
Secure Computation with Information Leaking to an Adversary

Miklós Ajtai
IBM Research, Almaden Research Center

May 19, 2011

Abstract

Assume that Alice is running a program P on a RAM, and an adversary Bob would like
to get some information about the input or output of the program. At each time, during the
execution of P , Bob is able to see the addresses of the memory cells involved in the instruction
which is executed and the name of the instruction. In addition to this, at certain times, Bob
can even see the contents of all of the memory cells involved in the instruction. We will call a
time when this happens a compromised time. Bob can choose the compromised times in an
adaptive way, that is, immediately before the instruction at time t is executed, Bob, using
all of the information at his disposal, can decide whether time t will be compromised or not.
The only restriction on his choice is, that among m consecutive instructions there can be
at most εm whose time is compromised, where ε > 0 is a small constant. We show that if
m = cblog nc, where c > 0 is a large constant, then for each program P , using n memory
cells and time T = O(poly(n)), Alice can construct a functionally equivalent program P ′,
such that the probability that Bob gets any nontrivial information about the input of P is
negligible, and the time and space requirements of P ′ grows, compared to P , only by a factor
of poly(log n). We assume that the program P ′ gets its input in an encoded form, namely
each input bit b is encoded by a random 0, 1-sequence of length m whose parity is b. The
output bits must be encoded by P ′ in a similar way.

As part of the proof of the result described above we also construct for all positive
integers m, and for all boolean circuits C of size n a functionally equivalent circuit C ′ of size
O(npoly(m)) with the following properties. Assume that an adversary can observe each bit
going through the wires of the circuit C ′ independently with a probability of ε, where ε > 0
is a small constant, and each input/output bit of C is encoded by m input/output bits of C ′

the same way as described above for RAMs. Then, such an adversary, while observing C ′,
can get any information about the input/output of the circuit C only with a probability of
ne−cm, where c > 0 is a constant.

1 Introduction

1.1 The history of the problem.

The problem of secure computation in the presence of an adversary who has some partial in-
formation about the computation was studied for the special case of oblivious computing. In
this case the adversary knows the memory access pattern. E.g., for a RAM this means that
the adversary knows at each time which memory cells were accessed by the machine at that

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 82 (2011)

time. The problem of doing computation relatively efficiently so that such an adversary does
not gain any essentially new information was solved first for Turing machines by Pippenger and
Fischer [13]. The question for RAMS was formulated by Goldreich in [6], and solutions gradu-
ally making the oblivious simulation more efficient and the computational model more realistic
were given by Goldreich [6], Ostrovsky [11], [12], Goldreich and Ostrovsky [7], and Ajtai [3], [2].
It is proved in [3] that a program P running on a RAM can be obliviously simulated, with a
negligible probability of failure, on a RAM with a random number generator so that the loss
of efficiency in terms of time and memory requirements is only a factor of log n, where n is the
memory requirement of P . (Independently, another solution was given by Damg̊ard, Meldgaard,
and Nielsen for the same problem in [4], where the failure probability is 0.) The present result
can be considered as an extension of the result in [3] in the sense that we show that the theorem
remains true for a much stronger adversary. From a technical point of view, however, the proof
of the present result is completely different from the proof of the results of [3] or the other proofs
concerning oblivious simulation.

The general question of computation performed on a deviceD, in the presence of an adversary
who may get some partial information about the inner working of D, got much attention in
the last decade. The main motivating force was that various side channel attacks, when the
adversary through physical measurements may get some information about what is happening
in the device, were realized in practice. Ishai, Sahai, and Wagner considered the case in [9],
when the device D is a circuit C and the adversary may find out the values of the bits flowing
through certain wires of C. We will call these the compromised wires. Depending on how the
compromised wires are selected by the adversary: adaptively, at random etc., and what can be
the total number of compromised wires, there are many possibilities. In [9] rigorous foundations
of formulating these type of questions are given. Two types of circuits are considered stateless
and stateful circuits. The boolean circuits in the usual sense, where we are interested in hiding
the input and output form the adversary and after each evaluation of the circuit no information
remains in its wires or gates are the stateless circuits. In this paper we are interested only in
stateless circuits so we will refer to them simply as circuits.

The notion of a private circuit is introduced in [9] in the following sense. A circuit is given,
and an adversary can access the information in certain wires of the circuit. There may be some
restrictions on the choices of the compromised wires. The circuit is private (with respect to
an adversary) if the adversary cannot get any information about the input and the output of
the circuit. One of the results of [9] is about the case when the adversary chooses adaptively
the compromised wires but there is a limit t on the total number of such wires. It is proved
in [9], using a technique from the theory of multiparty computations, that for each circuit C of
size n, there exists an efficiently constructed and functionally equivalent circuit C ′ so that C ′

is private against an adversary, who can choose adaptively t compromised wires, and the size
of C ′ is at most O(nt2). Each input bit and output bit b of C is encoded by a 0, 1-sequence
of length t + 1 whose parity is b. Each gate of C is simulated in C ′ by a gadget of size O(t2).
The privacy of the circuit is perfect in the sense that the distribution of the bits seen by the
adversary does not depend on the input and output of the circuit. The result remains valid if
we allow t compromised wires form each gadget.

In the present paper we prove a theorem which can be formulated in the framework of [9].
Assume that we have and adversary of the following type. The compromised wires are chosen

2

independently, each with probability p, and the adversary knows the bits flowing through the
compromised wires. Such an adversary will be called a p-random adversary. In this paper
we show that if p = ε, where ε > 0 is a small constant, then for each boolean circuit C of
size n, we can construct a functionally equivalent circuit C ′, so that |C| = O((log n)4n), each
input/output bit of C is encoded by the parity of a 0, 1-sequence of length m = O(log n), and C
is private against an ε-random adversary in a statistical sense, that is the probability that any
information about the input/output of C will reach the adversary is negligible. In [9] the general
case of randomly chosen compromised wires is reduced to the to the worst-case problem using
the fact that with high probability the number of compromised wires can be only a constant
times larger than its expected value. The results in [9] imply that a private circuit against a
p-random adversary can be constructed if p = O((log n)−1). Our result improves the probability
allowed for the choice of the compromised wires from p = O((log n)−1) to a small constant. The
construction in [9] however is more efficient if we consider the size of the circuit C ′. The paper
[9] contains another construction as well for a private circuit against p-random adversaries.

For constructions of private circuits several reasonable additional assumptions can be made,
for example Goldwasser and Rothblum in [8] consider circuits with simple leak-proof hardware
component. Faust et al. in [5] consider adversaries who does not get individual bits flowing
in the device, but some function of them. A general model for handling sidechannel attacks is
given by Micali and Reyzin in [10]. They formulate the principle that “computation and only
computation leaks information”. That is, an inactive part of the memory is not in danger. In our
results about computations on RAMs, we follow this principle; only the contents and addresses
of those memory cells which are involved in an instruction executed at time t, may leak to the
adversary at time t.

1.2 Informal description of the results

We prove two related theorems: a theorem about RAMs, resilient against certain type of attacks
and another theorem about constructing private circuits. The circuit theorem is used as a step
in the proof about RAMs.

Leak-proof simulation on RAMs. Assume that an adversary tries to get some information
about the input/output of a program P running on a RAM with n memory cells each containing
O(log n) bits. At each time, during the execution of P , the adversary is able to see the addresses
of the memory cells involved in the instruction which is executed, and the name of this instruction
as well. In addition to this, at certain times, the adversary can even see the contents of all of the
memory cells involved in the instruction. (This includes the instruction pointer and all of the
registers which are used by the machine to determine and store the result of the computation
at that time.) We will call a time when this happens a compromised time. The adversary can
choose the compromised times in an adaptive way, that is, immediately before the instruction
at time t is executed, the adversary, using all of the information at his disposal, can decide
whether time t will be compromised or not. The only restriction on his choice is, that among m
consecutive instructions there can be at most εm whose time is compromised, where ε > 0 is a
small constant. We will call such an adversary an (ε,m)-moderate adversary. We show that if
m = cblog nc, where c > 0 is a large constant, then for each program P , using n memory cells
and time T = O(poly(n)), there exists an explicitly constructed and functionally equivalent

3

program P ′, such that the probability that an (ε,m)-moderate adversary gets any nontrivial
information about the input of P is negligible (polynomially small in n), and the time and space
requirements of P ′ grows, compared to P , only by a factor of poly(log n). We assume that the
program P ′ gets its input in an encoded form, namely each input bit b is encoded by a random
0, 1-sequence of length m whose parity is b. The output bits must be encoded by P ′ in a similar
way. (Trivial information is the upper bound n on the memory requirement of the program P ,
the upper bound T on the time requirement of the program P and the number and timing of
the input and output instructions executed by P . We do not try to hide these values from the
adversary.)

Private circuits with leaking randomly chosen wires. As part of the proof of the result about
RAMs described above, we also construct, for each positive integer m, and for each boolean
circuit C of size n, a functionally equivalent circuit C ′ of size O(npoly(m)) with the following
property. The circuit C ′ gets each input bit b of C encoded as a random 0, 1 sequence of length
m whose sum modulo 2 is b, and C ′ provides its output with the same encoding. Moreover,
an adversary who can observe each bit going through the wires of the circuit C ′ independently
with a probability of ε > 0, where ε is a small constant, can get any information about the
input/output of the circuit C only with a probability of at most ne−cm, where c > 0 is a
constant. That is, if ne−cm is negligible, then C ′ is a private stateless circuit, with respect to
the adversary described above, in the sense defined in [9],

2 The main results

2.1 Private circuits

We are considering finite probabilistic boolean circuits with fan-in at most two. They may be
probabilistic in the sense that in addition to their usual input nodes, that we will call deter-
ministic input nodes, they may have probabilistic input nodes as well which get their 0, 1 values
at random independently and with uniform distribution. (Another essentially equivalent way
to create random bits is to allow probabilistic gates, see [9].) We always assume that the set
of all deterministic input nodes has a fixed ordering and make the same assumption about the
output nodes as well. Assume that the probabilistic circuit C has k deterministic input nodes
and l output nodes. Then C computes a random function, that is, for each x ∈ {0, 1}k, by
evaluating C we determine the value of a random variable ξx,C which takes its values in {0, 1}l.
The randomness of ξx,C comes from the probabilistic inputs of C.

Suppose that m, k, l are positive integers. We will say that the triplet C =
〈C0, 〈I0, ..., Ik−1〉, 〈T0, ..., Tl−1〉〉 is a block circuit with k input blocks, l output blocks, and block-
size m, if (a) C0 is a probabilistic boolean circuit with mk deterministic input nodes and ml
output nodes, (b) I0, ..., Ik−1 is a partition of the set of all deterministic input nodes of C0 into
blocks of consecutive input nodes, each of size m, and (c) T0, ..., Tl−1 is a partition of the set of
all output nodes of C0 into blocks of consecutive output nodes, each of size m. The size of C is
defined as the size of C0 and it will be denoted by |C|.

For each a = 〈a0, ..., ak−1〉 ∈ {0, 1}k we define a random variable ηa,C in the following way.
(The random variable η will have the same role for block circuits as the random variable ξ has for
circuits. The difference between them is that preprocessing and postprocessing is incorporated

4

only in η.) First we select km random 0, 1 bits ai,j , i = 0, 1, ..., k − 1, j = 0, 1, ...,m − 1
independently, with uniform distribution on {0, 1} and with the condition that

∑m−1
j=0 ai,j = ai

(in F2, the field with two elements) for i = 0, 1, ...,m− 1. We call this step the preprocessing.
Then we place the bits ai,0, ..., ai,m−1 at the input nodes in Ii in this order, for i = 0, 1, ..., k−1.

After that the probabilistic boolean circuit C0 is evaluated, and we get ml output bits bi,j ,
i = 0, 1, ...,m− 1, j = 0, 1, ..., l − 1, where the bits bi,j , j = 0, 1, ...,m− 1 appear on the output
nodes in Ti in this order, for i = 0, 1, ..., l− 1. The bits b0, ..., bl−1 are defined by bi =

∑m−1
j=0 bi,j ,

(in F2). The computation of these sums is called the postprocessing. The value of the random
variable ηa,C is the vector b = 〈b0, ..., bl−1〉. a = 〈a0, ..., ak−1〉 will be called the original input of
C and b = 〈b0, ..., bl−1〉 will be called the original output of C (referring to the motivation that
the role of the block circuit C will be to simulate a boolean circuit with input a and output b.)

Assume that C = 〈C0, 〈I0, ..., Ik−1〉, 〈T0, ..., Tl−1〉〉 is a block circuit with block size m and
ε > 0. We define an adversary who is observing the computation done by C, that is, the
computation of a value of the random variable ηa,C for some a, and tries to get some information
about the pair 〈a, b〉. We will call the adversary an ε-random adversary if the information
reaching him is determined in the following way.

Each wire of the circuit C0 is declared compromised with a probability of ε so that all of
these decisions are mutually independent and also independent from the probabilistic inputs of
the circuit C0 and the randomizations during the preprocessing. The adversary gets all of the
bits that are going through compromised wires during the evaluation of C0. More precisely the
adversary gets the set W of all pairs 〈w, bw〉 where w is the name of a compromised wire and
bw is the bit going through the wire w. (We assume that each wire has a unique name.) For
each fixed a ∈ {0, 1}k, and b ∈ {0, 1}l, the conditional distribution of W determined by the
computation of the value of the random variable ηa,C and the selections of the compromised
wires, with the condition that ηa,C = b, will be denoted by Φ(ε,C)

a,b . We will say that the block
circuit C is (ε, p)-secure if, with a probability of at least 1 − p, the ε-random adversary does
not gain any information about pair 〈a, b〉 where a, b are the original input and output. That
is, C is (ε, p)-secure if for each a ∈ {0, 1}k, there exists an event Aa with respect to all of the
randomizations, such that prob(Aa) ≥ 1− p, and the conditional distribution of Φ(ε,C)

a,b with the
condition Aa, does not depend on the values of a and b. (We may think that ¬Aa is a small
probability event describing a situation when we do not state anything about the knowledge of
the adversary.)

Assume now that C is a probabilistic boolean circuit with k deterministic inputs and l
outputs, and C is a block circuit with k input blocks, l output blocks, and blocksize m. We will
say that the circuit C and the block circuit C are functionally equivalent if for each a ∈ {0, 1}k
the random variables ξa,C and ηa,C have identical distributions.

Theorem 1 There exist ε > 0, c > 0, c1 > 0, c2 > 0, such that if m, k, l are positive integers,
m ≥ 2, and C is a probabilistic boolean circuit with k deterministic input nodes and l output
nodes, then there exists a blockcircuit C with k input blocks, l output blocks and with block size m,
such that, (i) C and C are functionally equivalent, (ii) |C| ≤ c1m

4|C|, and (iii) C is (ε, p)-secure,
where p = e−cm|C|.

Moreover, C can be constructed from C in time mc2 |C|.

5

Remark. 1. It is possible to show, with minor modifications of the proof, that for each
fixed ε1 > 0, the upper bound |C| ≤ c1m

4|C| can be replaced by |C| ≤ c1m
3+ε1 |C|.

2. In the proof we assume that the gates of the circuits, C and C are performing the
operations x + y, x × y and x + 1. We prove a generalization of the theorem for an arbitrary
finite field F , where the gates are performing these operations in the field F and we also have a
gate which performs the operation −x. In this case the inputs of the circuit C are not bits but
elements of the field F . Each input elements ai is encoded by a sequence ai,0 from the elements
of F which is chosen at random and with the condition

∑i
j=0 ai,j = aj . In a similar way, the

output of C is an encoding of the output of C.

2.2 Random access machines

We use a von Neumann type random access machine, where data and program are not distin-
guished. For the definition for such a machine see e.g., in [1] the random access stored program
(RASP) machines, in the modified form where the contents of the memory cells are not arbitrary
integers, but integers in the interval [0, 2q− 1], where q is the number of bits in a single memory
cell.

In order to present the main result concisely, without too many definitions, we restrict our
attention to one specific RAM described in [1], with the mentioned modifications. For each
positive integer q ≥ 10,Mq is a machine with 2q memory cells each containing a sequence of 0, 1
bits of length q. These cells will be called cell(0), cell(1), ..., cell(2q − 1). We will consider
the sequences contained in the cells as the binary representations of natural numbers from the
interval [0, 2q − 1], so if we say that a cell contains the natural number i, we mean it contains
its binary representation. (We may restrict the number of memory cells if needed, by simply
saying that a particular program is using only the first n cells for some n < 2q. Therefore our
requirement that the machine has 2q − 1 memory cells, is not a real restriction). The state of
the machine at each time is a function which assigns to each memory cell its content.
Mq has γ0 instructions, where γ0 is a constant (does not depend on q). The names or

encodings of these instructions are integers in [0, 2q − 1].
cell(0) is called the accumulator of the machine and cell(1) the instruction pointer. (The

choice of these particular cells for the mentioned roles have no significance.)
The machineMq has six types of instructions. (a) arithmetic operations, (b) an instruction

to generate a random number, (c) instructions moving data between the memory cells, (d) control
transfer instructions, which determine which instruction will be executed next, (e) input/output
instructions, and (f) the halt instruction to terminate the execution of the program.

The machine Mq is working in cycles, each cycle counts as one time unit. In each cycle it
does the following. It checks the content of the instruction pointer. Its content is interpreted as
an address, of a memory cell, say, number i. Then the machine executes the instruction whose
name is in cell i. An instruction may have parameters (for the sake of simplicity we assume
that each instruction has at most one parameter). A parameter typically is the address of a
memory cell. The content of cell i + 1 is considered as the parameter of the instruction in cell
number i. The machine executes the instruction with the indicated parameter and then, if it is
not a control transfer instruction, it increases the content of the instruction pointer by 2. If it
is a control transfer instruction then the instruction defines the new content of the instruction

6

pointer. We will say that a memory cell or register is involved in an instruction if its content is
used by the machine to execute the instruction, or the result of the instruction is placed in it.
We will use this concept by considering an adversary who wants to get some information about
what the machine is doing, and at each instruction knows which memory cells/registers are
involved in the instructions, and for some of the instructions he may even know their contents.

(a) The arithmetic instructions are +,×,−, bx/yc, the constants 0, 1, and 2q − 1. In case of
the arithmetic operations of the form f(x, y), at the time when the machine reads the instruction,
which is in cell(i), x must be in the accumulator, and y must be in the memory cell whose
address is the parameter of the instruction, that is, y is in cell(a) where a is the content of
cell(i+1). The result appears in the accumulator. In the case of the constants, the result of the
instruction, that is, the constant, appears in the accumulator (and the value of the parameter
is irrelevant).

(b) an instruction to generate a random number. A random integer from the interval [0, 2q−1]
appears in the accumulator, the value of the parameter is irrelevant.

(c) instructions moving data between the memory cells. Read instruction: if the value of the
parameter is a, then the instruction puts the content of cell(a) into the accumulator. Write
instruction: if the value of the parameter is a, then the instruction puts the content of the
accumulator into cell(a).

(d) control transfer instructions, GOTO X instruction. If the value of the parameter is X
then the content of the instruction pointer is changed into a. “IF X = 0 THEN GOTO Y ”
instruction. If the content of the accumulator is 0 then the content of the instruction pointer is
changed into Y , where Y is the value of the parameter, otherwise the value of the instruction
pointer is increased by 2. “IF X > 0 THEN GOTO Y ” If the content of the accumulator is
greater than 0, then the content of the instruction pointer is changed into Y , where Y is the
value of the parameter, otherwise the value of the instruction pointer is increased by 2.

(e) input/output instructions. INPUT instruction. The input is written in the accumulator.
OUTPUT instruction. The value of the accumulator is given as output. In both cases the value
of the parameter is irrelevant.

(f) HALT instruction. Terminates the execution of the program.
The first few memory cells sometimes will be also called registers. (Intuitively this corre-

sponds to the CPU of a computer.) A state of the machineMq, as we have indicated earlier, is
a function which assigns to each of it cells a possible content.

A state of the machineMq, as we have indicated earlier, is a function which assigns to each
of it cells a possible content. A history of the machine Mq is a function defined on an initial
segment I of the natural numbers which assigns a state S(t) to each t ∈ I with the following
property. Suppose that t, t + 1 ∈ I and in S(t) the content of the instruction pointer is a.
If a is the name of an instruction different of the input instruction and the random number
generator instruction, then we get S(t + 1) from S(t), by executing the instruction a with the
values contained in the memory cells ofMq defined by S(t). If a is the input or random number
generator instruction then S(t + 1) must be a state that is obtained from S(t) by executing
instruction a with the values of the memory cells described in S(t), and with a suitably chosen
value of the input or the generated random number.

Before the machine starts to work, a program P0 of constant length is placed in the memory.
We will call this the starting program. We may think that this is a small program, whose role is

7

to write in the memory a larger program P and data for P . When we will consider an adversary
who wants to get some information about what the machine is doing, we will assume that P0 is
known to the adversary. Because of this, the exact way as P0 gets into the machine is irrelevant.
We usually will assume that the starting program knows what is the number of memory cells
that the program can use and what is the total amount of time that can be used by the program.
We assume that these two parameters are placed in the memory of the machine right after the
starting program. Since we suppose that these parameters are known to the adversary, it is
irrelevant what is the mechanism of placing these parameters into the machine.

We assume that a program P can run on the machine in the following way. Program P0,
the starting program, is already in the machine and asks for inputs. The first part of the input
received by P0 is the program P , (when we say program P , some data for the program may
be included in it). P0 writes the program P into the memory and then transfers the control
to program P . While P is running it may ask for input and may also provide output. In this
situation we will say that the program P0 runs the program P .

We will call the machine Mq described above the basic RAM.
In the definition of adversaries we will also assume that there is a limit n on the number of

memory cells used by the machine and a limit T on the time, so that the program must stop
before time T . These will be always known to the adversary at the time when the machine
starts working. n and T will be also known by the starting program of Mq.

The benign adversary of Mq. We define an adversary, called benign adversary, for Mq

who gets only information that is revealed by the actions connecting Mq to its environment,
that is, information that could not be hidden anyway efficiently. Other adversaries on various
type of machines will be compared to this benign adversary. Our goal will be to transform the
machineMq and its starting program in a way that an (ε,m)-moderate adversary with the new
machine/program does not get more information about the input than the benign adversary
with the same input with the original machine/program.

Definition Assume that Mq is the basic RAM, an adversary Bq is observing it, and gets
the following information. (i) the upper bound n on the number of memory cells used, and the
upper bound T on the total time used by the machine, (ii) the time of all input instructions,
(iii) the time of all output instructions, (iv) the time of the HALT instruction. We also assume
that Bq gets the values n, T before the machine starts to work and gets each other piece of
information at the time when the corresponding instruction is executed. Bq will be called the
benign adversary of Mq.

RAM with parity encoded i/o. In the following we describe a computational model which
is the extension of the basic RAMMq, with preprocessing of the input and postprocessing of the
output. Every input bit and output bit b will be replaced by a random 0, 1-sequence whose sum
is congruent to b modulo 2. (As we pointed out earlier without these steps an (ε,m)-moderate
adversary could get, with a nonnegligible probability, some nontrivial information about the
input.)

Definition. 1. Assume that q ≥ 10 and m are positive integers. We define a machine Pq,m
in the following way. The machine gets its input as a finite sequence of integers a0, a1, ..., al−1

form the interval [0, 2q − 1]. It will be important later that the possible inputs of Mq and Pq
are the same. First the input a0, ..., al−1 is transformed into a 0, 1 sequence b0, b1, ..., bql−1 by

8

replacing each integer with its binary representation containing exactly q bits. Then each bit bi
is replaced by a 0, 1-sequence Bi = 〈bi,0, ..., bi,m−1〉 of length m so that

∑m−1
j=0 bi,j ≡ bi (mod 2)

and the various sequences Bi, i = 0, 1, ..., ql − 1 are chosen independently and with uniform
distribution from the set of sequences satisfying the described condition.

Let s = 〈s0, s1, ..., smql−1〉 be the 0, 1-sequence which is the concatenation of the sequences
B0, B1, ... in this order. The sequence s is given to the machineMq as an input sequence. Here
we consider each si as a integer in [0, 2q−1], therefore each input instruction the machine Mq

puts a single si, into cell(0). Assume that the output of the machine Mq at the input s is the
sequence u0, u1, ..., uk−1, let vi =

∑(i+1)m−1
j=im ui, for i = 0, 1, ..., r − 1, where r = bk/qc − 1 and

let wi be the least nonnegative residue of vi modulo 2. The output of the machine Pq,m is the
sequence w0, ..., wr−1.

It is irrelevant how the machine Pq,m is executing the described preprocessing and postpro-
cessing steps since we will consider adversaries who can get only information about the various
states of the machine Mq used in Pq,m but not about the preprocessing and postprocessing
steps.

2. If µ, ν are probability measures on the same σ-algebra A, then the distance of µ and ν
is sup{|µ(B)− ν(B)|+ |µ(D)− ν(D)|} taken for all B,D ∈ A with B ∩D = ∅.

3. We will denote the machineMq byMq[P, n, T], if it is working with the starting program
P , with only the first n memory cells, and with an upper bound T on the time used. In a
similar way the machine Pq,m will be denoted by Pq,m[Q,n′, T ′] if it is using the machine Mq

with the starting program Q, with the first n′ memory cells only and with an upper bound T ′

on the time used by Mq. We will say that the machines Mq[P, n, T] and Pq,m[Q,n′, T ′] are
functionally equivalent if for the same input sequence the distribution of their output sequences
are identical. The two machines are functionally equivalent with an error of δ if the distance
of the two mentioned distributions is at most δ. (These distributions are determined by the
random steps ofMq in both machines and by the random preprocessing of the input in Pq,m.)

The (ε,m)-moderate adversary for Pq,m. We define a set of adversaries for Pq,m that we
will call the (ε,m)-moderate adversaries. Such an adversary will get some information about the
working of the machine Pq,m at each time t, where we count the time t in the machineMq which
works in Pq,m. The information received by the adversary depends on the state of the machine
Mq at time t and a decision of the adversary. Namely the adversary B = Bq,m,ε may declare
time t as a compromised time or a noncompromised time. This is done by the adversary, right
before the instructions at time t is executed, using all the knowledge available for him at that
time. We describe below the information received by B at compromised or not compromised
times. In the decision whether t will be a compromised time B can use probabilistic steps. There
is no computational restriction on the decision process of B. In other words B has a strategy
of the following form. For each possible time t and for each finite 0, 1 sequence s (representing
the information that B received before time t) a random variable ξt,s with 0, 1 values is fixed.
Assume that the information that B got before time t is represented by a 0, 1-sequence st. Then
at time t adversary B takes a random value of the random variables ξt,st and declares the time
t compromised if this value is 1. Otherwise t is declared a noncompromised time.

The strategy S described by the random variables ξt,s will be called an (ε,m)-moderate
strategy if each time interval I of length m contains, with probability 1, at most εm compromised

9

times. An (ε,m)-moderate adversary is an adversary who is using an (ε,m)-moderate strategy
for the selection of compromised times.

Assume first that t is a noncompromised time. Then B gets the following information.
(a) the information that the benign adversary would get till time t, and the values of m and ε.
(b) the addresses of all of the memory cells involved in the instruction executed at time t together
with their roles in the instruction (but not their contents) and the name of the instruction.

Suppose now that t is a compromised time. Then B gets the following information.
(c) all of the information that B would get if t would be a noncompromised time
(d) the contents of all of the memory cells involved in the instruction executed at time t (with
the indication which contents belongs to which memory cells).

Measuring the strength of an adversary. We will measure the strength of an adversary
(for Mq or Pq,m) by its ability to guess correctly what was the input of the machine, provided
the input was selected at random and with uniform distribution from a set {a, b} of two elements,
where the set {a, b} is known to the adversary.

Assume that the information received by an adversary V till the machine M has stopped
is represented by a finite 0, 1-sequence s. If a, b are possible inputs for the machine, then V,
using the information s, may try to guess whether a or b was the input. We will say that V can
distinguish a form b with a bias greater than ι if there exists a function S (depending on a and b),
so that if h is a random element of the set {a, b} with uniform distribution, and at the input h the
adversary V gets the information s while the machine is working, then prob(S(s) = h) > 1

2 + ι,
where the probability is taken for the randomization of h, the randomization of the machine,
and the randomization of the strategy of the adversary together. biasV(a, b) will denote the
largest realnumber δ so that for all ι < δ the adversary V can distinguish a from b with a bias
greater than ι.

Definition. Assume that P,Q are starting programs for Mq and q,m, n, T, n′, T ′ are positive
integers, ε > 0, δ > 0. We will say that Pq,m[Q,n′, T ′] with an (ε,m)-moderate adversary
δ-simulates Mq[P, n, T] with the benign adversary if the following conditions are satisfied:

(a) Mq[P, n′, T ′] and Pq,m[Q,n, T] are functionally equivalent with an error of at most δ,
(b) for all possible inputs a, b we have biasBq,m,ε(a, b) ≤ biasBq(a, b) + δ, where Bq,m,ε is

the (ε,m)-moderate adversary defined for Pq,m[Q,n′, T ′] and Bq is the benign adversary defined
for Mq[P, n, T].

Theorem 2 There exist c1, c2, c3, c4 > 0, so that for each starting program P , there exists
a starting program Q, such that for all sufficiently small ε > 0, and for all positive integers
m, q, n, T with q ≥ 10, log n ≤ m ≤ n ≤ T ≤ 2n, we have that Pq,m[Q,nmc1 , Tmc2], with
an (ε,m)-moderate adversary, δ-simulates Mq[P, n, T], with the benign adversary, where δ =
c3T max(n− logn, e−c4m).

Remark 1. Note that the starting programs P,Q do not depend on q. This is possible since
we consider a program as a sequence of integers in the range [0, 2q − 1] and we suppose that the
names of the instructions for Mq are fixed independently of q.

2. If m = O(log n) then the increase in the time requirement of Pq,m with respect to Mq is
O((log n)γ), where γ ≥ 1 is a constant. γ = γ1 + γ2 + γ3 + γ4 comes from four sources. γ1 from
the theorem about oblivious simulation, γ2 from the circuit simulation of Theorem 1, γ3 from the

10

simulation of the original q-bit arithmetic operations of Mq by bitwise boolean operations, and
γ4 from the remaining part of the proof. As the proofs of this paper are given, we have γ2 = 4,
but with minor modifications of the proof we can get γ2 = 3 + ε1 for each fixed constant ε1 > 0.
We get γ3 = 2 if we perform the arithmetic operations in the obvious way. Finally γ4 = 1, and
it comes from the transformation of the program in a way that the (ε,m)-moderate adversary
will have essentially the same knowledge as an ε-random adversary, as will be described later.
(As a consequence if we are concerned about only ε-random adversaries then γ4 = 0.) The
same upper bound holds for the increase of the space requirement of Pq,m compared to Mq.
There is however some possibility for improvement here, since while simulating the circuit C of
Theorem 1 with a RAM, we may repeatedly reuse the space which is needed for the evaluation
of a subcircuit of C, which plays the role of a single gate of C.

3 Sketch of the proofs.

The proof of Theorem 2 is using Theorem 1. Apart from the earlier results about oblivious
simulation, the proof of Theorem 1 is the most important part of the proof of Theorem 2.

3.1 Sketch of the proof of Theorem 1

We may assume that the fan-in of each gate of the circuit C is at most two, since replacing an
arbitrary circuit with a functionally equivalent circuit with fan-in two will increase the size of the
circuit only by a constant factor. We may also assume that the adversary chooses compromised
gates and not compromised wires. The information that the adversary gets will be the sequence
of bits that arrives as input to the compromised gate. (That is, the adversary knows the bits
and their sources.) Each gate is declared compromised with a probability of ε and the decisions
made for the various gates are mutually independent. It is easy to see that for each ε-random
adversary B1 who gets information from the compromised wires there is a 2ε-random adversary
B2 who gets information from compromised gates as described above and B2 always knows
everything that is known by B1. Therefore it is sufficient to prove the theorem for the case when
the adversary selects compromised gates.

We will construct the block circuit C in the following way. We assume that in the circuit
C there are only gates which correspond to the algebraic operations in the field F2, that is, we
have gates for addition multiplication and adding 1 to the input. For each of the gate types X,
where X can be +,× or +1, we will construct a block circuit C(X) with block size m (and with
probabilistic input nodes as well) which performs the algebraic operation associated with the
gate type X on the values encoded by its input blocks and provides the result in encoded form
on its only output block. For example if X is the product gate then C(X) must be a circuit with
two input blocks I0, I1 and one output block T0 each of them of size m, so that if a0, ..., am−1 are
the input values on block I0, b0, ..., bm−1 are the input values on block I1, and v0, ..., vm−1 are the
output values on block T0, then they satisfy the equation

∑m−1
i=0 vi = (

∑m−1
i=0 ai)(

∑m−1
j=0 bj). This

must hold independently of the values of the probabilistic inputs. That is, the block circuit C(X)

must be functionally equivalent to the gate X. This construction has the same framework as the
corresponding circuit construction in [9], but the choices of the circuits C(X) will be different.

11

In addition to the functional equivalence with gate X we also want the circuit C(X) to be
(ε, p′)-secure with p′ = e−c0m, for some constant c0 > c1. We may hope that if we succeed in
constructing such circuits C(X) for each of the three field operations +,× and +1 then we may
construct the required (ε, p)-secure circuit C ′ in the following way. We replace each gate Y of
type X in C, by a copy Y ′ of the circuit C(X), so that if the outputs of the gates Y0, Y1 are the
inputs of Y then the output blocks of the circuits Y ′0 , Y ′1 are the input blocks of the circuit Y ′.
Unfortunately such a C is not necessarily (ε, p)-secure. E.g., if X is the +1 gate, then C(+1) can
be the circuit which adds 1 to the first input bit and leaves all of other input bits unchanged.
It is easy to see that C(+1) defined this way is (ε, p)-secure for, say, p = e−

1
2
m, ε = 1

4 and m is
sufficiently large. Let C be a circuit which consists of a long sequence of +1 gates. Suppose that
we construct a block circuit C by replacing each gate of C with the blockcircuit C(+1) defined
above. Clearly C is not (ε, p)-secure, since if the sequence of gates in C is long enough, the
adversary, with high probability, will know each input bit.

Therefore we will require a stronger property P from the circuits C(X), where X is a gate
type. This stronger property will be inherited from the building blocks C(X) to the circuit C,
constructed from them. To formulate this property first we define a probability distribution,
that will depend on a real parameter θ ∈ (0, 1), and will be called θ-cylindrical distribution.
It will be defined on the set of all deterministic inputs of the circuit, that is, if I0, ..., Ik−1 are
the input blocks the set of all F2-valued functions defined on I =

⋃k−1
i=0 Ii. This set will be

denoted by func(I, F2). In the definition of a θ-cylindrical distribution we will use the following
notation. If a ∈ func(I, F2) then h(a, i) =

∑
x∈Ii a(x) for i = 0, 1, ..., k − 1.

A probability distribution H will be called θ-cylindrical if there exists a function f defined
on I and with values in F2 such that

(i) H is concentrated on the set of extensions of the function f , that is, H(a) > 0 implies
that a is an extension of f ,

(ii) |domain(f) ∩ Ii| ≤ θm = θ|Ii| for i = 0, 1, ..., k − 1,
(iii) For all a, b ∈ func(I, F2), if H(a) > 0 and H(b) > 0, then for all i = 0, 1, ..., k − 1,

h(a, i) = h(b, i)
The function f will be called the handle of the distribution H and the set domain(f) will be

called the base set of the distribution H.
Property (iii) and (ii) together implies that for all extensions a of f onto I the function

h(a, i), defined for i = 0, 1, ..., k − 1, uniquely determines H(a). (Recall that for a fixed input a
the function h(a, i) is the original input.)

We define the θ-cylindricity of distribution on the set of all possible outputs in a similar way,
by using the output block sequence T0, ..., Tl−1 everywhere instead of the input block sequence
I0, ..., Ik−1. The function h is also defined from the output block sequence in this case.

Our goal is to construct the circuits C(X) in a way that if the input arrives with a θ-cylindrical
distribution H, for a suitably chosen θ ∈ (0, 1) then the distribution of the information that
reaches the ε-random adversary Y is uniquely determined by the handle f of the distribution H.
This implies that Y, even if he gets the handle f as extra information, will not learn anything
about the probabilities H(a) in addition to the fact that they form a θ-cylindrical distribution
with handle f . We also want to construct the circuits C(X) in a way that their outputs, from
the point of view of the adversary, have θ-cylindrical distributions. This will make possible
an inductive argument when we prove that the circuit C has the same nice properties as the

12

building blocks C(X).
The requirement about the θ-cylindrical distribution of the output cannot be satisfied for

an ε-random adversary, because usually the information that such and adversary gains about
the output cannot be described in such a nice concise way as a θ-cylindrical distribution. (For
example, the situation where three bits u, v, u+v are in the output but the adversary knows only
u + v, may cause a problem.) Because of that, we will consider another “stronger” adversary,
who knows more than the ε-random adversary, but the theorem still holds for him, and his
knowledge about the output is θ-cylindrical for a suitably chosen θ ∈ (0, 1). Such an adversary
in this sketch will be called an ε-superior adversary. We assume that after the random set of
gates A has been selected, whose elements are chosen independently and with probability ε,
the ε-superior adversary may select another set of compromised gates S(A), where S is a fixed
function which defines the ε-superior adversary. That is, for the ε-superior adversary, defined by
the function S, the set of compromised gates is A∪S(A). We will consider ε-superior adversaries
when the input arrives with a θ-cylinidrical distribution H. In this case we assume that the
handle of the distribution H (and so it base set too) is known to the ε-superior adversary.

The property that we will require of the circuits C(X) will depend on three parameters, θ, ε,
and p and will be called (θ, ε, p)-cylindricity. The meaning of θ, ε, p, roughly speaking, will be
that if, the input arrives with a θ-cylindrical distribution then with a probability of at least
1 − p the output also has θ-cylindrical distribution from the point of view of a suitably chosen
ε-superior adversary. The actual requirement is stronger than that, we require that even if the
complete deterministic input, all of the km bits, are known to this adversary Y, then still the
distribution of the output, form the point of view of Y, is θ-cylindrical. This is possible since
the circuit has probabilistic inputs as well which supply the randomness for the θ-cylindrical
distribution. We will also require that with a probability of at least 1 − p the same ε-superior
adversary does not gain any information about the original input. (Recall that if I0, ..., Ik−1

are the input blocks of a circuit C and ai,0, ..., ai,m−1 are the input bits on block Ii, then the
sequence 〈

∑m−1
j=0 ai,j | i = 0, 1, ..., k − 1〉 is the original input.)

In the definition below if Y denotes an adversary then Y+ will denote the adversary, who
gets all of the information that is available for Y and in addition to that all of the km input
bits of the circuit arriving at the input nodes in the blocks I0, ..., Ik−1. First we define what is
a (θ, ε, p)-cylindrical adversary, and then what is a (θ, ε, p)-cylindrical circuit.

Definition. (This definition is given only for the “sketch of the proof”. The final definition,
provided during the proof, is slightly different from but equivalent to the present one.) Assume
that θ > 0, ε > 0, p ∈ [0, 1] and Y is an ε-superior adversary defined by the function S for a
probabilistic block circuit C with block size m and input block sequence I = 〈I0, ..., Ik−1〉. The
adversary Y is called a (θ, ε, p)-cylindrical adversary, if for all function f ∈ funcθ(

⋃k−1
j=0 Ij , F2) we

have that with a probability of at least 1−p, with respect to the randomization of the ε-random
set A used by Y, the following two conditions are satisfied:

(1) For each fixed deterministic input of the circuit C the corresponding output, from the point
of view of adversary Y+, has a θ-cylindrical distribution, with base set

(A ∪ S(A)) ∩
l−1⋃
i=0

Ti

13

(2) Assume that H0 and H1 are θ-cylindrical input distributions for the block circuit C so that
their base sets and their handles are identical. Then the distributions of the knowledge of the
ε-superior adversary Y, is the same for H0 and H1. (Since the set A has been already fixed,
the randomness in these distributions are provided by the randomizations in Hi and the random
inputs of the circuit.)

The block circuit is called (ε, θ, p)-cylindrical if there exists a function S so that the corre-
sponding ε-superior adversary is (ε, θ, p)-cylindrical. ut

Using Bayes’ theorem we can show that condition (1) implies the following: if the input is
arriving with a θ-cylindrical distribution H, then the distribution of the output from the point
of view of Y is θ-cylindrical with base set (A ∪ S(A)) ∩

⋃l−1
i=0 Ti

When we define the circuits C(X) so that they are (θ, ε, p)-cylindrical, the parameters θ, ε,
and p = e−cm will be selected such that 0 < ε � c � θ � 1, where a � b means that a is
sufficiently small with respect to b. Assume now that a circuit C is given and we replace each
gate X in it with a block circuit of type C(X). We will show that the resulting block circuit
C is (θ, ε, p′)-cylindrical where p′ = |C|p (see Lemma 3 and Lemma 4). The proof of this fact
is an induction on the number of the gates. It will follow from condition (2) of the definition
of a cylindricity that C will be (ε, p′)-secure and this will complete the proof of Theorem 1.
Therefore we reduced the problem of proving the theorem to the problem of constructing
(θ, ε, p)-cylindrical block circuits C(X) for each of the gate type X.

Before we construct the block circuits C(X) for the gates +,× and +1, we define a new
gate, the identity gate whose input is same as its output. The corresponding block circuit with
block size m, will be denoted by C(=)

m . We want to construct C(=)
m so that it has one input

block, one output block, and if the deterministic input is b0, ..., bm−1, the output is a0, ..., am−1,
then

∑m−1
i=0 bi =

∑m−1
0 ai, and for all 0 < ε � c � θ � 1, and for all sufficiently large m the

circuit C(=)
m is (θ, ε, e−cm)-cylindrical. We will also call the circuit C(=)

m the copying circuit. Its
construction is based on a constant degree expander.

