
Quadratic Goldreich-Levin Theorems

Madhur Tulsiani∗ Julia Wolf†

May 23, 2011

Abstract

Decomposition theorems in classical Fourier analysis enable us to express a bounded function
in terms of few linear phases with large Fourier coefficients plus a part that is pseudorandom with
respect to linear phases. The Goldreich-Levin algorithm [GL89] can be viewed as an algorithmic
analogue of such a decomposition as it gives a way to efficiently find the linear phases associated
with large Fourier coefficients.

In the study of “quadratic Fourier analysis”, higher-degree analogues of such decompositions
have been developed in which the pseudorandomness property is stronger but the structured
part correspondingly weaker. For example, it has previously been shown that it is possible to
express a bounded function as a sum of a few quadratic phases plus a part that is small in the
U3 norm, defined by Gowers for the purpose of counting arithmetic progressions of length 4.
We give a polynomial time algorithm for computing such a decomposition.

A key part of the algorithm is a local self-correction procedure for Reed-Muller codes of order
2 (over Fn

2) for a function at distance 1/2−ε from a codeword. Given a function f : Fn
2 → {−1, 1}

at fractional Hamming distance 1/2− ε from a quadratic phase (which is a codeword of Reed-
Muller code of order 2), we give an algorithm that runs in time polynomial in n and finds
a codeword at distance at most 1/2 − η for η = η(ε). This is an algorithmic analogue of
Samorodnitsky’s result [Sam07], which gave a tester for the above problem. To our knowledge,
it represents the first instance of a correction procedure for any class of codes, beyond the
list-decoding radius.

In the process, we give algorithmic versions of results from additive combinatorics used in
Samorodnitsky’s proof and a refined version of the inverse theorem for the Gowers U3 norm
over Fn

2 .

∗Princeton University and IAS, Princeton, NJ. Work supported by NSF grant CCF-0832797.
†Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 84 (2011)

1 Introduction

Higher-order Fourier analysis, which has its roots in Gowers’s proof of Szemerédi’s Theorem
[Gow98], has experienced a significant surge in the number of available tools as well as applications
in recent years, including perhaps most notably Green and Tao’s proof that there are arbitrarily
long arithmetic progressions in the primes.

Across a range of mathematical disciplines, classical Fourier analysis is often applied in form of a
decomposition theorem: one writes a bounded function f as

f = f1 + f2, (1)

where f1 is a structured part consisting of the frequencies with large amplitude, while f2 consists of
the remaining frequencies and resembles uniform, or random-looking, noise. Over Fn2 , the Fourier
basis consists of functions of the form (−1)〈α,x〉 for α ∈ Fn2 , which we shall refer to as linear phase
functions. The part f1 is then a (weighted) sum of a few linear phase functions.

From an algorithmic point of view, efficient techniques are available to compute the structured part
f1. The Goldreich-Levin [GL89] theorem gives an algorithm which computes, with high probability,
the large Fourier coefficients of f : Fn2 → {−1, 1} in time polynomial in n. One way of viewing this
theorem is precisely as an algorithmic version of the decomposition theorem above, where f1 is the
part consisting of large Fourier coefficients of a function and f2 is random-looking with respect to
any test that can only detect large Fourier coefficients.

It was observed by Gowers (and previously by Furstenberg and Weiss in the context of ergodic
theory) that the count of certain patterns is not almost invariant under the addition of a noise
term f2 as defined above, and thus a decomposition such as (1) is not sufficient in that context.
In particular, for counting 4-term arithmetic progressions a more sensitive notion of uniformity is
needed. This subtler notion of uniformity, called quadratic uniformity, is expressed in terms of the
U3 norm, which was introduced by Gowers in [Gow98] and which we shall define below.

In certain situations we may therefore wish to decompose the function f as above, but where the
random-looking part is quadratically uniform, meaning ‖f2‖U3 is small. Naturally one needs to
answer the question as to what replaces the structured part, which in (1) was defined by a small
number of linear characters.

