏c

a=b utg
εsa
isa

u−1
t . Thus, the product z′0z

′
1 . . . z′r, is of the form

z′0z
′
1 . . . z′r =

m−r∏
a=1

hεsa
sa

,

where each hsa = yag
εsa
isa

y−1
a , for some elements ya ∈ G. In this expression, observe that for

distinct indices a and b, we may have isa = isb
and ya 6= yb and hence, in general, hsa 6= hsb

.
Recall that the L-subsequence L = 〈ie1 , . . . , ie`

〉 is a subsequence of R = 〈is1 , . . . , ism−r〉. Con-
sequently, let (he1 , he2 , . . . , he`

) be the sequence of all independent random elements in the above
product

∏m−r
a=1 h

εsa
sa that correspond to the L-subsequence. To this product, we again apply the

transformation of moving to the left, the elements h
εe1
e1 , h

εe2
e2 , . . . , h

εe`
e` , in that order. Putting it all

together we have

gε1
i1

. . . gεm
im

= g
εf1
if1

. . . g
εfr
ifr

h
εe1
e1 . . . h

εe`
e` y(ε̄),

where y(ε̄) is an element in G that depends on J, I and ε̄, where ε̄ consists of all the εj for ij ∈
I \ (F ∪ L). Let J(I) denote the multiset of group elements obtained from J by replacing the
subset {gie1

, gie2
, . . . , gie`

} with {he1 , he2 , . . . , he`
}. It follows from our discussion that J(I) has

exactly j fixed elements x1, x2, . . . , xj and k−j uniformly distributed independent random elements.
Recall that Î = 〈if1 , if2 , . . . , ifr , ie1 , ie2 , . . . , ie`

〉 is the (r, `)-normal sequence for I. Analogous to
Lemma 2.2, we now compare the probability distributions RJ

I and R
J(I)bI . The proof of the lemma

is in the appendix.
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Lemma 2.6 For each j ≤ k and J = {x1, . . . , xj , Xj+1, . . . , Xk} (where x1, . . . , xj ∈ G are fixed
elements and Xj+1, . . . , Xk are independent uniformly distributed in G), and for each I ∈ [k]m,
EJ [Coll(RJ

I )] ≤ EJ [Coll(RJ(I)bI )].

Remark 2.7 Here it is important to note that the expectation EJ [Coll(RJ
I )] is over the random

elements in J . On the other hand, the expectation EJ [Coll(RJ(I)bI )] is over the the random elements
in J(I) (which are conjugates of the random elements in J). In the rest of this section, we need to
keep this meaning clear when we use EJ [Coll(RJ(I)bI )] for different I ∈ [k]m.

By averaging the above inequality over all I sequences and using Equation 1, we get

EJ [Coll(QJ)] ≤ EJEI∈[k]m [Coll(RJ
I )] ≤ EJEI∈[k]m [Coll(RJ(I)bI )]. (3)

Now, by Equation 2 and following the proof of Lemma 2.4, when all k elements in J are random
then we have EJEI∈[k]m [Coll(RJ(I)bI )] ≤ 1/n+1/nc. Suppose for any J = {x1, . . . , xj , Xj+1, . . . , Xk}
we can compute EJEI∈[k]m [Coll(RJ(I)bI )] in deterministic polynomial (in n) time. Then, given

the bound EJEI∈[k]m [Coll(RJ(I)bI )] ≤ 1/n + 1/nc for J = {x1, . . . , xj , Xj+1, . . . , Xk}, we can
clearly fix the (j + 1)st element of J by choosing Xj+1 := xj+1 which minimizes the expecta-
tion EJEI∈[k]m [Coll(RJ(I)bI )]. Also, it follows easily from Equation 3 and the above lemma that

EJEI∈[k]m [Coll(RJ(I)bI )] ≤ δ implies EJColl(QJ) ≤ EJEI∈[k]m [Coll(RJ
I )] ≤ δ. In particular, when J

is completely fixed after k stages, and if EI∈[k]m [Coll(RJ(I)bI )] ≤ δ then Coll(QJ) ≤ δ.

Remark 2.8 In fact, the quantity EI∈[k]m [Coll(RJ(I)bI )] plays the role of a pessimistic estimator for
EI∈[k]m [Coll(RJ

I )].

