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Abstract

We show that there are families of polynomials having small depth-two arithmetic circuits that cannot
be expressed by algebraic branching programs of width two. This clarifies the complexity of the problem
of computing the product of a sequence of two-by-two matrices, which arises in several settings.

1 Introduction

The nth Iterated Matrix Multiplication polynomial of degree d, denoted IMMd,n is the multilinear polyno-
mial with d2n variables that is the result of multiplying n d-by-d matrices of indeterminates. This family
plays a central role in the study of algebraic complexity. Ben-Or and Cleve showed that IMM3,n is complete
(under projections) for the class of polynomials that can be expressed by arithmetic formulae of polynomial
size [5, 6]. This class is sometimes denoted VNC1 [13] (as the analog of the Boolean class NC1 in the
setting of algebraic complexity initiated by Valiant [18]) and is also sometimes denoted VPe (corresponding
to the subclass of Valiant’s class VP of polynomials of polynomial degree that have arithmetic circuits of
polynomial size, where we restrict the circuits to be expressions).

It is natural to wonder if Ben-Or and Cleve’s construction is optimal, in terms of dimension. That is:
What can one say about IMM2,n?

There are some indications that IMM2,n should be nearly as powerful as IMM3,n. For instance, Ben-
Or and Cleve’s completeness argument proceeds by showing that arithmetic formulae can be efficiently
evaluated by a restricted type of straight-line program with three registers (and this translates into an im-
plementation with 3-by-3 matrices). In the original conference publication of their results [5], Ben-Or and
Cleve credit Coppersmith with the observation that if the underlying ring is commutative and has an element
1
2 such that 1

2 + 1
2 = 1, then in fact two registers suffice to evaluate any arithmetic formula (albeit via straight-

line programs that do not immediately lend themselves to implementation as IMM2,n computations).
Perhaps the first study of the complexity of evaluating IMM2,n arose in the work of Lipton and Zalcstein

[11], who (in modern terminology) showed that the word problem over the free group with two generators
(also known as the two-sided Dyck language) is AC0-reducible to the problem of determining if a product of
∗Supported in part by NSF Grants CCF-0830133, and CCF-0832787.
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n two-by-two integer matrices evaluates to the identity matrix. Since the two-sided Dyck language is hard
for NC1 [15], this gives a lower bound on the complexity of evaluating IMM2,n instances.

This lower bound is rather close to the best known upper bound. The problem of evaluating integer
instances of IMM3,n is complete for the Boolean complexity class GapNC1 [7] (consisting of functions that
have arithmetic circuits of polynomial size and logarithmic depth), and every problem in this latter class has
Boolean circuits of polynomial size, bounded-fan-in, and depthO(log n log∗ n) [10]. The closeness of these
bounds has led some researchers to wonder whether the classes of functions in NC1 and GapNC1 are in fact
equal [2], in which case IMM2,n and IMM3,n would be interreducible under AC0 reductions.

The NC1-hardness of IMM2,n over the integers holds even for restricted cases of the problem. In [3],
it is asserted that counting paths in planar width-two graphs (a restricted case of IMM2,n over the integers)
is hard for NC1 under ACC0 reductions. (Mahajan, Saurabh, and Sreenivasaiah [12] have identified and
corrected an error in the proof of this claim in [3].)

On the other hand, there have also been indications that IMM2,n should be weaker than IMM3,n. Ben-
Or and Cleve point out that problems over GF(2) having what they called “LBS” straight-line programs
(i.e., restricted straight-line programs which they used as a tool in presenting their completeness result) that
use only two registers translate into permutation branching programs of width three [6], which Barrington
showed require exponential size in order to compute the AND function [4]. However, this does not strictly
rule out more general computations over IMM2,n.

The AC0 reductions from problems in NC1 to IMM2,n are not projections, which are the usual type
of reductions that are used in studying algebraic complexity classes. To illustrate the difference, consider
functions in the class GapAC0; this class consists of functions computed by polynomial-size constant-depth
arithmetic circuits over the integers, where the input variables take only Boolean inputs. GapAC0 ⊆ TC0 ⊆
NC1 [1], and hence any bit of any function f ∈ GapAC0 can be computed by an AC0 reduction to the
problem of multiplying a sequence of 2-by-2 integer matrices. However, any such function f can also be
viewed as a polynomial f(x1, . . . , xn) in its input variables, and the AC0 reduction does not allows us
to obtain f from IMM2,nk by substituting field elements and the variables x1, . . . , xn for the variables of
IMM, even though this is possible for IMM3,nk . It follows from our main result that, even for fairly simple
functions f ∈ GapAC0, no such reduction is possible – even if we allow projections to arbitrarily large IMM
instances, and even if we greatly enlarge the type of substitutions that are considered (beyond the projections
that are usually considered in the framework of Valiant’s complexity classes).

1.1 Algebraic Branching Programs

If we expand the notion of projection, to allow not only variables and field elements to be plugged in for
the variables of a polynomial, but also allow variables of IMM instances to be replaced by arbitrary linear
expressions, then we obtain an alternative characterization of algebraic branching programs, which were
introduced by Nisan in order to study the complexity of determinant and permanent computations in various
settings [14].

Definition 1 An Algebraic Branching Program over some field F and variables {xi | 1 ≤ i ≤ n} is a
layered directed acyclic graph with a single source vertex s and exactly one sink vertex t. The layers are
numbered as 0, 1, 2, . . . , d; let Vi denote the set of vertices in the ith layer. The source (the sink, respectively)
is the unique vertex in V0 (Vd, respectively). Edges exist only between vertices in adjacent layers (i.e., each
edge (a, b) has a ∈ Vi and b ∈ Vi+1 for some 0 ≤ i < d). Each edge e is associated with a linear function
le over F in the variables {xi | 1 ≤ i ≤ n}. Every directed path p = e1e2 . . . ek represents the product
fp =

∏k
j=1 lej . For every vertex v, the polynomial represented by v, denoted by fv, is

∑
p∈Ps,v

fp, where
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Ps,v is the set of all paths from s to v. The output of the algebraic branching program is ft. The width of
the program is maxi |Vi|.

It follows from [6] that polynomial-size algebraic branching programs of width three (or of any constant
width w ≥ 3) characterize exactly the polynomials in VNC1. Algebraic branching programs of constant
width have been studied by several authors; we cite some recent examples [9, 8]. We show that width three
is optimal; the expressive power of width two algebraic branching programs is severely limited.

Theorem 2 Let l(x) be an arbitrary linear function. ∀k ≥ 8, the polynomial f(x) =
∑k

i=1 x2i−1x2i + l(x)
can not be computed by algebraic branching programs of width two over any field F. This implies that
IMM2,n is not complete for VNC1 under regular projections (defined in Section 2).