This question belongs to the realm of what is now called quadratic Fourier analysis. Its central
building block, largely contained in Gowers’s proof of Szemerédi’s theorem but refined by Green
and Tao [GT08] and Samorodnitsky [Sam07], is the so-called inverse theorem for the U3 norm,
which states, roughly speaking, that a function with large U3 norm correlates with a quadratic
phase function, by which we mean a function of the form (−1)q for a quadratic form q : Fn2 → F2.

The inverse theorem implies that the structured part f1 has quadratic structure in the case where
f2 is small in U3, and starting with [Gre07] a variety of such quadratic decomposition theorems have
come into existence: in one formulation [GW10c], one can write f as

f =
∑
i

λi(−1)qi + f2 + h, (2)

where the qi are quadratic forms, the λi are real coefficients such that
∑

i |λi| is bounded, ‖f2‖U3

is small and h is a small `1 error (that is negligible in all known applications.)

In analogy with the decomposition into Fourier characters, it is natural to think of the coefficients
λi as the quadratic Fourier coefficients of f . As in the case of Fourier coefficients, there is a trade-
off between the complexity of the structured part and the randomness of the uniform part. In

1

the case of the quadratic decomposition above, the bound on the `1 norm of the coefficients λi
depends inversely on the uniformity parameter ‖f2‖U3 . However, unlike the decomposition into
Fourier characters, the decomposition in terms of quadratic phases is not necessarily unique, as the
quadratic phases do not form a basis for the space of functions on Fn2 .

Quadratic decomposition theorems have found several number-theoretic applications, notably in a
series of papers by Gowers and the second author [GW10c, GW10a, GW10b], as well as [Can10]
and [HL11].

However, all decomposition theorems of this type proved so far have been of a rather abstract nature.
In particular, work by Trevisan, Vadhan and the first author [TTV09] uses linear programming
techniques and boosting, while Gowers and the second author [GW10c] gave a (non-constructive)
existence proof using the Hahn-Banach theorem. The boosting proof is constructive in a very
weak sense (see Section 3) but is quite far from giving an algorithm for computing the above
decompositions. We give such an algorithm in this paper.

A computer science perspective. Algorithmic decomposition theorems, such as the weak
regularity lemma of Frieze and Kannan [FK99] which decomposes a matrix as a small sum of
cut matrices, have found numerous application in approximately solving constraint satisfaction
problems. From the point of view of theoretical computer science, a very natural question to ask is
if the simple description of a bounded function as a small list of quadratic phases can be computed
efficiently. In this paper we give a probabilistic algorithm that performs this task, using a number
of refinements of ingredients in the proof of the inverse theorem to make it more efficient, which
will be detailed below.

Connections to Reed-Muller codes. A building block in proving the decomposition theorem
is an algorithm for the following problem: given a function f : Fn2 → {−1, 1}, which is at Hamming
distance at most 1/2 − ε from an unknown quadratic phase (−1)q, find (efficiently) a quadratic
phase (−1)q

′
which is at distance at most 1/2− η from f , for some η = η(ε).

This naturally leads to a connection with Reed-Muller codes since for Reed-Muller codes of order
2, the codewords are precisely the (truth-tables of) quadratic phases.

Note that the list decoding radius of Reed-Muller codes of order 2 is 1/4 [GKZ08, Gop10], which
means that if the distance were less than 1/4, we could find all such q, and there would only be
poly(n) many of them. The distance here is greater than 1/4 and there might be exponentially
many (in n) such functions q. However, the problem may still be tractable as we are required to
find only one such q (which might be at a slightly larger distance than q′).

The problem of testing if there is such a q was considered by Samorodnitsky [Sam07]. We show
that in fact, the result can be turned into a local self corrector for Reed-Muller codes at distance
(1/2 − ε). We are not aware of any class of codes for which such a self-correcting procedure is
known, beyond the list-decoding radius.

1.1 Overview of results and techniques

We state below the basic decomposition theorem for quadratic phases, which is obtained by com-
bining Theorems 3.1 and 4.1 proved later. The theorem is stated in terms of the U3 norm, defined
formally in Section 2.