We now proceed to explain the algorithm that fixes Xj+1. To this end, it is useful to rewrite
this as

EJEI [Coll(RJ(I)bI )] =
1

km

∑
r,`

∑
I∈Sr,`

EJ [Coll(RJ(I)bI )]


=

∑
r,`

|Sr,`|
km

EI∈Sr,`
EJ [Coll(RJ(I)bI )] (4)

For any r, ` the size of Sr,` is computable in polynomial time (Lemma 2.9). We include a proof
in the appendix.

Lemma 2.9 For each r and `, |Sr,`| can be computed in time polynomial in n.

Since r, ` is of O(log n), it is clear from Equation 4 that it suffices to compute
EI∈Sr,`

EJ [Coll(RJ(I)bI )] in polynomial time for any given r and `. We reduce this computation
to counting number of paths in weighted directed acyclic graphs. To make the reduction clear, we
simply the expression EI∈Sr,`

EJ [Coll(RJ(I)bI )] as follows.
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Let ū be a sequence of length r from the fixed elements x1, x2, . . . , xj . We identify ū as an element
in [j]r. The number of I sequences in Sr,` that have ū as the prefix in the (r, `) normal sequence Î

is |Sr,`|
jr . Recall that R

J(I)bI (g) = Probε̄[gε1
if1

. . . gεr
ifr

h
εr+1
e1 . . . h

εr+`
e` = g]. Let ū = (gif1

, . . . , gifr
). It is

convenient to denote the element gε1
if1

. . . gεr
ifr

h
εr+1
e1 . . . h

εr+`
e` by M(ū, ε̄, Î , J).

Let ε̄ = (ε1, . . . , εr+`) and ε̄′ = (ε′1, . . . , ε
′
r+`) be random uniformly picked from {0, 1}r+`. Then

Coll(RJ(I)bI ) =
∑
g∈G

(RJ(I)bI (g))2

= Probε̄,ε̄′ [M(ū, ε̄, Î , J) = M(ū, ε̄′, Î, J)]. (5)

For fixed ε̄, ε̄′ and ū ∈ [j]r, let Sū
r,` be the set of all I ∈ Sr,` such that the subsequence of indices

of I for the fixed elements {x1, x2, . . . , xj} is precisely ū. Notice that |Sū
r,`| =

|Sr,`|
jr .

Then we have the following.

EI∈Sr,`
EJ [
∑
g∈G

(RJ(I)bI (g))2] =
1

22(`+r)

 ∑
ε̄,ε̄′∈{0,1}`+r

1
|Sr,`|

∑
ū∈[j]r

∑
I∈Sū

r,`

EJ [χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

]

(6)

where χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

is a 0−1 indicator random variable that gets 1 when M(ū, ε̄, Î , J) =

M(ū, ε̄′, Î, J) and 0 otherwise. Crucially, we note the following:

Claim 2.10 For each I ∈ Sū
r,` and for fixed ε̄, ε̄′, the random variables χ

M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)
are

identically distributed.

The claim follows from the fact that for each I ∈ Sū
r,`, the fixed part in Î is ū and elements

in the unfixed part are identically and uniformly distributed in G. We simplify the expression in
Equation 6 further.

1
|Sr,`|

 ∑
ū∈[j]r

∑
I∈Sū

r,`

EJ [χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

]

 =
1

|Sr,`|

 ∑
ū∈[j]r

|Sr,`|
jr

EJ [χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

]

(7)

=
∑

ū∈[j]r

1
jr

EJ [χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

] (8)

where Equation 7 follows from Claim 2.10. Let pū(ε̄, ε̄′) be the number of different assignments
of ` random elements in J such that M(ū, ε̄, Î , J) = M(ū, ε̄′, Î, J). Then it is easy to see that

∑
ū∈[j]r

1
jr

EJ [χ
M(ū,ε̄,bI,J)=M(ū,ε̄′,bI,J)

] =
∑

ū

1
jr

pū(ε̄, ε̄′)
1
n`

, (9)

where the factor 1
n` accounts for the fact that ` unfixed elements of J are picked uniformly and

independently at random from the group G.

9



Notice that 2r+` ≤ 2m = nO(1) for m = O(log n) and ε̄, ε̄′ ∈ {0, 1}r+`. Then, combining the
Equation 4 and Equation 9, it is clear that to compute EJEI [Coll(RJ(I)bI )] in polynomial time, it

suffices to compute
[∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n`

]
(for fixed r, `, ε̄, ε̄′) in polynomial time. We now turn

to this problem.