3.1.1 The copying circuit C(=)
m

Recall that the task of the copying circuit C(=)
m is to produce from an encoded input sequence

of length m an encoded output sequence of also length m so that the sum of the encoded input
sequence, that is, the original input, is the same as the sum of the encoded output sequence. The
copying circuit only copies the (original, one bit) input. Apart from that, the copying circuit
also refreshes the randomness of the encoded input. That is, if the ε-random adversary knows
a little bit more about the input of the copying circuit than what is our goal, then the design of
the copying circuit will make sure that his knowledge about the output of the circuit falls back
to an acceptable level.

The deterministic input nodes of the copying circuit C will be denoted by ℘0, ..., ℘s−1 the
output nodes will be denoted by T0, ..., Ts−1. Assume further that G is a d-regular expander on
the set of vertices V = {0, 1, ...,m − 1}, where d is a constant and m is sufficiently large. We
also assume that the expansion factor of the graph G is 1 + α, where α > 0 is a constant, that
is, for each X ⊆ V with |X| ≤ 1

2m we have that the set of all points x such that either x ∈ X or
x has a neighbor in X, has at least (1 + α)|X| elements. The set of edges in G will be denoted

14

by E. Given the graph G with these properties we define a block circuit C = C(=)
m,G with one

input block and one output block, that we will call the copying circuit associated with the graph
G. The copying circuit C has m deterministic input nodes, m output nodes, and for each edge
e ∈ E, it has a probabilistic input node Ge.

Assume that δr is the deterministic input on ℘r for r = 0, 1, ...,m− 1 and γ(e)), e ∈ E is the
probabilistic input on Ge. Using the operations + in F2 we define the output νi, i = 0, 1, ...,m−1
on the output node Ti by

νi = δi +
∑
{γ((i, j)) | (i, j) ∈ E}

that is, the ith output bit is the sum of the ith input bit and the sum of the random values
γ((i, j)) attached to the edges of G incident to the vertex i. We construct the circuit Cm = C(=)

m,G,
using only + gates, which compute the described value of ν, given δ and γ as deterministic and
probabilistic inputs. The sum of the deterministic inputs will be the sum of the outputs. This is
a consequence of the fact that if we add the outputs then each term γ(e) will occur exactly twice
and so in F2 they cancel each other. (Later when we consider the problem over an arbitrary
finite field F , then in the definition of the output the term γ(i, j) will have a sign depending on
whether i < j or i > j, so the cancellation will be guaranteed even if F 6= F2.)

For the proof of the (θ, ε, p)-cilindricity of the circuit C we will need the fact that if in the
expander graph G we have a set A ⊆ V with less than ε′m elements, where ε′ > 0 is a small
constant then the complement of A contains a set D ⊆ V which is connected, and it has at
least m− d(1 + d

α)|A| ≥ 1
2m elements (see Lemma 10). We will use this statement for the case

when A contains all of the points j ∈ V so that the ε-random adversary has seen a partial result
in the computation of the output which depends on either δi or νi or γ((i, j)) for some j ∈ V .
This definition of A makes sure that the probabilistic inputs γ((i, j)), i, j ∈ D can be changed
arbitrarily, without changing the knowledge of the adversary. Since D is connected, using such
changes in the probabilistic input we can change the output on the set H = {Ti | i ∈ D} in
an arbitrary way, with the only constraint that the sum of the output values of H remains the
same. This observation will be used to show, that with high probability, C has θ-cylindrical
distribution from the point of view of a suitably chosen ε-superior adversary, if the set of inputs
is fixed. The fact that this adversary does not have any information about the original input,
provided that the input arrives with θ-cyclical distribution, will simply follow the from the fact
that he has no information at all about the input values in D, and |D| ≥ (1− θ)m.

3.2 Block circuits for addition and multiplication

We define the block circuit C(+) which corresponds to the gate + as follows. It has two input
blocks and one output blocks. First it adds the input vectors component by component and
then applies a copying circuit C(=)

m,G to the result. We define the block circuit C(+1) in a similar
way, it adds one to the first input bits and leaves the other m− 1 input bits unchanged. After
that it applies a copying circuit to the result. In both cases the proof of (θ, ε, p)-cylindricity is
essentially the same as for the copying circuit.

The most problematic part of the proof is the construction of the block circuit C(×) that we
will call the multiplication circuit. In this case direct computation would reveal the input for an
ε-random adversary. The construction of C(×) is based on the following idea. Suppose we want

15

to compute the product ab, a, b ∈ F2. We may split a at random into a sum a = a0 + a1. (In
the block circuit C(×) this calculation and randomization will be done with sequences of length
m encoding a, a0, a1.) We have ab = a0b + a1b. Now we split b at random into two parts but
do this independently at the two occurrences of b. We get ab = a0b0 + a1b1 + a1b2 + a1b3 where
b = b0 + b1 = b2 + b3. At the next step we split a0 and a1 into two parts independently at
their various occurrences, and get for ab a sum with eight terms, each is a product, where the
first factor was derived from a the second from b. We continue this, alternately splitting the
first or second factors from each term at random independently and with uniform distribution.
Assuming that m = 2d, after 3d steps we will have a sum with m3 terms, each one is a product.
As we told earlier the factors of these products are encoded in C(×) as the sum of sequences of
length m. Assume that uv is such a product where u is encoded by the sequence ū and v is
encoded by the sequence v̄. C(×) computes u from ū by adding the bits of ū. It is important
that this computation, namely the m− 1 additions, is arranged in the natural way on the nodes
of a binary tree of depth d. Then C(×) computes v from v̄ in a similar way. In the possession
of u and v, C(×) computes the product w = uv and then encodes the result w by a random
0, 1-sequence w̄ of length m. The encoding of w by w̄ is calculated on the nodes of a binary tree
with m leaves, starting at the root, getting the encoding on the leaves, and randomly splitting
each bit on a node into a random sum given on its two children. Finally after this has been
done with all of the m3 products of type uv, the block circuit C(×) adds the m3 vectors w̄ by
repeatedly using the circuit C(+). (The order of these additions is irrelevant, we will assume
that they are performed in a sequential way). The sum of the m3 vectors w̄ is the output of the
block-circuit C(×).

In the described circuit C(×) we reduced the computation of a single product to additions and
the computation of m3 different products. At first it may seem, that computing m3 product,
without leaking information to the adversary, is more difficult than the original task with a
single product. However, this is not the case, since we do not mind if information leaks to
the adversary about o(εm3) random products out of the total m3. We will show that such a
leak, with high probability, does not give any information about the original product ab to the
adversary. Therefore by parallelizing the computation of the product we made a certain amount
of leaks acceptable.

We want to prove that the block circuit C(×) is (θ, ε, p)-cylindrical, where 0 < ε� c� θ � 1
and p = e−cm. We have to show that there exists an ε-superior adversary Y for the circuit
C(X) which satisfies conditions (1) and (2) from the definition of cylindricity. For the proof
of condition (1) it will be sufficient to know that the last addition circuit C(+), which gives
the output of C(×), ends with a copying circuit Cend. Since we know already that the copying
circuit is (θ, ε, p)-cylindrical there exists an ε-superior adversary Yc for this copying circuit. If
we choose an ε-superior adversary for C(×) such that it knows the same about the circuit Cend

as Yc then it is easy to see that it will satisfy condition (b). (For the proof of this fact we may
use Bayes’ theorem with respect to all the possible evaluations of the input nodes of Cend.)

For the proof of condition (2) we consider an ε-superior adversary Y, who gets the following
information:

(i) Assume that A is the random subset of the set of nodes of C(×) whose elements are
selected independently and with a probability of ε, and full(A) is the set of all nodes of C(×)

which contains a gate which sends an input to a gate in A. Y gets the output g(a) of each gate

16

a ∈ full(A) which is computed during the evaluation of the circuit C(×). (Here we used the
output of the gates instead of their inputs. This is the reason that instead of A we had to use
the set full(A).)

(ii) we assume that the input of C(×) arrives with a θ-cylindrical distribution H which has
base set Y and handle f . Y gets the function f , (that is, domain(f) and for each x ∈ domain(x)
the value f(x)).

(iii) Y gets all of the information that was received by Yc about Cend (for the sake of simplicity
we will ignore this information in this sketch, since it does not have any essential role in the
remaining part of the proof).

We will show that the distribution of the knowledge of Y does not depend on the original
input. Assume that (δ0, δ1) ∈ F2 × F2, (δ′0, δ

′
1) ∈ F2 × F2 are possible choices for the original

input, that is, the circuit C(×) computes either the product δ0δ1 or the product δ′0δ
′
1. We show

that the distribution of the knowledge of Y is the same in both cases.
Suppose that δ0, δ1, f, g are given. We are interested in the conditional probability of the

event that the output of each gate a ∈ full(A) is g(a), with the condition that the input arrives
with a θ-cylindric distribution H with handle f and the original input is (δ, δ0). (As we said we
ignore now the knowledge of Y given in (iii), but in the final proof we will extend the setA to cover
some part of Cend.) The conditional distribution corresponding to this conditional probability
can be expressed by generating all of the input bits, both probabilistic and deterministic of C(×)

with uniform distribution, and with the condition that they are compatible with f , with the
original input (δ0, δ1), and with the outputs g(a) for all a ∈ full(A).

Since we considered here uniform distribution for the input bits, the probability of the
described conditional distribution is proportional of the number of inputs satisfying the condi-
tions. For given g, f, δ0, δ1, we will denote this number by N(g, f, δ0, δ1). We have to show that
N(g, f, δ0, δ1) = N(g, f, δ′0, δ

′
1). We want to show that N(g, f, δ0, δ1) is the number of solutions

of a system of polynomial equations over F2.
With each input node (deterministic or probabilistic) of C(×) we associate an unknown zh.

Then for each node a of C(×) we define a polynomial pa in the indeterminates zh by recursion
on a. If a is an input node then pa = za. If a is a + gate which gets its input from the gates
u, v then pa = pu + pv. In a similar way if u is a × gate then pa = pupv and if a is a +1 gate
getting its input from u then pa = pu + 1.

We consider now the system consisting of the following equations over F2, where I0, I1 denote
the input blocks of the circuit C(×).∑

x∈Ij px = δj for j = 0, 1,
pu = f(u) for u ∈ domain(f),
pb = g(b) for b ∈ full(A).

This system will be denoted by Γ(g, f, δ0, δ1). Clearly the number of solutions of Γ(g, f, δ0, δ1)
is N(g, f, δ0, δ1). Therefore we have to show that the number of solutions of Γ = Γ(g, f, δ0, δ1),
Γ′ = Γ(g, f, δ′0, δ1)′ are the same.

As a first step we will show that one of Γ and Γ′ has a solution then the other one also
must have at least one solution. If Γ and Γ′ would be linear systems this would be sufficient to
show that their number of solutions are equal, since Γ and Γ′ differ only in their inhomogeneous
parts. (In a linear system, if the number of solutions is not zero then it is equal to the number
of solutions of the corresponding homogeneous system.) Unfortunately Γ and Γ′ are not linear,

17

since if b is a product gate then the polynomial pb is nonlinear. However, the mentioned result
above linear systems, can be extended to certain nonlinear systems using a diagonalization
argument, as described in Lemma 7. We will show that Γ,Γ′ are systems of this type so Lemma
7 implies that if both have at least one solutions then the numbers of their solutions are equal.
(We do not sketch here this part of the proof.) Therefore our task is to show that if Γ has at
least one solution then Γ′ also have at least one solution.

For the proof of this fact we have to return to the definition of C(×). First we give a more
formal description of the process used in the multiplication circuit.

3.3 The tree structure of the product circuit

We describe here, as part of the “sketch of the proof” some elementary definitions abut trees
and two lemmas in their final forms since they are simple and at the same time very important
for our proofs about the multiplication circuit.

Definition. 1. A binary tree T of depth d will mean the following structure. A graph on the
set T with 2d+1 − 1 elements, that are arranged in d levels, L0, ..., Ld, with |Li| = 2i. Each
point x of level i, that is Li, is connected by an edge to exactly two points of Li+1 which are
called the successors of x for i = 0, 1, ..., d − 1. If x, y ∈ Li, x 6= y then they have no common
successors. The graph has no other edges than the ones described above. The only element of
L0 is the root of the tree, it will be denoted by t0. For each x ∈ L0 ∪ ... ∪ Ld−1 one of the two
successors of x is designated as the left successor and denoted by lx, and the other one is the
right successor denoted by rx. For all t ∈ L0 ∪ ... ∪ Ld−2, the four successors of the successors
of t will be denoted by r0(t) = llt, r1(t) = rlt, r2(t) = lrt, r3(t) = rrt. T0 denotes the union of
all of the even levels L0, L2, ... and T1 denotes the union of all of the odd levels. Since we will
use only binary trees in this paper, a tree of depth d will always mean a binary tree of depth d.

2. Assume that T is a binary tree of depth d with levels L0, ..., Ld. Each element of Ld is
called a leaf of the tree. If a is a leaf of the tree then the set of vertices in the shortest path
leading from a to the root t0 is called a branch and will be denoted by branch(a). Clearly
|branch(a)| = d+ 1.

We define a partial ordering ≤T on the set of vertices of T . It is defined by: a <T b iff the
tree has a branch containing both a and b, and b is closer to the root. Obviously t0 is the largest
element of T with respect to ≤T . ut

The next lemma describes part of the computation performed by the multiplication circuit.

Lemma 1 Assume that λ is a function defined on the tree T with depth d so that the values
of λ are in a field F , and

(3) for each i = 0, ..., d − 2 and for each t ∈ Li we have that λ(t) = λ(r0(t)) + λ(r1(t)) =
λ(r2(t)) + λ(r3(t))

Then for all j = 0, 1, ..., d− 1 we have λ(t0)(λ(lt0) + λ(rt0)) =
∑
t∈Lj λ(t)(λ(lt) + λ(rt))

The proof of the lemma is an induction on j. The multiplication circuit recursively defines
a function λ which is defined on the nodes of a tree of depth 3d. If we want to compute the

18

product ab then λ(t0) = a, λ(lt0) = b0, λ(rt1) = b1, where b was split at random into the sum
b = b0 +b1 with uniform distribution. Recursively we define the elements λ(ri(t)) for i = 0, 1, 2, 3
in the following way. We split the element λ(t) into two random sums λ(t) = u0 + u1 = u2 + u3

independently and with uniform distribution. Then we define λ(ri(t)) by λ(ri(t)) = ui for i =
0, 1, 2, 3. Lemma 1 implies that ab =

∑
t∈L3d−1

λ(t)(λ(lt) + λ(rt)).
The multiplication circuit of course does not work with the values λ(t) directly but each λ(t)

is encoded as the sum of the elements of a sequence Λ(t) of length m. The actual values of λ(t)
are computed by the circuit for only t ∈ L3d ∪ L3d−1.

The recursive definition of λ(t) is translated into a recursive definition of the function Λ(t)
namely to get Λ(ri(t)) the circuit has to cut the vector Λ(t) independently and with uniform
distribution into two random sums Λ(t) = U0 + U1 = U2 + U3. Then we define Λ(ri(t)) by
Λ(ri(t)) = Ui for i = 0, 1, 2, 3. This random cutting can be easily done by defining U0, U2 as
independent random vectors given by the probabilistic inputs of C(×) and then U1 = Λ(t)−U0,
U3 = Λ(t)−U2. After the random splitting is done a copying circuit is applied to all four terms
to refresh their randomness.

With these process we can guarantee that the adversary will not get any nontrivial infor-
mation until levels L3d−1 and L3d are reached. Here however it may happen that for each fixed
t ∈ L3d∪L3d−1 with a probability of ε′, where 0 < ε� ε′ � 1 the adversary learns what is λ(t),
where 0 < ε � ε′ � 1. The following lemma guarantees that even if the adversary knows λ(t)
on such a random set, this will not able him to rule out certain values for a and b, that is, for
λ(t0), λ(lt0) and λ(rt0). We need a few definitions for the statement of the lemma.

Definition. Assume that T is a tree of depth d. We will use the following notation: Li =⋃i
s=0 Li, L

(0)
2j =

⋃j
s=0 L2s, and L(1)

2k+1 =
⋃k
s=0 L2s+1, provided that i, 2j, 2k + 1 ≤ d. ut

Definition. Assume that λ is a function so that domain(λ) ⊇ L(0)
2d = L0 ∪ L2 ∪ ...L2d, where

T is a tree of depth at least 2d, and the values of λ are in a field F , and

(4) for each i = 0, ..., d − 1, and for each t ∈ L2i we have λ(t) = λ(r0(t)) + λ(r1(t)) =
λ(r2(t)) + λ(r3(t))

Then, we will say that λ is a well-balanced function on L(0)
2d . Assume now that range(λ) ⊆ F ,

domain(λ) ⊇ L(1)
2d+1 = L1 ∪ L3 ∪ ... ∪ L2d+1, the depth of T is at least 2d+ 1, and

(5) for each i = 0, ..., d − 1, and for each t ∈ L2i+1, we have λ(t) = λ(r0(t)) + λ(r1(t)) =
λ(r2(t)) + λ(r3(t))

Then we will say that λ is a well-balanced function on L(1)
2d+1. If λ is defined on Ld then

we will say that it is well-balanced on Ld, if it is well-balanced on both L(0)
2d′ and L(1)

2d′′+1, where
d′ = bd2c and d′′ = bd−1

2 c. ut
We will use the next lemma for our proof about the multiplication circuit with d:=3d. The

lemma essentially says that if a well-balanced function λ is known at a small random subset
of leaves of the tree T then the values λ(t0), λ(lt0), λ(rt0) still can be arbitrary. To make the
lemma more applicable for the proof about the multiplication circuit, instead of using the leaves
we select the random set at the previous level and then extend it to the leaves.

19

Lemma 2 Assume that,

(6) ε > 0, d is a positive integer, and T is a tree of depth d,

(7) A′ is a random subset of Ld−1 so that all of the events x ∈ A′, x ∈ Ld−1, are mutually
independent, and prob(x ∈ A′) ≤ ε for all x ∈ Ld−1, and

(8) A = A′ ∪ {x ∈ Ld | ∃y ∈ A′, x ≤T y}.

Then the probability of the following event is at least 1− 3(4ε)2d̄−1
, where d̄ = bd2c:

For all functions λ′ defined on A with values in the field F , if λ′ has a well-balanced extension
to Ld = T , then for all δ0, δ1, δ2 ∈ F , λ′ has a well-balanced extension λ to T , so that λ(t0) = δ0,
λ(lt0) = δ1, λ(rt0) = δ2 where t0 is the root of the tree T .

Using this lemma we will start constructing a solution of Γ′ from a solution of Γ in the
following way. From the solution of Γ we get a well-balanced function λ so that λ(t0) = δ0

and λ(lt0) + λ(rt0) = δ1. We now want to construct another well-balanced function λ′ so that
λ′(t0) = δ′0, λ′(lt0) +λ′(rt0) = δ′1 and it is compatible to the knowledge of the adversary Y, with
the assumption that the function λ′ was computed by the multiplication circuit. As we have
said the adversary Y knows very little about the value of λ(t) for t ∈ Li with i < 3d − 1. Y
may know the values of λ on a random subset of the last two levels but on this random subset
we define λ′ by λ′ = λ. According to Lemma 2 such a λ′ with high probability can be extended
into a well-balanced function λ′ with the required property λ′(t0) = δ′0, λ′(lt0) + λ′(rt0) = δ′1.

We will construct a solution of Γ′ using the function λ′. First we have to construct a function
Λ′ defined on T , whose values are m dimensional vectors over F2, with the property that the
sum of the components of Λ′(t) is λ′(t) for all t ∈ T . Moreover we have to do this in a way that
the defined vectors Λ′(t) does not contradict to the knowledge of the adversary.

We will define Λ′(t) for t ∈ Li by recursion on i. (Λ′(t0) and Λ(lt0) is the input of the circuit
in the two input blocks Λ′(rt0) = 0.) In this recursive definition the only problematic part is
the bottom level of the tree. Before that, when we split the vectors Λ(t) into random sums in
two different ways, the basic properties of the copying circuit will ensure that the recursive step
can be accomplished and at the same time the unknowns zh, for the probabilistic inputs h of
C occurring in this part of the circuit, can be evaluated in a way which is compatible to the
definition of Λ(t) and the equations in Γ′

At the two bottom levels the definition of Λ(t) is more problematic. This is the part where
the multiplication circuit computes λ(t) from Λ(t). This computation is performed on a binary
tree Tt of depth d. The problem can be that even if the node where λ(t) is computed is not
compromised, there can be so many compromised nodes in the tree Tt that the adversary will
know what is λ(t). To avoid this difficulty we include all such nodes t in the set A of Lemma 2.
Because of this inclusion we have to show that the probability, that a node t in the bottom two
levels will get into the set A, is small. The following lemma will be used for the proof of this
fact.

Lemma 17 For all ε′ > 0 and for all sufficiently small ε > 0 the following holds. Assume
that T is a binary tree of depth d and H is a subset of the leaves of the tree with at least 2d−1

20

elements. Suppose further that A is a random subset of T so that each element of T will belong
to A with a probability of at most ε, and the events t ∈ A are independent for all t ∈ T . Then
the probability that there exists a branch of T disjoint from A and containing an element of H
is at least 1− ε′.

Actually we will use a slightly stronger but more complicated version of the lemma that we
will formulate as a Corollary. We use this lemma/corollary for both for the tree Tt and for the
tree that we use when we replace the product uv ∈ F2 by a sequence of length m. The remaining
part of the multiplication circuit when we add the m3 products is easier, here as in the upper
part of the tree T the basic properties of the addition circuits are sufficient for the recursive
definition of the solution of Γ′.

3.4 Sketch of the proof of Theorem 2.

For the sake of simplicity we assume that m = O(log n). As a first step in the proof of Theorem
2, we show that it is enough to prove it in the special case, when we replace the (ε,m)-moderate
adversary with another ε-random adversary. We will call an adversary for the machine Pq,m
an ε-random adversary, if the compromised times are selected by the adversary at random in
a way that for each fixed t the probability that t is compromised is at most ε and the events
“t is compromised” for various values of t are mutually independent. An ε-random adversary
gets the same information as the (ε,m)-moderate adversary would get with the same choices of
compromised times.

Assume that the theorem holds for cε-random adversaries, for some constant c > 1, that
we will fix later. Let Q′ be the starting program of Pm,q such that Pm,q[Q′] is secure against
cε-random adversaries. We want to define the starting program Q so that Mm,q[Q] is secure
against (ε,m)-moderate adversaries. We define Q in a way that Mq[Q] simulates the machine
Mq[Q′], and so Pq,m[Q] simulates the machine Pq,m[Q′]. The simulation will simply delay each
step of Mq[Q′] by a random amount of time. More precisely before Q executes instruction
X in this simulation, Q generates a random integer g ∈ [0,m − 1] with uniform distribution,
and if g = 0, then Q executes X in the simulation of Mq[Q′] by using no more than c time
units for some constant c > 0. Otherwise, instead of executing X, it generates another random
integer g etc., till it gets a g = 0 and instruction X is executed. (The constant c may be
greater than 1 since the simulation of a single instruction in a controlled way requires several
instructions.) In an interval of length m, starting at t0, the (ε,m)-moderate adversary can have
at most εm compromised times. If these compromised times are fixed in advance then clearly the
described method as Q′ chooses the time interval J of length c when instruction X is executed,
guarantees that the probability that there is a compromised time in J is at most cε. In general
the compromised times are not fixed in advance. Our conclusion however remains true since
the adversary does not get any new information till time t1, when instruction X is executed.
Therefore the compromised times chosen by him in the interval [t0, t1] can be considered as fixed
in advance.

For the proof of Theorem 2 with an ε-random adversary we use the results of [3] and [2]
about oblivious simulation. It is proved there that every RAM M1 can be obliviously simulated
by another RAM M2 of the following structure. The memory cells of the simulating RAM
are partitioned into two sets. The first set contains cell(0), cell(1),..., cell(c) (including the

21

instruction pointer and the accumulator) where c is a constant. This will be called the CPU. The
set of remaining cells is called the memory. A program is running in the CPU, and the memory
is used only for storing and retrieving individual bits, that is, the content of each memory cell
cell(k + 1), cell(k + 2), ... is always 0 or 1. M1 and M2 are functionally equivalent, the time
and space requirements of M2 is increased, compared to M1 only by a poly(log(n)) factor, and
an adversary who knows at each time which instruction is executed in M2 and what are the
addresses of the memory cells involved in the instruction, with high probability does not gain
any nontrivial information about the input of the machine. It is an easy consequence of this
fact that the simulation of M1 can also be done by a different type of machine that we will call
a composite machine, which have the additional nice property that the adversary may also see
the contents of each memory cells in the CPU (but not in the memory) at each time. We only
give here the definition of the machine, the proof is based on the idea that each state of the
CPU of M2 can be represented in the memory and the change from such a represented state
to the next one can be performed by a sequence of boolean operations on the individual bits of
this representation. Moreover the sequence of these boolean operation is given once and for all,
it does not depend on the input of the machine. In the next section we give the complete (and
final) definition of the composite machine, and in the following section using this definition we
continue the sketch of the proof of Theorem 2.

3.5 The composite machine

The composite machine, that will be denoted by Cq,c,k, will depend on three integer parameters
q, c and k. We will assume that c > 0 is a fixed constant, q > 10, and k is sufficiently large.
The machine Cq,c,k has two parts. The first part will be denoted by M̄q,c. This will work as a
RAM Mq,c, that is, a RAM with word length q and with c memory cells, but with a special
interpretation on its input and output instructions. Namely the output and input instructions
will be used only for communication between M̄q,c and the second part of the composite machine
which will be denoted by Ak. Ak has k memory cells each containing 1 bit. We may think of
Cq,c,k as a RAM Mq,c with only c memory cells, but with a large external memory Ak containing
k bits. Mq,c through its output instruction is able to perform boolean operations on the bits
stored in Ak, and also to move individual bits inside Ak. Mq,c with its input instruction is able
to read individual bits stored in Ak.

Definition. We define a machine Ak with k memory cells x0, . . . , xk−1 each containing a
single bit of information, 0 or 1. The machine will be called a semi-RAM because it will
have instructions, but will not have a mechanism to decide which is the next instruction to be
executed. Such a decision will come always from an outside source. The machine Ak has the
instructions listed below. After the name of the instruction we describe its effect. (The last
instruction does not change the content of any of the memory cells, yet it will have a useful role
when we will simulate An with another machine.)

INPUT. The next bit of information from an input buffer, is written into the memory cell
x0.

OUTPUT. The content of memory cell x0 is given as output.
WRITE i. Assume that A is the content of cell x0. The content of cell xi is changed into

A.

22

READ i. Assume that A is the content of cell xi. The content of cell x0 is changed into A.
NEGATION. The content of cell x0 is replaced by its boolean negation.
AND. Assume that Ai is the content of cell xi for i = 0, 1. The content of cell x0 is replaced

by A0 ∧A1.
EXCLUSIVE OR. Assume that Ai is the content of cell xi for i = 0, 1. The content of cell x0

is replaced by A0 + A1 where + denotes the boolean operation “exclusive or” (or equivalently
addition in the field F2).

RANDOM. A random 0, 1 bit with uniform distribution is written into cell x0.
REFRESH. There is no change in the contents of the memory cells. ut

Remark. 1. The machine Ak does not have a way to decide which instruction will be executed.
We will define another machine, machine M̄q,c below which will make this decision.

2. The INPUT and OUTPUT instructions of Ak communicate with the outside world and
not with the machine M̄q,c.

3. The operation EXCLUSIVE OR can be easily expressed by the boolean AND and NEGA-
TION. The only reason why it is among the instructions is that later we will simulate Ak on an
Mq type machine where each bit of Ak will be represented by a 0, 1-sequence of length m. The
simulation of the EXCLUSIVE OR on Mq will be much more efficient than the simulation of
even a single AND instruction. ut

Definition. We define a machine C = Cq,c,k = 〈Ak,M̄q,c〉 which consists of two parts: a
semi-RAM Ak and a RAM M̄q,c which is a machine of the type Mq with exactly c memory
cells, but its input and output instruction work in a different way than in Mq. The machine
C will be called a composite-RAM. C works in the following way. We assume that each of the
instruction of Ak has a name represented by a natural number which can be the content of a
memory cell of M̄q,c, and so can be an output of M̄q,c. When the machine starts there is a
deterministic program P0 already in the memory of M̄q,c, which immediately starts to work.
Suppose that M̄q,c gives an output which is the name of an Ak instruction, possibly together
with a parameter. Then Ak immediately executes this instruction, and after that M̄q,c continues
its work. When M̄q,c executes an input instruction then the content of the memory cell x0 of
Ak is written immediately into cell(0) of M̄q,c and Ak executes a REFRESH instruction. The
composite machine Cq,c,k = 〈M̄q,c,Ak〉 works this way till M̄q,c executes HALT instruction when
the machine C stops. ut

Remark. 1. The memories of M̄q,c and Ak are completely separate. There is no other
information transfer between the two machine, than the ones explicitly described in the definition
of C. E.g., the outputs of Ak will not necessarily reach M̄q,c, we may think of them as outputs
to the outside word. Of course if M̄q,c needs this information it can get it using its own input
instruction which copies the content of x0 into cell(0).

2. When M̄q,c gives an output which is a name of a Ak instruction then, as we said in the
definition, the corresponding instruction is executed in Ak, however this name (or its parameter)
is not considered as an input for Ak.

3. There is no instruction of M̄q,c which writes a 0, 1-bit into a memory cell of Ak. This
however can be accomplished using other instructions. For example, the instruction sequence,
“WRITE 1, NEGATION, AND” puts a 0 into x0.ut

23

3.6 The sketch of the proof of Theorem 2 continued.

The results of [3] and [2] about oblivious simulation has the following easy consequence that we
formulate in terms of composite machines. For the sketch of this proof we give only an informal
statement.

Lemma A. (Informal statement.) For each RAM M1, with n memory cells each containing
q = O(log n) bits, there exists a composite machine C = Cq,c,k with k = O(npoly(log n)) which
is functionally equivalent to M1 (assuming here that M1 gets its input and provide its output
bit by bit) such that the following holds. Suppose that X is an adversary who knows at each
time the contents of all of the memory cells in M̄q,c and (as a consequence) which instruction is
executed in the machines M̄q,c,Ak, and which are the addresses of the memory cells involved
in these instructions, (but X does not get directly any information about the contents of the
memory cells of Ak). Then X , with high probability, will not get any nontrivial information
about the input of the machine M1.

The next step in the proof of Theorem 2 is that using Theorem 1 we simulate the composite
machine Cc,q,k on a RAMM′ = Pq,m, with n′ memory cells, where n′ = O(kpoly(log n)), which
gets the input bits in a parity encoded form with encoding sequences of length m = O(log n).
In this simulation we represent each bit b contained in a memory cell xi of Ak by a 0, 1 sequence
of length m whose parity is b, and whose elements are stored in separate memory cells. M′
preforms each instruction of M̄q,c, with the exception of output and input instructions in their
original forms which will not cause any problem since the adversary will know the contents of
the memory cells in M̄q,c anyhow. At an output instruction of M̄q,c, the machineM′ performs
the corresponding Ak instruction using the m-bit representations of the contents of the memory
cells of Ak. In the case of the instructions NEGATION, AND and “EXCLUSIVE OR”, this step
is done by M′ using the block circuits, simulated by the RAM, whose existence is guaranteed
by Theorem 1. For instructions WRITE, READ, and REFRESH the circuit C(=)

m is used. The
random instruction is simply the bit by bit randomization of a 0, 1 sequence of length m. The
INPUT instruction of Ak is simulated by M′ by making a 0, 1-sequence of length m from the
next m input bits of M′. The output instruction of Ak is simulated by M′ by giving the bits
of the sequence, representing the content of cell x0, as an output.

Finally when M̄q,c executes an INPUT instruction thenM′ adds the bits of the sequence rep-
resenting the content of x0 and writes it into cell(0) of M̄q,c and then simulates the REFRESH
instruction the same way as described above.

The definition of M′ implies that it is functionally equivalent to M1. As we have indicated
already, we apply Theorem 1 to the circuits simulated by M′. Using this and Lemma A, we
can prove that an ε-random adversary of M′, with high probability does not get any nontrivial
information about the input of M1.

4 Circuits over a finite field

In this section we assume that F is a finite field.
In the following sections we will define several concepts related to block circuits. At the end

24

of the paper we list the frequently used notations, with some hints (but not precise definitions)
to their meanings, and the pagenumber of the complete definition.

4.1 Block circuits over a finite field

We will consider circuits in this section whose gates are performing addition and multiplication
over a finite field F . For |F | = 2 we get the boolean circuits which will be the most important
special case.

Definition. func(A,B) will denote the set of all functions defined on the set A with values in
the set B

Definition. 1. Suppose that F is a finite field. A sequence from the elements of F will be
called an F -sequence.

2. Assume that F is a finite field. An F -circuit C is a pair 〈G, f〉 with the following
properties: G is an acyclic directed graph on the finite set of vertices V without loops and
multiple edges, whose edges are labelled by the elements of the set {1, 2}, so that the indegree
of each vertex is zero, one, or two. The directed graph G will be denoted by graph(C). The
set V will be also denoted by set(C) and the number of elements of V by size(C), that is,
size(C) = |set(C)|. The elements of V will be also called the nodes of C.

The source nodes of the graph G are called the input nodes of C, and the sink nodes of G
are called the output nodes of C. The set of input nodes will be denoted by inset(C) the set
of output nodes by outset(C).

f is a labeling of the set set(C)\inset(C) with the elements of the set of symbols
{+1,×(−1),+,×, }, so that the indegree of a v ∈ set(C)\inset(C) is 1 iff f(v) is the symbol
“+1” or the symbol “×(−1)”. We will say that the node v with the label f(v) is an “f(v) gate”.
Assume that v0, . . . , vk−1 are the input nodes of C and w0, . . . , wl−1 are the output nodes of C.
Suppose that δ = 〈δ0, . . . , δk−1〉 is a sequence from the elements of F . We define the output of
C at the input δ in following way:

If v ∈ set(C), let depth(v) be the maximal length of the directed paths in the graph G
ending in v. We assign a 0, 1 value χ(v) to each v ∈ set(C) by recursion on depth(v). Suppose
depth(v) = 0, then v is an input node, and so v = vi for some i = 0, 1, . . . , k − 1. By definition
χ(v) = δi. Assume that depth(v) > 0. If f(v) = “ + 1”, then χ(v) = χ(u) + 1, where u is the
unique node of G such that there is an edge pointing from u to v. If f(v) = “ × (−1)”, then
χ(v) = −χ(u), where u is the unique node of G such that there is an edge pointing from u to
v. If f(v) = “ + ” then χ(v) = χ(u1) + χ(u2), where u1, u2 is the unique pair of nodes so that
for i = 1, 2 an edge of color i is pointing from ui to v. In a similar way if f(v) = “ × ” then
χ(v) = χ(u1) × χ(u2). The output of the circuit C at δ is the sequence 〈χ(w0), . . . , χ(wl−1)〉.
The function χ will be called the evaluation function of the circuit C at input δ. If we want to
indicate the dependency of χ on C and δ we will write χ(C)

δ . Sometimes the input δ will not be
given as a sequence, but as a function, defined on the set of input nodes, with values in F .

We define a partial ordering ≤C on set(C), by “a ≤C b iff there exists a directed path in
graph(C) (possible of length 0), leading from a to b”. We will say that ≤C is the partial ordering
induced by the circuit C.

25

3. A probabilistic F -circuit C is a pair 〈C ′, R〉, where C ′ is an F -circuit and R is a subset of
the set of inputs nodes of C ′. The nodes in R will be called the probabilistic input nodes and
we will use the notation R = rand(C). The remaining input nodes will be called deterministic
input nodes and the set formed by them will be denoted by detin(C). (Therefore inset(C) =
detin(C)∪rand(C)). When the circuit computes a function f(x0, . . . , xk−1), xi ∈ F , it gets the
elements x0, . . . , xk−1 through the deterministic input nodes, so in a functional sense, these are
the only nodes which transmit the “input”. The input given through the deterministic input
nodes will be called the deterministic input. The probabilistic input nodes will provide random
values which are used for making probabilistic computations with the circuit. We get the
output of the probabilistic circuit C = 〈C ′, R〉 at a given deterministic input in the following
way. For each w ∈ rand(C), let νw be a random variable which takes its values with uniform
distribution in F . We randomize νw independently for all w ∈ rand(C). Now we consider the
F -circuit C ′ so that its input on detin(C) is the same as the input of C and its input on the
input node w is νw for all w ∈ rand(C). The output of C ′ with this input will be the output of
C. Therefore the output of a probabilistic circuit C at a given input is a random variable. ut

Definition. Assume that m,n are positive integers and C is a probabilistic F -circuit, so that
detin(C) is partitioned into sets I0, . . . , Ik−1 of size m, and the set of the output nodes of C
is partitioned into sets T0, . . . , Tl−1 of size n. Then the circuit C, together with the partitions
described above, will be called a probabilistic block F -circuit of type ((m,n), k, l). If m = n
then we will also say that C is of type (m, k, l). We will always assume that a linear ordering of
each input block and output block is fixed. If we say that the input on block Ij is a0, ..., am−1,
then we assume that a0 is assigned the first element of Ij according this ordering, a1 to the
second element etc. ut

Definition. Suppose that W = 〈W0, ...,Ws−1〉 is a finite sequence of pairwise disjoint sets each
containing exactly m elements and a ∈ func(W̄ , F) where W̄ =

⋃s−1
i=0 Wi. hW (a) will denote the

sequence of length s, whose ith element is
∑
x∈Wi

a(x). If W = 〈I0, ..., Ik−1〉 is the sequence of
input blocks of the block F -circuit C, and a is the deterministic input of C, then the sequence
hW (a) is called the block input of the circuit C at input a. Assume now that g is the restriction
of the evaluation function χ

(C)
a to the set

⋃l−1
i=0 Ti, where W = 〈T0, ..., Tl−1〉 is the sequence of

output blocks of the block F -circuit C. Then the sequence hW (g), is called the block output of
the circuit C. ut

4.2 The theorem about private F -circuits

Definition. 1. Assume that the probabilistic F -circuit C has k deterministic input nodes
and l output nodes, where F is a finite field. Then C computes a random function, that is, for
each x ∈ F k, by evaluating C we determine the value of a random variable ξx,C = ξ

(F)
x,c which

takes its values in F l. The randomness of ξx,C comes from the probabilistic inputs of C.
2. Assume now that C is a probabilistic block F -circuit with input blocks I0, ..., Ik−1 output

blocks T0, ..., Tl−1 and with blocksize m.
For each a = 〈a0, ..., ak−1〉 ∈ F k we define a random variable ηa,C in the following way. First

we select km random elements of F , ai,j , i = 0, 1, ..., k−1, j = 0, 1, ...,m−1 independently, with

26

uniform distribution on F and with the condition that
∑m−1
j=0 ai,j = ai for i = 0, 1, ...,m − 1.

We call this step the preprocessing.
Then we place the elements ai,0, ..., ai,m−1 at the input nodes in Ii in this order, for i =

0, 1, ..., k − 1. After that the probabilistic F -circuit C is evaluated, and we get ml output
elements bi,j , i = 0, 1, ...,m − 1, j = 0, 1, ..., l − 1, where the elements bi,j , j = 0, 1, ...,m − 1
appear on the output nodes in Ti in this order, for i = 0, 1, ..., l − 1. The elements b0, ..., bl−1

are defined by bi =
∑m−1
j=0 bi,j . The computation of these sums is called the postprocessing. The

value of the random variable ηa,C is the vector b = 〈b0, ..., bl−1〉. a = 〈a0, ..., ak−1〉 will be called
the original input of C and b = 〈b0, ..., bl−1〉 will be called the original output of C (referring to
the motivation that the role of the block circuit C will be to simulate an F -circuit with input
a and output b.) according to our earlier definition, we may also refer to the original input as
the block input, and refer to the original output as the block output.

3. Assume that C is an F -circuit and X ⊆ set(C). full(X) will denote the set of all nodes
a of C so that either a ∈ X or there is and edge pointing from a to and element of x. That is,
full(X) contains the gates in X and all of the gates that produce their inputs.

4. Assume that 〈C, 〈I0, ..., Ik−1〉, 〈T0, ..., Tl−1〉〉 is a block circuit with block size m and ε > 0.
We define an adversary who is observing the computation done by C, that is, the computation
of a value of the random variable ηa,C for some a, and tries to get some information about the
pair 〈a, b〉. We will call the adversary an ε-random adversary if the information reaching him is
determined in the following way.

Each element of set(C), is declared compromised with a probability of ε so that all of
these decisions are mutually independent and also independent from the probabilistic inputs of
the circuit C and the randomizations during the preprocessing. Assume that X is the set of
compromised elements. The adversary gets all of the values on the elements of full(X) that
we get during the evaluation of the circuit C. More precisely the adversary gets the set W of all
pairs 〈w,χC(w)〉, where w ∈ X. For each fixed a ∈ F k, and b ∈ F l, the conditional distribution
of W determined by the computation of the value of the random variable ηa,C and the selections
of the compromised gates, with the condition that ηa,C = b, will be denoted by Φ(ε,C)

a,b . We will
say that the block circuit C is (ε, p)-secure if, with a probability of at least 1− p, the ε-random
adversary does not gain any information about pair 〈a, b〉 where a, b are the original input and
output. That is, C is (ε, p)-secure if for each a ∈ F k, there exists an event Aa with respect
to all of the randomizations, such that prob(Aa) ≥ 1 − p, and the conditional distribution of
Φ(ε,C)
a,b with the condition Aa, does not depend on the values of a and b. (We may think that
¬Aa is a small probability event describing a situation when we do not state anything about the
knowledge of the adversary.)