The limitations of width-two algebraic branching programs were also explored by Saha, Saptharishi and
Saxena [17]. They considered “degree-restricted” algebraic branching programs (meaning that, if the output
polynomial has degree n, then no intermediate polynomial in the branching program has degree greater
than n). Their Theorem 16 shows that degree-restricted width-two algebraic branching programs compute
polynomials only if they belong to an ideal generated by at most five linear forms (and thus they cannot
compute the polynomial f in our Theorem 2 [16]). We do not know whether width-two algebraic branching
programs can be simulated by width-two degree-restricted branching programs. Thus our Theorem 2 is
incomparable with [17, Theorem 16]; their result applies to a larger class of polynomials, but relies on the
degree restriction.

1.2 Organization

The remaining part of the paper is organized as follows: Section 2 provides the formal definitions and
terminology that we use. In Section 3, we study homogeneous projections (defined in Section 2) of IMM2,n

and prove a structural theorem for this type of computation as well as an impossibility result. Finally, we
extend these results to more general settings in Section 4.

2 Preliminaries

Let the underlying field be F. Let q(x) ∈ F[x] be a multivariate polynomial over a set of variables x. A
projection p on q(x) is an operation to generate new polynomials; a projection is described by a set of
assignments {xi ← vi}, where the values vi come from a particular set (to be specified later), and each
variable xi ∈ x appears at most once on the left-hand-side of a rule in p; furthermore, variables on the left-
hand-side never occur on the right-hand-side. We get the new instance q(x)|p by replacing all occurrences
of xi in q(x) with its counterpart vi and leaving untouched those variables that are not in p. We may simplify
q(x)|p according to the commutative polynomial ring algebra. In this way, we say that q(x)|p is obtained
from q(x) under the projection p.

Let H be the set of homogeneous linear terms {c · xi | c ∈ F∗, i ∈ N} where F∗ is the set of units (i.e.,
non-zero elements). Let S be the set of simple linear terms {c · xi +w | c ∈ F∗, i ∈ N, w ∈ F} and L be the
set of general linear terms {

∑n
i=1 ci ·xi+w | n ∈ N, ci, w ∈ F}. We define a projection p = {xi ← vi} to be

a homogeneous projection if ∀i, vi ∈ H∪F. It is a simple projection if ∀i, vi ∈ S∪F. If ∀i, vi ∈ L, then p is
a regular projection. We mention that the most restrictive of these three types of projections, homogeneous
projections, are the usual types of projections studied in algebraic complexity [18, 6].
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Consider n square matrices of dimension two m1,m2, . . . ,mn, the entries of which are distinct vari-
ables. The (1, 1)-entry of their product

∏n
i=1mi is a multi-linear polynomial, denoted as IMM2,n, which is

called the nth iterated matrix multiplication polynomial of dimension two. The matrixmi|p is obtained from
mi under the projection p, which means that the entries of mi are substituted by the corresponding values
in p. Given a polynomial f(x), it is easy to see that f(x) is obtained from IMM2,n under some projection
p if and only if f(x) is the (1, 1)-entry of

∏n
i=1mi|p, and moreover, the variables appearing in mi|p belong

to the set {xj | xj occurs in f(x)}. Note that f(x) is computable by some algebraic branching program
of width two if and only if there exists n ∈ N such that f(x) can be obtained from IMM2,n under regular
projections.

Let M be a set of square matrices of dimension two. We say a polynomial f(x) is computable by M if
there is an integer n and a projection p such that f(x) = IMM2,n|p and furthermore, ∀i ≤ n, mi|p ∈M . In
other words, f(x) can be computed by the product of matrices in M .

Let H2×2 denote the set of square matrices of dimension two with entries from H ∪ F. Similarly, let
S2×2 (R2×2, respectively) denote the set of square matrices of dimension two with entries from S ∪ F (L,
respectively). Obviously, H2×2 ⊆ S2×2 ⊆ R2×2.

We divide all square matrices of dimension two whose entries belong to L into three groups, Indg,
Idg and Pdg. The matrices in Indg are called inherently non-degenerate matrices and their determinants
evaluate to a fixed element in F∗ while Idg consists of inherently degenerate matrices with zero determinants.
Pdg = R2×2 \ (Indg ∪ Idg) is the set of potentially degenerate matrices. Obviously the determinants of
matrices in Pdg are nonzero polynomials of degree at least one.

Our results deal with some simple degree-two polynomials; the following facts are easy to verify.

Fact 3 Over any field F, x1x2 + x3x4 is an irreducible polynomial.

Fact 4 Let F be any field, k ≥ 2 and let l(x) be an arbitrary linear function. Then Σk
i=1x2i−1x2i + l(x) is

an irreducible polynomial, and furthermore, its degree-two homogeneous part is irreducible as well.

We group the variables x2i−1 and x2i together, and call each the other’s partner variable.

Definition 5 In a regular projection p given by {xj ← vj}, the partner variables x2i−1, x2i are called
matched if

• Both of x2i−1 and x2i appear on the left-hand-side.

• {v2i−1, v2i} ∩ F 6= ∅.

It is convenient to consider a restricted class of projections:

Definition 6 A regular projection p given by {xi ← vi} is well-formed if every left-hand-side variable xi
is matched.

We will make use of the fact that any projection can be “extended” to obtain a well-formed projection.
However, we must first be precise about what it means for one projection to be an “extension” of another.
(To see what the issue is, consider the projection {x1 ← x3, x2 ← x4}. The partner variables x1 and x2 are
not matched, since neither of them is assigned a field element. Thus we need to consider how to “extend”
projections, by not only adding new rules, but also by changing existing rules appropriately.
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Definition 7 A regular projection p is an extension of a projection p′ if there is a projection p′′ such that
p = p′ ◦ p′′.

Thus to continue the example above, the projection p′ = {x1 ← x3, x2 ← x4} can be extended by
p′′ = {x4 ← 0} to obtain the projection p = {x1 ← x3, x2 ← 0, x4 ← 0} (which is still not well-formed).

Proposition 8 Any regular projection of size k with l unmatched left-hand-side variables can be extended to
a well-formed regular projection of size at most k+ l. Thus any regular projection of size k can be extended
to a well-formed regular projection of size at most 2k.

Proof: The proof proceeds by induction on l. The basis, when l = 0, is trivial.
Now consider a regular projection p with l unmatched left-hand-side variables, where we inductively

assume that any regular projection of size k′ with l′ < l unmatched variables can be extended to a well-
formed regular projection of size at most k′ + l′. There are two cases:

Case 1: If there is an unmatched variable x whose partner variable y does not appear on the left-hand-
side of any rule, then then we simply add the rule y ← 0. (If y appeared on the right-hand-side of any rule,
then any such rule must also be simplified by setting y to zero. Such changes do not increase the size of the
projection.) This yields a projection p′ with at most l − 1 unmatched variables, where we have added one
rule. (It is possible that there will be fewer than l − 1 unmatched variables, if there were some unmatched
variable z such that z ← c · y was a rule.) Now the claim follows by induction.