2.3 Reduction to counting paths in weighted DAGs

We will interpret the quantity
[∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n`

]
as the sum of weights of paths between a

source vertex s and sink vertex t in a layered weighted directed acyclic graph H = (V,E). The
vertex set V is G×G× [r+`+1]∪{s, t}, and s = (e, e, 0), where e is the identity element in G. The
source vertex s is at 0-th layer and the sink t is at the r + ` + 2-th layer. Let S = {x1, x2, . . . , xj}.
The edge set is the union E = Es ∪ ES ∪ EG\S ∪ Et, where

Es = {(s, (g, h, 1)) | g, h ∈ G}
ES = {((g, h, t), (gxεt , hxε′t , t + 1)) | g, h ∈ G, x ∈ S, 1 ≤ t ≤ r},

EG\S = {((g, h, t), (gxεt , hxε′t , t + 1)) | g, h ∈ G, x ∈ G, r < t ≤ r + `}, and
Et = {((g, g, r + ` + 1), t)| g ∈ G}.

All edges in Es and Et have weights 1 each. Each edge in ES has weight 1
j . Each edge in EG\S has

weight 1
n .

Each s-to-t directed path in the graph G corresponds to an (r, `)-normal sequence Î (correspond-
ing to some I ∈ Sr,`), along with an assignment of group elements to the ` distinct independent
random elements that occur in it. For a random I ∈ Sr,`, the group element corresponding to each
of the r “fixed” positions is from {x1, x2 . . . , xj} with probability 1/j each. Hence each edge in
ES has weight 1/j. Similarly, the ` distinct indices in I (from {Xj+1, . . . , Xk}) are assigned group
elements independently and uniformly at random. Hence edges in EG\S has weight 1

n .
The weight of an s-to-t path is a product of the weights of edges on the path. The graph depends

on j, ε̄, and ε̄′. So for fixed r, `, we denote it as Hr,`(j, ε̄, ε̄′). The following claim is immediate from
the Equation 9.

Claim 2.11 The sum of weights of all s to t paths in Hj,ε̄,ε̄′ is
∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n` .

In the following lemma we observe that
[∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n`

]
can be computed in polynomial

time. The proof is easy.

Lemma 2.12 For each j, ε̄, ε̄′, r, `, the quantity
[∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n`

]
can be computed in time

polynomial in n.

Proof: The graph Hr,`(j, ε̄, ε̄′) has n2 vertices in each intermediate layer. For each 1 ≤ t ≤ r+`+2,
we define a matrix Mt−1 whose rows are indexed by the vertices of layer t−1 and columns by vertices
of layer t, and the (a, b)th entry of Mt−1 is the weight of the edge (a, b) in the graph Hj,ε̄,ε̄′ . Their

product M =
∏r+`+1

t=0 Mt is a scalar which is precisely
[∑

ū∈[j]r
1
jr pū(ε̄, ε̄′) 1

n`

]
As the product of

the matrices Mt can be computed in time polynomial in n, the lemma follows. 2

10



To summarize, we describe the (j + 1)st stage of the algorithm, where a group element xj+1 is
chosen for Xj+1. The algorithm cycles through all n choices for xj+1. For each choice of xj+1, and
for each ε̄, ε̄′, and r, `, the graph Hr,`(j + 1, ε̄, ε̄′) is constructed. Using Lemma 2.12, the expression
in 4 is computed for each choice of xj+1 and the algorithm fixes the choice that minimizes this
expression. This completes the proof of Theorem 1.5.

By Theorem 1.2 we can bound the absolute value of the second largest eigenvalue of the matrix
for Cay(G, J). Theorem 1.5 yields that the resulting distribution after an O(log n) step random walk
on Cay(G, J) is 1

poly(n) close to the uniform distribution in the L2 norm. Theorem 1.2 is in terms
of the L1 norm. However, since |L1| ≤ n|L∞| ≤ n|L2|, Theorem 1.5 guarantees that the resulting
distribution is 1

poly(n) close to the uniform distribution also in L1 norm. Choose τ = m = c′ log n

and ε = 1
nc in Theorem 1.2, where c, c′ are fixed from Theorem 1.5. Then |λmax| ≤ 1

2O(c/c′) < 1.
This completes the proof of Corollary 1.6.2

3 Undirected Expanding Cayley Graphs

In this section, we show a deterministic polynomial-time construction of a generating set J for
any group G (given by table) such that a lazy random walk on the undirected Cayley graph
Cay(G, J∪J−1) mixes well. As a consequence, we get Cayley graphs which have a constant spectral
gap (an alternative proof of a result in [10]). Our construction is based on a simple adaptation of
techniques used in Section 2.