Assume now that C is a probabilistic F -circuit with k deterministic inputs and l outputs,
which computes a value of the random variable ξa,C at input a, and C is a block F -circuit
with k input blocks, l output blocks, and blocksize m which, together with preprocessing and
postprocessing computes a value of the random variable ηa,C at original input a. We will say
that the F -circuit C and the block F -circuit C are functionally equivalent if for each a ∈ F k the
random variables ξa,C and ηa,C have identical distributions. ut

The following theorem is a generalization of Theorem 1 in the sense that it speaks about
F circuits and block F -circuits over an arbitrary finite field F while Theorem 1 is only about the

27

boolean, tha is, F2 case. Note that the choices of the constants ε, c, c1, c2 do not depend on the
field F ,

Theorem 3 There exist ε > 0, c > 0, c1 > 0, c2 > 0, such that if m, k, l are positive integers,
m ≥ 2, F is a finite field and C is a probabilistic F -circuit with k deterministic input nodes and
l output nodes, then there exists a block F -circuit C with k input blocks, l output blocks and with
block size m, such that, (i) C and C are functionally equivalent, (ii) |C| ≤ c1m

4|C|, and (iii) C
is (ε, p)-secure, where p = e−cm|C|.

Moreover, C can be constructed from C in time mc2 |C|.

Remark. 1. It is possible to show, with minor modifications of the proof, that for each
fixed ε1 > 0, the upper bound |C| ≤ c1m

4|C| can be replaced by |C| ≤ c1m
3+ε1 |C|.

4.3 (θ, ε, p)-cylindrical circuits

Definition. 1. Assume that W = 〈W0, ...,Ws−1〉 is a finite sequence of pairwise disjoint
finite sets and F is a finite field. The set of all sequences f = 〈f0, f1, ..., fs−1〉 such that fi =
func(Wi, F) will be denoted by seq(W,F). For such a sequence f and for all i = 0, 1, ..., s− 1
we define an element hW (f, i) ∈ F by hW (f, i) =

∑
x∈Wi

fi(x).
If W = 〈W0, ...,Ws−1〉 is the input/output block sequence of an F -circuit C, we will consider

the deterministic input g, which is in func(W,F), also as the sequence 〈g|W0 , ..., g|W0〉. If it does
not cause any misunderstanding we will denote this sequence also by g.

2. Assume that A ⊆ B are finite sets, F is a finite field, u ∈ F , and f ∈ func(A,F). Then
the set of all functions g ∈ func(B,F) with

∑
x∈B g(x) = u and f ⊆ g, will be denoted by

extensionF (f,B, u).

Definition. In the following if we say that H is a probability distribution on the finite set
X, then we will assume that H is a measure defined on the set of all subsets of X, so that
H(X) = 1. Sometimes will write probH(Y) instead of H(Y). ut
Definition. Let W = 〈W0, ...,Ws−1〉 be a finite sequence of pairwise disjoint finite sets, each
containing exactly m elements, and let ξ = 〈ξ0, ..., ξs−1〉 be a random variable so that each value
of ξ is an element of seq(W,F) where F is a finite field. Suppose that θ ∈ (0, 1). We say that
the random variable ξ is θ-cylindrical (or its distribution H is θ-cylindrical) with respect to W
and F , if there exists an Y ⊆ W̄ =

⋃s−1
i=0 Wi and a function f ∈ func(Y, F) with the following

properties:
(a) | Y ∩Wi | ≤ θm for all i = 0, 1, . . . , s− 1,
(b) Assume that a = 〈a0, ..., as−1〉 ∈ seq(W,F), and prob(ξ = a) > 0. Then for all x ∈ Y ,

and i = 0, 1, ..., s− 1, we have ai(x) = f(x).
(c) Assume that g ∈ func({0, 1, ..., s− 1}, F) such that prob(Ag) > 0, where Ag is the event

∀i ∈ [0, s−1],
∑
x∈Wi

ξi = g(i). Then the random variables ξ0, ..., ξs−1 with the condition Ag are
mutually independent, and with this condition, for each i = 0, 1, ..., s − 1, the random variable
ξi has uniform distribution on extensionF (fi,Wi, g(i)), where fi = f |Wi∩Y .

A function f with the described properties will be called a handle of the random variable ξ
(or its distribution H), and the corresponding set Y = domain(f) will be called a base set of ξ
(or of H). ut

28

Definition. 1. Assume that C is a probabilistic block F -circuit with the input blocks
I0, ..., Ik−1, and H is a probability distribution on func(detin(C), F). We define a proba-
bility distribution ext(H) on func(inset(C), F) which will be called the natural extension of
H onto func(inset(C), F). We get a random function g with distribution ext(H), if we first
pick a random g′ defined on detin(C) with distribution H and then extend it into a function
with values in F and defined on inset(C), so that all of the possible extensions have the same
probability. g′ is the extended function.

2. If b is an input for C, that is, a function with values in F defined on inset(C), then
DET(b) will denote the restriction of b to detin(C). ut

Definition. 1. Assume that C is a probabilistic block F -circuit, H is a probability distribution
on func(detin(C), F), f is a function defined on a set X ⊆ set(C) with values in F , and we
pick a random input (both deterministic and probabilistic) b for C with distribution ext(H).
If prob(∀x ∈ X,χ(C)

b (x) = f(x)) > 0, then we say that the function f is compatible with the
distribution H.

2. Suppose that the function f defined on the set X ⊆ set(C) is compatible with the
distribution H, and we pick a random input b with distribution ext(H). The conditional
distribution of the output of C with the condition ∀x ∈ X,χ(C)

b (x) = f(x) will be denoted by
condoutput(H, f). The distribution of DET(b) with the condition ∀x ∈ X,χ(C)

a (x) = f(x) will be
denoted by conddetin(H, f). ut

Remark. This last definition is motivated by the fact that if an adversary knows the function
f and knows that χ(C)

b (x) = f(x) for all x ∈ X and that the distribution of the deterministic
input was H, then from the point of view of the adversary, that is, conditioned by the adversary’s
knowledge, the distribution of the deterministic input will be conddetin(H, f), and the analogue
statement holds for the output. ut

Proposition 1 Suppose that m is a positive integer, 0 < θ < 1
2 , and ξ = 〈ξ0, ..., ξs−1〉 is a

θ-cylindrical random variable with respect to W and F , where F is a finite field and W =
〈W0, ...,Ws−1〉 is a finite sequence of pairwise disjoint sets, each containing exactly m elements.
Then H has a unique handle and a unique base set.

Proof. The definition of a θ-cylindrical random variable ξ states that ξ has a handle and
a base set. We have to prove only their uniqueness. Let ξ̄ be the unique joint extensions of
the functions ξ0, ..., ξs−1 to the set W̄ =

⋃s−1
i=0 Wi. First we note that if there is only a single

base set Y then property (b) of the definition of an θ-cylindrical distribution implies that for all
handles f, g of H, f and g are identical on Y and domain(f) = domain(g), consequently f = g.
Therefore it is sufficient to prove the uniqueness of the base set. Suppose that h ∈ func(Z,F)
where Z is a subset of W̄ . In the proof below we will say that h is ξ-positive if it has an extension
a onto W̄ so that prob(ξ̄ = a) > 0.

Assume that contrary to our statement, Y and Y ′ are base sets of ξ and Y ′\Y 6= ∅ and f
is a handle of H with domain(f) = Y . Clearly f is ξ-positive. |Y ∩Wi| ≤ θm < m

2 for all
i = 0, 1, ...,m− 1, therefore property (c) of the definition of a θ-cylindrical distribution implies
that all of the extensions g ∈ func(Y ∪ Y ′, F) of f are also ξ-positive. (This is a consequence
of the fact that |Ti ∩ Y ∪ Y ′| < m an so such a function g can be extended to a function

29

g′ ∈ func(W̄ , F) so that hW (g′, i) as a function of i can be arbitrary.) Since |F | ≥ 2 this
implies that there exist two distinct ξ-positive extensions g0, g1 of F onto Y ∪ Y ′. Since g0, g1

are identical to f on Y their restrictions g′0, g
′
1 to Y ′ must be distinct. We got that there are two

distinct ξ-positive functions g′0, g
′
1 defined on the same base set Y ′. This however contradicts

property (b) of the definition of a θ-cylindrical distribution. Q.E.D.(Proposition 1)

Proposition 2 Suppose that m is a positive integer, 0 < θ < 1
2 , η is a random variable taking

its values in the finite set A, and for all a ∈ A, ξ(a) is a θ-cylindrical random variable to W
and F , where F is a finite field and W = 〈W0, ...,Ws−1〉 is a finite sequence of pairwise disjoint
sets, each containing exactly m elements. Assume further that all of the random variables ξa,
a ∈ A has the same base set B and the same handle f . Let ξ be a random variable defined in
the following way. To select a random value of ξ first we choose a random value “a” of η then
a random value b of ξ(a). The element b is the random value of ξ. In other words ξ = ξη. Then
ξ is a θ-cylindrical random variable with base set B and handle f .

Proof. We have to show that the random variable ξ satisfies conditions (a), (b), (c) of the
definition of a θ-cylindrical distribution. We will use the uniqueness of the base set and the
handle, proved in Proposition 1, of the distribution ξa, a ∈ A. Condition (a) is clearly satisfied
since it holds for each distribution ξa.

Condition (b). Let ξ̄ = ξ0 ∪ ... ∪ ξs−1 and assume that prob(ξ = 〈a0, ..., as−1〉) > 0. Then,
by the definition of ξ, there exists a b ∈ A such that prob(ξ(b) = 〈a0, ..., as−1〉) > 0. Since
condition (b) holds for the random variable ξb, we have that for all x ∈ B ∩Wi, ai(x) = f(x)
for i = 0, 1, ..., s− 1.

Condition (c) is an immediate consequence of the fact that it holds separately for each fixed
random variable ξ(a), a ∈ A with the same base set and handle. Q.E.D.(Proposition 2)

Proposition 3 Suppose that m is a positive integer, 0 < θ < 1
2 , ξ = 〈ξ0, ..., ξs−1〉 is

a θ-cylindrical random variable with respect to W and F , where F is a finite field and
W = 〈W0, ...,Ws−1〉 is a finite sequence of pairwise disjoint sets, each containing exactly m
elements. Assume further that , π is a permutation of the set 0, 1, ..., s − 1 and W (π =
〈Wπ(0)),Wπ(1), ...,Wπ(s−1)〉. Let ξ(π) be the random variable defined by ξ(π) = 〈ξπ(0), ..., ξπ(s−1)〉.
Then ξ(π) is a θ cylindrical distribution with respect to W (π) and F .

Proof. Since the conditions of the definition of θ-cylindricity do not depend on the order of
the elements of the sequence 〈W0, ...,Ws−1〉, the statement of the proposition is an immediate
consequence of that definition. Q.E.D.(Proposition 3)

Proposition 4 Suppose that m is a positive integer, 0 < θ < 1
2 , W = 〈W0, ...,Ws−1〉, where Wi,

i = 0, 1, ..., s − 1, are pairwise disjoint finite sets each with m elements, and ξ = 〈ξ0, ..., ξs−1〉
is a random variable with θ-cylindrical distribution. Assume further that i ∈ {0, 1, ..., s − 1},
aj ∈ func(Wj , F) for all j = 0, 1, ..., i − 1, and prob(ξ0 = a0 ∧ ... ∧ ξj = aj) > 0. Then the
conditional distribution of the sequence 〈ξi, ξi+1, ..., ξs−1〉 with the condition ξ0 = a0, ..., ξi−1 =
ai−1 is θ-cylindrical with respect to 〈Wi,Wi+1, ...,Ws−1〉 and F .

30

Proof. We claim that if B is the base set and f is the handle of the of the random variable ξ
and W ′ =

⋃s−1
j=i Wi then B ∩W ′ is the base set and f |W ′ is the handle of the mentioned condi-

tional distribution of the random variable 〈ξi, ..., ξi〉. Conditions (a), (b), and (c) are immediate
consequence of the corresponding conditions for the random variable ξ. Q.E.D.(Proposition 4)

We define now a set of adversaries for a block circuit C who will be stronger than an ε-
random adversary, in the sense that they will have at least as much information as the ε-random
adversary. The advantage of the newly defined adversaries will be that their knowledge of the
output of the circuit can be described more easily than for an arbitrary ε-random adversary.

Definition. 1. The set of all subsets of the set X will be denoted by pow(X).
2. Suppose that A is a finite set. We will say that a randomly chosen set X is an ε-random

subset of A if for each a ∈ A we have prob(a ∈ X) = ε, and the various events a ∈ X, for a ∈ A
are mutually independent.

3. Assume that, C is a probabilistic block F -circuit. A selection function of C is a function
S in func(pow(set(C)), pow(set(C))).

Definition. We assume that C is a probabilistic block F -circuit, and its deterministic input
arrives with a θ-cylindrical distribution H defined on func(detin(C), F) for some θ > 0. We
define an adversary against the circuit C. This adversary will be uniquely determined by the
real ε > 0 and a selection function S and will be denoted by advC(ε,S). The adversary will
be called the ε-random adversary with selection function S. The adversary Y = advC(ε,S)
gets the following information while the circuit is evaluated at input a, which was selected with
distribution H:

(9) the base BH and the handle fH of distribution H,

(10) an ε-random subset set X of set(C) is chosen, then Y gets the set V = {〈w,χ(C)
a (w)〉 |

w ∈ full(X ∪ S(X))}. That is, Y gets the evaluation values at each node in full(X ∪ S(X))
at input a.

This completes the description of the adversary Y. The random set X in condition (10) will
be called the ε-random subset of the adversary. The triplet Z = 〈V,BH , fH〉 is the knowledge
acquired by the adversary Y during the evaluation of the F -circuit C.

For each adversary Y = advC(ε,S) we define another adversary Y+ = adv+
C(ε,S). Y+ gets

all the information that reaches Y, and Y+ also gets each element of the deterministic input,
that is, an F -valued function a defined on detin(C) so that for each a ∈ detin(C), a(x) is the
input at the input node x. Therefore the knowledge of the adversary Y+ is the quadruplet
Z = 〈V,BH , fH , a〉.

Assume that ξ is an arbitrary random variable. For a fixed distribution H of the input,
the knowledge Z of the adversary X , where X = Y or X = Y+, is a random variable. The
distribution of ξ from the point of view of the adversary X with knowledge Z0 is defined as the
conditional distribution of ξ with the condition Z = Z0. ut

The definition of the adversary Y+ seems pointless, since Y+ knows the complete determin-
istic input so we may think that there is nothing to hide from Y+. This is not completely true
since Y+ may not know all of the probabilistic inputs of C. The adversary Y+ will be used to

31

speak about the randomness in the output of the circuit C which is coming from its random
inputs.

For the next definitions recall, that if C is a block F -circuit with k input blocks I0, ..., Ik−1

with blocksizes m, and on block Ij the input values are ai,j , j = 0, 1, ...,m − 1, then the
original input or block input is defined as the sequence 〈

∑m−1
j=0 a0,j , . . .

∑m−1
j=0 ak−1,j〉. Sometimes

we will consider this sequence as a function g defined on the set {0, 1, ..., k − 1} such that
g(i) =

∑m−1
j=0 ai,j .

Definition. 1. Suppose that H1, H2 are θ-cylindrical distributions with respect to W , F ,
where W = 〈W0, ...,Ws−1〉 is a finite sequence of finite sets, and F is a finite field. We will say
that H1 and H2 are similar if they have the same base set and the same handle.

2. Assume that ξ = 〈ξ0, ..., ξs−1〉 is a θ-cylindrical random variable with respect to W =
〈W0, ...,Ws−1〉 and F . ξ is called pure, if there exists a g ∈ func({1, ..., s − 1}) such that for
all sequences a = 〈a0, ..., as−1〉 with ai ∈ func(Wi, F), we have that prob(ξ = a) > 0 implies
hW (a, i) = g(i) for i = 0, 1, ..., s− 1.

Remark. Assume that the sequence W0, ...,Wi−1 is the sequence of input blocks of a block
F -circuit C. Then ξ is pure iff there is only one possible block input (i.e., original input) such
that the value of ξ has this block input with a positive probability.

Definition. 1. Assume that θ > 0, W = 〈W0, ...,Ws−1〉, is a sequence of finite sets with
|Wi| = m, for i = 0, 1, ..., s− 1. Then the set of all functions f such that domain(f) ⊆

⋃s−1
i=0 Wi,

range(f) ⊆ F and |domain(f)∩Wi| ≤ θm for i = 0, 1, ..., s− 1 will be denoted by funcθ(W,F).
2. Assume that X is an adversary for a block F -circuit C. If the deterministic input of the

circuit C is arriving with distribution H then the distribution of the knowledge of the adversary
X will be denoted DX ,H . Let Y = advC(ε,S) be an ε-random adversary, and let X ⊆ set(C).
The conditional distribution of the knowledge of the adversary Y with the condition that the
ε-random subset that Y is using is the set X, will be denoted by DY,H,X , where the input is
arriving with distribution H.

3. Assume that θ > 0, ε > 0, p ∈ [0, 1] and Y = advC(ε,S) is an ε-random adversary with
selection function S for a probabilistic block F -circuit C with block size m and input block
sequence I = 〈I0, ..., Ik−1〉. The adversary Y is called a (θ, ε, p)-cylindrical adversary, if for all
function f ∈ funcθ(I, F) we have that with a probability of at least 1 − p, with respect to the
randomization of the ε-random set X used by Y, the following two conditions are satisfied:

(11) for each fixed deterministic input of the circuit C the corresponding output, from the
point of view of adversary Y+ = adv+

C(ε,S), has a θ-cylindrical distribution, with base set
(X ∪ S(X)) ∩

⋃l−1
i=0 Ti, with respect to the sequence of all output blocks 〈T0, T1, ..., Tl−1〉 and F .

(12) Suppose that H0, H1 are similar and pure θ-cylindrical distributions for the deterministic
input of C whose common handle is f . Then DY,H0,X = DY,H1,X .

A set X satisfying conditions (11) and (12) will be called an acceptable set with respect to
adversary Y and handle f . ut

Proposition 5 Condition (11), in the definition of a (θ, ε, p)-cylindrical adversary, implies that
the following condition is also satisfied by such an adversary.

32

(13) if the input is arriving with a θ-cylindrical distribution H then the distribution of the
output, from the point of view of adversary Y = advC(ε,S), is θ-cylindrical with base set S(X)∩⋃l−1
i=0 Ti.

Moreover condition (12) of the definition is equivalent to the following condition, (where the
assumption “Hi is pure” is omitted form condition (12)):

(14) Suppose that H0, H1 are similar θ-cylindrical distributions for the deterministic input of
C. Then DY,H0,X = DY,H1,X .

Proof. The second statement of the proposition is an immediate consequence of the fact
that an arbitrary θ-cylindrical distribution H is a mixture of pure θ-cylindrical distributions
Hα, α ∈ A with the same base sets and handles.

For the proof of the first statement we use this fact as well. From the point of view of
the adversary Y if the input arrived with distribution Hα then the output of circuit C has θ-
cylindrical distribution Gα with base B and handle f . Since B is determined by the function S
and f is determined by the values of the output of C on the set B, which is known to Y, we get
that B and f from the point of view of the adversary Y does not depend on α. Therefore for
all α ∈ A the distributions of the output, from the point of view of Y, and with the condition
that the input came with distribution Hα, are θ-cylindrical with the same base set and handle.
Consequently Proposition 2 implies that if the input comes with distribution the θ-cylindrical
distribution H, then the distribution of the output is θ-cylindrical from the point of view of Y.
Q.E.D.(Proposition 5)

Definition. Assume that θ > 0, ε > 0, p ∈ [0, 1] and C is a probabilistic block F -circuit. We
will say that C is a (θ, ε, p)-cylindrical circuit, if there exists a selection function S, such that
Y = adv(θ, ε,S) is (θ, ε, p)-cylindrical adversary for the circuit C. In this case we will also say
that C is a cylindrical circuit with concentration θ, leak probability ε, and error probability p.
ut

The motivation for the definition of an (θ, ε, p)-cylindrical circuit is the following. Assume
that an ε-random adversary is watching the circuit. We want to construct circuits which can
serve as secure components of a larger circuit. That is, we want to define a secure circuit so
that if a larger circuit is put together from several secure circuits then the adversary, with high
probability, will not gain any information about the original input. We claim that “(θ, ε, p)-
cylindrical circuits” can play the role of “secure circuits” if p is small.

Definition. Assume that C is a probabilistic block F -circuit. Let H = inset(C). If h ∈ H
then we associate with H an indeterminate zh. For each node a of C we define a polynomial
pa ∈ F [zh | h ∈ H]. We define pa by recursion on the depth of a in the same way as we have
defined the evaluation function χ of a circuit. Namely for each input node a, we have pa = za.
Assume that a is not an input node, the indegree of a is one, a is labelled with “+1”, and there
is an edge pointing from u to a. Then pa = pu + 1. In a similar way if a is labelled by ×(−1),
then pa = −pu. Suppose now that the indegree of a is 2 and u0, u1 are distinct nodes so that
there is an edge pointing from ui to a for i = 0, 1. Then according to whether the label of a is
+, or ×, we have pa = pu0 + pu1 , or pa = pu0 × pu1 .

33

The polynomials pa, a ∈ set(C) will be called the evaluating polynomials of the F -circuit
C.

Assume that I0, . . . , Ik−1 are the input blocks of the block F -circuit C and T0, . . . , Tl−1 are the
output blocks of the block F -circuit C of type ((n,m), k, l). We define polynomials P0, . . . , Pk−1

and Q0, . . . , Ql−1 by Pj =
∑
h∈Ij ph =

∑
h∈Ij zh for j = 0, 1, . . . , k − 1, and Qj =

∑
a∈Tj pa,

j = 0, 1, . . . , l− 1. P0, . . . , Pk−1 will be called the input block polynomials and Q0, . . . , Ql−1 the
output block polynomials. ut

Definition. Assume that f, g are elements of the polynomial ring F [z0, . . . , zr−1], where F is
a field. We will say that f and g are functionally equivalent over F , and we will write f ≡F g,
if for all a0, .., ar−1 ∈ F , we have f(a0, . . . , ar−1) = g(a0, . . . , ar−1). Since a field F is fixed in
the remaining part of the paper, “f is functionally equivalent to g” or f ≡ g will mean that f
is functionally equivalent to g over the field F that we have fixed. ut

Definition. Assume that F0(x0, . . . , xk−1), . . . , Fl−1(x0, . . . , xk−1) are polynomials over the
field F . We say that the probabilistic block F -circuit C of type ((m,n), k, l) computes the
polynomials F0, . . . , Fl−1 , if the following holds. For all i = 0, 1, . . . , l−1, Fi(P0, . . . , Pk−1) ≡ Qi,
where P0, . . . , Pk−1, Q0, . . . , Ql−1 are the block polynomials of C. ut

Definition. a� b1, ..., bk will mean “a is sufficiently small with respect to b1, ..., bk. ut

Lemma 3 Assume that the reals ε, c, θ are chosen so that 0 < ε � c � θ � 1, the integer m
is sufficiently large, and F is a finite field. Then there exist probabilistic block F -circuits C(m)

i ,
for i = 0, 1, 2, 3, 4, 5, 6, 7 with the following properties:

(15) for i = 0, 1, 2, 3, 4, 5, 6.7, C(m)
i is of polynomial size in m, and graph(Ci)(m), with its

labeling, can be computed in time polynomial in m,

(16) for i = 0, 1, 2, 3, 4, 5, 6, 7, the circuit C(m)
i is (θ, ε, p)-cylindrical, where p = e−cm,

(17) C
(m)
0 is of type ((m,m), 1, 1) and computes the polynomial x0

(18) C
(m)
1 is of type ((m,m), 1, 2) and computes the polynomials x0, x0

(19) C
(m)
2 is of type ((m,m), 1, 1) and computes the polynomial 1 + x0

(20) C
(m)
3 is of type ((m,m), 1, 1) and computes the polynomial −x0

(21) C
(m)
4 is of type ((m,m,), 2, 2) and computes the polynomials x0, x0x1

(22) C
(m)
5 is of type ((m,m,), 2, 1) and computes the polynomial x0x1

(23) C
(m)
6 is of type ((m,m,), 2, 2) and computes the polynomials x0, x0 + x1

(24) C
(m)
7 is of type ((m,m,), 2, 1) and computes the polynomials x0 + x1

34

(25) for i = 0, 1, 2, 3, the outdegree of each node of graph(C(m)
i) remains below an absolute

constant.

We will prove this lemma in the following sections.

Remark. We use Lemma 3 for the proof of Theorem 3. Statements (23) and (25) are not
needed for this proof we will use them in the proofs about leak resistant RAMs.

Lemma 4 Lemma 3 implies Theorem 3.

Proof. For the sake of simplicity we prove the lemma first in the special case when the
F -circuit C has no probabilistic input. The proof of the general case can be obtained from this
proof with minor modifications as we will indicate later. (This is only an assumption about the
circuit C, the block circuit C whose existence is stated in the theorem will be probabilistic.)
Assume that the statement of Lemma 3 is true and an F -circuit C without probabilistic inputs
is given with the properties described in the assumptions of Theorem 3. For the proof of this
theorem we allow in C an identity gate also called an = gate whose output is the same as its
input. If we allow this in C then we may assume without the loss of generality that all of the =
gates in C have fan-out 1 or 2, all other gates in C have fan-outs exactly 1, and the input nodes
also have fan-outs exactly 1. We may also assume without the loss of generality that the output
of each deterministic input node is the input of an = gate, that is, the deterministic inputs are
simply copied before used. This last assumption will make possible to avoid exceptional cases
in our inductive proof. The part of the circuit C consisting of detin(C) the set of deterministic
input nodes of C and those nodes of C who get their input from detin(C) will be denoted by C0.
Clearly |C0| = 2|detin(C)|.

Our assumption about the F -circuit C implies that there exists a sequencence of F -circuits
C0, ..., Ct, such that for each i = 0, 1, ..., t, set(Ci) is an upward closed subset of set(C) with
respect to ≤C (recall that the input nodes are the maximal elements of ≤C) and whose edges
and labeling are inherited from C, and the following conditions are satisfied:

(26) C0 is the circuit containing the input nodes and the nodes immediately below them, as
defined above.

(27) set(Ci) ⊂ set(Ci+1) for i = 0, 1, ..., t− 1, and Ct = C,

(28) for all i = 0, 1, ..., t− 1, 1 ≤ |set(Ci+1)\set(Ci)| ≤ 2,

(29) for all i = 0, 1, ..., t − 1, |set(Ci+1)\set(Ci)| = 2, implies that the two elements of
set(Ci+1)\set(Ci) are equality gates which get their inputs from the same node of Ci,

(30) for all i = 0, 1, ..., t− 1, |set(Ci+1)\set(Ci)| = 1, implies that if a ∈ set(Ci+1)\set(Ci) is
an equality gate whose input comes from the node b ∈ Ci, then the fan-out of b in C is 1.

Such a sequence C0, ..., Ci, ..., Ct can be easily constructed by recursion on i. The definition
of C0 is given in condition (26). If C0, ..., Ci are already given with the required properties then
let a be a maximal element in the partial orders set ≤C which is not in Ci. If a is not an equality

35

gate then set(Ci+1) = set(Ci) ∪ {a}. Assume that a is an = gate and gets its input from the
node b ∈ set(Ci). If the fanout of b is one then set(Ci+1) = set(Ci) ∪ {a}. If the fanout of b
is 2 then let a′ 6= a be the other node of C which gets its input from b. We claim that a′ /∈ Ci.
Assume that contrary to our statement a′ ∈ Ci. Let j be the smallest nonnegative integer with
a′ ∈ Cj . Since b is an equality gate with fan-out 2 and a′ < b we have that j ≥ 1. We got a /∈ Cj
and a′ ∈ Cj\Cj−1 and a, a′ are both equality gates getting their input from b. This howerver
constradicts to condition (30) of the inductive assumption. Therefore a′ /∈ Ci. We define Ci+1

by Ci+1 = Ci ∪ {a, a′}.
We construct the probabilistic block F -circuit C in the following way. Assume that the input

nodes of C are a0, ..., ar−1. We replace each input node ai of C with an input block Ii consisting
of m elements. Then we replace each gate of C by a copy of a block circuit whose existence
is guaranteed by Lemma 3 according to the following rules: for = gates with fan-out 1 we use
C

(m)
0 , for = gates with fan-out 2 we use C(m)

1 , for +1 gates we use C(m)
2 , for ×(−1) we use C(m)

3 ,
for × gates we use C(m)

5 , and for + gates we use C(m)
7 . We assume that the copies of the circuits

used for these replacements are pairwise disjoint. Assume that the gate x was replaced by the
circuit G(x). If x, y are nodes of C and the ith output of the y is the jth input of x then we
identify the ith output block of y with the jth input block of x. We extend this rule for the
case when y is an input node of C. (Since the fan-out of each gate is at most the number of
output blocks of the corresponding block circuit, we identify with each input/output element of
a gate with at most one other element, that is, the identification does not extend because of the
transitivity of equality.) This completes the definition of the circuit C. For each i = 0, 1, ..., t,
Ci will denote the block F -circuit that we get from the F -circuit Ci with this construction.

By Lemma 3, each circuit that we have used in this construction is functionally equivalent
to the gate replaced by it. Consequently the block F -circuit Ci is functionally equivalent to the
F -circuit Ci for i = 0, 1, ..., t. We show by induction on i that

(31) for all i = 0, 1, ..., t the block F -circuit Ci is (θ, ε, p′)-cylindrical where p′ = |Ci|e−cm.

i = 0. recall that C0 is defined by condition (26). If the input nodes of the circuit C are
a0, ..., ar−1 then C0 consists of r pairwise disjoint blockcircuits D0, ..., Dr−1, such that each of
them is a copy of C(m)

0 . To show that C0 is (θ, ε, p)-cylindrical with p = |C0|e−cm, we have
to show that there exists an (θ, ε, p)-cylindrical adversary Y for C0. For the definition such an
adversary Y we have to define its selection function S. According to Lemma 3, each block circuit
Di is (θ, ε, e−cm)-cylindrical so it has an (θ, ε, e−cm)-cylindrical adversary Yi whose selection
function will be denoted by Si for i = 0, 1, ..., r − 1. The selection function S is defined in the
following way: for all X ⊆ set(C0), S(X) =

⋃r−1
i=0 Si(X ∩ set(Di)).

We show that the adversary Y defined this way satisfies the conditions of (θ, ε, |C0|e−cm)-
cylindricity. First we choose an ε-random subset X of set(C0). Lemma 3 implies that for each
fixed i = 0, 1, ..., r−1 with a probability of at least 1−e−cm the set X∩set(Di) is an acceptable
set with respect to adversary Yi, that is, it satisfies conditions (11), (12) of the definition of
(θ, ε, e−cm)-cylindricity for the circuit Di. We claim that

(32) if for all i = 0, 1, ..., r − 1, the sets X ∩Di are acceptable with respect to Yi, then the set
X is acceptable with respect to Y.

36

Since X ∩ set(Di), will be acceptable for all i = 0, 1, ..., r − 1, the probability that the
assumption of condition (32) is true is at least. 1− re−cm. Consequently condition (32) implies
that C0 has a (θ, ε, |C0|e−cm)-cylindrical adversary.

For the proof of condition (32) assume that X ∩Di is acceptable for i = 0, 1, ..., r − 1. We
have to show that X is acceptable as well, that is, conditions (11) and (12) are satisfied by X
and C0.

Condition (11) for X and C0. By the definition of Y+ we may assume that the input of circuit
C0 is fixed and consider the distribution of the output of C0 conditioned with the knowledge
of the adversary which includes the input and the evaluation values of the circuit on the set
full(X ∪ S(X)).

We know that the output of the circuit Di has θ-cylindrical distribution from the point of
view of Y+. Let Bi be the base set and let fi be the handle of this distribution. We claim
that the output of C0 has θ-cylindrical distribution from the point of view of Y+ with base
set

⋃r−1
i=0 Bi and handle

⋃r−1
i=0 fi. We have to show that conditions (a), (b), and (c) of the

definition of a θ-cylindrical distribution are satisfied for the distribution of the output of C0.
Conditions (a) and (b) follow immediately about the corresponding conditions for the outputs of
Di, i = 0, 1, ..., r − 1. For the proof of condition (c) assume that a = 〈a1, ..., ar−1〉 is the output
sequence of C0 where ai ∈ func(Ti, F) and T = 〈T0, ..., Tr−1〉 is the output block sequence of
C0. Assume that g ∈ func({0, 1, ..., r − 1}, F) and we consider the distribution of a with the
additional condition hT (a, i) = g(i) for all i = 0, 1, ..., r− 1. The θ-cylindricity of the circuits Di

implies that for each fixed i, with the condition g(i) = hT (a, i) and from the point of view of Y+
i

the distribution of ai is uniform on the set Si of all extensions of fi onto Ti. Since the various
circuits Di are pairwise disjoint their probabilistic inputs are independent. Therefore Y+ and
Y+
i have the same relevant information about the distribution of ai, and so the distribution of

ai is uniform on Si from the point of view of Y+ and with the condition g(j) = hT (a, j) for
all j = 0, 1, ..., r − 1. The independence of the probabilistic inputs of the various circuits Di,
i = 0, 1, ..., r − 1 also implies that a0, ..., ar−1 are mutually independent from the point of view
of Y and with the condition g(j) = hT (a, j) for all j = 0, 1, ..., r − 1. This completes the proof
of condition (c).

Condition (12) for C0. Assume that H0, H1 are similar and pure θ-cylindrical distributions
with respect to the input block sequence of C and F , and the input of C0 is arriving with
either distributions H0 or distribution H1. Condition (12) for the circuit Di implies that the
distribution Zi, of the knowledge of the adversary Yi of Di is the same for H0 and H1. Since the
various circuits Di are pairwise disjoint their probabilistic inputs are independent so the joint
distribution of Zi, i = 0, 1, ..., r − 1 is also the same for H0 and H1. Since Z = {Z0, ..., Zr−1} is
the knowledge of Y, we get that the distribution of Z is the same for H0 and H1. This completes
the proof of the fact the C0 is (θ, ε, |C0|e−cm)-cylindrical .

Assume now that 0 < i ≤ t, and Ci−1 is a (θ, ε, |Ci−1|e−cm)-cylindrical distribution. We
prove that Ci is a (θ, ε, |Ci|e−cm)-cylindrical circuit.

We consider the case when set(Ci)\set(Ci−1) is a singleton containing a + gate γ which
adds the values calculated at nodes α and β. The other possibilities for set(Ci)\set(Ci−1) can
be handled in a similar way. This assumption implies that we get the circuit Ci by “gluing”
together the circuits Ci−1 and a copy D of the circuit C(m)

7 of Lemma 3. More precisely assume
that the input blocks of D are I0, I1 and the output blocks of Ci−1 corresponding to the nodes

37

α, β of Ci−1 are T0, T1. We get Ci by identifying I0 with T0 and I1 with T1.
We proceed in a similar way as in the i = 0 case. To define a (θ, ε, p)-cylindrical adversary

Yi for Ci with p = |Ci|e−cm we have to define a selection function Si. Assume that Yi−1 is a
(θ, ε, |Ci−1|e−cm)-cylindrical adversary for Ci−1 with selection function Si−1 whose existence is
guaranteed by the inductive assumption, and Y is a (θ, ε, e−cm)-cylindrical adversary for D with
selection function S whose existence is stated in Lemma 3. Let X be an arbitrary subset of
set(Ci). Then we define Si(X) by Si(X) = Si−1(X ∩ set(Ci−1)) ∪ S(X ∩ set(D)).

Let X be an ε-random subset of set(Ci). With a probability of at least 1−|Ci−1|e−cm−e−cm
the set X ∩ set(Ci−1) is acceptable with respect to the adversary Yi−1 of Ci−1, and the set
X ∩ (set(D)) is acceptable with respect to the adversary Y of D. We claim that if both sets
are acceptable, then the set X is acceptable with respect to the adversary Yi of Ci. To prove
this we have to show that the set X satisfies conditions (11) and (12).

Condition (11). Assume that the deterministic input of Ci is fixed. According to the induc-
tive assumption condition (11) holds for the circuit Ci−1 and therefore the distribution of the
output a = 〈a0, ..., as−1〉 of Ci−1 on its output blocks T0, ..., Ts−1 is θ-cylindrical from the point
of view of Yi−1. Let B̄ =

⋃s−1
i=0 Bi be the base set and f̄ = f0 ∪ ... ∪ fs−1 be the handle of the

distribution of a, where Bi ⊆ Ti and domain(fi) = Bi. Condition (11) implies that the base set
B̄ is uniquely determined by the set X and f̄ is uniquely determined by the knowledge of Y.

Let Ts be the output block of D. Condition (11) for the the circuit D with the set X:=X ∩
set(D) implies that the distribution of the output on Ts from the point of view of Y+ is θ-
cylindrical. Naturally this is a different distribution for each possible input of D which are given
on T0 and T1. However the base set B is uniquely determined by X and the handle is uniquely
determined by the knowledge of Y, which includes the set X. Therefore Lemma 2 implies that
from the point of view of Yi the distribution of the output on Ts is θ-cylindrical.

We want to show that the distribution of the output of Ci on the outputblock sequence
T2, ..., Ts−1,W0 is θ-cylindrical from the point of view of Yi, with base set B ∪

⋃s−1
i=2 Bi and with

handle f2 ∪ ... ∪ fs−1 ∪ f . Conditions (a), (b) of the definition of θ-cylindricity immediately
follow from the corresponding conditions for Y.

Condition (c). We will prove condition (c) of the definition of a θ-cylindrical random variable
in the following equivalent form.

(c’) Assume that g ∈ func({0, 1, ..., s− 1}, F) such that prob(Ag) > 0 where Ag is the event
∀i ∈ [0, s − 1],hW (ξ, i) = g(i). Then for all j = 0, 1, ..., s − 1, and for all b0, ..., bj−1 ∈ F if
prob(∀r ∈ [0, j − 1], ξr = br | Ag) > 0, then with the condition Ag ∧ ∀r ∈ [0, j − 1], ξr = br the
random variables ξj has uniform distribution on extensionF (fj ,Wj , g(j)), where fj = f |Wj∩Y .

The equivalence of (c) and (c’) is an immediate consequence of the definition of the inde-
pendence of random variables.

Assume that the knowledge of adversary Y+, that is, the deterministic input of Ci and the
evaluation values of Ci on the set X are fixed and we randomize the probabilistic inputs of
C with these conditions. With respect to this randomization 〈a0, a1, a2, ..., as−1〉, the output
sequence of circuit Ci−1 and as the output of D, are random variables. Therefore the output of
Ci, is also a random variable. We will denote this random variable by ξ = 〈ξ0, ..., ξs−2〉, where
ξ0 = a2, ..., ξs−3 = as−1, ξs−2 = as. Let g ∈ func({0, 1, ..., s − 2}, F) and let Ag be the event
∀i ∈ [0, s− 2]hW (ξ, i) = g(i), where W = 〈T2, ..., Ts−2, Ts〉. We have to show that condition (c’)
is satisfied with these choices of the parameters. For j < s − 2 the statement of (c’) follows

38

from the fact that the circuit Ci−1 is θ-cylindrical and so satisfies condition (c’). Assume now
that j = s− 2. We have to show that with condition Ag ∧ ∀i ∈ [2, s− 1], ai = bi−2 the random
variable as has uniform distribution on the set extensionF (f,B, g(s − 2)). We compute this
distribution using Bayes’ theorem. For each possible fixed value of a0 and a1 the choice of the set
X implies that the output of D has θ-cylindrical distribution. Therefore condition Ag implies
that for each fixed value of a0 and a1, the output of D, that is, as has uniform distribution on
extension(f,W0, g(s−2)). According to Bayes’ theorem the distribution of as must be uniform
on the same set if we do not fix a0 and a1. This completes the proof of condition (11).

Condition (12). It is sufficient to show that if H is a pure θ-cylindrical distribution with
base set BH and handle fH , then we are able to generate the knowledge of the adversary Y, as a
random variable, with knowing only the pair P = 〈BH , fH〉. Since X ∩ set(Ci−1) is acceptable
with respect to Yi−1 we have that the distribution of the knowledge of Yi−1 depends only on P ,
that is, it can be generated as a random variable depending only on P . Assume now that Zi−1,
the knowledge of Yi−1, is fixed. The fact that X ∩ set(Ci−1) is acceptable with respect to Yi−1

and Proposition 5 implies that if the input is arriving with distribution H, the output from the
point of view of Yi−1 has θ-cylindrical distribution with base set B0 ∪ B1 and handle f0 ∪ f1.
This implies however, using now the fact that X ∩ set(D) is acceptable with respect to Y, that
the distribution of the knowledge Z of Y depends only on B and F therefore we can generate
Z, knowing only Zi−1. Since Z and Zi−1 together uniquely determine Zi the knowledge of Yi,
we got that the distribution of Zi depends only on BH and fH . This completes the proof of
condition (12) and the proof of the i > 0 case in the inductive assumption.

If the boolean circuit C contains probabilistic inputs as well, then we treat them the same
way as if they were deterministic inputs. That is, in the circuit C a new input block Jx of size
m will correspond to each probabilistic input node x of C. The input nodes of this block are
probabilistic inputs of C, and their sum will correspond to the random input on the node x. In
the construction of C we treat the blocks of type Jx the same way as if they were deterministic
input blocks. Q.E.D.(Lemma 4)

4.4 Circuits and related linear systems over F

Definition. Suppose that G = {Gγ = 0 | γ ∈ Γ} is a finite set of equations, where for each
γ ∈ Γ, Gγ is a polynomial over the field F . Then we will say that Gγ is a polynomial system
of equations over the field F , or shortly, G is an F -system. Suppose that the unknowns of the
system G are xh, h ∈ H. An evaluation ϑ of the variables xh with values in F is a solution of the
system G, if for each γ ∈ Γ, Gγ(ϑ(x1), . . . , ϑ(xi)) = 0, where x1, . . . , xi are all of the unknowns
occurring in the polynomial Gγ . In this case we will also say that the evaluation ϑ, satisfies the
system G. ut

Definition. If C is a probabilistic block circuit, then blockin(C) will denote the set of its
input blocks and blockout(C) will denote the set of its output blocks.