Theorem 1.1 Let ε, δ > 0, n ∈ N and B > 1. Then there exists η = exp((B/ε)C) and a
randomized algorithm running in time O(n4 log n · poly(1/η, log(1/δ))) which, given any function

2

g : X → [−1, 1] as an oracle, outputs with probability at least 1− δ a decomposition into quadratic
phases

g = c1(−1)q1 + . . .+ ck(−1)qk + e+ f

satisfying k ≤ 1/η2, ‖f‖U3 ≤ ε, ‖e‖1 ≤ 1/2B and |ci| ≤ η for all i.

Note that in [GW10a] the authors had to work much harder to obtain a bound on the number of
terms in the decomposition, rather than just the `1 norm of its coefficients. Our decomposition
approach gives such a bound immediately and is equivalent from a quantitative point of view: we
can bound the number of terms here by 1/η2, which is exponential in 1/ε.

It is possible to further strengthen this theorem by combining the quadratic phases obtained into
only poly(1/ε) quadratic averages. Roughly speaking, each quadratic average is a sum of few
quadratic phases, which differ only in their linear part. We describe this in detail in Section 5.

The key component of the above decomposition theorem is the following self-correction procedure
for Reed-Muller codes of order 2 (which are simply truth-tables of quadratic phase functions). The
correlation between two functions f and g is defined as 〈f, g〉 = Ex∈Fn

2
[f(x)g(x)].

Theorem 1.2 Given ε, δ > 0, there exists η = exp(−1/εC) and a randomized algorithm
Find-Quadratic running in time O(n4 log n · poly(1/ε, 1/η, log(1/δ))) which, given oracle access
to a function f : Fn2 → {−1, 1}, either outputs a quadratic form q(x) or ⊥. The algorithm satisfies
the following guarantee.

• If ‖f‖U3 ≥ ε, then with probability at least 1 − δ it finds a quadratic form q such that
〈f, (−1)q〉 ≥ η.

• The probability that the algorithm outputs a quadratic form q with 〈f, (−1)q〉 ≤ η/2 is at most
δ.

We remark that all the results contained here can be extended to Fnp for any constant p. We choose
to present only the case of Fn2 for simplicity of notation.

Our results for computing the above decompositions comprise various components.

Constructive decomposition theorems. We prove the decomposition theorem using a proce-
dure which, at every step, tests if a certain function has correlation at least 1/2−ε with a quadratic
phase. Given an algorithm to find such a quadratic phase, the procedure gives a way to combine
them to obtain a decomposition.

Previous decomposition theorems have also used such procedures [FK99, TTV09]. However, they
required that the quadratic phase found at each step have correlation η = O(ε), if one exists with
correlation ε. In particular, they require the fact that if we scale f to change its `∞ norm, the
quantities η and ε would scale the same way (this would not be true if, say, η = ε2).

We need and prove a general decomposition theorem, which works even as η degrades arbitrarily
in 1/ε. This requires a somewhat more sophisticated analysis and the introduction of a third error
term for which we bound the `1 norm.

Algorithmic versions of theorems from additive combinatorics. Samorodnitsky’s proof
uses several results from additive combinatorics, which produce large sets in Fn2 with certain useful
additive properties. The proof of the inverse theorem uses the description of these sets. However,

3

in our setting, we do not have time to look at the entire set since they may be of size poly(ε) · 2n,
as in the case of the Balog-Szemerédi-Gowers theorem described later. We thus work by building
efficient sampling procedures or procedures for efficiently deciding membership in such sets, which
require new algorithmic proofs.

A subtlety arises when one tries to construct such a testing procedure. Since the procedure runs in
polynomial time, it often works by sampling and estimating certain properties and the estimates
may be erroneous. This leads to some noise in the decision of any such an algorithm, resulting a
noisy version of the set (actually a distribution over sets). We get around this problem by proving
a robust version of the Balog-Szemerédi-Gowers theorem, for which we can “sandwich” the output
of such a procedure between two sets with desirable properties. This technique may be useful in
other algorithmic applications.