The key point in the undirected case is that we will consider a generalization of Erdös-Renyi
sequences. We consider the distribution on G defined by gε1

1 . . . gεk
k where εi ∈R {−1, 0, 1}. The

following lemma is an easy generalization the Erdös-Renyi result (Theorem 1.4). A similar theorem
appears in [3, Theorem 14]. Our main focus in the current paper is the derandomized construction
of Cayley expanders. Towards that, to make our paper self-contained, we include a short proof of
Lemma 3.1 in the appendix.

Lemma 3.1 Let G be a finite group and J = 〈g1, . . . , gk〉 be a sequence of k elements of G
picked uniformly and independently at random. Let DJ be the following distribution: DJ(x) =
Pr{εi∈R{−1,0,1} : 1≤i≤k}[g

ε1
1 . . . gεk

k = x] for x ∈ G, and U be the uniform distribution on G. Then

EJ

[∑
x∈G (DJ(x))2

]
= EJ [Coll(DJ)] ≤

(
8
9

)k + 1
n .

Deterministic construction

First, we note that analogues of Lemma 2.2, 2.3, and 2.4 hold in the undirected case too. In
particular, When elements of J are picked uniformly and independently from G, by Lemma 3.1,

we have EJ [Coll(RJ
L(I))] = EJ

[∑
g∈G

(
RJ

L(I)(g)
)2
]
≤ (8

9)` + 1
n , where ` is the length of the L-

subsequence L(I) of I. Now we state Lemma 3.2 below, which is a restatement of Lemma 2.4 for
the undirected case. The proof is exactly similar to the proof of Lemma 2.4. As before, we again
consider the probability that an I sequence of length m does not have an L sequence of length `.
Also, we fix `,m to O(log n) appropriately.

Lemma 3.2 Let QJ(g) = 1
km

∑
I∈[k]m RI(g). Then EJ [Coll(QJ)] = EJ [

∑
g∈G QJ(g)2] ≤ 1/n +

2
(

8
9

)Θ(m).

11



Building on this, we can extend the results in Section 2.2 to the undirected case too in a
straightforward manner. In particular, we can use essentially the same algorithm as described
in Lemma 2.12 to compute the quantity in Equation 5 in polynomial time also in the undirected
setting. The only difference we need to incorporate is that now ε̄, ε̄′ ∈ {−1, 0, 1}r+`. This essentially
completes the proof of Theorem 1.7. We do not repeat all the details here.

Finally, we derive Corollary 1.8. The normalized adjacency matrix of the undirected Cayley
graph (corresponding to the lazy walk we consider) is given by A = 1

3I + 1
3k (PJ + PJ−1) where

PJ and PJ−1 are the corresponding permutation matrices defined by the sets J and J−1. As in
the proof of Corollary 1.8, we bound the distance of the resulting distribution from the uniform
distribution in L1 norm. Let m = c′ log n be suitably fixed from the analysis and |Amv̄− ū|1 ≤ 1

nc .
Then by Theorem 1.1, the spectral gap 1−|λ1| ≥ c

c′ . Hence the Cayley graph is a spectral expander.
It follows easily that the standard undirected Cayley graph with adjacency matrix 1

2k (PJ + PJ−1)
is also a spectral expander.

4 Deterministic construction of Erdös-Rényi sequences

In this section, we prove Theorem 1.9. We use the method of conditional expectations as follows:
From Theorem 1.4, we know that EJ‖DJ − U‖2

2 = 1
2k

(
1− 1

n

)
. Therefore there exists a setting of

J , say J = 〈x1, . . . , xk〉, such that ‖DJ − U‖2
2 ≤ 1

2k

(
1− 1

n

)
. We find such a setting of J by fixing

its elements one by one. Let δ = 1
nc , c > 1 be the required closeness parameter. Thus we need k

such that 1
2k ≤ δ. It suffices to take k > c log n. We denote the expression Xε1

i1
. . . Xεt

it
by X̄ ε̄ when

the length t of the sequence is clear from the context.
Let after ith step, x1, . . . , xi be fixed and Xi+1, . . . , Xk are to be picked. At this stage, by

our choice of x1, . . . , xi, we have EJ=(Xi+1,...,Xk)(‖DJ − U‖2
2 | X1 = x1, . . . , Xi = xi) ≤ 1

2k (1 −
1
n). Now we cycle through all the group elements for Xi+1 and fix Xi+1 = xi+1 such that the
EJ=(Xi+2,...,Xk)(‖DJ −U‖2

2 | X1 = x1, . . . , Xi+1 = xi+1) ≤ 1
2k (1− 1

n). Such an xi+1 always exists by
a standard averaging argument. In the next theorem, we show that the conditional expectations
are efficiently computable at every stage. Theorem 1.9 is an immediate corollary.