2. Suppose that C is a probabilistic block F -circuit of type ((m,n), k, l), and δ ∈
func(blockin(C), F), and blockin(C) = {I0, . . . , Ik−1}. The system of equations {Pi = δ(Ii) |
i = 0, 1, . . . , k − 1} will be denoted by I(δ), where Pi, i = 0, 1, . . . , k − 1 are the input block
polynomials of C. Assume now that A ⊆ set(C), and g ∈ func(A,F). The system of equations

39

{pa = g(a) | a ∈ A} will be denoted by E(g). ut
Definition. Assume that Γ is a finite set and for each γ ∈ Γ, Gγ(x0, . . . , xk−1, y0, . . . , yl−1)
is a polynomial over the field F . We say that the probabilistic block F -circuit C of
type ((m,n), k, l) satisfies the equation G(x0, . . . , xk−1, y0, . . . , yl−1) = 0, if for all γ ∈ Γ,
Gγ(P0, . . . , Pk−1, Q0, . . . , Ql−1) ≡ 0, where P0, . . . , Pk−1, Q0, . . . , Ql−1 are the block polynomials
of C. ut

For an F -circuit C, the polynomials pb, b ∈ C, were created by putting indeterminates
zh = ph on the input nodes h of C, and then performing the field operations on the polynomials
as we go down the nodes of the circuits from the inputs to the outputs. The polynomial that
we get on node b is pb. Assume now that a function g ∈ func(A,F) is given where A ⊆ set(C).
We modify the definition of pb in a way that if in the recursive process we would have to use
the polynomial pa for some a ∈ A then we will use instead of pa the constant polynomial g(a).
For each b ∈ set(C) we will define this way a polynomial p(g)

b . These polynomials will be used
to give an equivalent form of the system E(g) where the function g has a more explicit role.

Definition. Assume that C is a probabilistic block F -circuit, and H = inset(C). Suppose
further that A ⊆ set(C), g ∈ func(A,F). If h ∈ H then we associate with H an indeterminate
zh. For each node b of C we define a polynomial p(g)

b ∈ F [zh | h ∈ H]. (For A = ∅ this will be
the polynomial pb defined earlier). We define p(g)

b by recursion on the depth of b in a similar way
as we have defined the polynomial pb. For each input node b we have p(g)

b = zb. Assume that b
is not an input node.

Intuitively the definition of p(g)
b is the following. We execute the field operation associated

with gate b on polynomials defined in the following way. If an input of gate b in the circuit C is
coming from an element a ∈ A then the corresponding polynomial will be the constant polyno-
mial g(a). If the input is coming from an element u /∈ A then the corresponding polynomial will
be p(g)

u which has been already defined. We execute the field operation of b on the polynomials
defined this way and the resulting polynomial is p(g)

b .
More precisely p(g)

b is defined in the following way. If the indegree of b is one, and b is labelled
with “+1”, and there is an edge pointing from u to a for some u ∈ set(C). Then we distinguish
two cases. If u ∈ A then p

(g)
b = g(u) + 1. If u /∈ A, then p

(g)
b = p

(g)
u + 1. In a similar way if the

label is ×(−1) then, in the case u ∈ A we have p(g)
b = −g(u), and for u /∈ A our definition is

p
(g)
b = −p(g)

u .
Suppose now that the indegree of a is 2 and u0, u1 are distinct nodes so that there is an

edge pointing from ui to a for i = 0, 1. First we define a function G on the set {u0, u1} by
G(ui) = g(ui) if ui ∈ A, and G(ui) = p

(g)
ui otherwise, for i = 0, 1. Then, according to whether

the label of b is +, or ×, we have p(g)
b = G(u0) +G(u1), or p(g)

b = G(u0)×G(u1). ut

Lemma 5 Suppose that C is a probabilistic block F -circuit of type ((m,n), k, l), A ⊆ set(C),
and g ∈ func(A,F). The system of equations {p(g)

a = g(a) | a ∈ A} is equivalent to the system
E(g) in the sense that their sets of solutions are identical.

Proof. The statement of the lemma is an immediate consequence of the recursive definitions
of the polynomials pa, p

(g)
a . Q.E.D.(Lemma 5)

40

Definition. Assume that C is a probabilistic block F -circuit of type ((m,n), k, l), and A ⊆
set(C), and the following holds:

(33) for all δ, δ′ ∈ func(blockin(C), F), and for all g ∈ func(A,F), the number of solutions
of the system I(δ) ∪ E(g) is identical to the number of solution of the system I(δ′) ∪ E(g).

Then we will say that the block input of the circuit C is invisible from the set A. ut

Lemma 6 Assume that C is a probabilistic block F -circuit of type ((m,n), k, l), and A ⊆ B ⊆
set(C). If the block input of the circuit C is invisible form the set B then it is also invisible
from the set A.

Proof. We will denote the number of solutions of a system of equations E by N (E). Assume
that the block input of the circuit C is invisible from the set B. Let g ∈ func(A,F) and
δ(0), δ(1) ∈ func(blockin(C), F). We have to prove that N (I(δ(0))∪E(g)) = N (I(δ(1))∪E(g)).
Let H be the set of all extensions h of g onto B with values in F . By 5 we have that for all
j ∈ {0, 1}, N (I(δ(j)) ∪ E(g)) =

∑
h∈H N (I(δ(j)) ∪ E(h)). The assumption that the block input

of C is invisible from the set B implies that for each fixed h ∈ H we have N (I(δ(0)) ∪ E(h)) =
N (I(δ(1)) ∪ E(h)) which implies the required equality. Q.E.D.(Lemma 6)

Lemma 7 Assume that θ > 0, ε > 0, p ∈ [0, 1] and Y = advC(ε,S) is an ε-random adversary
with selection function S for a probabilistic block F -circuit C with input block sequence I =
〈I0, ..., Is−1〉, and f ∈ funcθ(I, F). Then, for each fixed set X ⊆ set(C) the following condition
implies condition (12) from the definition of a (θ, ε, p)-cylindrical adversary:

(34) the block input of the circuit C is invisible from the set domain(f) ∪ full(S(X))

Remark. Condition (34) implies that condition (12) holds not only for the function f but also
holds with f :=g, where g is an arbitrary F valued function with domain(g) = domain(f). ut

Proof of Lemma 7. Assume that H0, H1 are similar and pure θ-cylindrical distributions
for the deterministic input of C and f is their common handle. Let Y = base(H0) =
base(H1) = domain(f). Our assumption is that the block input of of C is invisible from
the set Y ∪ full(S(X)). The definition of a pure θ-cylindrical distribution implies that the
probability that the knowledge of Y, that is, 〈V, Y, f〉, takes a certain value can be expressed
from the number of solutions of a system of polynomial equations over F . This is true since
Q.E.D.(Lemma 7)

We will frequently use the following well-known fact.

Proposition 6 Assume that two inhomogeneous system of linear equations over a finite field
are identical with the exception of their inhomogeneous parts. If both of them has at least one
solution then their numbers of solutions are the same.

Proof. The number of solutions of both systems is identical to the number of solutions of
the corresponding homogeneous system. Q.E.D.(Proposition 6)

Definition. A linear term of a multivariate polynomial is a term of the polynomial which
contains only a single indeterminate, and the degree of this indeterminate is 1. ut

41

Proposition 7 Assume that E is a finite set, and for all α ∈ E, qα is a polynomial over the
finite field F , so that its constant term is 0, and U is the set of indeterminates in the polynomials
qα, α ∈ E. Assume further that there exist sets E0, E1 ⊆ E, U0, U1 ⊆ U so that the following
conditions are satisfied:

(35) {E0, E1} is a partition of E, and {U0, U1} is a partition of U ,

(36) all of the polynomials in the set Ẽ0 = {qα | α ∈ E0} are linear polynomials and may
contain indeterminates only from the set U0

(37) the indeterminates of U1 may occur only in the polynomials of the set Ẽ1 = {qα | α ∈ E1}
and only in linear terms,

(38) for each ϕ ∈ func(E,F), if the system of equations qα = ϕ(α), α ∈ E has at least one
solution in F , then every solutions of the system qα = ϕ(α), α ∈ E0 can be extended into a
solution of qα = ϕ(α), α ∈ E in F.

Then, for all ϕ,ψ ∈ func(E,F) if both systems qα = ϕ(α), α ∈ E and qα = ψ(α), α ∈ E
have at least one solutions in F , then they have the same number of solutions in F .

Proof. Assume that the systems qα = ϕ(α), α ∈ E0 and qα = ψ(α), α ∈ E0 both have a
solution in F . Since they are linear, Proposition 6 implies, that they have the same number
of solutions in F . Therefore it is sufficient to show that if ϑ is an arbitrary evaluation of the
unknowns in U0 which is a solution of qα = ϕ(α), α ∈ E0, then the number of extensions of ϑ into
a solution of the system qα = ϕ(α), α ∈ E1 does not depend on ϑ. This is however a consequence
of the fact that, for a fixed ϑ, the system E1 is linear in the variables in U1. According to condition
(38) this system always have a solution, therefore the linearity and Proposition 6 implies that
the number of its solutions does not depend on ϑ. Q.E.D.(Proposition 7)

Definition. 1. Assume that F is a field, H is a finite set, for each h ∈ H, zh is an indeterminate,
G ⊆ H and f is an element of the polynomial ring F [zh | h ∈ H]. linG(f) will denote the
polynomial in F [zh | h ∈ H] consisting of those terms of f which are of the form γzg for suitably
chosen γ ∈ F and g ∈ G. If Y ⊆ F [zh | h ∈ H] then linG(Y) will denote the vectorspace
generated by the set {linG(f) | f ∈ Y }

2. Assume that B ⊆ F [zh | h ∈ H] and G ⊆ H. The G-dimension of the set B will be the
dimension of linG(B) over the field F . This number will be denoted by dimG(B). ut
Definition. 1. Assume that σ ∈ func(inset(C), F), and

G = {Gγ(x0, . . . , xk−1, y0, . . . , yl−1) = 0 | γ ∈ Γ}

is a polynomial system of equations over F . We say that σ satisfies the system G, if af-
ter substituting σ(h) for zh for each h ∈ inset(C), the value of all of the polynomials
Gγ(P0, . . . , Pk−1, Q0, . . . , Ql−1), γ ∈ Γ is 0.

2. Assume that f, g are functions so that domain(g) ⊆ domain(f). f\g will denote a func-
tion defined on domain(f), so that f\g is identical to g on domain(g) and identical to f on
domain(f)\domain(g).

3. Suppose that q is a polynomial over the field F containing the indeterminates zh, h ∈ H,
and f ∈ func(H,F). Then q|zh=f(h) is the value that we get, if in the polynomial q we substitute
f(h) for the indeterminate zh, for all of h ∈ H. ut

42

4.5 Percolative circuits

Definition. 1. Recall that the set of input/output blocks of a block F -circuit C is denoted
by blockin(C)/blockout(C). We will use the notation blockio(C) = blockin(C)∪blockout(C)
for the set of all input and output blocks together.

2. Assume that σ ∈ func(inset(C), F). σ(out) will denote the function defined on outset(C)
which describes the output of the circuit C at input σ. (Equivalently we may define σ(out) for
each a ∈ outset(C), by σ(out)(a) = χ

(C)
σ (a) = pa|zh=σ(h).) The function defined on detin(C) ∪

outset(C) so that it is identical to σ on detin(C), and identical to σ(out) on outset(C) will be
denoted by σ(io). σ̄(in) will denote the function so that σ̄(in)(J) is defined iff J ∈ blockin(C),
and σ̄(in)(J) =

∑
b∈J σ(b). σ̄(out) will denote the function so that σ̄(out)(J) is defined iff J ∈

blockout(C), and σ̄(out)(J) =
∑
b∈J σ

(out)(b). σ̄(io) is the common extension of the functions
σ̄(in), and σ̄(out) to the set blockio(C).

3. Assume that ϑ is a function defined on the set blockio(C), blockin(C) = {I0, . . . , Ik−1},
blockout(C) = {T0, . . . , Tl−1}, and G(x0, . . . , xk−1, y0, . . . , yl−1) is a polynomial over F . We
will say that ϑ satisfies the polynomial system of equations G = {Gγ = 0 | γ ∈ Γ}, with
respect to the indicated orderings of the input and output blocks, if for all γ ∈ Γ we have
Gγ(ϑ(I0), . . . , ϑ(Ik−1), ϑ(T0), . . . , ϑ(Tl−1)) = 0.

Suppose now that τ is a function defined on a set containing detin(C) ∪ outset(C). We
define a function ϑτ on blockio(C) by ϑτ (J) =

∑
x∈J τ(x), for all J ∈ blockio(C). We will say

that τ satisfies the system G, with respect to the indicated orderings of the input and output
blocks, if this is true for the function ϑτ . In both cases we will always assume, that orderings
of the input and output blocks are fixed for each circuit and we are considering only these fixed
orderings. Therefore the expression “with respect to the indicated orderings” will be omitted.
ut

Motivation. Assume that C is a block F -circuit and an adversary knows the values of the
evaluation function χ(C)(x) if x ∈ A, where A ⊆ set(C). Suppose further that the circuit
satisfies a system of polynomial equations Γ. The following definition expresses a property of
the set A, which essentially say that this knowledge of the adversary does not mean too much.
Namely this property, called A,Γ-percolativity will say that there exists a large subset X of the
input nodes and output nodes together, such that if on X we change the evaluation function in
a way which is compatible to Γ, but otherwise arbitrary, then what we get is still compatible
with the knowledge of the adversary in the sense that with the new changed input values the
probability of the new output values is not 0 from the point of view of the adversary. We will
show later that the adversary cannot distinguish the original inputs δ0 and δ1 of certain circuits,
by showing that their probabilities, from the point of view of the adversary who knows the
evaluation values on the set A, can be expressed by the number of solutions of systems E0, E1

of equations over F . Using the results about polynomial systems proved in the previous section,
we only have to show that if one of the systems has a solution then the other system also has
a solution. The notion of A,Γ-percolativity will be used for this purpose, it will help us to
construct a solution of E1 from a solution of E0. The unknowns of these systems will be the
inputs of the circuits both deterministic and probabilistic, corresponding to the two original
inputs δ0, δ1.

43

Definition. Assume that m,n, k, l are positive integers, C is a probabilistic block F -circuit of
type ((m,n), k, l), which satisfies the system of polynomial equations Γ over F . Suppose further
that A ⊆ set(C), I0, . . . , Ik−1 are the input blocks and T0, . . . , Tl−1 are the output blocks of
C. We will say that the circuit C is percolative with respect to A and Γ, or A,Γ-percolative, if
there exists a set X ⊆ detin(C)∪ outset(C), so that the following two conditions are satisfied.

(39) For each i = 0, 1, . . . , k−1, |X∩Ii| > 1
2 |Ii|, and for all j = 0, 1, . . . , l−1, |X∩Tj | > 1

2 |Tj |.

(40) For all σ ∈ func(inset(C), F), and for all κ ∈ func(X,F), if σ(io)\κ satisfies the system
Γ, then there exists a ρ ∈ func(inset(C), F) so that ρ(io) = σ(io)\κ, and for all a ∈ full(A),
we have χ(C)

σ (a) = χ
(C)
ρ (a).

ut

Remark. The assumption that σ(io)\κ satisfies Γ does not follow from the assumption that
C satisfies Γ, since the values of σ(io)\κ on the input nodes and output nodes of C are not
necessarily identical to the values of any evaluation function of C on these nodes. ut

4.6 The copying circuit

We will assume that the reals ε, c, θ are chosen so that 0 < ε � c � θ � 1, m is a sufficiently
large integer and F is a finite field. (Recall that a � b stands for a is sufficiently small with
respect to b.) We define a probabilistic block F -circuit C(=)

m , of type ((m,m), 1, 1), which
computes the polynomial x, so that the circuit is (θ, ε, p)-cylindrical, where p = e−cm. This
circuit will be called the copying circuit since its block input, the sum of the deterministic
input values, is the same as its block output, the sum of the output values. We can say that it
simply copies the block input. However the deterministic input as a sequence of length m, with
high probability, will be different from the output sequence. Of course, the computation of the
function x is trivial, if there are no other requirements, the output could be the same as the
input. The (θ, ε, p)-cylindricity however, excludes this and other very simple solutions.

The circuit C(=)
m will be needed in the construction of other (θ, ε, p)-cylindrical circuits of

type ((m,m), k, l) whose existence is stated in Lemma 3.

Definition. 1. Assume that G = 〈V,E〉 is a graph and A ⊆ V . N(A) will denote the set of
all points x ∈ V with the property that there exists an a ∈ A, such that either a = x or x is a
neighbor of a.

2. Assume that, d,m are positive integers, α > 0 is a real, and G = 〈V,E〉 is a d-regular
expander graph on the set of vertices V = {0, 1, . . . ,m − 1} with expansion factor 1 + α, that
is, for each A ⊆ V with |A| ≤ m

2 we have N(A) ≥ (1 + α)|A|. We will call such an expander
graph a (d, 1 + α)-expander on m vertices. If we say that a graph is a (d, 1 + α)-expander on m
vertices, we will also assume that the vertex set is the set {0, 1, . . . ,m− 1} unless we explicitly
state it otherwise.

The copying circuit that we define below will depend on the graph G so we will write C(=)
m,G

for C(=)
m if we want to emphasize this dependence. C(=)

m,G has m deterministic input nodes and
1
2dm probabilistic input nodes. We associate each probabilistic input node with an edge of G,

44

so we will consider the probabilistic input as a function γ ∈ func(E,F). C(=)
m,G will be a type

((m,m), 1, 1) circuit, therefore it will have a single input block and a single output block. The
deterministic input nodes will be denoted by ℘0, . . . , ℘m−1 and the output nodes by T0, . . . , Tm−1.
With each edge e ∈ E of the graph G we associate a probabilistic input node Ge of Cm. There are
no other probabilistic input nodes. If we say that δ = 〈δ0, . . . , δm−1〉 ∈ Fm is the deterministic
input, the function γ ∈ func(E,F) is the probabilistic input, and ν = 〈ν0, ν1, . . . , νm−1〉 ∈ Fm
is the output, then we mean that δi is given at the node ℘i, for i = 0, 1, . . . ,m− 1, γ(e) is given
at the node Ge, for all e ∈ E, and νi appears at the node Ti for i = 0, 1, . . . ,m− 1.

Assume that δ0, . . . , δm−1 is the deterministic input and γ ∈ func(E,F) is the probabilistic
input. Using the operations + and multiplication by −1, both in F , we define the output
ν0, ν1, . . . , νm−1 in the following way:

νi = δi +
∑
{γ((i, j)) | (i, j) ∈ E ∧ i < j}+

∑
{−γ((i, j)) | (i, j) ∈ E ∧ i > j}

that is, the output bit at Ti is the sum of the random values γ((i, j)) attached to the edges whose
smaller incident vertex is i, minus the sum for the edges where i is the larger incident vertex.

We construct the circuit C = C(=)
m,G, using only + and (−1)× gates, which computes the

described value of ν, given δ and γ as deterministic and probabilistic inputs.
For each e ∈ E, C(=)

m,G has a (−1)× gate we, which computes −γ(e). For the the computation

of the output bit νi, C(=)
m,G uses d “+” gates g0,i >C g1,i >C . . . >C gd−1,i = Ti which compute

the sum in the definition of νi using δi, γ(e) or −γ(e) for the edges e = (j, i) ∈ E. This completes
the definition of the circuit C(=)

m,G . ut
We will use later the following immediate consequence of the definition of C(=)

m,G .

Proposition 8 Assume that C = C(=)
m,G is a copying circuit, where G = 〈V,E〉 is a d-regular

graph. Then |set(C(=)
m,G)| = m + 2md, and for each b ∈ set(C) the set {x ∈ set(C) | x ≥C b}

has at most 3d+1 elements and the set {x ∈ set(C) | x ≥C b}∩rand(C) has at most d elements.

Proof. There are m deterministic input nodes, 1
2md probabilistic input nodes Ge and for each

of them a (−1)× gate we. All of the remaining gates, including the output nodes are the gates
gj,i, j = 0, 1, . . . , d−1, i = 0, 1, . . . ,m−1. This gives |C(=)

m,G| = m+ 1
2md+ 1

2md+md = m+2md.
For every a ∈ set(C) there exists an output node Ti, i ∈ {0, 1, . . . ,m − 1} so that a ≥C

Ti. Therefore it is sufficient to prove the lemma in the special case when b = Ti for some
i = 0, 1, . . . ,m − 1. The construction of C(=)

m,G implies that for all x ≥C Ti there exists an
e = (i, j) ∈ E and a k ∈ {0, 1, . . . , d − 1} so that one of the following conditions are satisfied:
(i) x = ℘i, (ii) x = gk,i, (iii) x = Ge (iv) x = we. Case (i) contributes one element, case
(ii) contributes d elements (including Ti), and case (iii) also contributes d elements, case (iv)
contributes at most d elements. This implies that there exists at most 3d + 1 choices for the
element x ≥C Ti. When we estimate the number of elements of {x ∈ set(C) | x ≥C b}∩rand(C),
then cases (i),(iii),(iv) must be excluded, so we get the upper bound d. Q.E.D.(Proposition 8)

Lemma 8 For all positive integers m, d and for all d-regular graph G if C(=)
m,G is a copying

circuit then the following holds:

45

(41) if δ0, . . . , δm−1 is the deterministic input and ν0, . . . , νm−1 is the output, then
∑m−1
i=0 δi =∑m−1

i=0 νi. Consequently P0(δ0, . . . , δm−1) = Q0(δ0, . . . , δm−1), where P0 is the only input block
polynomial, and Q0 is the only output block polynomial of C(=)

m .

Proof. Condition (41). The definition of C(=)
m,G implies that for each fixed pair i, j with i < j,

we have a γ((i, j)) term in the definition of νi and a−γ((i, j)) term in the definition of νj . γ((i, j))
does not occur in the definition of any νk with k /∈ {i, j}. Therefore

∑m−1
i=0 νi =

∑m−1
i=0 δi. Using

this identity the statement about the input block and output block polynomials are immediate
consequences of their definitions. Q.E.D.(Lemma H0)

For the proof of the fact the copying graph is (θ, ε, p)-cylindrical for certain choices of the
graph G C(=)

m,G we will need the following Lemma about expander graphs.

Lemma 9 Assume that n, d are positive integers and α is a positive realnumber. Suppose
further that G = 〈V,E〉 is a d-regular graph with n vertices and for all X ⊆ V with at most n

2

vertices we have that |N(X)| ≥ (1+α)|X|. Assume further that B ⊆ V with n− (1+ d
α)|B| > 0.

Then V \B has a connected component containing more than n
2 points. Moreover, if C is the

unique connected component of V \B with more than n
2 point, then |C| ≥ n− (1 + d

α)|B|.

Proof. Let C1, . . . , Ck be all of the connected components of V \B which contain at most n
2

elements. Since for each i = 1, . . . , k, Ci is a maximal connected set in V \B we have N(Ci)\Ci ⊆
B. According to the assumptions about G in the lemma, |Ci| ≤ n

2 implies that |N(Ci)\Ci| ≥
α|Ci|. Since the graph is d-regular, each point of B is in the set N(Ci) for at most d different
values of i. Consequently

∑k
i=1 α|Ci| ≤

∑n
k=1 |N(Ci)\Ci| ≤ d|B| and therefore

∑k
i=1 |Ci| ≤ d

α |B|.
We get that if C = V \(B∪C1∪. . .∪Ck) then |C| ≥ n−(1+ d

α)|B|. According to the assumptions
of the lemma n− (1 + d

α)|B| > 0, and so |C| ≥ n− (1 + d
α)|B| > 0. Consequently the definitions

of C1, . . . , Ck imply that C is the unique connected component of V \B with more than n
2 points

and with the claimed lower bound on its size. Q.E.D.(Lemma 9)

Lemma 10 Assume that n, d are positive integers α > 0, the graph G is a (d, 1 + α) expander
on the set of vertices V = {0, 1, ...,m− 1}, and C = C(=)

m,G is the copying block F -circuit defined
from the graph G. Suppose further that A ⊆ set(C), and m > d(1 + d

α)|A|. Then there exists
a set D ⊆ {0, 1, ...,m− 1}, so the if PD is the set of all probabilistic input nodes Gi,j of C with
i, j ∈ D, then the following conditions are satisfied:

(42) for all x ∈ A and y ∈ PD, we have x 6≤C y

(43) |D| ≥ max{m2 ,m− d(1 + d
α)|A|}

(44) Assume that we fix all the deterministic inputs of C in an arbitrary way and also fix all
of the probabilistic inputs of C as well in an arbitrary way, with the exceptions of the ones
belonging to the probabilistic input nodes in PD. Then there exists an a ∈ F and a ϕ ∈
func({0, 1, ...,m − 1}\D,F) such that if we randomize the probabilistic inputs at the nodes of
PD independently and with uniform distribution, then the following holds. The output of C, as a
function defined on the set of output nodes outset(C), is uniformly distributed on the set of all
functions ρ such that for all i ∈ {0, 1, ...m}\D implies ρ(Ti) = ϕ(i) and

∑
x∈outset(C) ρ(x) = a.

46

(45) The set D is a connected subset of the graph G.

The following definition, using the set of whose existence is claimed in this lemma, will be
used later in the construction of the multiplication circuit.

Definition. Assume that C = C(=)
m,G is a copying circuit and A ⊆ C. We arbitrarily select and

fix a set D satisfying the conditions of Lemma 10. The set the set of all output nodes Ti of C
with i ∈ D, will be denoted by exit(A,C).

Corollary 4 if a set D ⊆ {0, 1, ...,m−1} satisfies conditions (42) and (45) then it also satisfies
condition (44), and for all positive integer j, with j ≤ |D|, it has a subset D′ with |D′| = j
which also satisfies conditions (44) and (45) with D:=D′.

Proof of Lemma 10. Assume that a set A is given with A ⊆ set(C)\detin(C), and m >
d(1 + d

α)|A|. Let B be the set of all i ∈ V = {0, 1, ...,m − 1} so that there exists a j ∈ V and
a b ∈ A with G(i,j) ≥ y. According to Proposition 8, each fixed y ∈ A has at most d upper
bounds in X, therefore |B| ≤ d|A|. Lemma 9 implies that V \B has a connected component D
with at least max{m2 ,m− (1 + d

α)|B|} ≥ max{m2 ,m− d(1 + d
α)|A|} elements. We claim the set

D satisfies all of the conditions of the Lemma. The construction of D already guarantees that
conditions (42), (43), and (45) are satisfied by D. For the proof of condition (44) we need the
following.

Definition. If V is a finite set and F is a finite field then func0(V, F) will denote the set of
functions f ∈ func(V, F) with

∑
x∈V f(x) = 0.

Proposition 9 Assume that F is a finite field G = 〈V,E〉 is a connected graph, without loops
and multiple edges, V = 0, 1, ..., n− 1, and for all integers i,j with 0 ≤ i < jn, and (i, j) ∈ E, a
function ψi,j ∈ func(V, F) is defined by ψ(i) = 1, ψ(j) = −1 and for all k ∈ {0, 1, ..., n−1}\{i, j},
ψ(k) = 0. Let ΨG be the vectorspace generated by all of the functions ψe, e ∈ E. Then
ΨG = func0(V, F).

Proof. Clearly ΨG ⊆ func0(V, F). We prove ΨG = func0(V, F) by induction on n. Let x be
an arbitrary point of V , and let y be an element with a maximal distance from x. Clearly W =
V \{y} is a connected subset of V , therefore by the inductive assumption ΨG′ = func0(W,F),
where G′ is the restriction of the graph G to the vertex set W . Since G is connected there
exists a z ∈ W with (x, z) ∈ G. ψ(x,z) and func0(W,F) together clearly generate func(V, F).
Q.E.D.(Proposition 9)

Proposition 10 Assume that a0, ..., ak−1 generate V , where V is a vectorspace over a finite
field F . If x ∈ F , then the number of sequences 〈α0, ..., αk−1〉 ∈ F with

∑k−1
i=0 αiai = x does not

depend on the choice of the element x.

Proof. The set of all sequence with the given property is a coset of the subspace containing
all sequences whose sum is 0. Q.E.D.(Proposition LL4)

Proof of Lemma 4 continued. Using Proposition 9 condition (44) is an immediate consequence
of the definition of the circuit C(=)

m,G, and the fact that D is a connected set. Indeed changing

47

the input values corresponding to the input nodes in PD we may change the output in any way
on the set {Ti | i ∈ D} provided that we do not change the sum of the output values. Clearly
the output values outside this set remain unchanged. The uniformity of the distribution follows
from Proposition 10. Q.E.D.(Lemma 10)

Proof of Corollary 4. The first statement of the Corollary holds since in our proof we have
used the lower bound on |D| only to show that (43) holds, but is was not needed for (44). The
second statement is a consequence of the fact that for each connected graph G with n elements
and for each j ∈ [1, n], G has a connected subgraph with j elements. Q.E.D.(Corollary LL2)

Lemma 11 Assume that m ≥ 2, C = C(=)
m,G is an (d, 1 + α) copying circuit, and A ⊆ set(C)

with the property that m > (3d+ 1)|A|. Then the block input of C is invisible from the set A.

Proof. Suppose that g ∈ func(A,F) and for all s ∈ F , δ(s) is the function which assigns s to
the single input block of C. We have to show that the number of solution of the system I(δ(s))∪
E(g) does not depend on the choice of s ∈ F . The fact that we have not used multiplication
gates in the definition of C(=)

m implies that all of these systems are linear. Moreover only their
inhomogeneous part depends on s. Therefore according to Proposition 6 it is sufficient to show
that if one of these systems has at least one solution then each of them system has at least one
solution.

Assume that ρ is an evaluation of the unknowns zi, i = 0, 1, . . . ,m− 1, ze, e ∈ E, which is a
solution of the system I(δ(s)) ∪ E(g) for some s ∈ F . (Here for the sake of brevity we wrote zi
instead of z℘i and ze instead of zGe .) Let s′ be another arbitrary element of F . We show that
I(δ(s′)) ∪ E(g) also has a solution.

The assumption m > (2d + 1)|A| and Proposition 8 imply that there exists an integer
i0 ∈ {0, 1, . . . ,m − 1} so that for all a ∈ A, ℘i0 6≥C a. We define an evaluation σ of the
unknowns by σ(zi0) = ρ(zi0) + s′ − s, and σ(zh) = ρ(zh) if h ∈ E ∪ ({0, 1, . . . ,m − 1}\{i0}).
Clearly

∑m−1
j=0 σ(zj) = s′ − s+

∑m−1
j=0 ρ(zj) = s′, that is, σ is a solution of I(δs

′
). The choice of

the element a, and the definition of the polynomial p(g)
a implies that, p(g)

a does not contain the
unknown zi0 , and consequently if we evaluate p(g)

a according to ρ and σ we get the same element
of F . This implies that σ is also a solution of E(g). Q.E.D.(Lemma 11)

Lemma 12 Assume that d is a positive integer, α > 0, and the reals ε, c, θ are chosen so that
0 < ε � c � θ � α, d, the integer m is a sufficiently large, F is a finite field, and C = C(=)

m,G

is the copying circuit, where G is an (d, 1 + α)-expander on n vertices. Then the circuit C is
(θ, ε, p)-cylindrical, where p = 2−cm.

Proof. We have to define a (θ, ε, p)-cylindrical adversary Y for the circuit C. For the
definition of the selection function S of adversary Y let X be a subset of C. If m > d(1 + d

α)|X|
then let D be the subset of {0, 1, ...,m − 1} whose existence is guaranteed by Lemma 10 with
A:=X. Otherwise D = ∅. We define S(X) by S(X) = {Ti | i 6∈ D}. This, by the definition of
D implies (X ∩ outset(C)) ⊆ S(X). We have to show that this definition satisfies conditions
(11) and (12) from the definition of (θ, ε, p)-cylindrical adversary with p = 2−cm.

First we give an upper bound on an ε-random subset X of set(C). Let β > 0 be such
that θ << β << α, d. Chernoff’s inequality implies that , with a probability of at least 2−cm,

48

|X| ≤ βθm. We show that such a set X is acceptable with respect to adversary Y. Since
|X| ≤ βm, and β is sufficiently small with respect to d and α, condition (43) of Lemma 10
implies that |D| ≥ 1− θm and so |S(X)| ≤ θm.

Condition (11) is an immediate consequence of condition (44) of Lemma LL1. Condition
(12) follows from Lemma 11. Q.E.D.(Lemma 12)

Lemma 13 Assume that d is a positive integer, α > 0, ε > 0 is sufficiently small, m is
a sufficiently large positive integer, C = C(=)

m,G is a (d, 1 + α)-copying circuit, A ⊆ set(C),
|A| ≤ εm and Γ is the system of equation consisting of the only equation P0 = Q0. Then the
circuit C(=)

m,G is A,Γ-percolative.

Proof. Since |A| ≤ εm and ε > 0 is sufficiently small with respect to d and α the set A
satisfies the assumptions of Lemma 10. Let D be the set whose existence is stated in that
lemma. We define the set X whose existence is required in the definition of percolativity by
X =

⋃
i∈D{℘i, Ti}. We claim that conditions (39) and (40) are satisfied by the set X. Condition

(39) is a consequence of the lower bound (43) of Lemma 10 and the assumption |A| ≤ εm.
Condition (40) is a consequence of condition (44) of Lemma 10. Indeed, this implies that the
values of the probabilistic inputs on the input nodes in PD can be selected in a way that the
output outside X does not change and the output on X ∩ outset(C) can be arbitrary with
the only restriction that the sum of all output values must be the same as the sum of all input
values. Q.E.D.(Lemma 13)

5 Trees

In this section we will use the definitions about trees stated in Section 3.3. We will also prove
Lemma 1 and Lemma 14 which were stated in that section. We need these results about trees
before we continue the definition of the block F -circuits whose existence is claimed in Lemma
3. These two lemmas and Lemma 17 which will be formulated in this section (also about trees),
will be important for proving the (θ, ε, p)-cylindricity of the multiplication circuit that we will
define later. We start with the proof of the two lemmas that were stated in section 5.

Proof of Lemma 1. We prove the lemma by induction on j. For j = 0 the only element of Lj
is t0, therefore the two sides of the equality in the conclusion of the lemma are identical. Assume
now that the lemma holds for j−1. Then we have λ(t0)(λ(lt0)+λ(rt0)) =

∑
w∈Lj−1

λ(w)(λ(lw)+
λ(rw)) =

∑
w∈Lj−1

[λ(w)λ(lw) + λ(w)λ(rw)]
By assumption (3) of the lemma for each w ∈ Lj−1 we may replace the first occurrence of λ(w)

in the last expression by λ(r0(w)) +λ(r1(w)) and its second occurrence by λ(r2(w)) +λ(r3(w)).
We get

λ(t0)(λ(lt0))+λ(rt0))) =
∑
w∈Lj−1

[(λ(r0(w))+λ(r1(w)))λ(lw)+(λ(r2(w))+λ(r3(w)))λ(rw)]
Each t ∈ Lj is either of the form of lw or rw for some w ∈ Lj−1 and we get each t exactly

once this way. Moreover if t = lw, then r0(w) = lt, r1(w) = rt, if t = rw, then r2(w) = lt,
r3(w) = rt, therefore the last equality implies the conclusion of the lemma. Q.E.D.(Lemma 1)

In the proof Lemma 2 we will handle the even and odd levels of the tree separately. The
following lemma is formulated about the even levels, but will be equally applicable to the odd
ones.

49

Lemma 14 Assume that, ε > 0, d is a positive integer, T is a tree of depth 2d and A′ is a
random subset of L2d−1 so that all of the events x ∈ A′, x ∈ L2d−1, are mutually independent,
and prob(x ∈ A′) ≤ ε for all x ∈ L2d. Let A = {a ∈ L2d | ∃b ∈ A′, a ≤T b}.

Then the probability of the following event is at least 1− (4ε)2d−1
:

For all functions λ′ defined on A with values in the field F , if λ′ has a well-balanced extension
to L(0)

2d =
⋃d
i=0 L2i, then for each δ ∈ F , λ′ has a well-balanced extension λ to L(0)

2d , so that
λ(t0) = δ, where t0 is the root of the tree.

Corollary 5 Suppose that we define the set A of the lemma as a random subset of L2d so that
the events x ∈ L2d are mutually independent and prob(x ∈ A) ≤ ε. Then the probability of the
event described in the last paragraph of the lemma is at least 1− (2ε)2d

Proof. In the proof of this lemma “well-balanced” will always mean “well-balanced on L(0)
2d ”.

Let B be the event described in the lemma. We have to show that prob(B) ≥ 1− (4ε)2d . We
will show that if B does not hold then we have the following:

There exists a subset D of T0 = L(0)
2d with the following properties:

(46) t0 ∈ D

(47) For each i = 0, ..., d−1, if t ∈ L2i∩D then there exists exactly two elements u ∈ L2i+2∩D
so that u ≤ t. Moreover, either r0(t) ∈ D ∧ r1(t) ∈ D, or r2(t) ∈ D ∧ r3(t) ∈ D.

(48) L2d ∩D ⊆ A

First we show that the probability that such a set D exists is at most (4ε)2d . Conditions
(46) and (47) imply that for each i = 0, 1, ..., d we have |L2i ∩D = 2i|.

According to condition (47) we have |D ∩ L2i| = 2i, i = 0, 1, ..., d− 1, and for each t ∈ L2i,
i = 0, ..., d − 1 the two elements u of L2i+2 ∩D with u ≤ t can be selected in 2 different ways.
Consequently the number of sets D satisfying conditions (46) and (47) is 22d−1.

For each fixed D satisfying conditions (46) and (47) the probability, for the randomization
of A, that D satisfies condition (48) as well is at most ε

1
2
|L2d−1∩D| = ε2d−1

.
Therefore the probability that there exists a set D with properties (46), (47), and (48) is at

most 22d−1ε2d−1 ≤ 42d−1
ε2d−1

= (4ε)2d .
Now we show that ¬B implies the existence of a set D with properties (46), (47), and (48).
Assume that a function λ′ defined on A is fixed so that it has a well-balanced extension to

T0.
For each t ∈ T , Mt will denote the set of all x ∈ T0 with x ≤ t. We say that a function µ,

defined on Mt with values in F , is well-balanced on Mt if for all i = 1, ..., d−1 and w ∈Mt∩L2i

we have µ(w) = µ(r0(w))+µ(r1(w)) = µ(r2(w))+µ(r3(w)). According to this definition, t ∈ L2d

implies that every F -valued function defined on Mt = {t} is well balanced.
A t ∈ T0, will be called a free element of T0 if for each δ ∈ F there exists a well-balanced

function µ on Mt so that µ and λ′ are compatible (identical on the intersection of their domains)
and µ(t) = δ.

We claim that

50

Proposition 11 if t ∈ L2i for some i = 1, ..., d− 1, and t is not free then either both r0(t) and
r1(t) are not free or both r2(t) and r3(t) are not free.

Proof. Let ρi = ri(t) for i = 0, 1, 2, 3. The four sets Mρi , i = 0, 1, 2, 3 are pairwise disjoint.
Assume that contrary to our claim there exist k ∈ {0, 1} and l ∈ {2, 3} so that ρk and ρl are
free. We may assume that e.g., k = 0, l = 2. We will show that this implies that for each δ ∈ F ,
λ′ has a well-balanced extension κ to Mt so that κ(t) = δ. Let µ be a well-balanced extension
of λ′ to T0. κ will be identical to µ on Mρ1 and Mρ3 . Since ρ0 is free there is a well balanced
extension κ′ of λ′ to Mρ0 so that κ′(ρ0) = δ − µ(ρ1). In the same way we get a well-balanced
extension κ′′ of λ′ onto Mρ2 so that κ′′(ρ2) = δ − µ(ρ3). κ will be the unique function on Mt so
that κ(t) = δ, κ is identical to µ on Mρ1 ∪Mρ3 , and κ is an extension of both κ′ and κ′′. The
definitions of κ′ and κ′′ imply that κ is well-balanced on Mt in contradiction to the assumption
that t is not free. Q.E.D.(Proposition 11).

Finally if we have ¬B, then clearly the element t0 is not free. Using Proposition 11 we
can construct recursively a set D consisting of elements which are not free, so that D satisfies
conditions (46), (47), (48). Q.E.D.(Lemma 14)

The proof of Corollary 5 is almost identical to the proof of the Lemma. We get the better
bound on the probability, since |D∩L2d| = 2|D∩L2d−1|, and so our upper bound on probability
that the random set A of the Corollary contains D ∩L2d is much smaller, than the upperbound
on the probability that the random set A′ of the Lemma, contains D ∩ L2d−1.