Case 2: If Case 1 does not hold, then there must be a pair of unmatched variables that are partners
(without loss of generality call them x1 and x2) such that the projection has rules x1 → v1 and x2 → v2,
where {v1, v2}∩F = ∅. Since p is a regular projection, v1 is of the form c0 +

∑n
k=1 ckyk, where none of the

variables yi appear on the left-hand-side of any rule in p. Note that the rule y1 ← (−1/c1)·(c0+
∑n

k=1 ckyk)
has the effect of setting x1 to 0. Let z be the partner variable of y1; note that z does not appear on the left-
hand side of any rule (because otherwise Case 1 would have applied). Thus removing the rule x1 → v1 and
adding the rules x1 ← 0, y1 ← −1/c1 · (c0 +

∑n
k=1 ckyk), z ← 0 has at most l − 2 unmatched variables

(since x1 and x2 are now both matched, as are y1 and z), and it has two more rules than p. As above, it
is now necessary to simplify any rule in which y1 or z appeared on the right-hand-side, but this does not
increase the size of the projection. Now the claim follows by induction. 2

The definition of “well-formed projection” is designed to make the following proposition obvious:

Proposition 9 Let k, n ∈ N, with n−k ≥ 2. Consider the polynomial Σn
i=1x2i−1x2i. Then under any well-

formed regular projection p of size 2k, f(x)|p = Σn−k
i=1 x2i−1x2i + l(x) (up to re-numbering the variables) is

also an irreducible polynomial, where l(x) is a linear function. Furthermore, its degree-two homogeneous
part is also irreducible.

In this work, we will show that certain constant-size polynomials are not computable by various families
of matrices over any algebraically closed field. By the following fact, we may as well assume that the
underlying field F is algebraically closed.

Fact 10 Let F′ be the algebraic closure of F and let M be a set of matrices. For any polynomial f(x), if
f(x) is computable by M over F, then it is computable by M over F′ as well.
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3 IMM2,n under homogeneous projections

In this section, we will show that the computational power of the family {IMM2,n | n ∈ N} under homoge-
neous projections is very limited.

Recall that H2×2 denotes the set of square matrices of dimension two with entries from H ∪ F. We will
show that it causes no loss of computational power, if we restrict the type of matrices that are used in H2×2
computations. First, however, it is very useful to observe that H2×2 computations correspond exactly to a
type of straight-line programs.

Let µ be a set of allowable straight-line program instructions (rules), and let Rt
i denote the contents of

the registerRi at time t. A straight-line program P over the rule set µ using 2 registers (µ-SLP) is a sequence
of pairs of instructions from µ, denoted as {(st1, st2) | 1 ≤ t ≤ |P |, (st1, st2) ∈ µ}, where |P | is the size of the
program. P computes a function p(x) in the natural way: Initially, R0

1 = 1 and R0
2 = 0. At the t-th step, Ri

is updated according to the rule sti. The final output p(x) is stored as R|P |1 . In this section, we consider only
instructions that come from the set µH2×2 = {(Rt+1

1 ← a·Rt
1+b·Rt

2, R
t+1
2 ← a′·Rt

1+b′·Rt
2) | a, b, a′, b′ ∈

H ∪ F, t ∈ N}. Under these assumptions, each Rt
i is a polynomial over the variables {xj | j ∈ N}. It is

not hard to see that µH2×2-SLPs and IMM2,n under homogeneous projections compute the same set of
polynomials. (Similar observations were made by Ben-Or and Cleve [6].) Furthermore, for any subset
N ⊆ H2×2, there is a corresponding rule set µN ⊆ µH2×2 such that a polynomial f(x) is computable by
N if and only if there is a µN -SLP for it. Hence, given an arbitrary µN -SLP P , we may abuse the notations
and identify the ith pair of instructions with its matrix representations mi

P , which means that P can also be
characterized by a sequence of matrices {mi

P | 1 ≤ i ≤ |P |}.

3.1 Classification of H2×2 ∩ Indg

Now, we present a collection µN of rules (corresponding to a subsetN of matrices in H2×2) which we claim
suffice to simulate any straight-line program using the rules µH2×2∩Indg. Let a, b, c, d ∈ F∗.

1. Transposition rule.
Rt+1

1 ← Rt
2

Rt+1
2 ← Rt

1
given by matrix

[
0 1
1 0

]
2. Scalar rules.

Rt+1
1 ← a ·Rt

1

Rt+1
2 ← b ·Rt

2
given by matrix

[
a 0
0 b

]
3. Offsetting rules of degree one.

(a)

Rt+1
1 ← a ·Rt

1 + c · xi ·Rt
2

Rt+1
2 ← b ·Rt

2
given by matrix

[
a c · xi
0 b

]
(b)

Rt+1
1 ← a ·Rt

1

Rt+1
2 ← c · xi ·Rt

1 + b ·Rt
2

given by matrix

[
a 0

c · xi b

]
4. Offsetting rules of degree zero.
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(a)

Rt+1
1 ← a ·Rt

1 + c ·Rt
2

Rt+1
2 ← b ·Rt

2
given by matrix

[
a c
0 b

]
(b)

Rt+1
1 ← a ·Rt

1

Rt+1
2 ← c ·Rt

1 + b ·Rt
2

given by matrix

[
a 0
c b

]
5. Other non-degenerate linear transformations.

Rt+1
1 ← a ·Rt

1 + c ·Rt
2

Rt+1
2 ← d ·Rt

1 + b ·Rt
2

given by matrix

[
a c
d b

]
where ab− cd 6= 0.

Observation 11 Any straight-line program using µH2×2∩Indg can be simulated by a straight-line program
using µN . That is, without loss of generality, one can assume that any straight-line program P has the
following properties.

• If the transposition matrix is ever adopted by P , it is applied only once as the final pair of instructions.
(This is because we can cancel adjacent transpositions, and shift any single transposition toward the
end of the program via the following transformation:[

v u
z y

]
=

[
u v
y z

] [
0 1
1 0

]

[
y z
u v

]
=

[
0 1
1 0

] [
u v
y z

]

[
0 1
1 0

] [
u v
y z

]
=

[
z y
v u

] [
0 1
1 0

]
• The following matrices need never appear, because they are transpositions of rules in µN (and trans-

positions introduced in this way can be eliminated).[
0 a
b 0

]
,

[
0 a
b c

]
,

[
c a
b 0

]
,

[
0 a
b c · xi

]
,

[
c · xi a
b 0

]
• This leaves only the rule set µN .
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3.2 Structure of µH2×2∩Indg-SLPs and its implications

Definition 12 Let deg(f) denote the degree of the polynomial f . For any straight-line program P , let
deg(P, t) = deg(Rt

1) + deg(Rt
2) be the degree of P at time t. We call deg(P, 0), deg(P, 1), . . . , deg(P, |P |)

the degree sequence of P .
An ordered pair of non-negative integers (t1, t2), where t1 + 1 < t2, is called a mesa in the degree

sequence of P if there exists d > 0 such that

• For all t1 < t′ < t2, deg(P, t′) = d;

• deg(P, t1) < d;

• deg(P, t2) < d.

The number d is called the height of this mesa.

Fact 13 The operations in Observation 11 that simplify the straight-line program P do not change the
height of any mesa in which the operations are applied.