Assume that we have picked x1, . . . , xi from G, and Xi+1, . . . , Xk are to be picked from G. Let
the choice of x1, . . . , xi be such that EJ=(Xi+1,...,Xk)(‖DJ −U‖2

2 | X1 = x1, . . . , Xi = xi) ≤ 1
2k (1− 1

n).
Let, for x ∈ G and J = 〈X1, . . . , Xk〉

QJ(x) = Prε̄∈{0,1}k

[
X̄ ε̄ = x

]
When J is partly fixed,

Q̂J(x) = Prε̄1∈{0,1}i,ε̄2∈{0,1}k−i

[
x̄ε̄1 · X̄ ε̄2 = x

]
=

∑
y∈G

Prε̄1
[
x̄ε̄1 = y

]
Prε̄2

[
X̄ ε̄2 = y−1x

]
=

∑
y∈G

µ(y)Prε̄2
[
X̄ ε̄2 = y−1x

]
=

∑
y∈G

µ(y)Q̂X̄(y−1x)

12



where µ(y) = Prε̄1
[
x̄ε̄1 = y

]
. Then EJ [Coll(DJ)] = EJ‖DJ − U‖2

2 + 1
n , and EJ [Coll(Q̂J)] =

(EJ‖DJ − U‖2
2 |X1 = x1, X2 = x2, . . . , Xi = xi) + 1

n .
Next theorem completes the proof.

Theorem 4.1 For any finite group G of order n given as multiplication table, EJ [Coll(Q̂J)] can
be computed in time polynomial in n.

Proof:
EJ [Coll(Q̂J)] = EJ

∑
x∈G

Q̂2
J(x). (10)

Now we compute EJ
∑

x∈G Q̂2
J(x).

EJ

∑
x∈G

Q̂2
J(x) = EJ

∑
x∈G

(∑
y∈G

µ(y)Q̂X̄(y−1x)
)(∑

z∈G

µ(z)Q̂X̄(z−1x)
)

=
∑

y,z∈G

µ(y)µ(z)EJ

∑
x∈G

[
Q̂X̄(y−1x)Q̂X̄(z−1x)

]
. (11)

Now,∑
x∈G

[
Q̂X̄(y−1x)Q̂X̄(z−1x)

]
=

∑
x∈G

Prε̄
[
X̄ ε̄ = y−1x

]
Prε̄′

[
X̄ ε̄′ = z−1x

]
=

1
22k

∑
x,ε̄,ε̄′

χy−1x(ε̄)χz−1x(ε̄′)

=
1

22k

(∑
ε̄=ε̄′

∑
x∈G

χy−1x(ε̄)χz−1x(ε̄′) +
∑
ε̄6=ε̄′

∑
x∈G

χy−1x(ε̄)χz−1x(ε̄′)
)
(12)

where χa(ε̄) is an indicator variable which is 1 if X̄ ε̄ = a and 0 otherwise. If ε̄ = ε̄′ then χy−1x(ε̄) ·
χz−1x(ε̄′) = δy,z, where δa,b = 1 whenever a = b and 0 otherwise.

For ε̄ 6= ε̄′, χy−1x(ε̄) · χz−1x(ε̄′) = 1 only if yX̄ ε̄ = zX̄ ε̄′ = x. Therefore for ε̄ 6= ε̄′, we have

1
22k

∑
ε̄6=ε̄′

∑
x∈G

χy−1x(ε̄) · χz−1x(ε̄′) = Eε̄,ε̄′δyX̄ ε̄,zX̄ ε̄′ (1− δε̄,ε̄′).

Putting this in Equation 12, we get

1
22k

(∑
ε̄=ε̄′

∑
x∈G

χy−1x(ε̄)χz−1x(ε̄′) +
∑
ε̄6=ε̄′

∑
x∈G

χy−1x(ε̄)χz−1x(ε̄′)
)

=
n

2k
δy,z + Eε̄,ε̄′δyX̄ ε̄,zX̄ ε̄′ (1− δε̄,ε̄′).