Local inverse theorems and decompositions involving quadratic averages. Samorodnit-
sky’s inverse theorem says that when a function f has U3 norm ε, then one can find a quadratic
phase q which has correlation η with f , for η = exp(−1/εC). A decomposition then requires 1/η2,
that is exponentially many (in 1/ε), terms.

A somewhat stronger result was implicit in the work of Green and Tao [GT08]. They showed that
there exists a subspace of codimension poly(1/ε) and on all of whose cosets f correlates polynomially
with a quadratic phase. Picking a particular coset and extending that quadratic phase to the whole
space gives the previous theorem.

It turns out that the different quadratic phases on each coset in fact have the same quadratic part
and differ only by a linear term. This was exploited in [GW10c] to obtain a decomposition involving
only polynomially many quadratic objects, so-called quadratic averages, which are described in more
detail in Section 5.

We remark that the results of Green and Tao [GT08] do not directly extend to the case of charac-
teristic 2 since division by 2 is used at one crucial point in the argument. We combine their ideas
with those of Samorodnitsky to give an algorithmic version of a decomposition theorem involving
quadratic averages.

2 Preliminaries

Throughout the paper, we shall be using Latin letters such as x, y or z to denote elements of Fn2 ,

while Greek letters α and β are used to denote members of the dual space F̂n2 ∼= Fn2 . We shall
use δ as our error parameter, while ε, η, γ and ρ are variously used to indicate correlation strength
between a Boolean function f and a family of structured functions Q. Throughout the manuscript
N will denote the quantity 2n. Constants C may change from line to line without further notice.

We shall be using the following standard probabilistic bounds without further mention.

Lemma 2.1 (Hoeffding bound for sampling [TV06]) If X is a random variable with |X| ≤ 1
and µ̂ is the empirical average obtained from t samples, then

P [|E [X]− µ̂| > γ] ≤ exp(−Ω(γ2t)).

A Hoeffding-type bound can also be obtained for polynomial functions of ±1-valued random vari-
ables.

4

Lemma 2.2 (Hoeffding bound for low-degree polynomials [O’D08]) Suppose that F =
F(X1, . . . ,XN) is a polynomial of degree d in random variables X1, . . . ,XN taking value ±1, then

P [|F− E [F]| > γ] ≤ exp
(
−Ω

(
d · (γ/σ)2/d

))
,

where σ =
√

E [F2]− E [F]2 is the standard deviation of F.

We start off by stating two fundamental results in additive combinatorics which are often applied
in sequence. For a set A ⊆ Fn2 , we write A + A for the set of elements a + a′ such that a, a′ ∈ A.
More generally, the k-fold sumset, denoted by kA, consists of all k-fold sums of elements of A.

First, the Balog-Szemerédi-Gowers theorem states that if a set has many additive quadruples, that
is, elements a1, a2, a3, a4 such that a1 + a2 = a3 + a4, then a large subset of it must have small
sumset.

Theorem 2.3 (Balog-Szemerédi-Gowers [Gow98]) Let A ⊆ Fn2 contain at least |A|3/K addi-
tive quadruples. Then there exists a subset A′ ⊆ A of size |A′| ≥ K−C |A| with the property that
|A′ +A′| ≤ KC |A′|.

Freiman’s theorem, first proved by Ruzsa in the context of Fn2 , asserts that a set with small sumset
is efficiently contained in a subspace.

Theorem 2.4 (Freiman-Ruzsa Theorem [Ruz99]) Let A ⊆ Fn2 be such that |A + A| ≤ K|A|.
Then A is contained in a subspace of size at most 2O(KC)|A|.

We shall also require the notion of a Freiman homomorphism. We say the map l is a Freiman
2-homomorphism if x + y = z + w implies l(x) + l(y) = l(z) + l(w). More generally, a Freiman
homomorphism of order k is a map l such that x1 + x2 + · · ·+ xk = x′1 + x′2 + · · ·+ x′k implies that
l(x1) + · · · + l(xk) = l(x′1) + · · · + l(x′k). The order of the Freiman homomorphism measures the
degree of linearity of l; in particular, a truly linear map is a Freiman homomorphism of all orders.