Now we are ready to show our structural theorem for µH2×2∩Indg-SLPs.

Theorem 14 If a polynomial f is computable by H2×2 ∩ Indg, then there is a µH2×2∩Indg-SLP P for f
with the property that there are no mesas in the degree sequence of P .

Proof: By our assumption, there is some µH2×2∩Indg-SLP P ′ computing f . If P ′ does not contain any
mesas in its degree sequence, then we are done. Otherwise, we will show how to obtain P from P ′ by a
series of transformations. At every step, we turn the current P ′ into an equivalent µH2×2∩Indg-SLP while
reducing the total height of all mesas by at least one. Ultimately we will obtain a µH2×2∩Indg-SLP P with
the desired property. Hence, it suffices to verify the correctness of a single step.

Let (t1, t2) be the first mesa in the current P ′ and d be its height. There are three cases to consider.

1. deg(Rt1+1
1 ) > deg(Rt1+1

2 ).

We claim that the only instruction that can produce this outcome at time t1+1 is the degree-one offset-
ting rule 3(a). Rule 2 is impossible since it only scales the registers by a constant factor respectively.
Rule 3(b) implies that deg(Rt1+1

1 ) = deg(Rt1
1 ); there are two subcases to consider:

• If deg(Rt1
1 ) ≥ deg(Rt1

2 ), then deg(Rt1+1
1 ) ≤ deg(Rt1+1

2 ), a contradiction to our assumption that
deg(Rt1+1

1 ) > deg(Rt1+1
2 ).

• If deg(Rt1
1 ) < deg(Rt1

2 ), then deg(Rt1+1
2 ) ≤ deg(Rt1

2 ). This contradicts our assumption that
deg(P, t1) < deg(P, t1 + 1).

For similar reasons, one can show that rules 4(a) and 4(b) are not applicable either. There are two
cases that arise, in dealing with rule 5:

• If deg(Rt1
1 ) 6= deg(Rt1

2 ), then under rule 5, deg(Rt1+1
1 ) = deg(Rt1+1

2 ), which contradicts our
assumption that deg(Rt1+1

1 ) > deg(Rt1+1
2 );

• If deg(Rt1
1 ) = deg(Rt1

2 ), then deg(P ′, t1) ≥ deg(P ′, t1 + 1), which contradicts our assumption
that (t1, t2) is a mesa.
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∀t1 < t′ < t2, deg(P ′, t′) = d and deg(P ′, t2) < d implies that rules 3(b), 4(b) and 5 are impossible
at time t′ (and at time t2), since under our assumptions they would increase the degree of R2 while
maintaining the degree of R1. Hence, for all t1 < t′ ≤ t2, the product

∏t′

i=t1+1m
i
P ′ is an upper

triangular matrix of the form
[
a gt′ + w
0 b

]
, wherew ∈ F, a, b ∈ F∗ and gt′ is a linear homogeneous

polynomial. In other words, Rt′
1 = a · Rt1

1 + (gt′ + w) · Rt1
2 and Rt′

2 = b · Rt1
2 . Since deg(P ′, t2) <

d = deg(P ′, t1 + 1), it follows that deg(Rt1
1 ) < deg(Rt1+1

1 ) and gt2 = 0. Thus, we can replace the
whole computation between t1 and t2 by a simple application of rule 2 or 4(a) while avoiding the
mesa (t1, t2).

2. deg(Rt1+1
1 ) < deg(Rt1+1

2 ).

This is completely analogous to case 1.

3. deg(Rt1+1
1 ) = deg(Rt1+1

2 ).

We argue that neither of rules 3(a) and 3(b) can happen at time t1 + 1. We study the reasons for 3(a)
and those for 3(b) are symmetric.

• If deg(Rt1
1 ) ≤ deg(Rt1

2 ), then deg(Rt1+1
1 ) > deg(Rt1+1

2 ), a contradiction to our assumption
deg(Rt1+1

1 ) = deg(Rt1+1
2 ).

• If deg(Rt1
1 ) > deg(Rt1

2 ), then deg(P ′, t1 + 1) < deg(P ′, t1) since deg(Rt1
2 ) = deg(Rt1+1

2 ).
This contradicts our assumption that (t1, t2) is a mesa.

Furthermore, ∀t1 < t′ < t2, deg(P ′, t′) = d implies that rules 3(a) and 3(b) are impossible at time
t′ (and at time t2). Thus, we obtain that for all t1 < t′ ≤ t2, the product

∏t′

i=t1+1m
i
P ′ is a non-

degenerate linear transformation, which can be captured by one of the other rules or their transposed
counterparts. The analysis of this case can now be completed similarly to Case 1, by appealing to
Observation 11 and Fact 13.

In all cases, we are able to reduce the total height of all mesas in P ′ by at least one, which concludes our
proof. 2

Corollary 15 If a polynomial f(x) is computable by H2×2 ∩ Indg, then there exists a µH2×2∩Indg-SLP for
f(x) with a monotonically nondecreasing degree sequence.

The analysis in the proof of Theorem 14 also allows one to draw the following conclusions:

Fact 16 For any µH2×2∩Indg-SLP P , ∀0 < t ≤ |P |, if deg(P, t) > deg(P, t − 1), then only one of the
following two scenarios can happen.

• If either 3(a) or 3(b) is applied at time t, then |deg(Rt
1)− deg(Rt

2)| = 1.

• If the other rules are used at time t, then deg(Rt
1) = deg(Rt

2).

Lemma 17 If P is a µH2×2∩Indg-SLP with a monotonically nondecreasing degree sequence, then for all

0 ≤ t ≤ |P |, |deg(Rt
1)− deg(Rt

2)| ≤ 1. Furthermore, we can assume that deg(R
|P |
1 ) ≥ deg(R

|P |
2 ).

9



Proof: The first part follows naturally from Fact 16. It suffices to justify the second claim. Suppose there is
no presence of rule 1 in P . Let r = deg(R

|P |
1 ). If deg(R

|P |
2 ) = r+ 1, then from the time t′ when deg(R

|P |
2 )

is increased to r + 1, the polynomial in R1 will change only by multiplication by a nonzero field element.
This is because of the monotonicity of the degree sequence. Hence, we can skip the steps following time
t′ and substitute them by an appropriate scalar matrix instead. Then the degree of R2 will remain no more
than r in the new µ∫ -SLP. The argument in the case when rule 1 appears is completely symmetric. 2

Theorem 18 Let f(x) be a polynomial of total degree at least two whose highest-degree homogeneous part
is irreducible. Then f(x) is not computable by H2×2 ∩ Indg.