Therefore we get

EJ

∑
x∈G

Q̂X̄(y−1x) · Q̂X̄(z−1x) =
n

2k
δy,z + EJ

[
Eε̄,ε̄′

[
δyX̄ ε̄,zX̄ ε̄′ (1− δε̄,ε̄′)

]]
=

n

2k
δy,z + Eε̄,ε̄′

[
(1− δε̄,ε̄′)EJ

[
δyX̄ ε̄,zX̄ ε̄′

]]
=

n

2k
δy,z + Eε̄,ε̄′

[
(1− δε̄,ε̄′)PrX̄(yX̄ ε̄ = zX̄ ε̄′)

]
(13)
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Claim 4.2 For ε̄ 6= ε̄′, PrX̄(yX̄ ε̄ = zX̄ ε̄′) = 1
n .

Proof: Let j be the smallest index from left such that εj 6= ε′j . Let Xε1
i+1 · . . . · X

εj−1

i+j−1 = a. Let

X
εi+1

i+j+1 · . . . ·X
εk−i

k = b and X
ε′i+1

i+j+1 · . . . ·X
ε′k−i

k = b′. Also, without loss of generality, let εj = 1 and
ε′j = 0. Then we have PrX̄(yX̄ ε̄ = zX̄ ε̄′) = PrXi+j (yaXi+jb = zab′) = 1

n . 2

Thus Equation 13 becomes

EJ

∑
x∈G

Q̂X̄(y−1x) · Q̂X̄(z−1x) =
n

2k
δy,z +

22k − 2k

n22k

Putting this in Equation 11, we get

EJ [Coll(Q̂J)] = EJ

∑
x∈G

Q̂2
J(x) =

∑
y,z∈G

1
22k

[
2k · n · δy,z + (22k − 2k) · 1

n

]
µ(y)µ(z) (14)

Clearly, for any y ∈ G, µ(y) can be computed in time O(2i) which is a polynomial in n since
i ≤ k = O(log n). Also from Equation 14, it is clear that EJ [Coll(Q̂J)] is computable in polynomial
(in n) time. 22

5 Summary

Constructing explicit Cayley expanders on finite groups is an important problem. In this paper,
we give simple deterministic construction of Cayley expanders that have a constant spectral gap.
Our method is completely different and elementary than the existing techniques [10].

The main idea behind our work is a deterministic polynomial-time construction of a cube
generating sequence J of size O(log |G|) such that Cay(G, J) has a rapid mixing property. In
randomized setting, Pak [7] has used similar ideas to construct Cayley expanders. In particular,
we also give a derandomization of an well-known result of Erdös and Rényi [2].
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Appendix
We include a proof of Lemma 2.2.

Proof of Lemma 2.2

Proof: We use the simple fact that if y ∈ G is picked uniformly at random and x ∈ G be any
element independent of y, then the distribution of xyx−1 is uniform in G.

Let I = 〈i1, . . . , im〉, and L = 〈ir1 , . . . , ir`
〉 be the corresponding L-subsequence (clearly, r1 = 1).

Let J = 〈g1, g2, . . . , gk〉 be uniform and independent random elements from G. Consider the
distribution of the products gε1

i1
. . . gεm

im
where εi ∈ {0, 1} are independent and uniformly picked at

random. Then we can write

gε1
i1

. . . gεm
im

= g
εr1
ir1

x1g
εr2
ir2

x2 . . . x`−1g
εr`
ir`

x`,

where, by definition of L-subsequence, notice that xj is a product of elements from
{gir1

, gir2
, . . . , girj−1

} for each j. By conjugation, we can rewrite the above expression as

g
εr1
ir1

x1g
εr2
ir2

x2 . . . hεr` x`−1x`, where

hεr` = x`−1g
εr`
ir`

x−1
`−1.