Next we recall the definition of the uniformity of Uk norms introduced by Gowers in [Gow98].

Definition 2.5 Let G be any finite abelian group. For any positive integer k ≥ 2 and any function
f : G→ C, define the Uk-norm by the formula

‖f‖2kUk = Ex,h1,...,hk∈G
∏

ω∈{0,1}k
C |ω|f(x+ ω · h),

where ω · h is shorthand for
∑

i ωihi, and C |ω|f = f if
∑

i ωi is even and f otherwise.

In the special case k = 2, a computation shows that

‖f‖U2 = ‖f̂‖l4 ,

and hence any approach using the U2 norm is essentially equivalent to using ordinary Fourier
analysis. In the case k = 3, the U3 norm counts the number of additive octuples “contained in” f ,
that is, we average over the product of f at all eight vertices of a 3-dimensional parallelepiped in
G.

5

These uniformity norms satisfy a number of important properties: they are clearly nested

‖f‖U2 ≤ ‖f‖U3 ≤ ‖f‖U4 ≤ ...

and can be defined inductively

‖f‖2k+1

Uk+1 = Ex‖fx‖2
k

Uk ,

where k ≥ 2 and the function fx stands for the assignment fx(y) = f(y)f(x+ y). Thinking of the
function f as a complex exponential (a phase function), we can interpret the function fx as a kind
of discrete derivative of f .

It follows straight from a simple but admittedly ingenious sequence of applications of the Cauchy-
Schwarz inequality that if the balanced function 1A − α of a set A ⊆ G of density α has small
Uk norm, then A contains the expected number of arithmetic progressions of length k+ 1, namely
αk+1|G|2. This fact makes the uniformity norms interesting for number-theoretic applications.

In computer science they have been used in the context of probabilistically checkable proofs (PCP)
[ST06], communication complexity [VW07], as well as in the analysis of pseudo-random generators
that fool low-degree polynomials [BV10].

In many applications, being small in the Uk norm is a desirable property for a function to have.
What can we say if this is not the case? It is not too difficult to verify that ‖f‖Uk = 1 if and only
if f is a polynomial phase function of degree k − 1, i.e. a function of the form ωp(x) where p is a
polynomial of degree k − 1 and ω is an appropriate root of unity. But does every function with
large Uk norm look like a polynomial phase function of degree k − 1?

It turns out that any function with large Uk norm correlates, at the very least locally, with a
polynomial phase function of degree k− 1. This is known as the inverse theorem for the Uk norm,
proved by Green and Tao [GT08] for k = 3 and p > 2 and Samorodnitsky [Sam07] for k = 3 and
p = 2, and Bergelson, Tao and Ziegler [BTZ10, TZ10] for k > 3. We shall restrict our attention to
the case k = 3 in this paper, which we can state as follows.

Theorem 2.6 (Global Inverse Theorem for U3 [GT08], [Sam07]) Let f : Fnp → C be a
function such that ‖f‖∞ ≤ 1 and ‖f‖U3 ≥ ε. Then there exists a a quadratic form q and a
vector b such that

|Exf(x)ωq(x)+b·x| ≥ exp(−O(ε−C))

In Section 5 we shall discuss various refinements of the inverse theorem, including correlations with
so-called quadratic averages. These refinements allow us to obtain polynomial instead of exponential
correlation with some quadratically structured object.

We discuss further potential improvements and extensions of the arguments presented in this paper
in Section 6.

First of all, however, we shall turn to the problem of constructively obtaining a decomposition
assuming that one has an efficient correlation testing procedure, which is done in Section 3.

3 From decompositions to correlation testing

In this section we reduce from the problem of finding a decomposition for given function to the
problem of finding a single quadratic phase or average that correlates well with the function.