Proof: The proof is by contradiction. Suppose there exists a µH2×2∩Indg-SLP P for f(x). By Corol-

lary 15 and Lemma 17, P has a monotonically nondecreasing degree sequence, and deg(R
|P |
1 ) = deg(f)

while deg(R
|P |
2 ) ≤ deg(f). If deg(R

|P |
2 ) < deg(f), the analysis of Theorem 14 and Fact 16 reveals that

the highest-degree homogeneous part of f(x) contains a linear factor and hence, is reducible, which is
a contradiction to our assumption. So assume deg(R

|P |
2 ) = deg(f) and without loss of generality, as-

sume that R2’s degree reaches deg(f) first, at some time t0, and that R1’s degree is raised to deg(f)
at some time t > t0. Thus all of the highest-degree monomials in Rt0

2 come from c · xi · Rt0−1
1 . For

any polynomial g, let Hd(g) denote the degree-d homogeneous part of polynomial g. An easy induc-
tion shows that, for all t′ such that t0 ≤ t′ ≤ t, Hdeg(f)−1(R

t0−1
1 ) divides Hdeg(f)(R

t′
2 ). By Fact

16, rules 3(a) and 3(b) can not be applied at time t. Since the degree sequence is stable from then
on, they will not happen afterwards either. Hence, by the linearity of the remaining rules, we claim that
∀t ≤ t′ ≤ |P |, ∃a, b ∈ F∗, Hdeg(f)(R

t′
1 ) = aHdeg(f)(R

t′
2 ) = bHdeg(f)(R

t−1
2 ), which we argued above is

divided byHdeg(f)−1(R
t0−1
1 ). This is a contradiction to our assumption that it is irreducible. This concludes

our proof. 2

Remark 19 The proof of Theorem 18 reveals that if f(x) is computable by H2×2 ∩ Indg, then the highest-
degree homogeneous part of f(x) can be completely factored into homogeneous linear polynomials.

3.3 Limitation of µH2×2
-SLPs

First, by the following lemma, we can assume without loss of generality that for any µH2×2-SLP P and any
inherently degenerate matrix m in P , the entries of m all belong to F.

Proposition 20 If a matrix m ∈ H2×2 ∩ Idg contains at least one entry from H, then m can be factored
into a product of matrices, exactly one of which, denoted as m1, belongs to Idg and furthermore, all m1’s
entries are from F.

Proof: If m has a zero column, then without loss of generality, m is either
[
a · xi 0
w 0

]
or
[
a · xi 0
b · xj 0

]
where a, b ∈ F∗ andw ∈ F.

[
a · xi 0
w 0

]
=

[
xi 0
0 1

] [
a 0
w 0

]
while

[
a · xi 0
b · xj 0

]
=

[
xi 0
0 xj

] [
a 0
b 0

]
.

In both cases, we obtain the desired factorization for m. The case where m has a zero row is symmetric.
For the other cases, it is not hard to see that under our assumption, m can be turned into a matrix with

either a zero column or a zero row via multiplication by a non-degenerate linear transformation. Our proof
is completed by referring to the previous case analysis. 2
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Note 21 The statement of Proposition 20 can be generalized for matrices in S2×2 ∩ Idg and R2×2 ∩ Idg
with almost the same proof. Hence, we can assume that for any µS2×2-SLP (µR2×2-SLP, respectively) P
and any inherently degenerate matrix m in P , the entries of m all belong to F.

Lemma 22 If a nonzero polynomial f(x) is computable by a straight-line program P , then P does not

contain any matrix of the form
[

0 0
0 0

]
.

Proof: Suppose P does have at least one such matrix, then the product of matrices in P evaluates to[
0 0
0 0

]
, a contradiction to our assumption about f(x). 2

Given a projection p and a straight-line program P = {mi
P | 1 ≤ i ≤ |P |} computing a polynomial

f(x), we obtain the straight-line program P |p = {mi
P |p | 1 ≤ i ≤ |P |}, which is a new straight-line

program (not incorporating any simplifications). Moreover, P |p computes f(x)|p. Note that this definition
applies for any type of projections. In the remaining part, by Propositions 8 and 9, the polynomial f(x)
considered will be nonzero under any regular projection of size at most four, which leads to the following
lemma.

Lemma 23 There does not exist a matrix in P such that all of its entries belong to H. This implies all
matrices in P must contain an entry from F.

Proof: Suppose P does have one such matrix, and without loss of generality, assume that it has the form[
c1x1 c2x2
c3x3 c4x4

]
, where ∀1 ≤ i ≤ 4, ci ∈ F∗ and the xi’s need not be distinct. Consider the projection

p = {xi ← 0 | 1 ≤ i ≤ 4}. Then f(x)|p is nonzero while P |p contains
[

0 0
0 0

]
, in contradiction to

Lemma 22. 2

Lemma 24 For any matrix m ∈ P which belongs to H2×2 ∩ Pdg, there exists a homogeneous projection p
of size at most three such that m|p is degenerate and all of the entries in m|p belong to F. Moreover, there
is a well-formed homogeneous projection q of size at most six extending p.

Proof: The determinant of m, denoted as det(m), is a polynomial of degree at least one. Since F is
algebraically closed, the variety of det(m) is always non-empty and furthermore, by Lemma 23, det(m)
contains at most three variables. This provides us the projection promised in the first claim. Proposition 8
implies the correctness of the second claim. 2

Definition 25 We call such a well-formed homogeneous projection q as in Lemma 24 a degenerating pro-
jection for the potentially degenerate matrix m.

Lemma 26 Let f(x) be a polynomial and P be one of its µH2×2-SLPs. Suppose that there exists 0 <

t ≤ |P | such that mt
P is a potentially degenerate matrix. Let p be one of its degenerating projections. Let

P ′ = P |p and let Rt
i(P
′) be the contents of Ri at time t in P ′. Then up to the permutation of the indices,

only one of the three following cases will happen.

1. Rt
1(P

′) = Rt
2(P

′) = 0 and f(x)|p = 0. This is the uninteresting case and we ignore it in the
remainder of the proof.

11



2. Rt
1(P

′) ∈ F∗ and Rt
2(P

′) = w ·Rt
1(P

′) for some w ∈ F.

3. Rt
1(P

′) is a polynomial of degree at least one, Rt
2(P

′) = w · Rt
1(P

′) for some w ∈ F, and f(x)|p is
divisible by Rt

1(P
′).

Proof: Our assumption is that mt
P ′ is a degenerate matrix; let us say that it is

[
a c
d b

]
, where ab− cd=0.

Assume for now that c 6= 0. (The case where c = 0 is easier.) Let f and g be the polynomials given
by Rt−1

1 (P ′) and Rt−1
2 (P ′), respectively. Thus Rt

1(P
′) = af + cg and Rt

2(P
′) = (b/c)(af + cg). Thus

Rt
2(P

′) is a multiple of Rt
1(P

′), and an easy induction shows that Rt
1(P

′) will stay as a common factor of
both registers from that point on (and thus Rt

1(P
′) also divides f(x)|p. 2

Corollary 27 If f(x)|p is a nonzero irreducible polynomial and the other hypotheses of Lemma 26 hold,
then Rt

1(P
′) = c · f(x)|p for some c ∈ F∗.

Definition 28 Let f(x), P , mt
P and P ′ satisfy the conditions of Lemma 26. If under the degenerating

projection p, case 2 of Lemma 26 happens, then we call p a cutting projection for mt
P in P . If instead we

have case 3, then we call p a finishing projection for mt
P in P .