We refer to this transformation as moving x`−1 to the right. Successively applying this trans-
formation to x`−2, x`−3 . . . , x1 we can write

gε1
i1

. . . gεm
im

= h
εr1
ir1

h
εr2
ir2

. . . h
εr`
ir`

x1x2 . . . x`−1x`,

where each hirj
is a conjugate zjgirj

z−1
j . Crucially, notice that the group element zj is a prod-

uct of elements from {gir1
, gir2

, . . . , girj−1
} for each j. As a consequence of this and the fact

that {gir1
, gir2

, . . . , gir`
} are all independent uniformly distributed elements of G, it follows that

{hir1
, hir2

, . . . , hir`
} are all independent uniformly distributed elements of G. Let J ′ denote

the set of k group elements obtained from J by replacing the subset {gir1
, gir2

, . . . , gir`
} with

{hir1
, hir2

, . . . , hir`
}. Clearly, J ′ is a set of k independent, uniformly distributed random group

elements from G.
Thus, we have

gε1
i1

. . . gεm
im

= h
εr1
ir1

. . . h
εr`
ir`

x(ε̄),

where x(ε̄) = x1x2 . . . xr is an element in G that depends on J, I and ε̄, where ε̄ consists of all the
εj for ij ∈ I \ L. Hence, for each g ∈ G, observe that we can write

RJ
I (g) = Probε1,...,εm [

m∏
j=1

g
εj

ij
= g]

= Probε1,...,εm [hεr1
ir1

. . . h
εr`
ir`

= gx(ε̄)−1]

= Eε̄[RJ ′

L(I)(gx(ε̄)−1)].
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Therefore we have the following:

EJ [Coll(RJ
I )] = EJ [

∑
g

(RJ
I (g))2]

= EJ [
∑

g

(Eε̄R
J
L(I)(gx(ε̄)−1))2]

≤ EJ [
∑

g

Eε̄(RJ
L(I)(gx(ε̄)−1))2] (15)

= Eε̄[EJ [
∑

g

(RJ
L(I)(gx(ε̄)−1))2]]

= Eε̄[EJ [
∑

h

(RJ
L(I)(h))2]]

= EJ [
∑

h

(RJ
L(I)(h))2]

= EJ [Coll(RJ
L(I))] ≤

1
n

+ δ (16)

where the inequality in 15 follows from Cauchy-Schwarz inequality and the last step follows from
the assumption of the lemma. 22

We use simple counting argument to prove Lemma 2.3. A similar lemma appears in [7].

Proof of Lemma 2.3

Proof: Consider the event that a sequence X of length m does not have an L-subsequence of length
`. Thus it has at most `− 1 distinct elements, which can be chosen in at most

(
k

`−1

)
ways. The m

length sequence can be formed from them in at most [`− 1]m ways. Therefore

Pr[X has L-subsequence of length < `] ≤
(

k
`−1

)
[`− 1]m

km

≤
(

ke

`− 1

)`−1

·
(

`− 1
k

)m

= e`−1

(
`− 1

k

)m−`+1

=
e`−1

am−(k/a)
=

(ae)k/a

am
.

22

Next we prove Lemma 2.4.

Proof of Lemma 2.4

Proof:
We call I ∈ [k]m good if it has an L-subsequence of length at least `, else we call it bad.

17



EJ [Coll(QJ)] = EJ [
∑
g∈G

Q2
J(g)]

= EJ [
∑
g∈G

(EI(RI(g))2]

≤ EJ [
∑
g∈G

EI(R2
I(g))] By Cauchy-Schwarz inequality (17)

= EI [EJ [Coll(RI)]]

≤ 1
km

EJ [
∑

I∈[k]m

I is good

∑
g∈G

(RJ
L(g))2 +

∑
I∈[k]m

I is bad

1]

≤ PrI [I is good]
(

1
n

+
1
2`

)
+ PrI [I is bad] (18)

Here the last step follows from Lemma 2.2 and Theorem 1.4. Now we fix m from Lemma 2.3
appropriately to O(log n) such that PrI [I is bad] ≤ 1

2m and choose ` = Θ(m). Hence we get that
EJ [Coll(QJ)] ≤ 1

n + 1
2Θ(m) . 22

Next, we give the proof of Lemma 2.6

6 Proof of Lemma 2.6

Proof: For each g ∈ G, we can write

RJ
I (g) = Probε1,...,εm [

m∏
j=1

g
εj

ij
= g] = Probε1,...,εm [g

εf1
if1

. . . g
εfr
ifr

h
εe1
e1 . . . h

εe`
e` = gy(ε̄)−1]

= Eε̄[R
J(I)bI (gy(ε̄)−1)].