Proof of Lemma 2. The Lemma is an immediate consequence of Lemma 14. We consider
only the case when d is even, say, d=2d’, the d = 2d′ + 1 case can be handled in a similar way.
We apply Lemma 14 three times in the following situations. (a) The even levels of the tree T
with d:=d′. We get a function λ0 with λ0(t0) = δ0 (b) The even levels of the tree T ′, where T ′

consists of all of the nodes x ∈ T with x ≤T lt0. We get a function λ1 with λ1(lt0) = δ0 (c) The
even levels of the tree T ′′, where T ′′ consists of all of the nodes x ∈ T with x ≤T rt0. We get a
function λ2 with λ0(rt0) = δ2. The common extension of the functions λ0, λ1, and λ2 will be λ.
Since all of the functions λj , j = 0, 1, 2 were well-balanced on their domains λ is well-balanced
too. Q.E.D.(Lemma 2)

Lemma 15 There exist α > 0, β > 0 so that for all sufficiently large integer n we have the
following. Assume that ξ1, ..., ξn are independent random variables with 0, 1-values, a1, ..., an are
reals in the interval [0, 1], prob(ξi = 1) = p, for i = 1, ..., n, S =

∑n
i=1 ai, and σ =

∑n
i=1 ξiai.

Then with a probability of at least 1− n−α we have that |pSn −
σ
n | < n−β.

In the proof of Lemma 15 we will use the following lemma about the sum of independent
random variables. For a proof see [14], Corollary A.7. in Appendix A.

Lemma 16 Assume that Z1, ..., Zn are independent random variables with prob(Zi = 1) = p,
prob(Zi = 0) = 1 − p for i = 1, ..., n, where p ∈ [0, 1], and Z = Z1 + ... + Zn. Then, for all
a > 0, prob(|Z − pn| > a) < 2e−ea

2/n.

Proof of Lemma 15. T = pSn −
σ
n =

∑n
i=1

1
n(pai − ξiai). We partition the set {1, ..., n} into

pairwise disjoint classes C1, ..., Cd. Suppose |Cj | = νj . Then T =
∑d
j=1

νj
n

∑
i∈Cj

1
νj

(pai − ξiai).

51

Since T is a convex linear combination of the sums Uj =
∑
i∈Cj

1
νj

(pai − ξiai), it would be
sufficient to show that if the constants α > 0, β > 0 are sufficiently small then for each fixed
j = 1, ..., d, with a probability of at least 1 − d−1n−α, we have |Uj | < n−β. Although this will
not hold for the classes Ci that we will define later, but the following weaker condition will hold:

For all j = 2, ..., d, |Uj | < 1
2n
−β and ν1

n U1 < n−
1
6 . Clearly this is also sufficient for the

conclusion of the lemma.
Let Ii be the interval ((1−n−

1
2)i+1, (1−n−

1
2)i], for i = 0, 1, ..., q− 1, where q is the smallest

positive integer with (1−n−
1
2)q < 1

n , and let Iq = [0, (1−n−
1
2)q). Clearly the intervals I0, ..., Iq

cover the interval [0, 1], and q ≤ 2n
1
2 log n.

Let Xj = {i ∈ [0, q] | ai ∈ Ij}. Let B = {j ∈ [0, q − 1] | |Xj | < n
1
4 }, D =

⋃
j∈BXj . Now we

define the classes C1, ..., Cd. C1 will be the set D ∪Xq. The other classes will be the sets Xj ,
j ∈ [0, q]\B in an arbitrary order.

First we estimate |U1|, by estimating the sums corresponding to D and Xd separately. We
have

∑
i∈D | 1n(pai−ξiai)| ≤ 1

nqn
1
4 ≤ 1

nn
1
4 2n

1
2 log n = 2n−

1
4 log n < n−

1
5 . Clearly |

∑
i∈Xq

1
n(pai−

ξiai)| ≤ n 1
n

1
n ≤

1
n . Therefore |U1| < n−

1
5 + 1

n < n−
1
6 as claimed.

Assume now that j ∈ [1, n]\B ∪ {q}. We estimate Sj =
∑
i∈Xj

1
νj

(pai−ξiai), where νj = |Xj |.
The interval Ij is of the following form Ij = ((1− n−

1
2)bj , bj]. The definition of Xj implies that

for each i ∈ Xj there is a real ri with 0 ≤ rj ≤ n−
1
2 so that ai = bj(1 − ri). Therefore Sj =

1
νj

∑
i∈Xj [(p−ξi)bj−(p−xi)bjri] = Ri+ 1

νj
bj
∑
i∈Xj (p−ξi), where |Ri| ≤ n−

1
2 . Lemma 16 implies

that if γ > 0 is a small constant then prob(|
∑
i∈Xj (p − ξi)| ≥ ν

1
2
j n

γ) < 2e−νjn
2γ/νj = 2e−n

2γ
.

Therefore if Uk = Sj then with a probability of at least 1 − n−α we have |Uk| < ν
− 1

2
j nγ < n−β

as required. Q.E.D.(Lemma 15)

Lemma 17 For all ε′ > 0 and for all sufficiently small ε > 0 the following holds. Assume
that T is a binary tree of depth d and H is a subset of the leaves of the tree with at least 2d−1

elements. Suppose further that A is a random subset of T so that each element of T will belong
to A with a probability of at most ε, and the events t ∈ A are independent for all t ∈ T . Then
the probability that there exists a branch of T disjoint from A and containing an element of H
is at least 1− ε′.

Corollary 6 The statement of the lemma remains true if we replace its conclusion with the
following. “Then the probability that there exists a branch B of T disjoint from A, containing
an element of H and satisfying condition (49) below is at least 1− ε′.”

(49) For all b ∈ B, a ∈ A, the element “a” is not an immediate ancestor of b, and the element
b is not an immediate ancestor of “a”.

Proof of Lemma 17. Let B be the set of all points of the tree which can be connected to
the root with a path disjoint from A. Li denotes the set of points of T whose distance from the
root is i, Gi = Li ∩B.

Sketch of the proof. First we prove the |Gi)| ≥ 2
i
2 lower bound which holds with a probability

of 1 − ε′ for all i = c0, ..., d for a sufficiently small constant ε′ > 0. We use Lemma 15 to show

52

that if this lower bound holds for |Gi| then it holds for |Gi+1| as well. This will be a consequence
of the fact that for each element of Gi the expected number of its successor in Gi+1 is (1− ε)2.
Therefore to get a lower bound on Gi+1 from a lower bound on Gi, we have to add independent
random variables with large expected values. With the help of Lemma 15 we will estimate the
probability of the event that the sum is much smaller then expected.

Using the lower bound on |Gi| we continue the proof in the following way. We will show the
following by induction on i. We consider the natural partial ordering of the tree so that the root
is the largest element. If t ∈ T then Mt will denote the set {x ∈ T | x ≤ t}. For all i = 0, 1, ..., d
let Wi =

⋃
t∈Gi H ∩Mt, and let τi = |Wi||Gi|−12i−d. In other words, τi is the density of H

among those elements of Ld, which have an upper bound in Gi. |H| ≥ 2d−1 implies that for
i = 0, this density is at least 1

2 , (provided the G0 6= ∅). With a similar application of Lemma 15
that we used to prove the lower bound on |Gi|, we will show that the difference τi− τi+1 is small
with high probability. Using the lower bound on |Gi| we will be able to show that this happens
simultaneously for all i = 0, 1, ..., d − 1 with high probability. Adding up all of the differences
τi − τi+1 we get τd > 1

4 which implies the statement of the lemma. End of sketch.
Now we continue the proof of Lemma 17.

Claim 1 There exists, c1 > 0 so that if ε > 0 is sufficiently then for all positive integers d the
following holds. Let Ki be the event |Gi| ≥ 2

i
2 for all i = 0, 1, ..., d. Then prob(Ki+1|Ki) ≥

1− 2−c1i for all i = 0, 1, ..., d− 1.

Proof. First we note that for a fixed c1 > 0 and fixed positive integer i the inequality
prob(Ki+1|Ki) ≥ 2−c1i holds for all sufficiently small ε > 0. This is a consequence of the fact
that prob(|Gi| = 2i) ≥ 1 − 2iε. Therefore it is sufficient to show that that there exists an
absolute constant c0 so that the statement in Claim 1 holds for all i ∈ [c0, d− 1].

Assume that the elements of A which are in levels L0, ..., Li has been already randomized so
that Ki holds and Gi = {t1, ..., tm} For each j = 1, ..., 2m we define a random variable ξj for the
randomization of the elements of A in level Li+1. Namely ξ2j is the number of left successors
of tj in level Li+1 which are not in the set A, and ξ2j+1 is the number of right successors with
the same property. (Left and right successors can be chosen arbitrarily.) The definition of A
implies that ξ1, ..., ξ2m are mutually independent and ξj takes the values 0, 1 with probabilities
(1− ε), ε. Clearly |Gi+1| =

∑2m
j=1 ξj .

Applying Lemma 15 to the sequence ξ1, ..., ξn, where n = 2m we get that

(50) with a probability of at least 1 − n−α, |Gi+1 − (1 − ε)2|Gi|| ≤ n−β2|Gi|, and so |Gi+1| ≥
(1− ε− 2n−β)2|Gi|, provided that i > c0, where c0 is an absolute constant.

The assumption that Ki holds implies that n = Gi > 2
i
2 so we have that with a probability

of at least 1 − 21−αi
2 we have |Gi+1| ≥ (1 − ε − 21−βi

2)2
i
2 ≥ 2

(i+1)
2 . This completes the proof of

Claim 1.

Claim 2 For all ε′ > 0 if ε > 0 is sufficiently small, then for all positive integers d, with a
probability of at least 1 − ε′, for the randomization of A, we have that for all i = 0, 1, ..., d,
|Gi| ≥ 2

i
2 .

53

Proof. The series
∑∞
i=0 2−c1i is convergent, where c1 > 0 is the constant from Claim 1. Let i0

be the smallest positive integer so that
∑∞
i=i0 2−c1i < ε′/2. Suppose now that ε > 0 is sufficiently

small with respect to ε′. Then with a probability of at least 1− ε′

2 we have |Gi| = 2i ≥ 2
i
2 for all

i = 0, 1, ..., i0. According to Claim 1, with a probability of at least 1− ε′

2 we also have that for
all i = i0, ..., d− 1, Ki → Ki+1 and therefore |Gi| ≥ 2

i
2 → 2

i+1
2 . Therefore with a probability of

at least 1− ε′ we have that |Gi| ≥ 2
i
2 for all i = 0, 1, ..., d, which completes the proof of Claim 2

We assume that ≤ is the natural partial ordering of the binary tree T , where the root is the
largest element and a < b iff they are on the same branch of tree and b is closer to the root. If
t ∈ T then Mt will denote the set {x ∈ T | x ≤ t}.

For all i = 0, 1, ..., d let Wi =
⋃
t∈Gi H ∩Mt, and let τi = |Wi||Gi|−12i−d.

We will show that:

Claim 3 there exists an i2 > 0 so that if α′ > 0 and β′ > 0 are sufficiently small then for all
positive integer d the following holds. Assume that the tree T the sets, A,Gi, and the real τi are
defined as above. Then, for all i = i2, ..., d − 1, if |Gi| ≥ 2 then with a probability of at least
1− |Gi|−α

′
we have τi+1 > τi − |Gi|−β

′
.

Proof. Condition (50) (of the proof of Claim 1) and the facts n = 2|Gi|, |Gi| ≥ 2 implies
that if α, β are sufficiently small absolute constants then

(51) with a probability of at least 1− |Gi|−α we have that |Gi+1| = 2(1− ε)(1 +R1)|Gi|, where
|R1| < |Gi|−β.

By the definition of τi we have,

τi+1

τi
=
|Wi+1||G−1

i+1|2i+1−d

|Wi||G−1
i |2i−d

Therefore, using property (51) we get that with a probability of at least 1− |Gi|−α we have
that

τi+1

τi
=
|Wi+1|
|Wi|

(1− ε)(1 +R1)

where |R1| < |Gi|−β
Let Gi = {t1, ..., tm} and for all j = 1, ...,m let tj,0, tj,1, be the two successors of t in

the tree T , and let κA be the characteristic function of the set A defined on T . For each
j = 1, ...,m, δ = 0, 1 we define the random variable ζj,δ by ζj,δ = 1 − κA(tj,δ). (We assume
here that A has been randomized already on L0 ∪ ... ∪ Li.) Let bi,δ = 2i+1−d|H ∩Mtj,δ |. We
have |Wi| = 2d−i−1∑m

j=1

∑1
δ=0 bj,δζj,δ. We apply Lemma 15 with n = 2m and ξ2j+δ := ζj,δ,

a2j+δ = bj,δ for j = 1, ...,m, δ = 0, 1, p := (1− ε).
We have S =

∑m
j=1

∑1
δ=0 bj,δ =

∑m
j=1

∑1
δ=0 2i+1−d|H ∩Mtj,δ | = 2i+1−d|Wi| and

σ =
∑m
j=1

∑1
δ=0 κA(tj,δ)bj,δ = 2i+1−d∑

t∈Gi+1
|H ∩Mt| = 2i+1−d|Wi+1|.

Therefore n = |Gi| and Lemma 15 imply that |(1−ε)2i+1−d|Wi||Gi|−1−2i+1−d|Wi+1||Gi|−1| ≤
|Gi|−β. Using property (51), we substitute the second occurrence of |Gi|−1 by 2(1 − ε)(1 +
R1)|Gi+1|−1. Since τi = |Wi||Gi|−12i−d we get that

|(1− ε)2τi − (1− ε)2τi+1| ≤ |Gi|−β +R1(1− ε)2τi+1

54

where |R1| ≤ |Gi|−β0 for an absolute constant β0. This implies that with a probability of at
least 1− |Gi|−α we have |τi − τi+1| < |Gi|−β which completes the proof of Claim 3

Claim 4 for all ε′ > 0 if ε > 0 then with a probability of at least 1− ε′ we have that τi > 1
4 for

all i = 1, ..., d and consequently T has a branch ending in a point of H and not containing any
points from A.

Proof. Let k > max{i2, 4}, where i2 is the integer whose existence is stated in Claim 3. If
ε > 0 is sufficiently small, then with a probability of at least 1− ε′

2 the set L0 ∪ ...∪Lk does not
contain any points from A, therefore |H| ≥ 2d−1 implies that τk ≥ 1

2 . k ≥ 4 and Claim 1 implies
that |Gi| > 2

i
2 > 2 for all i > 2. Therefore by Claim 3 we have that for each fixed i ≥ k with a

probability of at least 1− 2
−α′i

2 we have that τi+1 > τi − 2
−β′i

2 . Since the series
∑∞
i=0 2

−α′i
2 and∑∞

i=0 2
−β′i

2 converge, we have that if k is a sufficiently large constant, then with a probability of

at least 1 − ε′

2 we have τi+1 > τi − 2
−β′i

2 for all i ≥ k and so τd ≥ τk − 1
4 ≥

1
4 which completes

the proof of Claim 4. Q.E.D.(Lemma M6)
Proof of Corollary 6. We will write x � y for “x is an immediate ancestor of y. First note

that in condition (49) the statement ¬(a � b) can be omitted since it follows from the earlier
assumption that A and B are disjoint. Therefore we have to estimate the probability of the
existence of a branch B with the following properties.

(52) (i) B is disjoint from A, (ii) B contains an element from H, and (iii) for all b ∈ B,
a ∈ A, we have ¬(b � a).

Assume that an x ∈ T is fixed. Let R(x) be the event x ∈ A ∨ (∃a ∈ A, x � A). Clearly,
with respect to the randomization of A as defined in the lemma, we have prob(R(x)) ≤ 3ε. The
events R(x), x ∈ T are not independent, so we cannot use Lemma 17 directly with ε:=3ε, and
A:=A′ = {x ∈ T | R(x)}. This is however only a superficial difficulty, with a minor modification
of the set A′ we can make it suitable for the application of the lemma. We define the modified
set A′ in the following way.

We arrange all of the elements of T in a sequence t0, t1, ..., ts such that if i < j, ti ∈ Li and
tk ∈ Lj then k < j. We define tk ∈ A′ by recursion on k. t0 ∈ A′ iff R(t0). Assume that ti ∈ A′
has been defined for all i = 0, 1, ..., k − 1.

If ∃i ∈ {0, 1, ..., k − 1}, such that ti ∈ A′ ∧ ti >T tk, then we put the element tk in A′ with
a probability of 3ε. This randomization is independent of the randomization of A, and of all
of the randomizations which were made earlier in this recursive definition. If there exists no
i ∈ {0, 1, ..., k − 1} with ti ∈ A′ ∧ ti >T tk, then tk ∈ A′ if R(tk).

Clearly the events R(t) are mutually independent and if a branch B does not contain any
elements form A′ then it meets the requirements of the corollary. Therefore Lemma 17 with
ε:=3ε and A:=A′ implies its corollary. Q.E.D.(Corollary 6)

6 Various block F -circuits

In this section we will construct several block F -circuits of type ((m,m), k, l). In each case we
will have k, l ∈ {0, 1, 2}. We will show that some of these circuits are (θ, ε1, p)-cylindrical. In

55

the constructions of these circuits we will use a copying circuit C(=)
m,G, where G is an expander

graph. We will always assume about θ, ε1, p,G, and F that they satisfy the condition formulated
in the following definition.

Definition. The following condition will be called the standard assumption.

(53) G is a (d, α + 1) expander graph, 0 < ε1 � c1 � θ � α, d, the integer m is sufficiently
large, F is a finite field, and p = 2−c1m. ut

In the remaining part of the paper we will use the standard assumption unless we explicitly
state it otherwise.

Definition. Assume that C is a block F -circuit of type ((m,n), k, l) and G = 〈V,E〉, V =
{0, 1, . . . ,m − 1} is a (d, 1 + α) expander graph. We define another block F -circuit preG(C)
which will be called the pre-copied version of C with respect to G. C ′ = preG(C) will be a
circuit also of type ((m,n), k, l). Assume that the deterministic input of C ′ consists of the k
blocks δ(j) = 〈δ(j)

0 , . . . , δ
(k−1)
m−1 〉, for j = 0, 1, . . . , k − 1. We take k disjoint copies C0, . . . , Ck−1 of

the copying circuit C(=)
m,G and copy the block δ(j) with the circuit Cj and get the output µ(j) =

〈µ(j)
0 , . . . , µ

(j)
m−1〉 for all j = 0, 1, . . . , k−1. The circuit C gets the blocks µ(j) as deterministic input

and computes the output, the blocks ν(s) = 〈ν(s)
0 , . . . , ν

(s)
n−1〉 for s = 0, . . . , l−1. The probabilistic

inputs of C,C0, . . . , Ck−1 are mutually independent. The sequence of blocks ν(0), . . . , ν(l−1) is
the output of the circuit C ′ = preG(C).

We define in a similar way the circuit postG(C), which will be called the post-copied version
of C with respect to G. Assume that C is a block F -circuit of type ((m,n), k, l) and G = 〈V,E〉,
V = {0, 1, . . . , n − 1} is a (d, 1 + α) expander graph. The definition of C̄ = postG(C) is the
following. We take l disjoint copies C0, . . . , Cl−1 of the circuit C(=)

n,G. Assume that the input of
C̄ is the sequence of blocks δ(0), . . . , δ(k−1). We give this sequence of blocks to the circuit C as
an input and then we copy the jth output block of C with the circuit Cj , for j = 0, 1, . . . , l− 1.
The output block ν(j) of Cj will be the jth output block of C̄. The probabilistic inputs of the
circuits C̄, C0, . . . , Cl−1 are mutually independent. ut

Lemma 18 Assume that C is a blockcircuit of type ((m,m), k, l) and G is a (d, 1+α)-expander,
θ, ε, p ∈ (0, 1), C ′ = postG(C), and C0 is the copying circuit C(=)

m,G which was added to the circuit
C to get C ′. Assume further that Y = advC′(ε,S) is an adversary for the circuit C0. We define a
selection function S0 for the copying circuit C0 by S0(X) = set(C0)∩S(X) for all X ⊆ set(C0).
Let Y0 = advC0(ε,S0) be the corresponding adversary for C0. Then, for all X ⊆ set(C ′), if
condition (11) is satisfied by C:=C0, X:=X ∩ C0, S:=S0, Y:=Y0 then it is also satisfied by
C:=C ′, X, S and Y.

Proof. Let a be a fixed deterministic input of C ′. We restrict the function χ
(C′)
a to the set

of deterministic input nodes of C0. Let a0 be the restricted function. Applying Bayes’ theorem
with the various possible choices fort the function a0 we get that the distribution of C ′ with
input a is also θ-cyclical with the same base set. Q.E.D.(Lemma 18)

56

Doubling circuit. We will define below a probabilistic block F -circuit C(=,2)
m,G of type

((m,m), 1, 2), which computes the polynomials x, x, so that the circuit is (θ, ε1, p)-cylindrical
with the choices of the parameters according to the standard assumptions described in condition
(53).

Definition. Assume that m is a positive integer and G = 〈V,E〉 is a (d, 1 + α)-expander. We
define a circuit C(=,2)

m,G that we will call doubling a circuit. Let C̄ be the following deterministic
circuit of type ((m,m), 1, 2). Suppose that δ = 〈δ0, . . . , δ1〉 is the deterministic input of C̄. Then
we define the output values 〈ν(0)

0 , . . . , ν
(0)
m−1〉, 〈ν

(1)
0 , . . . , ν

(1)
m−1〉 on the two output blocks of C̄, by

ν
(j)
i = δi for i = 0, 1, . . . ,m. C(=,2)

m,G is defined as postG(C̄). ut
The following lemma is an immediate consequence of the definition of C = C(=,2)

m,G .

Lemma 19 The circuit C = C(=,2)
m,G computes the polynomials x0 and x1. Equivalently we have

P
(C)
0 = Q

(C)
0 = Q

(C)
1 .

Definition. Constant 0 circuit and constant 1 circuits. We define probabilistic block F -
circuits C(0)

m,G and C(1)
m,G, both of type ((m,m), 0, 1), where G = 〈{0, 1, . . . ,m − 1}, E〉 is a

(d, α + 1) expander graph. For all i = 0, 1, C(i)
m,G computes the constant polynomial i without

any deterministic input. The circuit C(i)
m,G always gives a block output consisting of a single

block of size m with Q0 = i. C(i)
m,G has no deterministic input nodes and for each e ∈ G it has

one probabilistic input node. We define C(i)
m,G in the following way. The circuit first computes

the sequence i, 0, . . . , 0 of length m and then copies it with the copying circuit C(=)
m,G. The

output of this copying circuit is also the output of the circuit for i = 0, 1. ut
The following lemma is an immediate consequence of the definition of C(i)

m,G

Lemma 20 For all i = 0, 1, the circuit C = C(i)
m,G computes the constant polynomial i. Equiv-

alently we have Q(C)
0 = i.

Definition. Addition circuit C(+)
m,G, subtraction circuit C(−)

m,G, and the circuit C(+1)
m,G . We

define a probabilistic block F -circuit C(+)
m,G of type ((m,m), 2, 1), where G = {0, 1, . . . ,m−1} is a

(d, α+1)-expander, which computes the polynomial x0+x1. First we define a deterministic block
F -circuit C ′ of type ((m,m), 2, 1). Assume that the inputs of C ′ in the two deterministic input
blocks are δ0, . . . , δm−1 and γ0, . . . , γm−1. Then the output of C ′ is the sequence µ0, . . . , µm−1,
where µ0 = δ0 + γ0, µ1 = δ1 + γ1, . . . , µm−1 = δm−1 + γm−1. C(+)

m,G is defined as C(+)
m,G =

postG(C ′). The subtraction circuit C(−)
m,G is defined in a similar way, the only difference is that

now µi = δi − γi, for i = 0, 1, . . . ,m − 1. The circuit C(+1)
m,G is a probabilistic block F -circuit of

type ((m,m), 1, 1). We define first a circuit C ′ of the same type. If the deterministic input of
C ′ is δ0, δ1, ..., δm−1, then its output is 1 + δ0, δ1, ..., δm−1. Finally we have C(+1)

m,G = postG(C ′).
ut

The following lemma is an immediate consequence of these definitions.

57

Lemma 21 The circuit C = C(+)
m,G computes the polynomial x0 + x1, the circuit C = C(−)

m,G

computes the polynomial x0−x1, and the circuit C(+1)
m,G computes the polynomial x0 +1. Equiva-

lently, for C = C(+)
m,G we have P (C)

0 +P
(C)
1 = Q

(C)
0 , for C = C(−)

m,G we have P (C)
0 −P (C)

1 = Q
(C)
0 ,

and for C = C(+1)
m,G we have P (C)

0 + 1 = Q
(C)
0 .

Definition. Random generator circuit C(rand)
m . We define a probabilistic block F -circuit

C(rand) of type ((m,m), 0, 1), so that it has no deterministic input and the sum of the ele-
ments of the output sequence, has uniform distribution on F . The circuit has m probabilistic
input nodes and m output nodes. If the probabilistic input values are γ0, . . . , γm−1, then the
output values are ν0 = γ0, . . . , νm−1 = γm−1. ut

The following lemma is an immediate consequence of this definition.

Lemma 22 If ν0, . . . , νm−1 are the output values of the circuit C(rand)
m then

∑m−1
i=0 νi has uniform

distribution on F .

Definition. Suppose that α = 〈α0, . . . , αm−1〉, αi ∈ F for i = 0, 1, . . . ,m− 1. We will use the
notation Sα =

∑m−1
i=0 αi .ut

Lemma 23 Under the standard assumptions described in (53) the following circuits are are
(θ, ε1, p)-cylindrical: C(=,2)

m,G , C(0)
m,G, C(1)

m,G, C(+)
m,G, C(−)

m,G, C(+1)
m,G , C(rand)

m .

Proof. For the circuits C(=,2)
m,G , C(0)

m,G, C(1)
m,G, C(+)

m,G, C(−)
m,G we can prove the statement of the

lemma in the same way as we have done it for the copying circuit. In the case of C(=,2)
m,G we have

now two output blocks and in the cases of C(+)
m,G, C(−)

m,G we have two input blocks, however this
does not cause any problems. Q.E.D.(Lemma 23)

Definition. Let C = C(+)
m,G. The system of equations consisting of the only equation P

(C)
0 +

P
(C)
1 = Q

(C)
0 will be called the canonical system of the circuit C(+)

m,G. ut

Lemma 24 Assume that d is a positive integer, α > 0, ε > 0 is sufficiently small, m is a
sufficiently large positive integer, C = C(+)

m,G is an addition circuit where G is a (d, 1 + α)-

expander, A ⊆ set(C), |A| ≤ εm and Γ is the canonical system of C = C(+)
m,G. Then the circuit

C(+)
m,G is A,Γ-percolative.

Proof. The proof is very similar to the proof of Lemma 13, which is an analogue statement
about the circuit C(=)

m,G. Q.E.D.(Lemma 24)

In the following definition we define a probabilistic block F -circuit C(spl)
m,G of type ((m,m), 1, 4)

so that if the deterministic input δ ∈ sequencem,F is fixed, where sequencem,F denotes the
set of all sequences of length m, whose elements are in F , then the output consists of four
sequences µ(0), µ(1), µ(2), µ(3) ∈ sequencem,F given on the four output blocks with the property
that Sδ = Sµ(0) + Sµ(1) =Sµ(2) + Sµ(3). Moreover Sµ(i), i = 0, 1, 2, 3 have uniform distribution

58

on F , and the random variables Sµ(0) and Sµ(2) are independent. This circuit will be needed
for the definition of an (θ, ε1, p)-cylindrical circuit whose block output is the product of its block
inputs, that is, the circuit computes the product of two elements of F in the same sense as
the circuit Cm,G products the sum of two elements. The factors a, b of the product ab will be
repeatedly split into two random parts. This way we get ab = (a0+a1)b = a0(b0+b1)+a1(b2+b3)
where a = a0 + a1, b = b0 + b1 = b2 + b3. We will get the four values b0, b1, b2, b3 as the block
outputs of a circuit C(spl)

m,G whose block input is b.

Definition. Splitting circuit C(spl)
m,G . First we define a probabilistic block F -circuit C(wspl)

m of

type ((m,m), 1, 4) that we will call a weak splitting circuit. Cw = C(wspl)
m has m deterministic

input nodes q0, . . . , qm−1, 2m probabilistic input nodes r0,s, . . . , rm−1,s, s = 0, 1 and 4m output
nodes ti,j , i = 0, 1, . . . ,m − 1, j ∈ {0, 1, 2, 3}. The output nodes form four output blocks:
t0,j , . . . , tm−1,j , j = 0, 1, 2, 3. Assume that the deterministic input of Cw is βi at node qi, and its
probabilistic input is γi,s at node ri,s, for i = 0, 1, . . . ,m−1 and s = 0, 1. Then the output of Cw
at the output node ti,2s+j is γi,s+jβi for all i = 0, 1, . . . ,m−1, and s, j ∈ {0, 1}. This completes
the definition of Cw = C(wspl)

m . We define C(spl)
m,G by C(spl)

m,G = preG(C(wspl)
m). The four output

block of C = C(spl)
m,G will be denoted by T

(C)
0 , T

(C)
1 , T

(C)
2 , T

(C)
3 , where T (C)

2s+j is the output block
defined by the output values γi,s + jβi, s, j ∈ {0, 1}, i ∈ {0, 1, . . . ,m − 1}. The output block
polynomial corresponding to the output block T (C)

k will be denoted by Q(C)
k for k = 0, 1, 2, 3. ut

The following Lemma describes the connections between the block input and the block
outputs of the circuit C(spl)

m,G , and also says that the two ways, as the block input splits into two
parts by the the circuit, are independent. The proof of the lemma is an immediate consequence
of the definition.

Lemma 25 If C = Cspl
m,G, G = 〈V,E〉, then P (C)

0 = Q
(C)
0 +Q(C)

1 = Q
(C)
2 +Q(C)

3 . Assume that ℘i
are the deterministic input nodes of C, and Ge, e ∈ E, ri,s, i ∈ {0, 1, . . . ,m− 1}, s ∈ {0, 1}, are
the probabilisitic input nodes of C. Suppose further that the deterministic input δ0, . . . , δm−1 on
the nodes ℘0, . . . , ℘m−1 is fixed. Then, for each j = 0, 1, 2, 3, Q̄(C)

j , has uniform distribution on

F , where we get Q̄(C)
j from the polynomial Q(C)

j by substituting δi for z℘i, i ∈ {0, 1, . . . ,m− 1},
γe for zGe, e ∈ E, and γi,s for zqi,s, i = 0, 1, . . . ,m − 1, s ∈ {0, 1}, where the random variables
γe, e ∈ E, γi,s, i = 0, 1, . . . ,m − 1, s ∈ {0, 1} are mutually independent and each has uniform
distribution on F . Moreover the random variable Q̄(C)

0 and Q̄(C)
2 are independent.

Definition. Let C = C(spl)
m,G . The system of equation consisting of the equations P (C)

0 =

Q
(C)
0 +Q

(C)
1 = Q

(C)
2 +Q

(C)
3 will be called the canonical system of the circuit C(spl)

m,G . ut

Lemma 26 Assume that d is a positive integer, α > 0, ε > 0 is sufficiently small, m is a
sufficiently large positive integer, C = C(spl)

m,G is a splitting circuit where G is a (d, 1 + α)-
expander, A ⊆ set(C), |A| ≤ εm, κ0, κ1 ∈ F and Γ is the system of equation consisting of the
canonical system of C(spl)

m,G and the equations Q(C)
0 = κ0, Q(C)

2 = κ1. Then the circuit C(spl)
m,G is

A,Γ-percolative.

59

Proof. The proof is very similar to the proof of Lemma 13 Q.E.D.(Lemma 26)
The following deterministic block F -circuit is of type ((m, 1), 1, 1), that is, unlike all of the

other circuit considered so far, its only output “block” is of length 1. This circuit will be used
only in the construction of the multiplication circuit.

Definition. Total sum circuit C(S)
m,G . We define a probabilistic F -circuit C(S)

m,G of type
((m, 1), 1, 1), where G = 〈{0, 1, . . . ,m− 1}, E〉 is a (d, 1 + α) expander graph, and m is a power
of 2. First we define a deterministic F -circuit D(S)

m of type ((m, 1), 1, 1) and then we define C(S)
m,G

by C(S)
m,G = preG(D(S)

m).

If the input of D(S)
m is the sequence δ0, . . . , δm−1, δi ∈ F , then the output is

∑m−1
i=0 δi. A

circuit with this property can be constructed in many different ways. Our specific choice, which
is important to guarantee that the circuit is percolative in some sense, is the following. Let
T be a binary tree of depth log2m with 2m − 1 elements, that we consider now as a partially
ordered set, where the root is the smallest element and the leaves are the maximal elements.
The leaves are the input nodes. Each other node is a “+” gate which computes the sum of its
two successors. The root is the output node. This completes the definition of D(S)

m and as we
have indicated earlier C(S)

m,G = preG(D(S)
m). ut

Lemma 27 Assume that d, α, the parameters of the expander graph G are fixed. Then for all
ε > 0 there exists an ε′ > 0 so that if m is a sufficiently large power of two, C = C(S)

m,G is a total
sum circuit then the following holds. Assume that A is a random subset of set(C) so that for all
x ∈ set(C), prob(x ∈ A) ≤ ε′ and the events x ∈ A, for x ∈ set(C) are mutually independent,
and Γ is the system consisting of the only equation Q

(C)
0 = P

(C)
0 . Then with a probability of at

least 1− ε the circuit C(S)
m,G is A,Γ-percolative.

Proof. By the definition of the circuit Cm,G(S), it has two parts, a copying circuit C1 = C(=)
m,G

whose deterministic input is the deterministic input of C, and a circuit C2 = D(S)
m . C2 does

not have probabilistic input nodes. It has the structure of a binary tree whose leaves are its
deterministic input nodes, they are identified with the output nodes of C1. The other nodes
are all + gates. The output node of C2 is the root of the tree, and it is also the output node of
C.

Γ1 will denote the equation P0 = Q0 with respect to circuit C1. Let A1 = A ∩ set(C1). We
assume that ε′ > 0 is sufficiently small with respect to ε. The expected size of the set A1 is
ε′|set(C1)| ≤ ε′(1 + 2d)m ≤ ε′3md. According to Chernoff’s inequality, with a probability of at
least 1− ε

2 , we have |A1| ≤ 6dε′m.
Therefore Lemma 13 implies that if ε′ > 0 is sufficiently small then the copying circuit C1

is A1,Γ1-percolative. Let P1 be the event that C1 is A1,Γ1-percolative, and if P1 holds let
X1 ⊆ detin(C1) ∪ outset(C1) whose existence is guaranteed by the definition of percolativity.

Let A2 = A ∩ C2. Since P1 ≥ 1 − ε
2 , Lemma 17 implies that with a probability of at least

1− ε with respect to the randomization of A the following condition is satisfied:

(54) P1 holds and there exists a path in the tree of C2, whose every point is in set(C2)\A,
which connects a point x of X1 ∩ outset(C1) with the output node (that is, the root of the tree).

60

If condition (54) is satisfied then xA will denote a point X1 ∩ outset(C1) with the described
property.

We claim that if condition (54) is satisfied by the random choice of the set A then the circuit
C is A,Γ-percolative. We define the set X whose existence is required by the definition on
percolativity by X = (X1 ∩ detin(C)) ∪ outset(C2). Assume that σ ∈ func(inset(C), F),
κ ∈ func(X,F) and σ(io)\κ satisfies Γ. We have to define the function ρ ∈ func(inset(C), F)
whose existence is also required by the definition of percolativity.

Let κ1 be in func(X1, F) defined in the following way. κ1 restricted to X1 ∩ detin(C1) =
X ∩ detin(C) is identical to κ restricted to the same set. Now we define the restriction of κ1 to
X1 ∩ outset(C1). On the set X1 ∩ outset(C1)\{xA}, κ1 is identical to χ(C)

σ = χ
(C1)
σ , on xA it

is defined in the unique way which ensures that∑
x∈detin(C1)

(σ\κ)(x) =
∑

y∈outset(C1)

(χ(C1)
σ \κ)(y)

Since C1 is A1,Γ1 percolative, there exists a function ρ1 ∈ func(inset(C1), F) such that ρ(io)
1 =

σ(io)\κ1 and for all a ∈ full(A)1 we have χ(C1)
σ (a) = χ

(C1)
ρ1 (a).

We define the function ρ required by the A,Γ-percolativity of the circuit C by ρ = ρ1. Since
inset(C) = inset(C1) we have ρ ∈ func(inset(C), F). We have to show that the function ρ
meets the requirements of the definition of percolativity.

Assume that u is the unique output node of C. ρ(io) and σ(io)\κ are identical on inset(C) =
inset(C1) because σ and ρ1 are identical on the same set. Assume that u is the unique output
node of C. Clearly ρ(u) =

∑
x∈detin(C) ρ(x) =

∑
x∈detin(C) ρ1(x) =

∑
x∈outset(C1) ρ1(x). Since

ρ(io) satisfies Γ, by the definition κ1(xA) this last sum is σ(io)(u).
Finally we have to show that χ(C)

σ (a) = χρ(a) for all a ∈ full(A). If a ∈ A this follows
from ρ = ρ1 and form the corresponding condition for the percolativity of C1. The fact that κ1

differs only at xA from χσ, implies that in set(C2), the function χ
(C)
ρ will differ from χ

(C)
σ on

only those points which are below xA, that is, which are on the path leading from xA to the
root of the tree. However this path, by its definition, does not contain any points from full(A).
(Here we used the fact that if a branch of the tree does not contain any point from A then it
cannot contain any points from full(A).) Q.E.D.(Lemma 27)

Definition. Reverse-sum circuit C(S−1)
m,G . We define a probabilistic F -circuit, the reverse-sum

circuit C(S−1)
m,G , of type ((1,m), 1, 1), where G = 〈{0, 1, . . . ,m − 1}, E〉 is a (d, 1 + α) expander

graph, and m is a power of 2. First we define a deterministic F -circuit D(S−1)
m of type ((m, 1), 1, 1)

and then we define C(S−1)
m,G by C(S−1)

m,G = postG(D(S−1)
m).

The definition of C = D(S−1)
m is the following. We want to define the circuit in a way that if

the single input is δ and the output is ν0, . . . νm−1 then δ =
∑m−1
i=0 νi. Let T be a binary tree of

depth log2m with 2m− 1 elements, so that each element which is not a leaf, has a left successor
and a right successor. We now consider the partial ordering on the tree where the root is the
largest elements and the leaves are the minimal elements. The set of nodes of C will be the
union of two sets, (a) the set of nodes of the tree T and (b) a set W of probabilistic input nodes
so that W ∩ T = ∅ and |W | = m− 1. The root of the tree is the deterministic input node, the

61

leaves of the tree are the output nodes. We fix a one-to-one map g which maps the set of all
non-leaf nodes of the tree onto W . The random input element of F at the input node x ∈ W
will be denoted by γ(x).

The circuit computes a boolean value τt for each t ∈ T . The values of τt on the leaves t
will be the output. We define τt for t ∈ Li by recursion on i, where Li is the ith level of the
tree. Assume that δ is the input of the circuit. If i = 0, t ∈ L0, then t is the root of the tree
and τt = δ. Assume that τr has been already defined for all r ∈ Li−1 and let t ∈ Li. Suppose
that s ∈ Li−1 so that t is a successor of s. If t is a left successor then τt = γ(g(s)). If t is a
right successor then τt = τs − γ(g(s)). Using the definition of τt we can prove by induction on i
that

∑
t∈Li τt = δ. Therefore if ν0, . . . , νm−1 are the values τt, t ∈ Llog2m is some order, then we

have δ =
∑m−1
j=0 νj . This completes the definition of the circuit C(S−1)

m and as we have already

indicated earlier C(S−1)
m,G = postG(D(S−1)

m) ut

Lemma 28 Assume that d, α, the parameters of the expander graph G are fixed. Then for all
ε > 0 there exists an ε′ > 0 so that if m is a sufficiently large power of two, C = C(S−1)

m is a
reverse sum circuit then the following holds. Assume that A is a random subset of set(C) so
that for all x ∈ set(C), prob(x ∈ A) ≤ ε′ and the events x ∈ A, for x ∈ set(C) are mutually
independent, and Γ is the system consisting of the only equation Q

(C)
0 = P

(C)
0 . Then with a

probability of at least 1− ε the circuit C(S−1)
m is A,Γ-percolative.

Proof. The proof is similar to the proof of Lemma 27. By the definition of the circuit
Cm,G(S−1), it has two parts, a copying circuit C1 = C(=)

m,G whose output is the output of C, and

a circuit C2 = D(S−1)
m . We will use the notation about DS−1

m given in its definition. set(C2) is
the union of two disjoint set T and W . T is a binary tree with respect to ≤C2 whose root is its
only deterministic input node an it is also the only deterministic input node of C. W is the set
of probabilistic input nodes, for each nonleaf t ∈ T , g(t) is a probabilistic input node with the
role described in the definition of D(S−1)

m . The leaves of T are the output nodes of C2, and they
are identified with the deterministic input nodes of C1.

We will need the following property of the circuit C2. L will denote the set of all leaves of
T .

(55) Assume that β ∈ func(inset(C), F), B is a branch of T and v ∈ B ∩ L, a, b ∈ F , with
the property that

a = b+
∑
{χC2

β (x) | x 6= v ∧ x ∈ L}

Then there exists a γ ∈ func(inset(C), F) such that (i) γ(g(t)) 6= β(g(t)) implies t ∈ B, and
(ii) γ(t0) = a ∧ γ(v) = b.

We can prove this statement by recursively choosing the values of the elements γ((g(t))) as
we go down with the element t on the branch B starting at the root t0. We have to choose each
γ(g(t)), t ∈ B in a way that if t is in Li ∩B, where Li is the ith level of T then

a = χ(C2)
γ (t) +

∑
{χC2

β (x) | x 6= t ∧ x ∈ Li}

Q.E.D.(Lemma 28)

62

According to the definition of DS−1

m such a choice of γ(g(t)) is always possible. Using the
fact that C2 satisfies (55) we can prove Lemma 28 in the same way as we have proved Lemma
27, but in this case because of the different ordering of the tree we need Corollary 6 of Lemma
17. Q.E.D.(Lemma 28)

We define now a block F -circuit C which performs multiplication, however in a way that
the value of the product may leak to an ε-random adversary with a nonnegligible probability.
Because of this, the circuit will be called the leaky product circuit. In spite of this defect, it will
have a role in the construction of a block F -circuit which performs multiplication without such
a leak. The circuit will have three input blocks and it will compute the polynomial x0(x1 + x2).
The only reason why we don’t use a circuit with two input blocks and computing the polynomial
x0x1 is, that the the construction of the leak-proof multiplication circuit is easier to formulate
if we have the mentioned three input blocks.