Observation 29 Let f(x) be a polynomial such that under any well-formed homogeneous projection q of
size at most six, f(x)|q is always a nonzero irreducible polynomial. Let P be a µH2×2-SLP for f(x), and
let mt

P , p and P ′ be the corresponding objects as in Lemma 26. We will show how to obtain a µH2×2-SLP
for f(x)|p from P as follows:

• If the projection p is a cutting projection formt
P in P , then we can simply ignore the instructions in P ′

before time t (including the t-th instruction), and concatenate a single instruction, which is a linear
transformation from the initial condition (R0

1, R
0
2) = (1, 0) to the current status (Rt

1(P
′), Rt

2(P
′)),

with the remaining segment of P ′. This produces a µH2×2-SLP of size at most |P | − t+ 1 for f(x)|p.

• If p is a finishing projection for mt
P in P , then by Corollary 27, Rt

1(P
′) is a nonzero multiple of

f(x)|p and moreover, Rt
1(P

′) = a · Rt−1
1 (P ′) + b · Rt−1

2 (P ′), where a, b ∈ H ∪ F, since by Lemma
24, all of entries in mt

P |p are field elements. We claim that one of a and b must be a unit. Otherwise,
f(x)|p 6= 0 while Rt

1(P
′) = 0, a contradiction.Therefore, we can throw away the portion of P ′ after

time t (including the t-th instruction) and generate R1’s contents Rt
1(P

′) by an offsetting matrix m′

at time t, as follows:

We have that Rt
1(P

′) is some non-zero multiple of f(x)|p, say Rt
1(P

′) = s · f(x)|p. We also have that
Rt

1(P
′) = a · Rt−1

1 (P ′) + b · Rt−1
2 (P ′). If a is a unit, then the desired output f(x)|p is produced by

the assignment Rt
1(P

′)← (a/s) ·Rt−1
1 (P ′) + (b/s) ·Rt−1

2 (P ′), which can be accomplished by a rule
of type 3(a) or 4(a) (since we do not care what value is placed in R2). If b is a unit, then the desired
assignment instead is produced by a transposition of a rule of type 3(b) or 4(b). Thus, in either case,
we obtain a µH2×2-SLP of size at most t+ 1 for f(x)|p.

Definition 30 Let f(x) be a polynomial and P be one of its µH2×2-SLPs. We classify the potentially
degenerate matrices mt

P in P , if they do exist, according to the following criterion: If mt
P has at least one

finishing projection, then mt
P is good; Otherwise, mt

P is bad.
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In the same spirit, we can classify inherently degenerate matrices in µH2×2-SLPs. In this case, we can
consider the degenerating projection to be the empty set. The following lemma is essentially a variant of
Lemma 26. Hence, we omit its proof.

Lemma 31 Let f(x) be a nonzero polynomial under any well-formed regular projection of size at most four
and P be one of its µH2×2-SLPs. Suppose that there exists 0 < t ≤ |P | such that mt

P is an inherently
degenerate matrix. Let w ∈ F. Then up to the permutation of the indices, only one of the two following
cases will happen.

1. Rt
1 ∈ F∗ and Rt

2 = w ·Rt
1 for some w ∈ F.

2. Rt
1 has degree at least one, Rt

1 = w ·Rt
2 and f(x) is divisible by Rt

1, where w ∈ F.

Furthermore, If f(x) is a nonzero irreducible polynomial, then in the second case, Rt
1 = c · f(x) where

c ∈ F∗.

Definition 32 Let f(x) be as in Lemma 31 and let P be one of its µH2×2-SLPs. Let mt be an inherently
degenerate matrix in P if it exists. If the first case in Lemma 31 happens, then we say that mt is bad,
otherwise, it is good.

Note that the notions of badness and goodness apply only to potentially and inherently degenerate ma-
trices.

Observation 33 Let p be an arbitrary homogeneous projection and let P ′ = P |p. If mt
P is bad in P ,

then mt
P ′ can not be good in P ′ (This is because, if mt

P is bad, then under any extension of p, at time t
both registers compute field elements which are constant polynomials with no variables). More precisely,
mt

P ′ either stays as a bad matrix or becomes an inherently non-degenerate matrix. Furthermore, inherently
non-degenerate matrices will never be turned into some other type by any projection.

Now we are ready to present our main impossibility theorem of this section.

Theorem 34 If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i is not computable by H2×2. That is, for every n, f(x)
can not be obtained from IMM2,n under homogeneous projections.

Proof: We prove the theorem by contradiction. Suppose P is a µH2×2-SLP for f(x). We define the set G
of time steps as:

G = {t |mt
P is a good matrix}.

There are two cases to consider.

• The first case is that G = ∅. Define the set B similarly as:

B = {t |mt
P is a bad matrix}.

If B is empty as well, then P is indeed a µH2×2∩Indg-SLP. By Fact 4, the highest-degree homoge-
neous part of f(x) is irreducible, and by Theorem 18, we have reached a contradiction. Otherwise,
let tB = max(B). Note that, by Proposition 9, the output at time |P | is a non-zero polynomial under
any well-formed regular projection of size at most six, which means that m|P |P cannot be bad, and

13



hence tB < |P |. Let p be one of the cutting projections of mtB
P . Consider P |p and the polynomial

f(x)|p it computes. Since the size of p is bounded by six, by Proposition 9, f(x)|p is again an ir-
reducible polynomial and moreover, its degree-two homogeneous part is irreducible. For all t such
that tB ≤ t ≤ |P |, mt

P is an inherently non-degenerate matrix. By the first item of Observation 29,
we now have a µH2×2∩Indg-SLP for f(x)|p which is a contradiction to Theorem 18. Notice that by

Proposition 9, the above arguments apply to any polynomial of the form
∑5

i=1 x2i−1x2i + l(x) where
l(x) is an arbitrary linear function.

• We assume that G 6= ∅. Let tG = minG. Suppose first that mtG
P is an inherently degenerate matrix.

Since mtG
P is good, we have by Lemma 31 that, at time tG, register R1 computes a nonzero multiple

of f . Hence by the second item of Observation 29 with p = ∅, we obtain a new µH2×2-SLP for f(x),
consisting of only the matrices before tG – none of which are good. This brings us back to the first
case and a contradiction.

Otherwise, assume that mtG
P is a potentially degenerate matrix and let p be one of its finishing projec-

tions of size at most six. Consider P |p and the polynomial f(x)|p it computes. By the second item
of Observation 29, we obtain a new µH2×2-SLP P ′ for f(x)|p and furthermore, by Observation 33,
P ′ does not contain any good matrices. Hence, this reduces us to the first case, since f(x)|p is of the
form

∑5
i=1 x2i−1x2i + l(x) where l(x) is an arbitrary linear function. It is not hard to see that we will

arrive at a contradiction for f(x)|p, which completes our proof.

2

The proof of Theorem 34 leads to the following corollary.

Corollary 35 If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i + l(x) is not computable by H2×2, where l(x) is an
arbitrary linear function.