Therefore we have the following:

EJ [Coll(RJ
I )] = EJ [

∑
g

(RJ
I (g))2]

= EJ [
∑

g

(Eε̄R
J(I)bI (gy(ε̄)−1))2]

≤ EJ [
∑

g

Eε̄(R
J(I)bI (gy(ε̄)−1))2] (19)

= Eε̄[EJ [
∑

g

(RJ(I)bI (gy(ε̄)−1))2]]

= Eε̄[EJ [
∑

h

(RJ(I)bI (h))2]]

= EJ [Coll(RJ(I)bI )],

where the inequality 19 follows from Cauchy-Schwarz inequality. 22

We include a short proof of Lemma 2.9.

18



Proof of Lemma 2.9

Proof: There are
(
m
r

)
ways of picking r positions for the fixed elements in I. Each such index can

be chosen in j ways. From the (k − j) random elements of J , ` distinct elements can be picked in(
k−j

`

)
ways. Let nm−r,` be the number of sequences of length m− r that can be constructed out of

` distinct integers such that every integer appears at least once. Clearly, |Sr,`| =
(
m
r

)
jr
(
k−j

`

)
nm−r,`.

It is well known that nm−r,` is the coefficient of xm−r/(m− r)! in (ex − 1)`. Thus, by the binomial
theorem nm−r,` =

∑`
i=0(−1)i

(
`
i

)
(`−i)m−r. Since m = O(log n) and ` ≤ m, nm−r,` can be computed

in time polynomial in n. 22

Next, we give a proof of Lemma 3.1.

Proof of Lemma 3.1

Proof: The proof closely follows the proof of Erdös-Rényi for the case ε̄ ∈ {0, 1}k. We briefly
sketch the argument below for the sake of completeness.

We denote the expression gε1
1 . . . gεk

k by ḡε̄. For a given J , χx(ε̄) = 1 if ḡε̄ = x and 0 otherwise. Let
S1 = {(ε̄, ε̄′)|ε̄ 6= ε̄′;∃i such that ε̄i 6= ε̄′i and ε̄iε̄

′
i = 0}. Let S2 = {(ε̄, ε̄′)|ε̄ 6= ε̄′; ε̄i 6= ε̄′i ⇒ ε̄iε̄

′
i = −1}

EJ [Coll(DJ)] = EJ [
∑
x∈G

(DJ(x))2]

= EJ

[∑
x∈G

(
Prε̄[ḡε̄ = x]

)2]

=
1

32k
EJ

[∑
x∈G

(∑
ε̄

χx(ε̄)

)(∑
ε̄′

χx(ε̄′)

)]

=
1

32k

∑
ε̄=ε̄′

EJ

[∑
x∈G

χx(ε̄)χx(ε̄′)

]
+
∑
ε̄6=ε̄′

EJ

[∑
x∈G

χx(ε̄)χx(ε̄′)

]
=

1
32k

3k +
∑

(ε̄,ε̄′)∈S1

EJ

[∑
x∈G

χx(ε̄)χx(ε̄′)

]
+

∑
(ε̄,ε̄′)∈S2

EJ

[∑
x∈G

χx(ε̄)χx(ε̄′)

]
=

1
32k

3k +
∑

(ε̄,ε̄′)∈S1

Prḡ(ḡε̄ = ḡε̄′) +
∑

(ε̄,ε̄′)∈S2

Prḡ(ḡε̄ = ḡε̄′)


≤ 1

3k
+
(

1− 1
3k

− 5k

9k

)
1
n

+
5k

9k

=
(

1− 1
n

)(
1
3k

+
5k

9k

)
+

1
n

<

(
8
9

)k

+
1
n

To see the last step, first notice that if ε̄ = ε̄′ then
∑

x∈G χx(ε̄)χx(ε̄′) = 1. A simple counting
argument shows that |S2| =

∑k
i=0

(
k
i

)
2i3k−i = 5k. So

∑
(ε̄,ε̄′)∈S2

Prḡ(ḡε̄ = ḡε̄′) ≤ 5k. Now consider

19



(ε̄, ε̄′) ∈ S1, let j be the first position from left such that ε̄j 6= ε̄′j . W.l.o.g assume that ε̄j = 1 (or
ε̄j = −1) and ε̄′j = 0. In that case write ḡε̄ = agjb and ḡε̄′ = ab′. Then Prgj [gj = b′b−1] = 1

n . Hence∑
(ε̄,ε̄′)∈S1

Prḡ(ḡε̄ = ḡε̄′) = 9k−3k−5k

n . 22
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