The circuit C = C(leaky×)
m,G , to be defined below, will do the following. It has three input

blocks. Assume that the block inputs, (that is, the sums of the deterministic input values) are
a0, a1, a2. First C computes a0, a1, a2 using the subcircuits C0, C1, C2. After that it computes
a0(a1 + a2), and finally, using a reverse sum circuit C3, it produces its single output block so
that the block output, that is the sum of the output values is a0(a1 + a2).

Definition. We define a deterministic block F -circuit C = C(leaky×)
m,G of type ((m,m), 3, 1). We

will call this circuit the leaky product circuit. For the construction of C let C0, C1, C2 be copies
of the total sum circuit C(S)

m,G and let C3 be a copy of the reverse sum circuit C(S−1)
m,G so that

the sets set(Ci), i = 0, 1, 2, 3 are pairwise disjoint. set(C) will be {u}∪
⋃3
i=0 set(Ci) such that

u /∈
⋃3
i=0 set(Ci) and u is a “+” gate which adds the output of C1 and C2. All of the gates of Ci,

i = 0, 1, 2, 3 will perform the same operations as in their original role in Ci, with the exception
of w the deterministic input node of C3. The node w will be now a “×” gate which computes
the product of the values which are computed at the output node of C0 and at the node u.
The deterministic input nodes of C are the deterministic input nodes of C0, C1, and C2. The
probabilistic input nodes of C are the probabilistic input nodes C3. The output nodes of C are
the output nodes of C3. Consequently if δ(0) = 〈δ0,0, . . . , δm−1,0〉, δ(1) = 〈δ0,1, . . . , δm−1,1〉, and
δ(2) = 〈δ0,2, . . . , δm−1,2〉 is the deterministic input of C so that δ(j) is given at the input nodes
of Cj , for j = 0, 1, 2, and ν is the output of C, then ν = (

∑m−1
i=0 δi,0)[(

∑m−1
i=0 δi,1) + (

∑m−1
i=0 δi,1)].

The system of equations consisting of the only equation Q(C)
0 = P

(C)
0 (Q(C)

1 +Q
(C)
2) will be called

the canonical system of the circuit C = C(leaky×)
m,G ut

Lemma 29 For all ε > 0 there exists an ε′ > 0 so that if m is a sufficiently large power of
two, C = C(leaky×)

m,G is a leaky product circuit then the following holds. Assume that A is a
random subset of set(C) so that for all x ∈ set(C), prob(x ∈ A) ≤ ε′ and the events x ∈ A,
for x ∈ set(C) are mutually independent, and Γ is the canonical system of C(leaky×)

m,G . Then,

with a probability of at least 1− ε, the circuit C(leaky×)
m,G is A,Γ-percolative.

Proof. The lemma is a consequence of Lemma 27 and Lemma 28. Q.E.D.(Lemma 29)

63

7 Circuit for Multiplication

In this section we assume that two absolute constants d and α > 0 are given so that for
each m we can construct in an efficient way an (d, 1 + α)-expander on the set of vertices
{0, 1, . . . ,m− 1}. We assume that such a method of construction and the corresponding graph
Gm = 〈{0, 1, . . . ,m−1}, Em〉 is fixed for all m. Therefore when we are speaking about the block
F -circuits, C(=)

m,G,C
(+)
m,G,C

(spl)
m,G etc., we will always assume that G = Gm and because of this the

subscript G may be omitted, that is, we may write C(=)
m ,C(+)

m ,C(spl)
m etc.

We will define an (θ, ε1, p)-cylindrical block F -circuit C(×)
m = C(×)

m,G which computes the
function x0x1, where θ, ε1 and p are chosen according to the standard assumptions described in
condition (53). For using this circuit in the proof of Theorem 7 we will need a slightly modified
version of this circuit a probabilistic block F -circuit of type ((m,m,)2, 2), that is a circuit which
has two input blocks and two output blocks each of them of size m, and computes the functions
x0, x0x1, as required in Lemma 3. In other words the first block output is identical to the first
block input, and the second block output is the product of the two block inputs. This circuit will
be put together from a copying circuit of C(=)

m,G and a product circuit C(×)
m,G, that we will define

later in this section. The result that we will need in the proof of Theorem 7 is the following
lemma.

Lemma 30 For all positive integer m there exists a probabilistic block F -circuit C(×,)
m,G of type

((m,m), 2, 2) which computes the functions x0, x1x2 so that under the standard assumptions
described in (53) the circuit C(×,)

m,G is (θ, ε1, p)-cylindrical. Moreover the directed graph defining
the circuit is of polynomial size in m, and can be computed by a Turing machine, together with
its labelings, in time polynomial in m.

As a first step we define a block F -circuit C(×,+)
m = C(×,+)

m,G with three input blocks which

computes the function x0(x1 +x2). We may get C(×)
m from C(×,+)

m , by replacing the input nodes
where x2 appears by gates which produce always 0s independently of the input.

We define C(×,+)
m as the composition of different circuits of the types we have defined in the

previous section, for example, circuits C(=)
m ,C(+)

m ,C(spl)
m etc. Each of these circuits will occur

in many different copies. To do this, first we define a general abstract process of composition
block F -circuits, which are arranged on a partially ordered set, and then we will apply it for the
construction of the circuit C(+,×)

m .

7.1 Composition of F -circuits given on a partially ordered set

Definition. If P is a partially ordered set and a, b ∈ P , we will say that b covers a or a
precedes b if a < b and there exists no c ∈ P with a < c < b. In this situation we will write
a ≺ b.ut

The following definition describes a construction of a block F -circuit from a set Q of given
F -circuits. Some of the output blocks of a circuit C ∈ F may be identified with input blocks
of other circuits C0, C1, ... ∈ F , with the intuitive meaning that first C performs a computation
and then gives its output in the form of blocks to the circuits C0, C1, ... as input blocks. The set

64

of circuits in Q has a partial ordering and each circuit C ∈ Q may pass information to a circuit
D ∈ Q only if C covers Q.

Definition. 1. We say that the pair Q = 〈Φ,≤Φ〉, is a compatible F -circuit family, if Φ is a
set of probabilistic block F -circuits, ≤Φ is a partial ordering of the set Φ, and the following two
conditions are satisfied:

(56) For all C,D ∈ Φ, if set(C) ∩ set(D) 6= ∅, then either C covers D, or D covers C with
respect to ≤Φ.

(57) For all C,D ∈ Φ, D covers C implies that there exists a nonempty subset X of blockin(C)
so that each element of X is also an element of blockout(D) and set(C) ∩ set(D) =

⋃
X.

2. Assume that Q = 〈Φ,≤Φ〉, is a compatible F -circuit family. We define a probabilistic
block F -circuit C(Q), that we will call the composition of the family Q, in the following way. In
the definition of an F -circuit C we used a directed graph denoted by graph(C). graph(C(Q))
will be the union of the graphs graph(C) for all C ∈ Φ. The union is taken in the sense that the
set of vertices of the union is the union of the sets of vertices of the graphs graph(C), C ∈ Φ,
and the set of edges of the union is the union of the sets of edges of the graphs graph(C), C ∈ Φ.
Note that the definition of a compatible family implies, that if the head of a directed edge of
graph(C(Q)) is a vertex of graph(C), while its tail is a vertex of graph(D) for some C,D ∈ Φ,
then C ≤ D. This implies that graph(C(Q)) is acyclic. The labeling of the nodes of graph(C(Q))
which defines the gates of the circuit will be the common extension of the labelings of the graphs
graph(C), C ∈ Φ. Since the input nodes have no labels in the circuits C ∈ Φ, the definition of
a compatible family implies, that such a common extension always exists.

We have to define the set of deterministic and probabilistic input nodes of C(Q). A node x of
graph(C(Q)) is a deterministic input node of C(Q), if x has indegree 0 in C(Q), and there exists
a C ∈ Φ, so that x is a deterministic input node of Φ. All of the other nodes of graph(C(Q))
with indegree 0 will be probabilistic input nodes. The nodes of graph(C(Q)) with outdegree 0
will be the output nodes of the circuit C(Q).

This definition implies that if x is a deterministic input node of C(Q) then there is a unique
C ∈ Φ so that x is a deterministic input node of C, and if x is in the input block I of C then all
of the other elements of I are also deterministic input nodes of C(Q). Therefore we may define
the input block of C(Q) in the following way: the input nodes x, y of C(Q) are in the same input
block if there exists a C ∈ Φ so that x and y are in the same input block of C.

We define the output blocks of C(Q) in a similar way. The output nodes x, y of C(Q) are in
the same output block if there exists a C ∈ Φ so that x and y are in the same output block of
C.

This definition implies that for each input/output block Y of C(Q) there exists exactly one
C ∈ Φ such that Y is an input/output block of C. ut

Remark. 1. If an input is given for C(Q), we can evaluate C(Q), by recursively evaluating all
of the circuits C, C ∈ Φ, going downward on the partial ordering Φ, starting with a maximal
element C ∈ Φ, and always evaluating a circuit which is maximal among the remaining elements
of Φ. The definition of a compatible family implies that all of the inputs of such a maximal
circuit has been already computed.

65

2. We included the partial ordering ≤Φ in the definition of a compatible family, only for the
sake of clarity. If only the set Φ is known from a compatible family, the partial ordering can be
easily defined from it. Another reason for the inclusion of the partial ordering in the definition
is, that in our most important example for a compatible family, we will start the construction
of the family by describing the partial ordering ≤Q as an abstract partially ordered set. ut

7.2 Percolativity and composition of F -circuits

The notion of percolativity will be very important in the proof of the (θ, ε1, p)-cylindricity of the
circuit C(×,+)

m,G to be defined later, as a composition of a family of F -circuit. In this subsection
we will consider for an arbitrary family of circuits Q = 〈Φ,≤Φ〉, what are the consequences of
percolativity of some elements of Φ to the composition C(Q). Later we will apply these results
to the circuit C(×,+)

m,G .
Recall that an A,Γ-percolative circuit C, where C satisfies the system of equations Γ and

A ⊆ set(C), by definition, has the following property. Suppose that σ is an evaluation of both
the deterministic and probabilistic inputs of C and σ(io) is the restriction of the evaluation
function χσ to the set consisting of the deterministic input nodes and the output nodes. We
change the function σ(io) on a relatively large set X so that the new function that we get, σ(io)\κ,
also satisfies Γ. Then there exists an evaluation ρ of all of the inputs of C, both deterministic
and probabilistic, so that the evaluation function χρ restricted to the set of deterministic input
nodes and output nodes is identical to σ(io)\κ, and on the elements of the set A, the functions
χρ and χσ are identical.

Motivation. For the construction of the product circuit we will need the following. Assume
that a compatible family of circuits Q = 〈Φ,≤Φ〉 and a subset A ⊆ C(Q) is given. Together
with each circuits C ∈ Φ, a system of equation GC is also given so that C satisfies GC . Let σ
be an evaluation of all of the input nodes of C(Q) with values in F . λ will be a function defined
on the set of all input and output blocks of the circuits in Φ with values in F . (If a block is the
output block of a C1 ∈ Φ and the input block of a C2 ∈ Φ then λ takes a single value on it.) For
each C ∈ Φ, λC will be the restriction of λ to the input/output blocks of C. We assume that
λC satisfies the system GC for all C ∈ Φ.

The central question in the construction of the product circuit Φ will be the following. Does
there exists an evaluation ρ of the input variables of Q(C) so that χρ is compatible to λ in the
sense that on each input/output block X of each C ∈ Φ the sum of the values of χρ on X
is λ(X). The importance of the existence of such a ρ will be that it guarantees the existence
of a solution for a system of equation that we will associate with C(Q). The existence of a
solution, using the lemmas about systems over F , will guarantee that for certain systems, where
the observation of the adversary (on the set A) defines the inhomogeneous part and the inputs
are the unknowns, the number of solutions are independent of the inhomogeneous part. This
can be translated into the language of probabilities and will give that from the point of view of
the adversary the probabilities of the various values for the block inputs are the same.

We formulate below Lemma 31, which guarantees the existence of such an input ρ under
certain conditions. We assume the existence of an evaluation σ of the input nodes of C(Q), so
that for each C ∈ Φ with the property that C is not A∩ set(C), GC-percolative, the evaluation
function χσ restricted to set(C) is compatible to λ restricted to the blocks of C. (That is the

66

sum of χσ on each block of C is the value of λ on that block.) χρ will be identical to χσ on the
nodes of these circuits C, while for the remaining circuits C ∈ Φ we will construct χρ by using
the A ∩ set(C), GC-percolativiy of C.

Definition. Let Q = 〈Φ,≤Φ〉 be a compatible family of circuits, and let A ⊆ set(C(Q)).
Suppose that for all C ∈ Φ, GC is a polynomial system of equations over F so that the circuit C
satisfies the system GC . perc(Φ, A,Gx) will denote the set of all C ∈ Φ so that C is percolative
with respect to A ∩ set(C), and GC . (Here Gx denotes the function which assigns GC to C for
all C ∈ Φ.) We will write perc(Φ, A) for perc(Φ, A,Gx) if the choice of the function Gx is clear
from the context. ut

Definition. Assume the Q = 〈Φ,≤Φ〉 is a compatible family of F -circuits and σ ∈
func(inset(C(Q)), F). For all C ∈ Φ we define a function σC ∈ func(inset(C), F), in the
following way. We evaluate the circuit C(Q), with the input defined by σ. Assume that we get
the evaluation function χσ defined on set(C(Q)). Suppose that x ∈ inset(C). We define σC(x)
by σC(x) = χσ(x). ut

Lemma 31 Assume that Q = 〈Φ,≤Φ〉 is a compatible family of F -circuits, the systems GC , the
set A, and the functions σ, λ, λC are given with the following properties:

(58) for all C ∈ Φ, GC is a polynomial system of equations over F so that the circuit C
satisfies the system GC ,

(59) A ⊆ set(C(Q)),

(60) σ ∈ func(inset(C(Q)), F),

(61) λ ∈ func(
⋃
{blockio(C) | C ∈ Φ}, F), and for each C ∈ Φ, λC is the restriction of λ to

blockio(C). Moreover for each C ∈ Φ. λC satisfies the system GC ,

(62) for all C /∈ perc(Φ, A,Gx), λC = (σ̄C)(io)

Then there exists a ρ ∈ func(inset(C), F), so that for each a ∈ A we have χ(C(Q))
σ (a) =

χ
(C(Q))
ρ (a) (where χ(C(Q))

α is the evaluation function of the circuit C(Q) at input α), and for each

C ∈ Φ and J ∈ blockin(C) ∪ blockout(C), we have λ(J) =
∑
{χ(C(Q))

ρ (b) | b ∈ J}.

Proof. According to the definition of the function perc, for each C ∈ perc(Φ, A), C is
AC , GC-percolative, where AC = A∩ set(C), and therefore there exists a set XC ⊆ detin(C)∪
outset(C), so that conditions (39) and (40) of the definition of percolativity are satisfied with
A:=AC , X:=XC .

Proposition 12 Let W be the set of all 〈C, J〉 so that: C ∈ perc(Φ, A), J ∈ blockio(C), and

λ(J) 6= σ̄
(io)
C (J)

Then there exists a binary function Z so that Z(C, J) is defined iff 〈C, J〉 ∈ W with the
property that for all 〈C, J〉 ∈W we have:

(a) ∅ 6= Z(C, J) ⊆ XC , and
(b) if there exists a D ∈ Φ so that 〈D,J〉 ∈W , then Z(C, J) = Z(D,J).

67

We define a set Z(C, J) for all 〈C, J〉 ∈W . Assumption (62) of the lemma and the definition
of the set W implies that for all 〈C, J〉 ∈ W we have that C ∈ perc(Φ, A). Assume first that a
pair 〈C, J〉 ∈ W is given so that J ∈ blockio(D) for some D ∈ Φ, D 6= C. With the previous
argument we get that D ∈ perc(Φ, A) as well. C,D ∈ perc(Φ, A) implies that XC , XD satisfy
condition (39) from the definition of percolativeness, therefore we have |J ∩ XC | > 1

2 |J | and
|J ∩XD| > 1

2 |J |, and consequently J ∩XC ∩XD 6= ∅. For such a pair C, J ∈W we define the set
Z(C, J) by Z(C, J) = J ∩XC ∩XD. Clearly condition (a) of the lemma is satisfied by Z(J,C).
The circuit D, with the described properties, is uniquely determined by C and J , and so for
such a D we have Z(C, J) = Z(D,J), that is, condition (b) is satisfied as well.

Assume now that 〈C, J〉 ∈ W and there exists no D ∈ Φ\{C} so that J ∈ blockio(D). In
this case let Z(C, J) = XC ∩ J . Since |J ∩XC | > 1

2 |J | condition (a) is satisfied. Condition (b)
follows from the assumption that there exists no D 6= C with 〈D,J〉 ∈ W . Q.E.D.(Proposition
12)

Proposition 13 For each C ∈ Φ let X̄C =
⋃
{Z(C, J) | 〈C, J〉 ∈ W}, where the set W and

the function Z are defined in Proposition 12. Then for all C ∈ Φ, there exists a function
κC ∈ func(XC , F) with the following properties.

(63) For all x ∈ XC\X̄C , κC(x) = σC(x)

(64) for all 〈C, J〉 ∈W we have∑
{σC(x) | x ∈ J\Z(C, J)}+

∑
{κC(x) | x ∈ Z(C, J)} = λ(J)

(65) if x ∈ domain(κC) ∩ domain(κD) for some C,D ∈ Φ then κC(x) = κD(x).

Proof. We define κC for all x ∈ XC\X̄C by κC(x) = σC(x), so condition (63) is obviously
satisfied. Condition (64) in itself can be easily satisfied, since Z(C, J) 6= ∅. The value of κC(x) is
already given outside Z(C, J), and we define it inside Z(C, J), so that the equality in condition
(64) holds. To ensure that condition (65) is also satisfied, we take the pairs 〈C, J〉 ∈W in some
order, and if one of the pairs 〈C, J〉, 〈D,J〉, e.g., 〈C, J〉, comes first, then we define κC on J
so that it satisfies condition (64), and then define κD, so that it is identical to κC on J . By
proposition 12 we have Z(C, J) = Z(D,J). σC and σD are identical on the set J , since they

both take on J the same values as the function χ(C(Q))
σ . Therefore κD satisfies condition (64) with

the pair 〈D,J〉. This completes the definitions of the functions κC , C ∈ Φ. Q.E.D.(Proposition
13)

Proof of Lemma 31 continued. For the definition of ρ first we define a ρC ∈ (inset(C), F)
for each C ∈ Φ. (This will be compatible to our earlier notation, since we will get a ρ such that

ρC is the restriction of χ(C(Q))
ρ to the set inset(C).) We define ρC by recursion on C according

to the partial ordering ≤Φ. Assume that C ∈ Φ and ρD has been already defined for all D ∈ Φ
with D > C. If C /∈ perc(Φ, A) then ρC = σC . Assume that C ∈ perc(Φ, A) and so C is A∩C
percolative. Since κC is defined on the set XC , the A∩C-percolativeness of C implies that there
exists a ρC ∈ func(inset(C), F) so that condition (40) of the definition of percolativeness holds
with σ:=σC , κ:=κC ,Γ:=GC , and ρ:=ρC . ρ will be the unique element of func(inset(C(Q)), F),

such that for each C ∈ ϕ and x ∈ inset(C), we have χ(C(Q))
ρ (x) = ρC(x)Q.E.D.(Lemma 31).

68

7.3 The definition of C
(+,×)
m,G

We will define a compatible family Q = 〈Φ,≤Φ〉 of block F -circuits, and their composition the
block F -circuit C(Q) will be the circuit C(×,+)

m,G .

Definition. We define a compatible family of F -circuits Q = 〈Φ,≤Φ〉. First we define a
partially ordered set 〈P,≤P 〉 and a one-to-one map ϕ on P so that for each a ∈ P , ϕ(a) is a
probabilisitic block F -circuit. The set {ϕ(a) | a ∈ P} will be Φ, and the partial ordering on Φ
will be defined by ϕ(a) ≤ ϕ(b) iff a ≤P b.

Remark. In the following definition of C(×,+)
m,G , assuming that m is a power of two, we use a

parameter m̄ = m3. We make this choice of the value of m̄ for the sake of simplicity. Selecting
m̄ in any other way so that m̄ ≥ ω(m)m2 and m̄ is a power of two, would be good, as well,
provided that ω(m) is a function with limm→∞ ω(m) = ∞. A smaller value for m̄ would make
the size of the corresponding circuit also smaller. ut

The definition of 〈P,≤P 〉. Assume that m = 2d0 , d0 > 1., d = log2 m̄ = 3d0. Let m̄ = m3,
d = log2 m̄ = 3d0. and T is a binary tree of depth d with levels L0 = {t0}, L1, . . . , Ld, where
|Li| = 2i. We will use two different partial ordering on T , ≤T and ≤′. The partial ordering ≤T ,
where the root is the largest element and the leaves are the minimal elements, has been already
defined after the definition of a binary tree.

The partial ordering ≤′ is defined in the following way. Assume that a, b ∈ T , a ∈ Li, b ∈ Lj .
For the definition of a ≤′ b we consider two cases separately: (a) i, j ∈ {0, 1, . . . ,d − 1}, and
(b) {a, b} ∩ Ld 6= ∅. If (a) holds then a ≤′ b iff a ≤T b and i ≡ j (mod 2). If (b) holds then
a ≤′ b iff a ≤T b. Note that, with respect to the partial ordering ≤′, the set T has three maximal
elements, namely the elements of L0 ∪ L1.

We will get the partially ordered set 〈P,≤P 〉 by extending 〈T,≤′〉 downward. Assume that
a0, . . . ,am̄−1 are the minimal elements of ≤′, that is, the leaves of the tree T , arranged in an
arbitrary order. (E.g., we may associate a 0, 1, sequence of length d with each leaf using left and
right successors, and order them as integers.) We get the set P by adding m̄− 1 new elements
to the set T , namely the elements b1, . . . ,bm̄−1, that is, P = T ∪ {b1, . . . ,bm̄−1}. (Note that
there is no b0.) The partial ordering ≤P is the unique partial ordering on the set P with the
following properties:

(a) For all x, y ∈ T , we have x ≤P y iff x ≤′ y.
(b) b1 >P b2 >P . . . >P bm̄−1

(c) for all x ∈ P , and for all i = 1, . . . , m̄− 1, bi ≤P x iff

x ∈ branch(a0) ∪
i⋃

j=1

({bi} ∪ branch(aj))

where branch(u) is the unique branch of the tree T containing the leaf u.
(d) for all x ∈ P , and for all i = 1, . . . , m̄− 1, bi ≥P x iff x = bj for some j ∈ {i, . . . , m̄− 1}.

This completes the definition of the partially ordered set 〈P,≤P 〉. ut

Definition. Instead of the map ϕ, first we define a map ϕ̄ on P , so that its values are
probabilistic block F -circuits so that their sets of nodes are pairwise disjoint. Then, for all pairs
a, b ∈ P with a ≺P b, we will identify an input block of ϕ̄(a) with an output block of ϕ̄(b). For

69

each x ∈ P the circuit, that we get after these modifications from the circuit ϕ̄(x), will be the
circuit ϕ(x).

Now we define the function ϕ̄. The sets of nodes of the various circuits ϕ̄(a), a ∈ P will be
disjoint. We will not repeat this requirement at each time we define a new ϕ̄(x), we assume that
its nodes are automatically chosen with this property.

If x ∈ T\Ld, then ϕ̄(x) is a splitting circuit C(spl)
m . For each i = 0, 1, . . . ,m− 1, ϕ̄(ai) is a

leaky product circuit: C(leaky×)
m . For each i = 1, . . . , m̄ − 1, ϕ̄(bi) is an addition circuit C(+)

m .
This completes the definition of ϕ̄. ut

Definition. Identifications of input blocks and output blocks in ϕ̄(a) and ϕ̄(b), for a ≺ b,
a, b ∈ P . The only maximal elements of P are u0 = t0, u1 = lt0, and u2 = rt0, where t0 is the
root of the tree T . For each i = 0, 1, 2, there is no x ∈ P with ui ≺ x, therefore the input block
of ϕ̄(ui) will not be identified with anything. (These input blocks will be the input blocks of
C(Q) as well.)

Suppose now, that b ∈ Lj for some j ∈ {0, 1, . . . , d − 3}. With such a choice of b, there are
exactly four elements a of P so that a ≺P b, namely ri(b) ∈ Lj+2, i = 0, 1, 2, 3. (ri was defined
at the beginning of section 5 about trees.). Assume that the output blocks of the splitting circuit
ϕ̄(b), are T (spl)

i , i = 0, 1, 2, 3. We identify the output block T (spl)
i with the single input block of

ϕ̄(ri(b)), for i = 0, 1, 2, 3. (The assumption b ∈ Lj , j ≤ d− 3 implies that ϕ̄(ri(b)) is a splitting
circuit.)

Assume now that b ∈ Ld−2. In this case the output block T
(spl)
i of ϕ̄(b) is identified with

the first input block of the leaky product circuit ϕ̄(ri(b)) for i = 0, 1, 2, 3. (Recall that a leaky
product circuit has three input blocks.)

Suppose that b ∈ Ld−1. Then the output blocks T (spl)
i of ϕ̄(b), for i = 0, 1, are identified

with the second and third input blocks of the leaky product circuit ϕ̄(lb). The output blocks
T

(spl)
i of ϕ̄(b), for i = 2, 3 are identified with the second and third input blocks of the leaky

product circuit ϕ̄(rb).
Assume that i ∈ {1, 2, . . . , m̄ − 1}. The single output block of the leaky product circuit

ϕ̄(ai) is identified with the second input block of the addition circuit ϕ̄(bi). The single output
block of ϕ̄(a0) is identified with the first input block of ϕ̄(b1).

Let b = bi, for some i = 1, 2, . . . , m̄− 2. The only output block of the addition circuit ϕ̄(bi)
is identified with the first output block of the circuit ϕ̄(bi+1).

There is no x ∈ P with x ≺ bm̄−1, therefore the single output block of ϕ̄(bm̄−1) is not
identified with anything. (This will be the outputblock of C(Q) as well.)

For all a ∈ P , the circuit ϕ(a) is defined as the modified form of the circuit ϕ̄(a) after these
identifications. Let Φ = {ϕ(a)|a ∈ P}, and for all x, y ∈ Φ, we will have x ≤Φ y iff there exists
a, b ∈ P with a ≤P b and x = ϕ(a), y = ϕ(b).

This completes the definition of the family Q = 〈Φ,≤Φ〉. We define the probabilistic block
F -circuit by C(×,+)

m,G = C(Q), that is, C(×,+)
m,G is the composition of the family Q. ut

Definition. By the definition above, the circuit ϕ(bm̄−1) is an addition circuit C(+)
m,G, whose

only output block is the only output block of C(×,+)
m,G . According to the definition of the circuit

C(+)
m,G this circuit ends with a copying circuit of the type C(=)

m,G. This copying circuit will be

70

denoted by Cend. Suppose that Y is an arbitrary set. Then X (Y) will denote the set of all output
nodes of Cend which do not belong to exit(Y ∩ set(Cend), Cend). (Recall that exit(A,C) is a
set of output nodes of a copying circuit C, which corresponds to the connected set in Lemma
10.) ut

7.4 Basic properties of C
(×,+)
m,G

In the remaining part of this section the family Q will always denote the family of block circuits
〈Φ,≤Φ〉, defined in the previous subsection, whose composition is the F -circuit C(×,+)

m,G .

Definition. For each circuit C ∈ Φ the set consisting of all of the deterministic input blocks and
all of the output blocks of C will be denoted by ΨC . We define the set Ψ by Ψ =

⋃
{ΨC | C ∈ Φ}.

(Note that some of the elements of Ψ can be an input block of a C ∈ Φ and at the same time
an output block of another C ′ ∈ Φ.) The set of all deterministic input blocks of a C ∈ Φ will be
denoted by ΨC,in and the set of all outputblocks of C by ΨC,out. ut

Later we will use the following observation, which is an immediate consequence of the defi-
nition above.

Proposition 14 Assume that Ji ∈ Ψϕ(xi), where xi ∈ P for i = 0, 1 and x0 6= x1. Then,
J0 = J1 implies that there exists an i ∈ {0, 1}, so that Ji ∈ Ψϕ(xi),out, J1−i ∈ Ψϕ(x1−i),in, and xi
covers x1−i in the ordering ≤P .

Definition. Assume that x ∈ P . The deterministic input blocks of the circuit ϕ(x) will be
denoted by I(x)

0 , I
(x)
1 , . . . and its output blocks by T (x)

0 , T
(x)
1 , . . . in the order that was specified in

the definition of the corresponding circuit type, (splitting, leaky product, or addition). Suppose
that σ ∈ func(inset(C(Q)), F). We define a function σ̃ on Ψ. If S ∈ ΨC for some C ∈ Φ then
σ̃(S) = (σC)io(S) =

∑
x∈S χ

(C)
σ (x). Note that the circuit C is not uniquely determined by the

block S, however the value of σ̃(S) is independent of the choice of C, since x ∈ S ∈ ΨC ∩ ΨD

implies χ(C)
σ (x) = χ

(D)
σ (x). ut

First we show that the circuit C(×,+)
m = C(Q) performs multiplication in the required sense.

More precisely the following holds.

Lemma 32 The circuit C(Q) computes the polynomial x0(x1 + x2). Equivalently the following
holds. Assume that I0, I1, I2 are the deterministic input blocks of C(Q), where I0 is also the
deterministic input block of ϕ(t0), I1 is the deterministic input block of lt0, I2 is the deterministic
input block of rt0, and T0 is the output block of C(Q), where T0 is also the output block of ϕ(bm̄−1).
Then, for all σ ∈ func(inset(C(Q)), F), we have σ̄in(I0)(σ̄in(I1) + σ̄in(I2)) = σ̄out(T0), or
equivalently ∑

x∈I0
χ(C(Q))
σ

∑
x∈I1

χ(C(Q))
σ +

∑
x∈I2

χ(C(Q))
σ

 =
∑
x∈T0

χ(C(Q))
σ

Proof. Using the notation s = σ̄in(I0)(σ̄in(I1)+σ̄in(I2)) we have to show that s = σ̄out(T0) =
σ̃(T (bm̄−1)

0). This is a consequence of Lemma 1. Indeed, Lemma1 and the connections between

71

the input and output vectors of a splitting circuit imply, that for all j = 0, 1, . . . ,d− 2

s =
∑
t∈Lj

σ̃(I(t))
(
σ̃(I(lt)) + σ(I(rt))

)

We consider this sum for j = d − 2. For each t ∈ Ld−2, ϕ(t) is a splitting circuit with
σ̃(I(t)) =

∑1
i=0 σ̃(T (t)

i) =
∑3
i=2 σ̃(T (t)

i). Therefore the last expression for s and the way we
identified the input blocks of the leaky product circuits ϕ(a), a ∈ Ld with the output blocks of
the splitting circuits ϕ(x), ϕ(y), where a <T x <T y and x ∈ Ld−1, y ∈ Ld−2, implies that

s =
∑
t∈Ld

σ̃(I(t)
0)

(
σ̃(I(t)

1) + σ̃(I(t)
2)
)

As a consequence the sum of the outputs of the leaky product circuits is also s, that is,

s =
∑
t∈Ld

σ̃(T (t)
0)

Since the rest of the circuit C(Q) simply adds the outputs of the leaky product circuits we get
s = σ̃(T (bm̄−1)

0) = σ̄out(T0), which completes the proof of the statement about the functionality
of the circuit C(Q). Q.E.D.(Lemma 32)

Definition. For each C ∈ Φ we define a polynomial system of equations GC over the field C.
In each case GC is the canonical polynomial system of equations of the corresponding circuit
type, that is, of the splitting circuits, leaky product circuits, or the addition circuits. ut

Lemma 33 Under the standard assumption described in (53) the circuit C(Q) = C(×,+)
m,G is

(θ, ε1, p)-cylindrical, where p = e−c1m̄
1
2 .

Proof. We have to define a selection function S such that the adversary Y = advC(Q)(ε1,S)
satisfies conditions (11) and (12) of the definition of a (θ, ε1, p)-cylindrical adversary.

For the following definition recall that for an arbitrary set Y , X (Y) denotes the set of all
output nodes of Cend which do not belong to exit(Y ∩set(Cend), Cend), where Cend is the copying
circuit which produces the output of the last addition circuit ϕ(bm̄−1) in the circuit C(Q).

Definition. 1. Φ× will denote the set of all C ∈ Φ, such that C is a leaky product circuit.
2. For an arbitrary set X ⊆ set(C(Q)), let UX be the set of all C ∈ Φ× such that C is not

percolative with respect to full(X) ∩ set(C) and GC . We define S(X) by

S(X) = X ∪ X (X) ∪
⋃
{set(C)\(detin(C) ∪ outset(C)) | C ∈ UX}

Let Y = advC(Q)(ε1,S). ut
Assume now that D is a random subset of set(C(Q)) so that for all x ∈ set(C(Q)), prob(x ∈

D) ≤ ε1 and the various events x ∈ D are mutually independent. The definition of S(X), the
fact that the copying circuit is (θ, ε1,

p
2)-cylindric (Lemma 12) and Lemma 18 together imply

that with a probability of at least 1− p
2 condition (11) is satisfied by C:=C(Q), X:=D, S, and

Y.

72

We want to show that with a probability of at least 1− p
2 with respect to the choice of the

random set D, condition (12) is also satisfied with the same choices of the parameters. For the
proof of this fact we will use Lemma 7. According to Lemma 7 it is sufficient to show that

Lemma 34 Under the standard assumption the following holds. Assume f ∈ funcθ(I, F),
G = domain(f), where I is the input block sequence of C(Q). Then with a probability of at least
1 − p

2 , for the randomization of the set D, the block input of C(Q) is invisible from the set X,
where

X = G ∪ full
(
D ∪ X (D) ∪

⋃
{set(C)\(detin(C) ∪ outset(C)) | C ∈ UD}

)
Proof of Lemma 34. We need several definitions and lemmas for this proof.

Definition. For all sets A ⊆ set(C(Q)), Φ¬percA will denote the set of all C ∈ Φ so that C is
not percolative with respect to A ∩ set(C) and GC . ut

Proposition 15 Under the standard assumption, with a probability of at least 1− e−2c1m with
respect to the randomization of the set D, we have Φ¬percX ∩ (Φ\Φ×) = ∅.

Moreover, the events C ∈ Φ¬percD , for C ∈ Φ×, are mutually independent, and for each fixed
C ∈ Φ×, we have prob(C ∈ Φ¬percD) ≤ θ.

Proof. For the proof of the first statement let c̃ > 0 so that θ � c̃ � d, α. Clearly for
all C ∈ Φ\Φ× we have X ∩ set(C) ⊆ (G ∪ X (full(D)) ∪ full(D)) ∩ set(C). Therefore the
assumption about G the definition of X (full(D)) and Chernoff’s inequality applied for the
number of elements of D ∩ set(C) implies that |X ∩ set(C)| < c̃m with a probability of at
least 1− e−3c1m. Therefore applying Lemma 13, Lemma 24, or Lemma 26 according to the type
(copying, splitting, or addition) of the circuit C, we get that C is X ∩ set(C), GC percolative.
With a probability of at least 1−e−3c1 this holds for all 1−e−2c2 which implies the first statement.

In the second statement of the lemma the independence of the events C ∈ Φ× follows from
the fact that the sets set(C) for C ∈ Φ× are pairwise disjoint, and therefore the choices of the
various elements of D in them are mutually independent. The inequality is a consequence of
Lemma 29 Q.E.D.(Proposition 15)

Proof of Lemma 34 continued. Assume that g ∈ func(X, F) and δ ∈ func(blockin(C(Q)), F).
(Since blockin(C(Q)) is the set of input blocks of C(Q), such a δ is a function defined on a set
with 3 elements, which correspond to the variables of the polynomial x0(x1 + x2).) We will
denote by Nδ,g the number of solutions of the system I(δ) ∪ E(g) defined for the circuit C(Q).
We have to prove that for all g ∈ func(X, F) and for all δ, δ′ ∈ func(blockin(C(Q)), F), we have
Nδ,g = Nδ′,g. Assume that a g ∈ func(X, F) is fixed. Because of the symmetry in δ and δ′, it is
sufficient to prove the following:

(66) for all δ, δ′ ∈ func(blockin(C(Q)), F), Nδ,g > 0 implies that Nδ,g = Nδ′,g.

For the proof of (66) assume that a δ ∈ func(blockin(C(Q)), F) is fixed with Nδ,g > 0, and
δ′ ∈ func(blockin(C(Q)), F) is arbitrary. We prove statement (66) in two steps. As a first step
we show that

73

Lemma 35 Nδ,g > 0 implies Nδ′,g > 0

Using this lemma, we will show that Lemma 7 is applicable for the systems of equations
I(δ) ∪ E(g) and I(δ′) ∪ E(g).

Proof of Lemma 35. We prove the lemma by using Lemma 31, with the following choices
of the parameters. The compatible family of circuits Q = 〈Φ,≤Φ〉, the polynomial systems GC
for C ∈ Φ, and the set X has been already defined. Let ΦX be the set of all elements C ∈ Φ
so that C is percolative with respect to X ∩ set(C) and GC . Since Ng,δ > 0 there exists a
σ ∈ func(detin(C(Q)), F) so that σ̄in = δ. (Recall that σ̄in is the function which assigns to
each input block, the sum of the values of σ on the elements of that input block.) We fix a σ with
this property. We want to define functions λ, λC so that they satisfy condition (61) of Lemma
31. We will do that in a way that the function λ ∈ func(Ψ, F) restricted to blockin(C(Q)) will
be identical to δ′, and for all C ∈ Φ\Φ¬percX , we have λC = (σC)io. This will guarantee that if
ρ ∈ func(inset(C(Q)), F) is the function whose existence is stated in Lemma 31 then zh:=ρ(h)
is a solution of I(δ′) ∪ E(g).

The existence of the function λ ∈ func(Ψ, F) that we need for the application of Lemma 31
will be guaranteed by the following proposition.

Proposition 16 There exists a function λ ∈ func(Ψ, F) such that the following conditions are
satisfied:

(67) λC satisfies the system GC for all C ∈ Φ, where λC is the restriction of λ to the set
ΨC ∪ outset(C).

(68) λC = (σC)io for all C ∈ Φ¬percX .

(69) λ(t0) = δ′(I0), λ(lt0) = δ′(I1), λ(rt0) = δ′(I2)

For the construction of the function λ whose existence was claimed in the proposition we
will need the following simple fact. (Recall that for all C ∈ Φ, ΨC is the set consisting of all of
the deterministic input blocks of C and all of the output blocks of C, and Ψ =

⋃
C∈Φ ΨC .)

Proposition 17 Assume that Φ0 is an upward closed subset of the set Φ with respect to the
partial ordering ≤Φ, and µ is a function with values in F so that

(70) domain(µ) =
⋃
{ΨC | C ∈ Φ0}

(71) for all C ∈ Φ, µ satisfies GC .

Then µ has an extension µ1 to Ψ, so that, for all C ∈ Φ, µ1 satisfies the system GC .

Proof. Since Φ is finite, it is sufficient to show that if Φ0 6= Φ, then there exists C1 ∈ Φ\Φ0

and an extension µ1 of µ to domain(µ) ∪ ΨC1 , such that µ1 satisfies GC1 , and Φ1 = Φ0 ∪ {C1}
is an upward closed subset of Φ. Let C1 be a maximal element of Φ\Φ0 with respect to the
partial ordering ≤Φ. The maximality of C1 and the definition of a compatible family of circuits
implies, that if J is an output block of C1, then for all C ∈ Φ0, J is neither an input block nor an

74

output block of C. Therefore J /∈ domain(µ). Now we define an input τ for C1, (including both
the deterministic and probabilistic inputs), so that for each I ∈ detin(C1),

∑
x∈I τ(x) = µ(I).

Apart from these equalities τ is arbitrary, in particular its values on the probabilistic input
nodes can be chosen arbitrarily. The input τ defines an evaluation function χ

(C1)
τ on set(C1).

We define µ1 by µ1(J) =
∑
x∈J χ

(C1)
τ (x) for all J ∈ ΨC1 . Since the circuit C1 satisfies the system

GC1 , so does the function the function µ1. Q.E.D.(Proposition 17)

Definition. The set of all t ∈ Ld−1 ∪ Ld−2 such that there exist t′ ∈ Ld−2 and a ∈ Ld with
t ≤T t′, a <T t′, and ϕ(a) ∈ Φ¬percX will be denoted by RX. ut

Proof of Proposition 16. First we define a function κ′ ∈ func(RX, F). For each t ∈ RX,

κ′(t) = σ̃(I(t)
0) =

∑
{χ(C(Q))

σ (x) | x ∈ I(t)
0 }.

Now we use Lemma 2 with d:=d−1, T :=T\Ld, A:=RX, A′:=RX∩Ld−2, λ′:=κ′. According
to Proposition 15, the events t ∈ RX, for all t ∈ Ld−2, are mutually independent, therefore
Lemma 2 is applicable. Using the upper bound on the probability of the events t ∈ RX given in
Lemma 15, we get the following. For an absolute constant ĉ, we have, that with a probability

of at least 1− 2−ĉ| log ε1|
√
m̄ ≥ 1− 2−

√
m̄ = 1− 2−m

3
2 for the randomization of D, there exists

a well-balanced function κ on T\Ld, so that κ is an extension of κ′, and

(72) κ(t0) = δ′(I0), κ(lt0) = δ′(I1), κ(rt0) = δ′(I2).