4 Extensions to simple and regular projections

In this section, we show that in the seemingly more powerful models, it is still hard to compute simple
polynomials. We start by extending the result of Section 3 to the case of simple projections. Then by similar
techniques and some extra observations, we will prove that certain polynomials are not regular projections
of IMM2,n, and thus, they are not computable by algebraic branching programs of width two.

4.1 Impossibility result for simple projections

In order to show that an analogue of Theorem 18 holds in the setting of simple projections, we first show
that, for nondegenerate matrices, the simple case reduces to the homogeneous case.

Lemma 36 Every matrix in S2×2 ∩ Indg can be represented by a product of matrices in H2×2 ∩ Indg.

Proof: Let m be a matrix in S2×2 and

m =

[
c1,1y1,1 + w1,1 c1,2y1,2 + w1,2

c2,1y2,1 + w2,1 c2,2y2,2 + w2,2

]
,

where ci,j , wi,j ∈ F and yi,j ∈ {xk | k ∈ N}.
We say that the variable xk = yi,j occurs in m if ci,j 6= 0 and that yi,j is an occurrence for xk. Assume

that m ∈ S2×2 ∩ Indg and consider the following cases.
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1. If there are no occurrences of any variables, then m is a linear transformation over F. So m ∈
H2×2 ∩ Indg.

2. If there are at least three distinct variables occurring in m, then det(m) is a nonzero polynomial and
m ∈ Pdg, a contradiction to our assumption.

3. If there is only a single variable xk occurring in m, then obviously xk has either two or four occur-
rences in m which can be divided into two subcases.

• If xk has two occurrences in m, then these two occurrences can not be placed at the diagonal
or anti-diagonal positions. Hence, without loss of generality, assume that m has the following
form.

m =

[
w1,1 w1,2

c2,1xk + w2,1 c2,2xk + w2,2

]
,

where c2,1 6= 0 and c2,2 6= 0.
The determinant of m is equal to (c2,2w1,1 − c2,1w1,2)xk + (w1,1w2,2 − w1,2w2,1), then by our
assumption, c2,2w1,1 − c2,1w1,2 = 0. If w1,1 = w1,2 = 0, then m ∈ Idg, a contradiction to
our assumption. If exactly one of them is equal to zero, then m ∈ Pdg, a contradiction as well.
Hence, we can assume that c2,2

c2,1
=

w1,2

w1,1
= d 6= 0. Then,

m =

[
w1,1 0

c2,1xk + w2,1 w2,2 − dw2,1

] [
1 d
0 1

]
w2,2 − dw2,1 6= 0 since det(m) 6= 0.
So

m =

[ w1,1

c2,1
0

xk w2,2 − dw2,1

] [
c2,1 0
w2,1

w2,2−dw2,1
1

] [
1 d
0 1

]
This verifies that m is a product of matrices in H2×2 ∩ Indg.

• If xk has four occurrences in m, then assume m has the following form.

m =

[
c1,1xk + w1,1 c1,2xk + w1,2

c2,1xk + w2,1 c2,2xk + w2,2

]
,

where each ci,j 6= 0.
The determinant ofm is equal to (c1,1xk+w1,1)(c2,2xk+w2,2)−(c1,2xk+w1,2)(c2,1xk+w2,1).
Because m ∈ Indg, c1,1c2,2 − c1,2c2,1 = 0. Let d =

c1,2
c1,1

=
c2,2
c2,1
6= 0. Then, there exists u, v ∈ F

such that

m =

[
c1,1xk + w1,1 u
c2,1xk + w2,1 v

] [
1 d
0 1

]
Obviously the first matrix belongs to Indg because its determinant belongs to F∗. Hence by the
first subcase, it is a product of matrices in H2×2 ∩ Indg, so is m.
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4. If there are exactly two distinct variables xk and xl occurring in m, then they must have the same
number of occurrences in m. Let ci,j ∈ F∗. It is clear that for all u, v ∈ F, up to the permutation of
rows and columns, the following matrices can not belong to Indg.[

c1,1xk + w1,1 u
c2,1xj + w2,1 v

]
,

[
c1,1xk + w1,1 u

v c2,1xj + w2,1

]
Hence, each of xk and xl has two occurrences. Without loss of generality, m has the following form.

m =

[
c1,1xk + w1,1 c1,2xk + w1,2

c2,1xj + w2,1 c2,2xj + w2,2

]
.

Since det(m) ∈ F∗, we have c1,1c2,2 − c1,2c2,1 = 0. Let d =
c1,2
c1,1

=
c2,2
c2,1
6= 0. Then, there exists

u, v ∈ F such that

m =

[
c1,1xk + w1,1 u
c2,1xj + w2,1 v

] [
1 d
0 1

]
This implies that m can not be an inherently non-degenerate matrix, a contradiction.

In conclusion, we have proven our claim that every matrix in S2×2∩Indg is equal to a product of matrices
in H2×2 ∩ Indg. 2

The preceding lemma, together with Theorem 18, immediately yield the following corollary:

Corollary 37 Let f(x) be a polynomial whose highest-degree homogeneous part is irreducible. Then f(x)
is not computable by S2×2 ∩ Indg.

Next we show how to adapt the machinery in Section 3.3 and prove a similar impossibility theorem in
terms of simple projections.

Theorem 38 Let l(x) be an arbitrary linear function. If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i + l(x) is not
computable by S2×2, namely, for any n, f(x) can not be obtained from IMM2,n under simple projections.

Proof: [Proof sketch] We prove the theorem via contradiction. Suppose there is a µS2×2-SLP P for f(x).
Similar to Lemma 23, we prove the following lemma.

Lemma 39 There does not exist a matrix m in P such that each entry of m contains a distinct variable.
This implies that all matrices in P must contain at most three variables.

Proof: Suppose the statement is not true, and without loss of generality, m =

[
c1x1 − w1 c2x2 − w2

c3x3 − w3 c4x4 − w4

]
,

where ∀1 ≤ i ≤ 4, ci ∈ F∗, wi ∈ F and the xis are all distinct. Consider the projection p = {xi ← wi
ci
| 1 ≤

i ≤ 4}. Then f(x)|p is nonzero while P |p contains
[

0 0
0 0

]
. By Propositions 8 and 9, f(x) is nonzero

under any regular projection of size at most four. Thus by Lemma 22, we have reached a contradiction. 2

A direct consequence of Lemma 39 is an analogue of Lemma 24. The proof of the following lemma
proceeds in the same way as that of Lemma 24, so we omit it here.

Lemma 40 For any matrix m ∈ P which belongs to S2×2 ∩ Pdg, there exists a homogeneous projection p
of size at most three such that m|p is degenerate and all of the entries in m|p belong to F. Moreover, there
is a well-formed homogeneous projection q of size at most six extending p.