6

We state the basic decomposition result in somewhat greater generality as we believe it may be of
independent interest. We will consider a real-valued function g on a finite domain X (which shall
be Fn2 in the rest of the paper). We shall decompose the function g in terms of members from an
arbitrary class Q of functions q : X → [−1, 1]. Q may later be taken to be the class of quadratic
phases or quadratic averages. We will assume Q to be closed under negation of the functions i.e.,
q ∈ Q ⇒ −q ∈ Q. Finally, we shall consider a semi-norm ‖·‖S defined for functions on X, such that
if ‖f‖S is large for f : X → R then f has large correlation with some function in Q. The obvious
choice for ‖·‖S is ‖f‖S = maxq∈Q |〈f, q〉|, as is the case in many known decomposition results and
the general result in [TTV09]. However, we will be able to obtain a stronger algorithmic guarantee
by taking ‖·‖S to be the U3 norm.

Theorem 3.1 Let Q be a class of functions as above and let ε, δ > 0 and B > 1. Let A be an
algorithm which, given oracle access to a function f : X → [−B,B] satisfying ‖f‖S ≥ ε, outputs,
with probability at least 1 − δ, a function q ∈ Q such that 〈f, q〉 ≥ η for some η = η(ε,B). Then
there exists an algorithm which, given any function g : X → [−1, 1], outputs with probability at
least 1− δ/η2 a decomposition

g = c1q1 + . . .+ ckqk + e+ f

satisfying k ≤ 1/η2, ‖f‖S ≤ ε and ‖e‖1 ≤ 1/2B. Also, the algorithm makes at most k calls to A.

We prove the decomposition theorem building on an argument from [TTV09], which in turn gen-
eralizes an argument of [FK99]. Both the arguments in [TTV09, FK99] work well if for a function
f : X → R satisfying maxq∈Q | 〈f, q〉 | ≥ ε, one can efficiently find a q ∈ Q with 〈f, q〉 ≥ η = Ω(ε).
It is important there that η = Ω(ε), or at least that the guarantee is independent of how f is scaled.

Both proofs give an algorithm which, at each step t, checks if there exists qt ∈ Q which has good
correlation with a given function ft, and the decomposition is obtained by adding the functions qt
obtained at different steps. In both cases, the `∞ norm of the functions ft changes as the algorithm
proceeds.

Suppose ε′ = o(ε) and we only had the scale-dependent guarantee that for functions f : X → [−1, 1]
with ‖f‖S ≥ ε, we can efficiently find a q ∈ Q such that 〈f, q〉 ≥ ε2 (say). Then at step t of the
algorithm if we have ‖ft‖∞ = M (say), then ‖ft‖S ≥ ε will imply ‖f/M‖S ≥ ε/M and one can
only get a qt satisfying 〈ft, qt〉 ≥M · (ε/M)2 = ε2/M . Thus, the correlation of the functions qt we
can obtain degrades as the ‖ft‖∞ increases. This turns out to be insufficient to bound the number
of steps required by these algorithms and hence the number of terms in the decomposition.

When testing correlations with quadratic phases using ‖·‖S as the U3 norm, the correlation η
obtained for f : Fn2 → [−1, 1] has very bad dependence on ε and hence we run into the above
problem. To get around it, we truncate the functions ft used by the algorithm so that we have
a uniform bound on their `∞ norms. However, this truncation introduces an extra term in the
decomposition, for which we bound the `1 norm. Controlling the `1 norm of this term requires a
somewhat more sophisticated analysis than in [FK99]. An analysis based on a similar potential
function was also employed in [TTV09] (though not for the purpose of controlling the `1 norm).

We note that a third term with bounded `1 norm also appears in the (non-constructive) decompo-
sitions obtained in [GW10a].

Proof of Theorem 3.1: We will assume all calls to the algorithm A correctly return a q as
above or declare ‖f‖S < ε as the case may be. The probability of any error in the calls to A is at
most kδ.

7

We build the decomposition by the following simple procedure.

- Define functions f1 = h1 = g. Set t = 1.

- While ‖ft‖S ≥ ε

– Let qt be the output of A when called with the function ft.