Let Φ0 be the set of all C ∈ Φ, so that either there exists an x ∈ T\(Ld ∪ Ld−1 ∪ Ld−2)}
with C = ϕ(x) or there exists a C ′ ∈ Φ¬percX so that C ′ ≤Φ C.

We define a function µ on M =
⋃
{ΨC | C ∈ Φ0}. Assume that J ∈ M . If J is an input or

output block of some C = ϕ(x) with x ∈ T\(Ld ∪ Ld−1 ∪ Ld−2)} then J ∈ Ψϕ(x),in for some
x ∈ T\Ld = domain(κ). In that case we define µ by µ(J) = κ(ϕ(x)), where J ∈ Ψϕ(x),in,
x ∈ T\Ld.

Suppose now that J ∈ M , but for all x ∈ T\(Ld ∪ Ld−1 ∪ Ld−2), J is not an input block
or output block of ϕ(x). By the definition of Φ0 this is possible only if J is an input block
or an output block of a C ∈ Φ¬percX . In that case let µ(J) = σ̃(J). (Recall that by definition
σ̃(J) = (σC)io(S) =

∑
x∈S χ

(C)
σ (x), where S is an arbitrary input or output block of a circuit

C ∈ Φ.) We claim that µ satisfies the system GC for all C ∈ Φ0. If C = ϕ(x) with x ∈
T\(Ld ∪ Ld−1 ∪ Ld−2) then this is a consequence of the fact that κ is well balanced, and the
equations defining “λ is well-balanced”, are identical to the equations of the canonical system
of a splitting circuit. For the remaining circuits C ∈ M , by the definition of κ′ and κ, we have
that µ(J) = σ̃(J) for all J ∈ ΨC therefore we get that µ satisfies the system GC = 0 since σ̃
satisfies it.

We have shown that the set Φ0 and the function µ satisfy the requirements of Proposition 17.
Therefore there exists an extension µ1 of µ onto

⋃
{ΨC | C ∈ Φ} with the properties described

in Proposition 17. We define λ by λ = µ′. We show now that the conditions of Proposition 16
are satisfied by the function λ.

Condition (67). This is a consequence of the fact that µ1 = λ satisfied condition (71) of
Proposition 17.

75

Condition (68). For all input and output blocks of a circuit C ∈ Φ¬percX , we have λ(J) =
µ1(J) = µ(J). The definition of the function µ implies that for such a block J we have µ(J) =
σ̃(J), which implies our statement.

Condition (69). On the three input blocks I involved in this condition we have λ(I) =
µ(I) = κ(t), where I is an input block of ϕ(t). Therefore condition (72) implies our statement.
Q.E.D.(Proposition 16)

Proof of Lemma 35 continued. Proposition 16 guarantees the existence of a function
λ ∈ func(Ψ, F). Therefore we can apply Lemma 31 with the choice of parameters described
at the beginning of the proof of Lemma 35 and get a solution for the system I(δ′) ∪ E(g).
Q.E.D.(Lemma 35)

Recall that the circuit C(×,+)
m has three input blocks and so the system I(δ) consists of three

equations.

Definition. We write the system of equations I(δ) ∪ E(g) in the form of qα = ϕ̂(α), α ∈ E,
where

(a) E = {0, 1, 2} ∪X (we assume that {0, 1, 2} ∩X = ∅),
(b) for all α ∈ E, qα is a polynomial whose constant term is 0,
(c) qi = Pi and ϕ̂(i) = δ(i) for i = 0, 1, 2,
(d) for all a ∈ X, the polynomials qa − ϕ̂(a) and p

(g)
a − g(a) are identical. ut

Remark. Condition (d) of the definition above does not imply ϕ̂(a) = g(a), since p(g)
a may

have a nonzero constant term. ut
Definition. We define a function ψ(α) on the set E by: “for all a ∈ X, ψ(a) = ϕ̂(a), and
for all i ∈ {0, 1, 2}, ψ(i) = δ′(i)”. Clearly the systems I(δ′) ∪ E(g) and qα = ψ(α), α ∈ E are
identical. ut

Lemma 36 The conditions of Lemma 7 are satisfied by the polynomials qα, α ∈ E defined
above. Consequently the number of solutions of the systems I(δ) ∪ E(g) and I(δ′) ∪ E(g) are
identical.

Proof. The requirement that the constant terms of the polynomials qα, α ∈ E are all zeros
is included in the definitions of these polynomials. U will denote the set of indeterminates
occurring in the polynomials qα, α ∈ E. Now we define the sets E0, E1, U0, U1. For each leaky
product circuit C ∈ Φ×, let YC be the unique product gate of C.

Let H0 be the set of all input nodes h of C(Q), including both probabilistic and deterministic
input nodes, with the property that h > YC for a suitably chosen C ∈ Φ× with respect to the
partial ordering of the nodes of the circuit C(Q). U0 is defined by U0 = {zh | h ∈ H0}.

Let X̄ be the set of all a ∈ X, so that there exists a C ∈ Φ× with YC < a. We define E0 by
E0 = X̄∪{0, 1, 2}. Finally E1 = E\E0, U1 = U\U0. We will show that the conditions of Lemma
7 are satisfied by these choices. Condition (35) is an immediate consequence of the definitions
of U0, U1, E0 and E1. To show that the conditions hold as well we need the following.

Proposition 18 Suppose that “a” is a gate of the circuit C(Q). “a” is a product gate iff a = YC
for a suitably chosen C ∈ Φ×. Moreover if t is a nonlinear term of some qα, α ∈ E, then α ∈ X,
and there exists a C ∈ Φ× so that α ≤ YC , and p

(g)
YC

contains a term t′ so that t = ιt′ for some
ι ∈ F .

76

Proof. The first statement of the proposition is an immediate consequence of the definition
of C(Q). Assume now that t is a nonlinear term of some qα. The fact that P0, P1, P2 have only
linear terms implies that α ∈ X, and therefore qα and p(g)

α may differ only in their constant terms.
Consequently, p(g)

α contains the nonlinear term t. If α is not a product gate, then, according to
the recursive definition of p(g)

a , there exists a b ∈ set(C(Q)) so that a ≺ b (in the partial ordering
of C(Q)) and there exists a term t̄ of p(g)

b so that t = βt̄ for some nonzero β ∈ F . (This is a
consequence of the fact that the only gates in this part of the circuit are +,×(−1)). Therefore
we can define a path, going upward starting from a, so that for each element bi of this path the
polynomial p(g)

bi
contains a term ti so that t = βit̄i for some βi ∈ F\{0}. The path must end in a

node with a product gate, that is, in an node on YC for some C ∈ Φ×. Q.E.D.(Proposition 18)
Proof of Lemma 36 continued. We show now that the remaining conditions of Lemma 7 are

satisfied by the sets E,E0, U, U0 defined earlier.
Condition (36). Assume that α ∈ E0. By the definition of E0 we have that α ∈ {0, 1, 2}∪ X̄.

If α ∈ 0, 1, 2 then for each indeterminate zh in qα, h is a deterministic input node of C(Q) and
so h ≥ C, for some C ∈ Φ× and therefore zh ∈ U0. If α ∈ X̄ then the definition of X̄ implies the
existence of a C ∈ Φ× with YC < a and so for all indeterminates zh in qa we have YC < a ≤ zh
and so zh ∈ U0. In both cases Proposition 18 implies that qα has linear terms only.

Condition (37). Assume that t is a nonlinear term of qα for some α ∈ E1. Then, by
Proposition 18 there exists a C ∈ Φ× a term t′ ∈ p(g)

YC
and a ι ∈ F , so that t = ιt′. Therefore

if zh is an indeterminate in t then it also occurs in t′ and consequently h > YC , which implies
zh ∈ U0.

Condition (38). We can use Lemma 31 to show that the condition is satisfied. To make the
lemma applicable to the present case we define a new compatible family of circuits Q̃. Namely,
for each C ∈ Φ× we cut C into two parts C0 and C1 so that C0 is a total sum circuit, C1 is a
reverse sum circuit and the only output node of C0 is identical to the only input node of C1.
Let Φ̃ be the set

(Φ\Φ×) ∪ {Ci | C ∈ Φ×, i ∈ {0, 1}}

The partial ordering ≤Φ̃ is defined in the following way. ≤Φ̃ is the unique partial ordering so
that: (a) for all C ∈ Φ×, C0 < C1, (b) for all C,D ∈ Φ×, i, j ∈ {0, 1} if C 6= D then Ci, Dj

are incomparable, and (c) for all x, y ∈ Φ̃ if at least one of the elements x, y is not of the form
Ci for suitably chosen C ∈ Φ×, i ∈ {0, 1}, then x ≤Φ̃ y iff x ≤Φ y. C(Q̃) will denote the circuit
defined by the family Φ̃. Clearly C(Q) = C(Q̃), that is, the two circuits have the same nodes
with the same type of gates on each of them, we only got them through different constructions.
(More precisely they may be only isomorphic depending on the definition of the process of
“identification” of nodes in their constructions.) For each C ∈ Φ̃× and for all i ∈ {0, 1}, the
canonical system of the circuit Ci as defined for total sum, and reverse sum circuits, (that is,
e.g., the total sum circuit the system which says that the sum of the inputs is the output) will
be denoted by GCi . We define a set X̃ by X̃ = (X\Φ×) ∪

⋃
{{C0, C1} | C ∈ X}.

Later we will use the following statement that follows easily from the definition of percola-
tivity:

(73) if C ∈ Φ and C is percolative with respect X ∩ C and GC , then for all i ∈ {0, 1}, Ci is
also percolative with respect to X ∩ Ci and GCi

77

Assume now that the system E = {qα = ϕ̂(α) | α ∈ E} has at least one solution, and we
have to show that every solution of the system E0 = {qα = ϕ̂(α) | α ∈ E0} can be extended into
a solution of E .

We want to use Lemma 31 in the proof of condition of (38) with Q:=Q̃, A:=X̃. We define
the functions σ, λ whose existence is stated in the assumptions of Lemma 31 in the following
way.

The definition of σ. Since E has a solution there exists a σ ∈ func(inset(C(Q̃)), E) so that
zh = σ(h) is a solution of E .

Let H be the set of all h ∈ inset(C(Q̃)), so that h is either in a splitting circuit or a total
sum circuit. Assume that zh = τ(h), h ∈ H is a solution, for E0 that we want to extend into a
solution of E . λ and λC will depend on τ .

The definitions of λ and λC . We define a function λ ∈ func(
⋃
{blockio(C) | C ∈ Φ̃}, F)

with the properties required by Lemma 31. For the definition of λ we extend τ from the set H
to every element of the set inset(C(Q̃)) with values in F .

(74) The extension of τ is defined by the equations of E1 for all h ∈ inset(C(Q̃))\H if each
h ∈ inset(C) for some C ∈ X̃.

For the remaining elements h of inset(C(Q̃))\H the extension is arbitrary. This extension
of τ will be denoted by τ̄ . For each J ∈

⋃
{blockio(C) | C ∈ Φ̃} we define λ(J) by λ(J) =∑

x∈J χ
C(Q̃)

τ̄ . We define λC as the restriction of λ onto blockio(C), for each C ∈ Φ̃. Since λ
was defined from an evaluation function, the function λC satisfies GC for all C ∈ Φ̃ therefore
condition (61) of Lemma 31 satisfies with Φ:=Φ̃.

Condition (62) is a consequence of definition of the extension of τ described in condition
(74). Conditions (60),(60),(61) of Lemma 31 are immediate consequences of the definitions.

From the evaluation ρ whose existence is guaranteed by Lemma 31 we get the solution of E
by zh = χρ(h). This completes the proof of condition (38) of Lemma 7

Now we apply Lemma 7 to the systems and I(δ ′) ∪ E(g). By Lemma 35 if at least one of
these systems has a solution then both of them have at least one solution, consequently Lemma
7 implies that the number of their solutions are equal. Q.E.D.(Lemma 36)

Proof of Lemma 34 continued. According to Lemma 36 the systems I(δ)∪ E(g) and I(δ′)∪
E(g) has the same number of solutions which implies that the block input of C(Q) is invisible
from X. Q.E.D.(Lemma 34)

Proof of Lemma 33 continued. We have shown in Lemma 34 that the block input of C(Q)

is invisible from the set X ⊇ G ∪D, therefore by Lemma 6 it is also invisible from the set G ∪D.
Q.E.D.(Lemma 33)

This completes the proof of Lemma 3 as well.

8 Leaking Machines

8.1 Motivation

Assume that M is a machine, we may think of a RAM, or a Turing machine, or a pointer machine,
which may get input, may provide output, and while it works an adversary gets some information

78

about what is happening inside the machine. For example in case of a RAM, the adversary may
get at certain times the contents of the memory cells involved in the instruction executed at that
time. The adversary in possession of this partial information about the working of the machine
tries to guess what is its input. Our goal is to describe certain possible adversaries and find
ways to hide most of the information contained in the input from them in an efficient way. This
can be done in certain cases by replacing the program P0 of the machine by another program
P1, which gives the same output, but works in a way which reveals less useful information to
the adversary than the original program P0. Depending on the adversary there may be certain
type of information, that cannot be hidden without making the program P1 too inefficient.
E.g., for many reasonable choice of an adversary the total amount of time/memory needed to
compute the correct output cannot be hidden efficiently. In such a case we will assume that
these parameters, the total time and the total amount of memory used by the program, are
fixed, and our goal will be to hide any other information from the adversary.

For the formulation of our results and especially for the proof, we will need many different
computational models. Therefore, first we give a very general definition of a probabilistic ma-
chine with information leaking to an adversary. All of the specific computational models that
we will use later will be a special case of this one. In this general model, that we will call a
leaking machine, only the following constituents of a machine will be given. (a) a distribution
which determines the output of the machine if an input is given, and (b) for each possible input
a a distribution of the information (as a 0, 1 sequence) that reaches the adversary if the machine
gets input a. More precisely we will give the joint distribution of the two distributions described
in (a) and (b).

These concepts in themselves of course do not tell how the computation is performed. Still
for many definitions and proofs, particularly when we reduce the problem of hiding information,
from one computational model to another one, these notions will be sufficient.

One of the basic problems in defining precisely our general goal of hiding information is,
that certain type of information, as we have mentioned, cannot be hidden efficiently, so we
have to concede it to the adversary, and try to hide only extra information, that is information
which does not follow from the conceded one. We will formulate this in the following way. We
will define two adversaries. Adversary 1 will get every information that cannot be efficiently
hidden, in each case we will tell explicitly what is it. Adversary 2 will get all the information
that Adversary 1 gets and also some extra information which will be defined in each case. Our
results usually will state that the computation can be performed in a way, perhaps in another
slightly larger machine, so that the two machines compute the same function and at the end of
the computation Adversary 2 will not know essentially more than Adversary 1. This last concept
will be formulated in terms of indistinguishability. We will essentially require that for each fixed
pair a, b of possible inputs, if Adversary 1 and Adversary 2 are trying to guess what was the
input, knowing that it was chosen with uniform distribution from the set {a, b}, and knowing the
information that reached them during the computation, then the probability that Adversary 2
gives the right answer can be only larger by ε than the same probability for Adversary 1, where
ε is negligible.

79

8.2 Definition of a leaking machine

Definition. {0, 1}<∞ will denote the set of all finite 0, 1-sequences. ω will denote the set of
all natural numbers. Suppose that A,B are sets. func(A,B) will denote the set of all functions
defined in A and with values in B. If a = 〈a1, ..., ai〉, b = 〈b1, ..., bj〉 are finite sequences, then
their concatenation the sequence 〈a1, ..., ai, b1, ..., bj〉 will be denoted by a ◦ b. ut

Definition. 1. The pair M = 〈A,℘〉 will be called a leaking machine if it satisfies the following
conditions.

(a) A is a finite subset of {0, 1}<∞,
(b) ℘ is a function defined on A whose value on each a ∈ A will be denoted by ℘a, and ℘a is

a probability measure defined on the σ-algebra consisting of all subsets of {0, 1}<∞ ×{0, 1}<∞.
2. Assume that M = 〈A,℘〉 is a leaking machine and 〈ϑ, ξ〉 is a pair of functions each defined

on the set A. For each a ∈ A, ϑa denotes the value of ϑ on a and ξa denotes the value of ξ on
a. Suppose further that for each a ∈ A, both ϑa and ξa are random variables with values in
{0, 1}<∞, and their joint distribution on {0, 1}<∞ × {0, 1}<∞ is ℘a. Then we will say that the
pair 〈ϑ, ξ〉 is a realization of the leaking machine M . ut

Remark. The intuitive meaning of the leaking machine M = 〈A,℘〉 is the following. We may
think that M is a probabilistic machine, e.g., a RAM, which may get an element of A as an input,
and the possible outputs of the machine are elements of the set ⊆ {0, 1}<∞. Since the machine
is probabilistic, the input a does not determine uniquely the output, only its distribution on
{0, 1}<∞. We assume that there is an adversary who is watching the machine and gets some
information about it. This information depends on the input a ∈ A, the working of the machine,
including its probabilistic steps, and other probabilistic events outside the machine which may
influence what the adversary can observe about the behavior of the machine. The information
which can reach the adversary is an element of a set D ⊆ {0, 1}<∞. The joint distribution
of the output and the information reaching the adversary at input a is the distribution ℘a on
{0, 1}<∞×{0, 1}<∞. In other words, if at input a the output is the value of the random variable
ϑa, and the information that the adversary gets is the value of the random variable ξa, then ℘a
is the distribution of the pair 〈ϑa, ξa〉.

In the definition of a leaking machine we did not describe, how the machine performs the
computation. The probability distributions, which define a leaking machine, describe only how
the input determines the output of the machine and what is the information that reaches the
adversary. We will use however the concept of a leaking machine in cases when the output is
computed from the input in some specific computational model e.g., by a RAM. That is, ϑa will
be the output of a (possibly probabilistic) RAM at input a, and ξa will be usually defined also
in terms of the RAM. E.g., if our goal is oblivious simulation, then ξa can be the memory access
pattern of the RAM during the computation at input a. ut

Definition. 1. If µ, ν are probability measures on the same σ-algebra A, then the distance
of µ and ν is sup{|µ(B)− ν(B)|+ |µ(D)− ν(D)|} taken for all B,D ∈ A with B ∩D = ∅. ut

Definition. Assume that M = 〈A,℘〉 is a leaking machine, 〈ϑ, ξ〉 is a realization of M , a, b ∈ A,
and ε > 0. We will say that the adversary can distinguish a from b with a bias greater than ε, if
the following holds. There exists a function S defined on {0, 1}<∞, so that if we take a random

80

element h from the set {a, b} with uniform distribution, and a random value x of the random
variable ξh is given, then prob(S(x) = h) > 1

2 + ε. biasM (a, b) will denote the largest real δ, so
that for all positive ε < δ, the adversary can distinguish a from b with a bias greater than ε. ut

Definition. Assume that M = 〈A,℘〉 is a leaking machine and 〈ϑ, ξ〉 is a realization of M .
For each a ∈ A the distribution of ϑa on {0, 1}<∞ will be denoted by ℘̄a. ut

Definition. Assume that Mi = 〈Ai, ℘(i)〉, i = 0, 1 are leaking machines, for i = 0, 1, and ε > 0.
We will say that the machine M1 simulates the machine M0 with with an error of at most ε, or
M1 is an ε-simulation of M0, if the following two conditions are satisfied:

(75) A0 = A1, and for all a ∈ A0, the distance of ℘̄(0)
a and ℘̄(1)

a is at most ε,

(76) for all a, b ∈ A0 we have biasM1(a, b) ≤ biasM0(a, b) + ε. ut

Remark. The motivation for the definition of ε-simulation is the following. We may think that
M0 and M1 are random access machines which get their inputs from the same set A = A0 = A1,
and ε > 0 is so small that a single event with probability at most ε can be disregarded. M1

simulates M0 with an error of at most ε in the sense that M1 at the input a it gives essentially
the same output (in a probabilistic sense) than M0, and the adversary of M1 does not gain
essentially more information about the input than the adversary of M0. The meaning of the
word “essentially” in both cases depends on ε as formulated in condition (75) and (76) of the
definition. Therefore, we have that from the point of view of getting the correct output and
hiding the input from the adversary, machine M1 is essentially as good as machine M0. This
notion will be useful when the adversary of machine M0 is relatively weak so it is easy to
understand what can the adversary of M0 learn about the input. If M1 is an ε-simulation of
M0 and M1 has a possibly much stronger adversary, then we have shown that the computation
done by M1 is just as secure as the computation on M0 in spite of its stronger adversary.

Another way of using the notion ε-simulation will be of applying Lemma 37, formulated
below, repeatedly to a sequence of machines and showing this way that the last machine in the
sequence is essentially as secure than the first one. ut

Lemma 37 Assume that Mi = 〈Ai, ℘i〉, i = 0, 1, 2 are leaking machines, and Mi is an εi-
simulation of Mi−1 for i = 1, 2. Then the machine M2 is an ε1 + ε2-simulation of the machine
M0.

Proof. We have to show that conditions (75) and (76) of the the definition of ε-simulation
hold for M0 and M2.

Condition (75). Since Mi is an εi-simulation of Mi−1 for i = 1, 2, we have A0 = A1 and A1 =
A2 therefore A0 = A2. For the same reasons, for all a ∈ A0, we have distance(℘̄(0)

a , ℘̄
(1)
a) ≤ ε1

and distance(℘̄(1)
a , ℘̄

(2)
a) ≤ ε2, consequently the triangle inequality for the distance between

distributions imply that distance(℘̄(0)
a , ℘̄

(2)
a) ≤ ε1 + ε2.

Condition (76). Assume that a, b ∈ A0 = A1 = A2. Since machine Mi εi-simulates machine
Mi−1 for i = 1, 2 we have biasM1(a, b) ≤ biasM0(a, b)+ε1 and biasM2(a, b) ≤ biasM1(a, b)+ε2

therefore biasM2(a, b) ≤ biasM0(a, b) + ε1 + ε2. Q.E.D.(Lemma 37)

81

9 RAMs as Leaking Machines

9.1 Random access machines

We use a von Neumann type random access machine, where data and program are not distin-
guished. For the definition for such a machine see e.g., in [1] the random access stored program
(RASP) machines, in the modified form where the contents of the memory cells are not arbitrary
integers, but integers in the interval [0, 2q − 1].

For each positive integer q ≥ 10, Mq is a machine with 2q memory cells each containing a
sequence of 0, 1 bits of length q. These cells will be called cell(0), cell(1), . . . , cell(2q − 1).
We will consider the sequences contained in the cells as the binary representations of natural
numbers from the interval [0, 2q − 1], so if we say that a cell contains the natural number i,
we mean it contains its binary representation. (We may restrict the number of memory cells
if needed, by simply saying that a particular program is using only the first m cells for some
m < 2q. Therefore our requirement that the machine has 2q − 1 memory cells, is not a real
restriction). The state of the machine at each time is a function which assigns to each of memory
cells its content.
Mq has γ0 instructions. The names or encodings of these instructions are integers in [0, 2q−1].

We will describe below a finite list of instructions and assume that their names, as natural
numbers, are fixed independently of q.

cell(0) is called the accumulator of the machine and cell(1) the instruction pointer. (The
choice of these particular cells for the mentioned roles have no significance.)

The machineMq has six types of instructions. (a) arithmetic operations, (b) an instruction
to generate a random number, (c) instructions moving data between the memory cells, (d) control
transfer instructions, which determine which instruction will be executed next, (e) input/output
instructions, and (f) the halt instruction to terminate the execution of the program. We will
define each of these types later in more detail.

The machine Mq is working in cycles, each cycle counts as one time unit. In each cycle it
does the following. It checks the content of the instruction pointer. Its content is interpreted as
an address, of a memory cell, say, number i. Then the machine executes the instruction whose
name is in cell i. An instruction may have parameters (for the sake of simplicity we assume
that each instruction has at most one parameter). A parameter typically is the address of a
memory cell. The content of cell i + 1 is considered as the parameter of the instruction in cell
number i. The machine executes the instruction with the indicated parameter and then, if it is
not a control transfer instruction, it increases the content of the instruction pointer by 2. If it
is a control transfer instruction then the instruction defines the new content of the instruction
pointer. We will say that a memory cell or register is involved in an instruction if its content
is used by the machine to execute the instruction, or the result of the instruction is placed in
it. We will use this concept by considering an adversary who wants to get some information
about what the machine is doing, and at each instruction knows which memory cells/registers
are involved in the instructions, but does not know their contents.

(a) The arithmetic instructions are +,×,−, bx/yc, the constants 0, 1, and 2q−1. (According
to our assumption even the name of the instruction 2q − 1 is independent of q.) In case of the
arithmetic operations of the form f(x, y), at the time when the machine reads the instruction,

82

which is in cell(i), x must be in the accumulator, and y must be in the memory cell whose
address is the parameter of the instruction, that is, y is in cell(a) where a is the content of
cell(i + 1). The result appears in the accumulator. In the case of the constants, the result of
the instruction, that is, the value of the constant in binary form, appears in the accumulator
(and the value of the parameter is irrelevant).

(b) an instruction to generate a random number. A random integer from the interval [0, 2q−1]
appears in the accumulator, the value of the parameter is irrelevant.

(c) instructions moving data between the memory cells. Read instruction: if the value of the
parameter is a, then the instruction puts the content of cell(a) into the accumulator. Write
instruction: if the value of the parameter is a, then the instruction puts the content of the
accumulator into cell(a).

(d) control transfer instructions. GOTO X instruction. If the value of the parameter is X
then the content of the instruction pointer is changed into a. “IF X = 0 THEN GOTO Y ”
instruction. If the content of the accumulator is 0 then the content of the instruction pointer is
changed into Y , where Y is the value of the parameter, otherwise the value of the instruction
pointer is increased by 2. “IF X > 0 THEN GOTO Y ”. If the content of the accumulator is
greater than 0, then the content of the instruction pointer is changed into Y , where Y is the
value of the parameter, otherwise the value of the instruction pointer is increased by 2.

(e) input/output instructions. INPUT instruction. The input is written in the accumulator.
OUTPUT instruction. The value of the accumulator is given as output. In both cases the value
of the parameter is irrelevant.

(f) HALT instruction. Terminates the execution of the program.
The first few memory cells sometimes will be also called registers. (Intuitively this corre-

sponds to the CPU of a computer.)
A state of the machine Mq, as we have indicated earlier, is a function which assigns to

each of it cells a possible content. A history of the machine Mq is a function defined on an
inititial segment I of the natural numbers which assigns a state S(t) to each t ∈ I with the
following property. Suppose that t, t+ 1 ∈ I and in S(t) the content of the instruction pointer is
a. If a is the name of an instruction different of the input instruction and the random number
generator instruction, then we get S(t + 1) from S(t), by executing the instruction a with the
values contained in the memory cells ofMq defined by S(t). If a is the input or random number
generator instruction then S(t + 1) must be a state that is obtained from S(t) by executing
instruction a with the values of the memory cells described in S(t), and with a suitably chosen
value of the input or the generated random number.

Remark. Usually we will assume that before the machine starts to work, a program a of
constant length is placed in the memory. We will call this the starting program. We may think
that this is a small program, whose role is to write in the memory a larger program b and data
for b. When we will consider an adversary who wants to get some information about what the
machine is doing, we will assume that b is known to the adversary. Because of this, the exact
way as b gets into the machine is irrelevant. ut

Definition. Assume that v = 〈v0, v1, ..., vl−1〉 is a sequence of natural numbers each in the
interval [0, 2q−1]. We consider a machineMq with at least l memory cells and with the following
initial state. cell(i) contains the integer vi for all i = 0, 1, ...l − 1 and cell(i) contains the

83

integer 0 for all i > l− 1. The machineMq with this initial state will be denoted byMq[a] and
will called the machine Mq with the initial program a. ut

Remark. Sometimes an initial program a ofMq will be given in the form of a = P ◦w where
P is a program, (that is, a finite sequence of natural numbers) which can be executed for all
sufficiently large q in the machine Mq, and w contains data depending on q. For example we
may want to tell to a fixed program P the following parameters: n, the number of memory cells
of the machine and, t, the total time that can be used by the program. In this case the starting
program will be of the form P ◦ 〈n, t〉 where P is fixed independently of q but n and t may
depend on q.ut

Definition. The machine Mq with n memory cells will be denoted by Mq,n. The machine
Mq,n with a limit t on the time it can use will be denoted by Mq,n,t. Such a machine stops a
time t whatever would be its next instruction. ut

9.2 Leaking machines based on Mq.

9.2.1 The standard leaking RAM with benign adversary

We will define a leaking machine M by describing a realization 〈ϑ, ξ〉 of M . For the definition
of ϑ and ξ we will use a machine Mq,n,t. The leaking machine M that we will define below
will depend on the following parameters. (a) q, the word length in the machine Mq, (b) n, the
number of memory cells used inMq, (c) t, the total amount of time that can be used byMq for
the computation, (d) P , the initial program that resides in Mq when the computation starts.

Definition. Assume that q, n, t are positive integers, q > 10, n < 2q, t < 2q and P is a sequence
〈p0, . . . , pk−1〉 where each pi is an integer in [0, 2q − 1]. We define a leaking machine M =
M [q, n, t, P] = 〈A,℘〉 which will be called the standard leaking RAM with benign adversary,
with word length q, memory size n, total time t and initial program P . A will be the set of all
0, 1 sequences of length at most qt. We will also refer to this leaking machine as the standard
leaking RAM. We define the distributions ℘a by describing a realization 〈ϑ, ξ〉 of the machine
M .

The definition of ϑa. Assume that a ∈ A and we consider the machine Mq,n,t[P], that is,
the machineMq,n,t with the initial program P . Let a′ be the 0, 1-sequence of length exactly qt,
that we get from a by adding as many 0s to its end as needed. We suppose that the input a′

is in a buffer and each time when the machine Mq,n,t asks for an input it gets a word which
consists of the next q elements of the 0, 1 sequence a′. The machine Mq has only n memory
cells if an instruction is given involving a memory cell with address larger then n− 1, then the
machine halts. While Mq,n,t is working with the input described above, it may give outputs at
certain times. At each time the given output is a word of length q. Let g be the concatenation
of these 0, 1-sequences into a single 0, 1-sequence, in the order as the outputs occurred. This 0, 1
sequence g will be the value of the random variable ϑa. The randomness of ϑa is determined by
the probabilistic steps of Mq,n,t.

The definition of ξa. Assume that a ∈ A. The value of ξa is a finite 0, 1-sequence which
encodes following information. (a) q, t, n, P , (b) the time sequence t0, . . . , tj , when the machine
Mq,n,t asks for an input, and (c) the time sequence t′0, . . . , t

′
l when Mq,n,t gives an output. The

84

choice of the encoding is irrelevant, but the information given in (a),(b), and (c) must uniquely
determine ξa. ut

9.2.2 Leaking RAM with access-pattern adversary

In this section we define a leaking machine which differs form the standard leaking machine at
two points (a) its adversary is not the benign adversary but an adversary who at each time knows
which instruction is executed and which memory cells are involved in the executed instructions
including their roles in it and (b) the starting program P is of special form so that the execution
of the program has a cyclical structure as described below. The motivation for this definition is
that the result of [3] is equivalent to the statement that such a leaking machine ε′-simulates the
standard leaking machine with the benign adversary, where ε′ = tn− logn. First we describe the
special properties of the starting program P that we require from such a leaking machine.

Definition. The starting program P is called cyclical if there exists positive integers α, β with
β, α so that for all positive integers q, n, t, q > 10, n > β, if the machine Mq,n,t starts with the
program P ◦ 〈n, t〉, then for all τ ∈ ω if the machine is running at time τ and τ 6≡ −1 (mod α)
then condition (77) is satisfied, while if τ ≡ −1 (mod α) then condition (78) is satisfied:

(77) (The τ 6≡ −1 (mod α) case.) The instruction executed by the machine at time τ is one of
the following types: read instruction, write instruction, arithmetic instruction, random number
generating instruction. In the execution of such an instruction at time τ only memory cells
cell(i) with i < β are involved. Moreover the name of the instruction executed at time τ and
the memory cells involved in it, together with their roles in the instruction, depend only on the
residue class of τ modulo α.

(78) (The τ ≡ −1 (mod α) case.) At time τ one of the following instructions are executed: the
input instruction, the output instruction, the read instruction, the write instruction, the HALT
instruction. ut

Remark. The last requirement in condition (77) that “the name of the instruction executed
at time τ ... depend only on the residue class of τ modulo α” motivates the expression cyclical
starting program.

Definition. Assume that q, n, t are positive integers, q > 10, n < 2q, t < 2q and
P = 〈p0, . . . , pk−1〉 is a cyclical initial program. We define a leaking machine M (a.p.) =
M (a.p.)[q, n, t, P] = 〈A,℘〉 which will be called the leaking RAM with access-pattern adver-
sary, with word length q, memory size n, total time t and initial program P . A will be the set of
all 0, 1 sequences of length at most qt. We define the distributions ℘a by describing a realization
〈ϑ, ξ〉 of the machine M .

The definition of ϑa. For each a ∈ A, ϑa is identical to the random variable ϑa defined for
the standard leaking RAM with identical parameters q, n, t, P .

The definition of ξa. Assume that a ∈ A. The value of ξa is a finite 0, 1-sequence which
encodes the following information. (a) q, t, n, P , (b) for each time τ the name of the instruction
which was executed at time τ and the addresses of the memory cells which were involved in the
instruction together with their roles in the instruction. (a), and (b) must uniquely determine
ξa. ut

85

9.2.3 Leaking RAM with parity encoded i/o

The next definition describes a random variable πu,q,m,s depending on a 0, 1-sequence u, and
positive integers q,m, s. The value of πu,q,m,s, is a 0, 1-sequence τ , consisting of blocks of length
q, each representing in binary form with q bits an element of a 0, 1 sequence σ. σ is the
concatenation of blocks of lengths m. Each of these blocks encodes an element of the sequence
u: the parity of 1s in the block is even iff the corresponding element of u is 0. The parameter s
limits the total length of τ , therefore some elements of u, may not be encoded at all. The random
variable πu,q,m,s will do the preprocessing of the input for a RAM Mq, that is, it encodes each
element of the sequence u by the parity of a 0, 1-sequence of length m. Moreover the elements
of this last 0, 1 sequence are represented in binary form by q-bits, which guarantees that at each
input instruction of the standard RAM gets only one element of the sequence. This is needed,
since otherwise an adversary could get too much information from reading a single input.

Definition. Suppose that q,m, s are positive integers, and u = 〈u0, . . . , uj−1〉 is a finite
0, 1-sequence. We define a random variable πu,q,m,s . For each fixed i = 0, 1, . . . , j − 1 let
v(i) = 〈v0,i, . . . , vm−1,i〉 be a random 0, 1-sequence of length m so that

∑m−1
k=0 vk,i ≡ ui (mod 2),

with uniform distribution on the set of all sequences with this property. Assume further that
the random variables v(0), . . . , v(j−1) are mutually independent. Let σ = 〈σ0, σ1, . . . , σmj−1〉 be
the concatenation of the sequences v(0), . . . , v(j−1) in this order. For each σi let σ̄i be the binary
form of the natural number σi given as a 0, 1-sequence of length q. 〈τ0, τ1, ..., τqmj−1〉 will be the
concatenations of the sequences σ̄0, σ1, ..., σ̄mj−1 in this order. If k = min{qmj− 1, s}, then the
sequence τ = 〈τ0, . . . , τk−1〉 is the value of the random variable πu,q,m,s. ut

The function Fm, defined below, will do the postprocessing of the output.

Definition. Assume that m is a positive integer. We define a function Fm on the set of all
finite 0, 1 sequences. Assume that σ = 〈σ0, σ1, . . . , σj−1〉 is a finite 0, 1 sequence. Fm(σ) will
be a 0, 1-sequence u = 〈u0, . . . , uk−1〉 where k = d jme, and for all i = 0, 1, . . . , k − 1, ui is the
unique element of the set {0, 1} so that ui ≡

∑(i+1)k−1
r=ik σr (mod 2), where for r > j − 1 we have

by definition σr = 0. ut
In the following we define a leaking machine M ′ which determines its output using an exten-

sion of the machine Mq,n,t[P], by adding extra preprocessing of the input and postprocessing
of the output, both depending on a parameter m. The adversary will be stronger, than the
adversary of the standard RAM . In particular, the adversary, at certain times, will be able to
see the contents of the memory cells involved in the instruction executed by Mq,n,t[P] at that
time. The adversary will use a probabilistic and adaptive strategy H defined below, to select
these times. We will consider only in strategies which guarantee some limit on the number of
occasions when the adversary can get this extra information.

Definition. A strategy for the adversary is a function H which assigns to each pair 〈i, x〉 ∈
ω × {0, 1}<∞ a random variable Hi,x so that the random variables in the set set(H) = {Hi,x |
i ∈ ω, x ∈ {0, 1}<∞} are mutually independent and each takes its values in {0, 1}. ut

Remark. Assume that a machineMq is working and an adversary may get some information
about the states of the machine. For this the adversary will use a strategy Hi,x in the follow-
ing way. The adversary may get the contents of the memory cells involved in the instruction

86

executed at certain times. The adversary has to select the times, when this happens, these
will be called the compromised times. Suppose that at time s the information that reached the
adversary till that time, is the 0, 1-sequence g(s). Then the adversary takes a random value
of the random variable Hs,g(s), independently of the randomizations done in the machine and
the earlier decisions of the adversary. If the value of Hs,g(s) is 1, then the adversary gets the
contents of the memory cells involved in the instruction executed at time s, if Hs,g(s) = 0 then
the adversary does not get this information. ut

Definition. Assume that q, n, t,m are positive integers, q > 10, n < 2q, t < 2q, P is a sequence
〈p0, . . . , pk−1〉 where each pi is an integer in [0, 2q−1], and H is a strategy for the adversary. We
define a leaking machine M ′ = M ′[q, n, t, P,m,H] = 〈A,℘〉, that will be called a parity encoded
RAM with word length q, memory size n, total time t, initial program P , parity encoding length
m, and adversary strategy H. The input set A will be the set of all 0, 1 sequences of length at
most qt. We define the distributions ℘a by describing a realization 〈ϑ, ξ〉 of the machine M ′.

The definition of ϑa. Assume that a ∈ A. Let ā be a random value of πa,q,m,t, and let
〈ϑ(M), ξ(M)〉 be a realization of the leaking machine M [q, n, t, P ◦ 〈m〉] defined earlier. ϑa is
defined as Fm(ϑ(M)

ā). (That is, by the preprocessing we get ā for the input a, then the the
machineMq,n,t[P], provides its output at input ā as the value of the random variable ϑ(M)

ā , and
finally by postprocessing of this output we get Fm(ϑ(M)

ā).)
The definition of ξa. Assume that a ∈ A. The value of ξa is a finite 0, 1-sequence which

encodes the following information. This information will be given by the values of a function
g defined on {0, 1, . . . , t− 1}, with the intuitive meaning that the information that reaches the
adversary before time s is encoded by g(s), where the time is the time of machine Mq,n,t[P]
while it computes the value of ϑā. (Naturally g(s) also depends on the history of the machine
Mq,n,t[P] before time s and the decisions of the adversary made before this time.) We define
g(s) by recursion of s. g(0) contains q, n, t,m, P . Assume that s ∈ {0, 1, . . . , t − 1} and
g(0), . . . ,g(s− 1) has been already defined. We define now g(s). The following information will
be encoded in g(s).

(a) s, the name of the instruction that was executed by Mq,n,t[P] at time s, during the
computation value of ϑā(M), and the addresses of the memory cells involved in the instruction
executed at time s together with their roles in the instruction,

(b) if Hs,g(s) = 1, then the contents of the memory cells whose addresses were given in
(a) with the indication which content belongs to which address. Such an s will be called a
compromised time.

As in the case of M [q, n, t, P] the choice of the encoding is irrelevant, but the information
described above must uniquely determine ξa. ut

Remark. We defined the random variables Hi,x for all i ∈ ω, x ∈ {0, 1}<∞, instead of defining
Hi,x only to those pairs i, x where the adversary may need the value of Hi,x. This does not cause
any problems since a strategy defined on only certain pairs 〈i, x〉 ∈ ω × {0, 1}<∞ always can be
extended in a trivial way to the whole set ω × {0, 1}<∞. ut

Definition. 1. Assume that H is a strategy for the adversary. We will say that H is an
〈ε,m〉-moderate strategy for the adversary of the parity encoded leaking machine M , if for each
time interval I of length m, and for each history of the leaking machine M the number of

87

compromised times in I is at most εm. In other words, if g(s) encodes the information that
reached the adversary before time s, then there exists at most εm integers i of the interval I,
so that Hi,g(i) = 1.

2. We will say that the adversary strategy Hi,x is ε-random, if for all i ∈ ω, x ∈ {0, 1}<∞
we have prob(Hi,x = 1) ≤ ε. ut

Theorem 7 There exists c0, c1, c2, c3 > 0 such that for all sufficiently small ε > 0 and for
all program P0 there exists a program P1 with the following properties. Suppose that q, n, t,m
are integers, q > 10, n ≤ 2q, t ≤ 2q, m ≤ n. Then for all leaking machines M and M ′

if M,M ′ satisfy conditions (79) and (80) below, then M ′ is an ε′ simulation of M , where
ε′ = c0 max{tn− logn, te−c1m}.

(79) M is a standard leaking RAM with the benign adversary, with word length q, memory size
n, total time t, and initial program P0 ◦ 〈n, t〉,

(80) M ′ is a parity encoded RAM with world length q, memory size n(log n)c2mc3, total time
t(log n)c2mc3, initial program P0 ◦ 〈m,n, t〉, and parity encoding length m, with an 〈ε,m〉-
moderate adversary.