The notions of degenerating projections, and of good and bad matrices, thus carry over also to the setting
of simple projections, and the rest of the proof follows exactly as in Section 3.3. 2
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4.2 Impossibility result for regular projections

Let m ∈ R2×2 be of the following form:

m =

[
l1,1 + w1,1 l1,2 + w1,2

l2,1 + w2,1 l2,2 + w2,2

]
.

where wi,j ∈ F and the li,j’s are homogeneous linear forms in {
∑n

k=1 ckxk | n ∈ N, ck ∈ F}. We will pay
attention to the rank of the subspace spanned by {li,j | i, j ∈ {1, 2}}, denoted as r(m), which in some sense
characterizes the number of “independent variables” among the li,j’s.

The following lemma illustrates the sense in which we can treat linearly-independent homogeneous
linear forms as independent variables.

Lemma 41 Let l1, l2, . . . , lk be linearly independent homogeneous linear forms, and let w1, . . . , wk be
elements of F. Then there is a regular projection p of size k such that, for all i, li|p = wi. (Thus we can
think of p as a “projection” of the form {li ← wi}.)

Proof: The homogeneous linear form l1 is of the form
∑n

j=1 cjxj , where each cj ∈ F∗. Start building the
projection p with the rule x1 ← (w1 −

∑n
j=2 cjxj)/c1. This clearly has the effect that l1|p = w1. If k = 1,

then the construction ends here.
Otherwise, let l2 =

∑n′

j=1 djyj , where each dj ∈ F∗}. If the variable x1 appears as one of the variables
yj , then replace x1 with the expression (w1 −

∑n
j=2 cjxj)/c1 and simplify. By linear independence, there

must still be some variable remaining in the resulting expression. Without loss of generality, let the resulting
expression be of the form

∑n′′

j=2 ajxj . Then we add a new rule x2 ← (w2 −
∑n′′

j=3 ajxj)/a2 (and if this
variable x2 occurs in the right-hand-side of the rule for x1, then substitute this expression in for x2 in that
rule, and simplify). At this point, we have l1|p = w1 and l2|p = w2.

We continue in this way for all of the remaining linear forms. The crucial observation is that there will
always be a variable in each linear form lj |p when we first consider it, because of linear independence. 2

Our next lemma is a generalization of Lemma 36.

Lemma 42 Every matrix m in R2×2 ∩ Indg can be represented by a product of matrices in H2×2 ∩ Indg.

Proof: The correctness of the following claim is easy to verify.
If r(m) = 0, 3 or 4, then the proof is completely analogous to the corresponding cases in Lemma 36,

where we do our case analysis based on r(m) instead of the number of variables that occur in m.
If r(m) = 1, then there exists a homogeneous linear form l such that all li,js in m are multiples of l.

By treating l as a single variable, the analysis of the third case in Lemma 36 reveals that m is a product of
matrices from H2×2 ∩ Indg as well as matrices having the following form:[

c 0
l c′

]
,

[
c l
0 c′

]
.

Thus the case when r(m) = 1 is completed by appealing to the following claim:

Claim 43 Any matrix having the following form can be expressed as the product of matrices in H2×2∩Indg.[
c 0
l c′

]
,

[
c l
0 c′

]
where c, c′ ∈ F∗ and l ∈ L.
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Proof: We prove the claim by induction on the number of variables appearing in l. If l contains at most
one variable, then the claim follows from Lemma 36.

Otherwise, l is of the form dx1 + l′. Observe that[
c 0
l c′

]
=

[
c/d 0
x1 1

]
×
[
d 0
l′ c′

]
.

(The other case is similar.) The claim now follows by induction. 2

If r(m) = 2, then let l1, l2 ∈ {li,j | i, j ∈ {1, 2}} be a basis. If every li,j is a multiple of either l1
or l2, then the proof of the fourth case of Lemma 36 provides us a contradiction. Thus, we only need to
consider the case where there is at least one l′ ∈ {li,j | i, j ∈ {1, 2}} and c, c′ ∈ F∗ such that l′ = cl1 + c′l2,
which means that l′ is a non-trivial linear combination of l1 and l2. Therefore, without loss of generality, we
assume that m has the following form.

m =

[
l1 + w1,1 l2 + w1,2

cl1 + c′l2 + w2,1 dl1 + d′l2 + w2,2

]
.

where c, c′ ∈ F∗, d, d′ ∈ F.
But then the degree-two homogeneous part of det(m) is equal to dl21 + (d′ − c)l1l2 − c′l22, which is

nonzero since c′ 6= 0. This contradicts our assumption that m ∈ Indg. 2

The preceding lemma, together with Theorem 18, immediately yield the following corollary:

Corollary 44 Let f(x) be a polynomial whose highest-degree homogeneous part is irreducible. Then f(x)
is not computable by R2×2 ∩ Indg.

Now we are ready to prove our main theorem.

Theorem 45 (Theorem 2 restated) If k ≥ 8, then f(x) =
∑k

i=1 x2i−1x2i is not computable by R2×2,
namely, for any n, f(x) can not be obtained from IMM2,n under regular projections.

Proof: [Proof sketch] The proof is by contradiction. Suppose P is a µR2×2-SLP for f(x).
By Propositions 8 and 9, f(x) is nonzero under any regular projection of size at most four, which leads

to the following lemma.

Lemma 46 For any potentially degenerate matrix mt
P in P , r(mt

P ) ≤ 3.

Proof: Suppose r(mt
P ) = 4, then there exists a regular projection p of size four such that ∀1 ≤ i, j ≤

2, li,j = −wi,j . In other words, mt
P |p =

[
0 0
0 0

]
. By Lemma 22, we have reached a contradiction to the

aforementioned property of f(x). 2

Lemma 47 Any potentially degenerate matrixmt
P in P has a regular projection p of size at most three such

that mt
P |p is degenerate and all of the entries in m|p belong to F. Moreover, there is a well-formed regular

projection q of size at most six extending p.

Proof: det(mt
P ) is a polynomial of degree at least one. by Lemma 46, after some suitable linear transfor-

mation, det(mt
P ) can be viewed as a polynomial in at most three “new” variables that are linear forms in

terms of the original set of variables. Since F is algebraically closed, this provides us the desired projection
p. The second part of the claim follows from Proposition 8. 2
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By Lemma 47, we can define degenerating projections in terms of well-formed regular projections. Note
that the proofs of Lemma 26 and Corollary 27 hold, regardless of the type of projections. Thus we can also
extend the definitions of cutting and finishing projections to well-formed regular projections. The following
observation is a slight variant of Observation 29.

Observation 48 Let f(x) be a polynomial such that under any well-formed regular projection q of size at
most six, f(x)|q is always a nonzero irreducible polynomial. Let P be a µR2×2-SLP for f(x) and let mt

P

be a potentially degenerate matrix in P . Let p be one of degenerating regular projections of mt
P and let

P ′ = P |p. Then, a µR2×2-SLP can be constructed for f(x)|p.

• If p is a cutting projection for mt
P in P , this case is identical to the first case in Observation 29.

• If p is a finishing projection for mt
P in P , this case is identical to the second case in Observation 29.

Now the remaining part of proof proceeds exactly as in Section 3.3, since it does not depend on the type
of underlying projections at all, namely, regardless of whether they are homogeneous, simple or regular. 2
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