We will first prove the theorem in the modified form where in condition (80) we replace the
expression “〈ε,m〉-moderate strategy” by “ε-random strategy”.

10 The composite machine and a related leaking machine

We have already defined the composite machine in section 3.5, and using that machine we define
now a leaking machine MC = 〈A,℘〉 that we will call the composite leaking machine. As in the
earlier definitions of leaking machines we define MC by defining a realization 〈ϑ, ξ〉 of it. In the
earlier examples we defined the random variables ϑa through computation done by the RAM
Mq. In this case instead of Mq the composite machine will do the computation.

Definition. Assume that q, c, n, t are positive integers, q > 10, n < 2q, t < 2q, P is a sequence
〈p0, . . . , pc−1〉 where pi is an integer ∈ [0, 2q−1] for i = 0, 1, ..., c− 1, and H is a strategy for the
adversary. We define a leaking machine MC = 〈A,℘〉, that will be called the composite leaking
machine with word length q, RAM -size c, memory size n, total time t, initial program P . A will
be the set of all 0, 1 sequences of length at most t. We define the distributions ℘a by describing
a realization 〈ϑ, ξ〉 of the machine MC .

The definition of ϑa. Assume that a ∈ A and the machine M̄q,c starts to work in a state
where for all i = 0, 1, . . . , c − 1 the content of the memory cell i is pi. We suppose that the
input a is in a buffer and each time when the machine An asks for an input it gets a bit which
is the next element of the 0, 1 sequence a. While Cq,c,n is working with the input described
above, An may give outputs at certain times. At each time the given output is a bit. Let ρ
be the 0, 1-sequence, containing these bits in the order as they were given as outputs. This 0, 1
sequence ρ will be the value of the random variable ϑa. The randomness of ϑa is determined by
the probabilistic steps (the instruction RANDOM) of An.

88

The definition of ξa. The adversary gets the state of the machine M̄q,c at each time, while
the composite machine Cq,c,n = 〈An,M̄q,c〉 computes the value of ϑa. ut

Remark. The state of M̄q,c is a function which assigns to each memory cell to its content.
Therefore the adversary knows exactly what happens in M̄q,c but does not get directly any
information about the machine Ak. The state of M̄q,c however determines at each time, the
name of the instruction performed in An, and the memory cells are involved in it. ut

The proof of Theorem 7 will be based on the repeated use of Lemma 37. Namely we will
construct leaking machines M0,M1,M2,M3,M4 so that if M,M ′ are the leaking machines of
Theorem 7, then M0 = M , M4 = M ′ and Mi+1 is an ε′

4 -simulation of Mi. The total time and
memory size in each step will grow by at most of a factor of (m log n)c

′
, where c′ is a constant,

so altogether their increase remain below the bound required in Theorem 7. The following
Theorem A is an immediate consequence of the results of [2]. In the two lemmas formulated
after Theorem A we define M0,M2,M3 and M4 and formulate the statements that Mi+1 is an
ε′ simulation of Mi.

Definition. In the following the word program will mean a finite sequence of natural numbers,
which can be interpreted as a program for Mq for all sufficiently large integers q. ut

Theorem A. There exists c2 > 0, c3 > 0 such that for all programs P0, there a program P1

with the following properties. Suppose that q > 10, n, t are positive integers, n ≤ 2q, t ≤ 2q. For
all leaking machines M0 and M2, if M0,M1 satisfy conditions (81) and (82) below, then M1 is
an ε′-simulation of M0, where ε′ = tn− logn.

(81) M0 is a standard leaking RAM with benign adversary, word length q, memory size n, total
time t, and initial program P0 ◦ 〈n, t〉,

(82) M1 is a leaking RAM with an access-pattern adversary, word length q, memory size
n(log n)c2, total time tn(log n)c3, and initial program P1 ◦ 〈n, t〉

For the proof of this theorem see [2]. The fact that the initial program P1 can be chosen in a
way that it is cyclical can be proved in the following way. Assume that the simulated protected
CPU, that we will call simply CPU, consists of the first β memory cells of Mq, where β is a
constant. The work of the CPU is organized into cycles of length α, where α is a constant. In
each cycle the first α − 1 instructions involves only memory cells from the CPU and the last
instruction is used for communication with the outside word and with the memory unit. As it
is explained in the Remark after Lemma 13 in [2] we may assume that the first α− 1 operations
are either arithmetic/read/write operations or the random number generator instruction and
this way P1 satisfies the requirements of the definition of a cyclical initial program.

Lemma 38 There exists c2 > 0, c3 > 0 such that for all programs P0, there exist a c > 0 and
a program P1 such that for all sufficiently small ε > 0 the following holds. Suppose that q, n, t
are integers, q > 10, n ≤ 2q, t ≤ 2q. For all leaking machines M1 and M2, if M1,M2 satisfy
conditions (79) and (80) below, then M2 is an 0-simulation of M1.

(83) M1 is a leaking RAM with an access-pattern adversary, word length q, memory size n,
total time t, and initial program P0 ◦ 〈n, t〉

89

(84) M2 is a composite machine with word length q, RAM size c, memory size at most
n(log n)c2, total time at most bt(log n)c3c, and initial program P1 ◦ 〈n, t〉.

Lemma 39 There exists c1 > 0, c2 > 0, c3 > 0 such that for all programs P0, there exists a
c > 0 and a program P1 such that for all sufficiently small ε > 0 the following holds. Suppose
that q, n, t,m are integers, q > 10, n ≤ 2q, t ≤ 2q, m ≤ n. For all leaking machines M2 and
M3, if M2,M3 satisfy conditions (79) and (80) below, then M3 is an ε′-simulation of M2, where
ε′ = te−c1m.

(85) M2 is a composite machine with word length q, RAM size c, memory size n, total time t,
initial program P1 ◦ 〈n, t〉.

(86) M3 is a parity encoded RAM with world length q, memory size n(log n)c2mc3, total time
t(log n)c2mc3, initial program P2 ◦ 〈n, t,m〉, and parity encoding length m, with an ε-random
adversary.

Lemma 40 There exists c2, c3, c4, c5 > 0 so that for all programs P2 there exists a program P3

such that for all sufficiently small ε > 0 the following holds. Suppose that q, n, t,m are integers,
q > 10, n ≤ 2q, t ≤ 2q, m ≤ n. For all leaking machines M3 and M4, if M3,M4 satisfy
conditions (79) and (80) below, then M4 is an ε′-simulation of M3, where ε′ = te−c5m.

(87) M3 is a parity encoded RAM with world length q, memory size n, total time t, initial
program P2 ◦ 〈n, t,m〉, and parity encoding length m, with an ε-random adversary.

(88) M4 is a parity encoded RAM with world length q, memory size n + c4, total time mc4t,
initial program P3 ◦ 〈n, t,m〉, and parity encoding length m, with an 〈ε,m〉-moderate adversary.

11 Proof of Lemma AP2

Assume that M1 is a leaking RAM with an access-pattern adversary, with word length q, memory
size n, total time t, and initial program 〈P0◦〈n, t〉〉. The composite machine M2, simulating M1,
will work in the following way. The memory size k of the semi-RAM Ak will be k = qn+(log n)c

′
,

where c′ > 0 is a constant. This way each bit stored in the memory of M1 can be represented
by the content of a memory cell xl of Ak. E.g. the jth bit of memory cell cell(i) of M1 can be
stored in x2+qi+j . The term 2 is needed to keep the memory cells x0, x1, of Ak free, since they
have a special role in the instructions of Ak. The remaining (log n)c

′
bits of Ak will be used as

a working memory for various tasks.
Let α, β be the integer whose existence is stated in the definition of a cyclical starting

program applied to P1. According to condition (77) of a cyclical starting program, the sequence
of the names and parameters of the instructions executed at times sα, sα + 1, ..., (s + 1)α − 2
for s = 0, 1, ... by the machine M1 do not depend on s. The names of these insructions and
parameters are all natural numbers which remain below a constant bound, since by condition
(77) all of the memory cells involved in these instructions are among the first β cells. Let S
be a sequence encoding these information. It is possible to write the starting program P2 in

90

a way that it contains the sequence S, and therefore when M2 starts, then the memory of
M̄q,c contains the sequence S. Therefore we may write the program P1 in a way that M̄q,c

changes the contents of the bits in the cells xi in the same way as the corresponding instruction
from the sequence S would change it in the memory of M1, that is, M̄q,c maintains a correct
representation of the memory of M1 in Ak all the time.

Of course a single instruction usually requires the change of c̄ log n bits for some constant
c̄. Since condition (77) restricts the instructions in the sequence S into read, write, arithmetic,
and random number generating instructions, M̄q,c is able to give Ak instructions which inside
the memory of Ak performs this instructions using computations with individual bits. The time
of the computation used to execute each individual instruction of S may be a constant power of
log n but not more. For the random number generating instruction the RANDOM instruction
of Ak is used. During the computation a needed for a single instruction of S the mentioned
working memory of Ak consisting of (log n)c

′
bits is used. This way the computation done by

M1 is simulated by M2 for each time τ with τ 6≡ −1 (mod α).
Assume now that τ ≡ −1 (mod α). P2 is written in a way that M̄q,c counts the time of M1

so it knows that such a τ has been reached. The content of the memory of M1 is represented
in Ak. First M̄q,c determines the content κ of the instruction pointer of M1 at time τ . In this
case “determines” means that κ must be available as the content of a memory cell of M̄q,c.
This can be done by using the input instruction of M̄q,c which puts the content of x0 into
cell(0). This way bit by bit M̄q,c may recreate the content of of the instruction pointer of M1

as a single integer. (The number of M2 instructions used for this task will be power constant
of log n.) Being the the instruction pointer of M1 available in the memory of M̄q,c, now M̄q,c

may determine which instruction out of the five possibilities must be executed and what are the
corresponding parameters (if any), using the input instruction of M̄q,c the same way as in the
case of the instruction pointer.

In the possession of the name of the instruction y and its parameters, the machine M̄q,c, using
its output instruction, may change the representation of M1 in Ak in the way as the instruction
y would do it in M1. Since the instruction is limited to the four choices listed in condition
(78) this does not involve anything else then moving individual bits in the memory of Ak and
possibly perform the INPUT or OUTPUT instructions of Ak or the HALT instruction of M̄q,c.
All of the described activity increases the time of simulation, compared to the computation done
by M1, by only a factor of (log n)c

′′
, and needs no more extra working memory than the one

described earlier. This completes the description of the machine M2.
In the described simulation there is no possibility for errors that is if ℘(i)

a is the distribution of
the output for input a for machine Mi, i = 1, 2 then the distance of ℘(0)

a and ℘(1)
a is 0. We claim

that during this simulation the access-pattern adversary of M1 gets exactly the same information
as the adversary of the composite machine. Indeed the adversary for the composite machine
knows the content of the memory cells of M̄q,c all the time. These contents determine which
instruction was simulated in Ak and the memory cells involved in it together with their roles.
No other information reaches M̄q,c since the input instruction which passes information from Ak
to M̄q,c was used only to transfer the bits of the items mentioned above. Moreover the timing
of all of the instructions done by M̄q,c is uniquely determined by the mentioned information
which is available for the access-pattern adversary. Therefore biasM1(a, b) = biasM2(a, b) for

91

all inputs a, b. Consequently M2 is a 0-simulation of M1. Q.E.D.(Lemma 38)

12 Proof of Lemma 39

According to the definition of a parity encoded RAM the realization of the random variable
ϑ

(M3)
a = ϑ

(M ′3)
a will be computed on a machineMq =Mq[P2 ◦ 〈n, t,m〉] which gets each bit ai of

the input a in the form of a 0, 1 sequence of length m whose parity is ai. The program P2 will
be defined later.

The computation done by Mq, while computing the values of ϑa = ϑ′a, will be organized in
the following way. A block B of mn memory cells will be used to represent each state of the
machine An during this computation, which simulates the computation done by the composite
machine. The memory cells in B are partitioned into n blocks B0, . . . , Bn−1 each containing
exactly m memory cells. The content of each of these memory cells will be always 0 or 1. For
each i = 0, 1, . . . , n − 1, Sr(i) ∈ {0, 1} will denote the least nonnegative residue of the sum of
the contents of the memory cells in Bi modulo 2, at Mq-time r. The state of An at An-time
r is a function ϕr ∈ func({0, 1, . . . , n − 1}, {0, 1}), where ϕr(i) is the content of memory cell
xi of An at An-time r. Such a state of An will be represented in Mq by the contents of the
memory cells in B =

⋃n
i=0Bi. Namely, if the representation of the state ϕr of An is completed

in Mq by Mq-time λ(r), then ϕr(i) = Sλ(r)(i) for i = 0, 1, . . . , n − 1. The RAM part M̄q,c

of the composite machine will be directly represented in the memory of the machine Mq in c
consecutive memory cells. The set of these cells will be denoted by Φ0. (Naturally Φ0 and B
are disjoint).

During the proof we will use the following notation: P̂1 = P1 ◦ 〈n, t〉 and P̂2 = P2 ◦ 〈n, t,m〉,
where P1 is given by M2 and we have to define P2 in a way that satisfies the requirements of
the lemma.

The initial program P̂2 will be given such that Mq works in the following way. Mq starts
to execute the program P̂1 the same way as it would have been executed in the machine M̄q,c.
P̂1 is executed the same way as in M̄q,c but using the memory cells in Φ0, with the exception of
the output and the input instructions. Recall that an output of M̄q,c in the composite machine
is always an instruction of An (possibly together with a parameter), and this instruction, say
u, is immediately executed in An. Therefore when P̂2 notices that P̂1 gives an output, then
P̂2 executes the corresponding instruction on the representation of An, stored in B =

⋃n−1
i=0 Bi.

That is, if, after executing u in An, the memory cell xi of An at An-time r contains is ϕr(i),
then P̂2 has to change the contents of the memory cells in B to reflect the change of state in
An. As we have indicated already, the Mq-time when this change is completed will be denoted
by λ(r). The new contents of the memory cells in B must satisfy the equations ϕr(i) = Sλ(r)(i)
for i = 0, 1, . . . , n− 1.

If P̂1 executes an input instruction then, simulating the definition of the input instruction in
M̄q,c, P̂2 does the following. P̂2, using the memory cells in B, determines what is the content
of the memory cell x0 of An according to the current representation of the memory of An in B,
and then writes this value in the first memory cell of Φ0 which represents cell 0 of M̄q,c.

It is easy to define the program P̂2 which accomplishes this task in itself. We want to do it
however in a way, that an ε1-random adversary, does not gain essentially more information about

92

the input than the adversary of the composite machine, during the corresponding computation.
In order to make the definitions and the proof simpler, we assume the following. When P̂2

starts to work, it writes a random 0, 1 bit into each memory cell of B, so that these random
bits are chosen independently and with uniform distribution from {0, 1}. (We may avoid this
initialization, by treating always separately those memory cells of B which has not been used
yet and those which has been already used.)

Definition. 1. According to our earlier definition, the block of memory cells B con-
sists of n consecutive smaller blocks B0, . . . , Bn−1 each containing m memory cells. The se-
quence 〈B0, ..., Bn−1〉 will be denoted by B. The memory cells in Bi will be denoted by
bi,0, bi,1, . . . , bi,m−1 in their natural order. When we say that the contents of the memory
cells in B have an ε-cylindrical distribution we mean that they have an ε-cylindrical distribution
with respect to the sequence B. ut

Now we complete the definition of the program P̂2 with the properties described above.
Assume that while simulating the composite machine, the program P̂2 took the machineMq in
a state representing the state of An at An-time s. By the definition of the function λ, such a
representation is completed byMq-time λ(s), and we have ϕs(i) = Sλ(r)(i) for i = 0, 1, . . . , n−1.
Now P̂2 continues its simulation of the machine M̄q,c. Using the representation of M̄q,c given
in the memory cells of Φ0, P̂2 continues this until it reaches an output instruction or an input
instruction.

First we consider the case of an output instruction. Recall that an output instruction of
M̄q,c is used to give an instruction to An, possibly together with a parameter. Therefore P̂2

knows which instruction will be executed by An at An-time r + 1. We describe now for each
instruction separately how will P̂2 change the contents of the memory cells of B so that when
this change is finished by Mq-time λ(r + 1) the contents of these cells represent the state ϕr+1

of An, that is, ϕr+1(i) = Sλ(r+1)(i) for i = 0, 1, . . . , n− 1.
We describe now the action of P̂2 inMq corresponding to each instruction of An. In some of

these instructions we will say that P̂2 computes the output of one of the circuits Ci, i = 0, 1, 2, 3
defined in Lemma 3, for a given input. We need now only the F = F2 special case of Lemma 3.
P̂2 evaluates the circuit Ci in the following way. When P̂2 starts to work, it computes graph(Ci)
together with its labeling for i = 0, 1, 2, 3. P̂2 also decides an order in which the gates of the
circuit Ci will be used for its evaluation. P̂2 stores the rank of each node according to this
ordering. Another, arbitrarily chosen, ordering ≤edge is fixed for the set of the all edges of
graph(Ci). P̂2 stores the rank of each edge according to the ordering ≤edge. All of this is done
only once, and, according to Lemma 3, the required time is polynomial in m and the results
can be stored in a polynomial number of memory cells of Mq. Assume that for each node x of
the graph Ci, P̂2 reserves a memory cell nx, where the output of the gate corresponding to this
node will be written during an evaluation of the circuit Ci. All of this initial activity of P̂2 is
uniquely determined by the choice of the circuits Ci independently of the input, so even if it is
completely known to the M3-adversary it does not give him any additional knowledge compared
to the M2-adversary.

All of the circuits Ci have one or two input blocks, we consider now only the two input
blocks situation, the circuits with one input block can be handled in a similar way. In each
case when P̂2 will have to evaluate a circuit Ci, the bits of the two input blocks will be given

93

as the contents of the blocks of memory cells Bj and Bk for some j, k ∈ {0, 1, ..., n − 1}, that
is in the cells bj,0, . . . , bj,m−1 and bk,0, . . . , bk,m−1. P̂2 copies the contents of these cells to the
corresponding input nodes of Ci, that is, to the cells nx, where x runs over the deterministic
input nodes of Ci. After copying the content of the cell bj,s, and bk,s, s = 0, 1, ...,m − 1, P̂2

immediately erases their contents by writing 0s into them.
The circuits Ci may have probabilistic input nodes as well. For each probabilistic input node

x of Ci, P̂2 generates a random 0, 1-bit with the random generator ofMq and writes it into nx.
After that P̂2 evaluates all of the gates of the circuit in the usual way. Suppose that x is a gate
so that edges are pointing from y and z to x. Then, while evaluating x, P̂2 reads the contents of
ny, nz performs the mod 2 operation corresponding to the gate x and writes the result into nx.
Therefore, to evaluate gate x, program P̂2 needs only a constant number of instructions. These
instructions will be performed in a time interval Jx of constant length. These intervals clearly
can be chosen with the following properties:

(89) there exists an absolute constant c′ > 0, so that for each gate x, we have |Jx| ≤ c′.

(90) the intervals Jx are determined independently of the input of the circuit Ci, and in each
interval Jx if the value associated with a node y ∈ set(Ci) is used then y ∈ full({x}).

Immediately after a node x is used for the last time, P̂2 erases the content of nx. P̂2 knows
that it was the last time that x is used since the ranks in the ordering ≤edge can be computed
by P̂2, in constant time.

Now we describe what P̂2 does at various An instructions.
An-instruction INPUT. P̂2 asks for input m times, and as soon as the jth input bit arrives,

P̂2 writes it in the memory cell b0,j . This guarantees that after this procedure the m bit is in
block B0 representing the single bit content of memory cell x0 in An.

Instruction OUTPUT. P̂2 evaluates the circuit C0 using the content of memory cells
b0,0, . . . , b0,m−1 as input. The first output block will be the new content of the memory cells
b0,0, . . . , b0,m−1. (The second output block is not used.) For each j = 0, 1, ...,m−1, when during
the described process, P̂2 accesses first the memory cell b0,j , it gives gives its content as output.

Instruction WRITE i. P̂2 evaluates the circuit C0 using the content of memory cells
b0,0, . . . , b0,m−1 as input. The first output block will be the new content of the memory cells
b0,0, . . . , b0,m−1 the second output block will be the new content of bi,0, . . . , bi,m−1

Instruction READ i. The same as instruction WRITE i, only the roles of blocks B0 and Bi
are reversed.

Instruction NEGATION. P̂2 adds 1 (in the field F2) to the content of b0,0. After that P̂2

evaluates the circuit C0 using the content of memory cells b0,0, . . . , b0,m−1 as input. The first
output block will be the new content of the memory cells b0,0, . . . , b0,m−1. (The second output
block is not used.)

Instruction AND. P̂2 evaluates the circuit C2 using the content of memory cells
b1,0, . . . , b1,m−1 as the input in the first input block and the contents of the memory cells
b0,0, . . . , b0,m−1 in the second input block. The first output block will be the new content of the
memory cells b1,0, . . . , b1,m−1 the second output block will be the new content of b0,0, . . . , b0,m−1

Instruction EXCLUSIVE OR. Same as instruction AND, but using circuit C3.

94

Instruction RANDOM. For each j = 0, 1, . . . ,m − 1, P̂2 selects a random 0, 1 bit using the
random number generator of Mq and then writes the result in cell b0,j .

Instruction REFRESH. P̂2 evaluates the circuit C0 using the content of memory cells
b0,0, . . . , b0,m−1 as input. The first output block will be the new content of the memory cells
b0,0, . . . , b0,m−1. (The second output block is not used.)

This completes the description of the action of P̂2 when it notices that P̂1 executes an output
instruction. Suppose now that the P̂2 notices that P̂1 executes an input instruction. In this case
P̂2 adds the content of the memory cells b0,0, . . . , b0,m−1 modulo 2 and writes the result into the
first cell of Φ0 (which represents cell 0 of M̄q,c). After that P̂2 executes a REFRESH instruction
as described above. This completes the definition of the program P̂2. Now we can complete the
proof of Lemma 39.

Definition. Assume that and adversary X for a machine M has the knowledge κ(i) (repre-
sented as a 0, 1-sequence) at time i, and η is a random variable. We will say that the distribution
of η from the point of view of the adversary X at time i is D, if the conditional distribution of η
conditioned by the knowledge of the adversary at time i is D. More precisely let κ0 be a possible
value of κ(i). We will say that the distribution of the random variable η from the point of view
of the adversary X with knowledge κ0 at time i is D, if the conditional distribution of η with the
condition that κ(i) = κ0 is D. When we will say that “with a probability of p the distribution
of η from the point of view of adversary X at time i has property P”, we will mean, that with
a probability p, for the randomizations by the machine M and the adversary X together, κ(i)
takes a value κ0 so that the distribution of η, from the point of view of the adversary X , with
knowledge κ0 at time i, has property P . ut

We want to describe the distribution of the contents of the memory cells of Mq, from
the point of view of the M3-adversary, that is, the ε1-random adversary, at Mq-time λ(i)
for all i = 0, 1, It will be easier to describe this conditional distribution if we add some
extra knowledge to the knowledge of the M3-adversary. We will call this new adversary, whose
knowledge will be defined later, the strong M3-adversary. We will show that the statement of
Lemma 39 holds even if we consider the machine M3 with the strong M3-adversary, who always
knows at least as much as the original M3-adversary. Clearly this will imply the lemma in its
original form.

In the following description we will use several real numbers as parameters. The adversary
will be an ε1-random adversary. We will show that the contents of certain memory cells in the
machine maintain an ε0-cylindrical distribution from the point of view of the adversary with a
probability of at least p = e−c1m. We will assume that 0 < ε1 � c1 � ε0 � 1.

The definition of the strong M3-adversary. We define the knowledge of the strong M3-
adversary at Mq-time λ(i) by recursion on i. We want to define this knowledge in a way that

(91) the knowledge of the strong M3-adversary at Mq-time λ(i) implies the knowledge of the
M2-adversary at An-time i.

In addition to this we will require also the following. The distribution of the contents of the
memory cells from the point of view from the strong M3-adversary at Mq-time i satisfies the
following conditions with a probability of at least 1− ie−c1m:

95

(92) The contents of all of the memory cells of Mq outside B at Mq-time λ(i) are uniquely
determined, that is, each has a fixed value which is taken with probability 1,

(93) the contents of the memory cells in B at Mq-time i has ε0 cylindrical distribution with
respect to the sequence B.

(94) The distribution of the input of the machine M2 till An-time i from the point of view of the
M2-adversary is the same as its distribution from the point of view of the strong M3-adversary.

The recursive definition is the following. Assume that the knowledge of the strong M3-
adversary has been already defined so that for conditions (91), (92), (93), are satisfied with
i := i− 1. We include all of the knowledge of the M2 adversary at time i into the knowledge of
the strong M3-adversary at time λ(i). Consequently condition (91) is satisfied.

The definition of P̂2 implies that between time λ(i − 1) and λ(i), P̂2 first simulates M̄q,c

using the memory cells of Φ0 until it reaches an input or an output instruction. The Mq-time,
immediately before such an input or output instruction is executed, will be denoted by λ1(i).
Till λ1(i), during the computation by P̂2, the memory cells of B are not used at all. Since
this part of the computation is deterministic, whatever happens is uniquely determined by the
contents of the memory cells of Mq outside of B at Mq-time λ(i− 1). Therefore, by condition
(92), the knowledge of the strong M3-adversary at Mq-time λ(i − 1) uniquely determines the
contents of the memory cells of Mq outside of the set B at time λi−1.

To continue the definition of the knowledge of the strongM3-adversary, we have to distinguish
several cases according to the input or output instruction that is reached by program P̂2 at
Mq-time λ1(i) + 1.

Case I. An output instruction (of P̂1 working in M̄q,c) is reached by P̂2 atMq-time λ1(i)+1,
so that while simulating the corresponding An instruction P̂2 has to evaluate one of the circuits
Ci of Lemma 3 as described in the definition of P̂2. In this case the inductive assumption (93)
implies that with a probability of at least (i − 1)e−c1m from the point of view of the strong
M3-adversary atMq-time λ(i−1), the contents of B has ε0 cylindrical distribution with respect
to B. Let Ḡ, be the base of this ε0-cylindrical distribution. Therefore using the fact that the
circuits Cj of Lemma 3 are (ε0, ε1, e

−c1m)-cylindrical, we get the following. The input of the
circuit Cj used in this step also has ε0-cylindrical distribution (from the point of view of the
strong M3-adversary at time λ1(i)) since we get it form the distribution of the contents of B,
by using only one or two blocks. Let G be the restriction of Ḡ to these blocks. According to the
definition of an (ε0, ε1, p)-cylindrical circuit, there exists a set X ⊆ set(Cj) so that if D is the
set of nodes x of Cj so that at least one elements of the time interval Jx is compromised and
the strong adversary gets the output of the gate at each node in the set Y = G ∪ full(D) ∪X,
then the distribution of the output of the circuit Cj from the point of view of the M3-adversary
at time λ(i) is ε0-cylindrical. (We are using here properties (89) and (90) from the definition
of intervals Jx.) Naturally the output of the circuit Cj corresponds only at most two elements
of the sequence B. However the contents of the cells in the remaining elements of B has not
been used during the evaluation of Cj so the independence requirements for the ε0-cylindricity
for the contents of the cells in B with respect to B remain valid. Therefore condition (93) holds
for i as well, with the definition of the knowledge of the strong adversary that we described.

96

We also note that all of the partial results for the evaluation of the circuit Cj is erased by P̂2

during the evaluation of Cj and therefore, in the present “Case I.”, the contents of all of the
memory cells of Mq not contained in B remain uniquely determined by the knowledge of the
strong M3-adversary at Mq-time λ(i− 1) and so by its knowledge at Mq-time λ(i) as well.

Case II. An output instruction (of P̂1 working in M̄q,c) is reached by P̂2 atMq-time λ1(i)+1,
so that the corresponding An instruction that P̂2 has to simulate is the instruction INPUT. In
this case, by definition, the strong M3-adversary gets the same new information as the ε1-
random adversary. In this case the incoming bits are random with uniform distribution with the
condition that their sum is the corresponding input bit of M2. This obviously remains true even
from the point of view of the strong M3-adversary since the randomizations in the preprocessing
remains hidden from the ε1-random adversary. Therefore conditions (91), (92) (93), (94) are
trivially satisfied. (The handle of the new (ε0, ε1, p) cylindrical distribution in block B0 can be
the function determined by the contents of those memory cells b0,j , j = 0, 1, ...,m − 1 which
were accessed during a compromised instruction.)

Case III. An output instruction (of P̂1 working in M̄q,c) is reached by P̂2 atMq-time λ1(i)+1,
so that the corresponding An instruction that P̂2 has to simulate is the instruction RANDOM.
Similar to Case II.

Case IV. An input instruction (of P̂1 working in M̄q,c) is reached b y P̂2 atMq-time λ1(i)+1.
In this case the sum (in F2) a of the contents of the memory cells b0,0, ..., b0,m−1 will be copied
into the cell of Φ0 representing cell(0) of M̄q,c. a will be known to the M2-adversary and so
by definition to the M3-adversary and the strong M3-adversary. According to the definition of
P̂2 the change in Phi0 is immediately followed by the simulation of a REFRESH instruction
of An which uses the circuit C0 and so in the way as we have described above, restores the
(ε0, ε1, ie

−c1)-cylindricity of the distribution of the contents of the memory cells in B with
respect to B. Q.E.D.(Lemma 39)

13 Proof of Lemma 40.

During the proof we will use the following notation: P̂2 = P2 ◦ 〈n, t,m〉 and P̂3 = P3 ◦ 〈n, t,m〉,
where P2 is given by M3 and we have to define P3 in a way that satisfies the requirements of
the lemma.

We define the starting program P̂3 in the following way. The machine M4, which is Mq[P̂3]
with preprocessing and postprocessing will simulate the machineMq[P̂2], also with preprocessing
and postprocessing, where Mq[P] denotes the machine Mq with the starting program P .

P̂3 simulates each instruction of P̂2. Between the simulations of two consecutive instructions
of P̂2, program P̂3 may have to do other type of computation. To make these interruptions
possible, a single instruction of P̂2 will be simulated by several instructions of P̂3. We may
assume that each instruction of P̂2 is simulated by exactly c̄ instruction of P̂3, where the integer
c̄ > 0 is an absolute constant. We partition the time used by P̂3 into intervals J0, J1, ... of length
c̄. Assume that i is a natural number so that either i = 0 or P̂3 has completed the simulation of
an instruction of P̂2 in the time interval Ji−1. Suppose also that the next instruction of P̂2 to
be simulated is x. P̂3 will select an integer k ≥ 1 and simulate x in the interval Ji+k. For the
selection of k P̂3 starts to generate a random sequence of integers g0, g1, ... ∈ [0,m−1] according

97

to the following rules. The various integers gj are taken from the interval [0,m−1] independently
and with uniform distribution. gl is generated in the time interval Ji+l, and in this time interval
P̂3 checks whether gl = 0. If gl = 0 then k = l + 1, P̂3 stops generating the elements of the
sequence g0, g1, ..., and in the time interval Ji+k = Ji+l+1, P̂3 simulates instruction x of P̂2. If
gl 6= 0 then P̂3 continues generating the sequence g0, g1, ... by generating gl+1 in the time interval
Jl+1. P̂3 continues this until it either determines the value of k, or reaches the limit on its total
time. This completes the definition of P̂3. Note that, if the limit on the total time used is
larger by a factor of m2 for M4 than for M3, then, with a probability of at least 1− e−c6m, P̂3

will be able to complete the simulation of P̂2 where c6 > 0 is a constant.
We claim that an (ε,m)-moderate adversary D of Mq[P̂3] with high probability gets no

more information than a suitably chosen 2c̄ε-random adversary R of Mq[P̂2]. Assume such an
adversary D is fixed and we define a corresponding adversary R. The definition of R is the
following. From the point of view of R and instruction x executed by P̂2 will be compromised
iff there exists a positive integer x, so that P̂3 simulates x in the time interval Ji and Ji contains
at least one compromised time from the point of view of the (ε,m)-moderate adversary D.

We have to show that R is 2c̄ε-random, that is for each fixed instruction x of P̂3 the proba-
bility px that x is compromised will be at most 2c̄ε from the point of view of R. Assume that
either i = 0 or the instruction of P̂2 which is before x, has been simulated already by P̂3 in
the time interval Ji. We consider the strategy of D only after time interval Ji and till the time
x is simulated. D may use a probabilistic strategy for choosing the compromised times. We
prove first that for each fixed deterministic strategy of D we have px ≤ ε, the general case is an
immediate consequence of this. Assume now that a deterministic strategy S is fixed for D.

Let X be the set of all natural numbers l with the following property.

(95) If the information that D has at the end of time interval Jl−1 does not contradict to the
statement “g0, g1, ..., gl−1 are all different from 0”, then following strategy S, D will declare an
element of the time interval Ji+l ∪ Ji+l+1 compromised.

It is sufficient to show that the probability of k ∈ X is at most 2c̄ε, where x is simulated time
interval Ji+k. Indeed if an instruction of Ji+k is compromised then, since g0 6= 0, ..., gk−2 6= 0,
then D either declares an element of the interval Ji+k−1 compromised, so l ∈ X because of
that, or D does not declare any element of Ii+k−1 compromised but declares an element of Ji+k
compromised. In this latter case g0 6= 0, ..., gk−2 6= 0, gk−1 6= 0 is consistent with the knowledge
of D at the end of interval Ji+k−1, and an element of Ji+k is compromised, therefore we have
again k ∈ X.

We estimate prob(k ∈ X) using Bayes’ theorem. For all j = 0, 1, ..., let Aj be the event that
k ∈ [jmc̄ , (j+ 1)mc̄ − 1]. It is sufficient to show that for each fixed j we have prob(k ∈ X | Aj) ≤
2c̄ε. The definition of an (ε,m) moderate adversary implies that for each j the time interval⋃
{Ji+r | r ∈ [jmc̄ , (j+1)mc̄ −1]} may contain at most εm compromised instruction and therefore

there exists at most c̄εm integer r[jmc̄ , (j + 1)mc̄ − 1] such that Ji+r contains a compromised
time. Since for each l ∈ X, either Ji+l or Ji+l+1 contains a compromised time we have that
X ∩ [jmc̄ , (j + 1)mc̄ − 1] ≤ 2c̄εm. Since for each fixed l ∈ X the probability of k = l is at most
1
m (since the probability if gj = 0 is at most 1

m) we get that prob(k ∈ X | Aj) ≤ 2c̄ε ≤ 2c̄ε.
Q.E.D.(Lemma 40)

98

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.

[2] M. Ajtai. Oblivious RAMs without cryptographic assumptions. Electronic Colloquium on
Computational Complexity (ECCC), 17:28, 2010.

[3] M. Ajtai. Oblivious RAMs without cryptogrpahic assumptions. In L. J. Schulman, editor,
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010, pages 181–190. ACM, 2010.

[4] I. Damg̊ard, S. Meldgaard, and J. B. Nielsen. Perfectly Scure Oblivious RAM without
Random Oracles. TCC 2011, pages 144-163.

[5] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from
leakage: the computationally-bounded and noisy cases. In H. Gilbert, editor, Advances
in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 135–156. Springer,
2010.

[6] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs.
In STOC, Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
25-27 May 1987, New York City, NY, USA, pages 182–194. ACM, 1987.

[7] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs.
J. ACM, 43(3):431–473, 1996.

[8] S. Goldwasser and G. N. Rothblum. Securing computation against continuous leakage.
In T. Rabin, editor, Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, volume 6223 of
Lecture Notes in Computer Science, pages 59–79. Springer, 2010.

[9] Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against probing
attacks. In D. Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003,
Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer,
2003.

[10] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In
M. Naor, editor, Theory of Cryptography, First Theory of Cryptography Conference, TCC
2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, volume 2951 of Lecture
Notes in Computer Science, pages 278–296. Springer, 2004.

[11] R. Ostrovsky. Efficient computation on oblivious RAMs. In STOC, Proceedings of the
Twenty Second Annual ACM Symposium on Theory of Computing, 14-16 May 1990, Bal-
timore, Maryland, USA, pages 514–523. ACM, 1990.

99

[12] R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs. PhD thesis, MIT,
1992.

[13] N. Pippenger and M. J. Fischer. Relations among complexity measures. J. ACM, 26(2):361–
381, 1979.

[14] N. Alon, J. Spencer The Probabilistic method, John Wiley & Sons Inc. New York, 1992.
1993.

[15] Sh. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bulletin (New
series) of the American Mathematical Society, Vol. 43, Number 4, Oct. 2006, pp. 439-561

[16] D. A. Osvik, A. Shamir, and E. Tromer, Cache Attacks and Countermeasures: the Case
of AES, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 2006,
see also http://people.csail.mit.edu/tromer/papers/cache.pdf

[17] C. Rackoff and D. Simon, Cryptographic defense against traffic analysis, Proceedings of the
25th STOC, pp., 672 - 681, 1993

100

List of frequently used symbols related to block circuits.

func(A,B) is the set of all functions defined on A with values in B, p. 25.
size(C) is the number of nodes in the circuit C, p. 25.
set(C) is the set of nodes of the circuit C, p. 25.
inset(C) is the set of input nodes of the circuit C, p. 25.
outset(C) is the set of output nodes of the circuit C, p. 25.
χ

(C)
δ is the evaluation function of the circuit C at input δ, p. 25.
≤C is the natural partial ordering on set(C), where the input nodes are the maximal elements,

p. 25.
rand(C) is the set of probabilistic input nodes of a circuit C p. 26.
detin(C) is the set of deterministic input nodes of a circuit C, inset(C) = rand(C)∪detin(C),

p. 26.
hW (a) is the sequence whose ith element is

∑
x∈Wi

a(x), where a ∈ func(
⋃
Wi, F), p. 26.

hW (f, i) =
∑
x∈Wi

fi(x), where f = 〈f0, ..., fs−1, fi ∈〉Wi, F), p. 28.
ξx,C the ouput of the probabilistic F -circuit as a random variable at input x, p. 26.
ηa,C the ouput of the probabilistic block F -circuit (icluding preprocessing and postprocessing)

as a random variable at original input a, p. 27.
full(X) the set of nodes which either belong to X or immediately above an element of X in
≤C , p. 27.

seq(W,F) is the set of all sequences whose elements ith element is defined on Wi with values in
F , p. 28.

extensionF (f,B, u) is the set of all extensions g of f onto B with
∑
x∈B g(x) = u. p. 28

ext(H) is the natural extension of a distribution on func(detin(C), F) onto func(detin(C) ∪
rand(C), F), p. 29.

DET(b) is the restriction of an input b from inset(C) = detin(C) ∪ rand(C) onto detin(C) ,
p. 29.

condoutput(H, f), conddetin(H, f) if the input b is arriving with distribution H, this is the con-
ditional distribution of the input/output with the condition that χ(C)

b is identical to f on
domain(f), p. 29.

pow(X) is the powerset of X, p. 31.
advC(ε,S) is the ε-random adversary for the circuit C strengthened by the compromised set
S(X), p. 31.

Y+ is the adversary Y with the strengthened with the knowledge of the deterministic input,
p. 31.

DX ,H is the distribution of the knowledge of adversary X with input distribution H. DY,H,X is
the same with the condition that X is the random subset. p. 32.

funcθ(A,B) set of all functions from funcθ(W,B), where W = 〈W0, ...,Ws−1〉 whose domain
intersect each Wi in a set of size at most θ|Wi|, p. 32.

pa, a ∈ set(C), are the polynomials asscociated with the nodes of the block F -circuit C, p 33.
P0, ..., Pk−1 are the input block polynomials, p 33.
Q0, ..., Qk−1 are the output block polynomials, p 33.
a� b means a is sufficiently small with respect to b p. 34.

101

C
(m)
i are the block circuits functionally equivalent to the various gates as defined in Lemma 3,

p. 34.
blockin(C), blockout(C) set of input/output blocks of C, blockio(C) = blockin(C) ∪

blockout(C), p. 39.
I(δ) is the system of equations {Pi = δi | i = 0, 1, ..., k − 1}, p. 39.
E(g) is the system of equations {pa = g(a) | a ∈ A}, p. 39.
p

(g)
b , modified form of pa with p

(g)
b = g(b) for all b ∈ domain(g), p. 40

σ(out)/σ(io) for σ ∈ func(inset(C), F). It is the restriction of χ(C)
σ to outset(C)/detin(C) ∪

outset(C), p. 43.
σ̄(in)(J)/σ̄(out)(J) is the sum of the values of σ(in)/σ(out) on the input/output block J , p. 43.
f\g is identical to g on domain(g) and identical to f on domain(f)\domain(g), p. 42.
C(=)
m,G is the copying circuit, p. 44.

preG(C), postG(C): copying circuit is applied before/after the circuit C, p. 56.

C(=,2)
m,G is the doubling circuit, p. 57.

C(j)
m,G, j = 0, 1 is a block circuit computing the conant j, p. 57.

C(+)
m,G,C

(+)
m,G,C

(+)
m,G are block circuits computing the correpsonding operations, p. 57.

C(rand)
m,G is the random generator circuit, p. 58.

Sα is the sum of the elements of the sequence α = 〈α0, ..., αm−1〉, p. 58.
C(spl)
m,G is the splitting circuit, p. 58.

sequencem,F is the set of all sequences of length m with elements in F , p. 58.

C(S)
m,G is the total sum circuit, p. 60.

C(S−1)
m,G is the total sum circuit, p. 61.

C(leaky×)
m,G is the leaky product circuit, p. 61.

perc(Φ, A,Gx) is the set of all C ∈ Φ so that C is percolative with respect A ∩ set(C)and Gx,
p. 61.

C(+,×)
m,G is a blockcircuit computing a(b0 + b1), p. 69.

102

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