– ht+1 := ht − ηqt.
– ft+1 := Truncate[−B,B] (ht+1) = max{−B,min{B, ht+1}}
– t := t+ 1

If the algorithm runs for k steps, the decomposition it outputs is

g =

k∑
t=1

η · qt + (hk − fk) + fk

where we take f = fk and e = hk − fk. By construction, we have that ‖fk‖S ≤ ε. It remains to
show that k ≤ 1/η2 and ‖hk − fk‖1 ≤ 1/2B.

To analyze ‖ht − ft‖, we will define an additional function ∆t
def
= ft · (ht− ft). Note that ∆t(x) ≥ 0

for every x, since ft is simply a truncation of ht and hence ft = B when ht > ft and −B when
ht < ft. This gives

‖∆t‖1 = E [∆t] = E [ft · (ft − ht)] = E [B · |ht − ft|] = B · ‖ht − ft‖1 .

We will in fact bound the `1 norm of ∆k to obtain the required bound on ‖hk − fk‖1. The following
lemma states the bounds we need at every step.

Lemma 3.2 For every input x and every t ≤ k − 1

f2
t (x)− f2

t+1(x) + 2∆t(x)− 2∆t+1(x) + η2 ≥ 2η · qt(x)ft(x).

We first show how the above lemma suffices to prove the theorem. Taking expectations on both
sides of the inequality gives, for all t ≤ k − 1,

‖ft‖22 − ‖ft+1‖22 + 2 ‖∆t‖1 − 2 ‖∆t+1‖1 + η2 ≥ 2η · 〈qt, ft〉 ≥ 2η2.

Summing over all t ≤ k − 1 gives

‖f1‖22 − ‖fk‖
2
2 + 2 ‖∆1‖1 − 2 ‖∆k‖1 ≥ k · η2 =⇒ k · η2 + ‖fk‖22 + 2 ‖∆k‖1 ≤ 1

since ‖f1‖22 = ‖g‖22 ≤ 1 and ∆1 = 0. However, this gives k ≤ 1/η2 and ‖∆k‖1 ≤ 1/2, which in turn
implies ‖hk − fk‖1 ≤ 1/2B, completing the proof of Theorem 3.1.

We now return to the proof of Lemma 3.2.

Proof of Lemma 3.2: We shall fix an input x and consider all functions only at x. We start by
bringing the RHS into the desired form and collecting terms.

2ηqt · ft = 2(ht − ht+1) · ft
= 2(ht − ft) · ft − 2(ht+1 − ft+1) · ft+1 + 2f2

t − 2f2
t+1 − 2ht+1 · ft + 2ht+1 · ft+1

= 2∆t − 2∆t+1 + f2
t − f2

t+1 +
(
f2
t − f2

t+1 − 2ht+1(ft − ft+1)
)

8

It remains to show that f2
t − f2

t+1− 2ht+1(ft− ft+1) = (ft− ft+1)(ft + ft+1− 2ht+1) ≤ η2. We first
note that if |ft+1| < B, then ht+1 = ft+1 and the expression becomes (ft− ft+1)2, which is at most
η2. Also, if |ft| = |ft+1| = B, then ft and ft+1 must be equal (as ft only changes in steps of η) and
the expression is 0.

Finally, in the case when |ft| < B and |ft+1| = B, we must have that |ft − ht+1| = |ht − ht+1| ≤ η.
We can then bound the expression as

(ft − ft+1)(ft + ft+1 − 2ht+1) ≤
(

(ft − ft+1) + (ft + ft+1 − 2ht+1)

2

)2

= (ft − ht+1)2 ≤ η2,

which proves the lemma.

We next show that in the case when ‖·‖S is the U3 norm and Q contains at most exp (o(2n))
functions, it is sufficient to test the correlations only for Boolean functions f : Fn2 → {−1, 1}. This
can be done by simply scaling a function taking values in [−B,B] to [−1, 1] and then randomly
rounding the value independently at each input to ±1 with appropriate probability.

Lemma 3.3 Let ε, δ > 0. Let A be an algorithm, which, given oracle access to a function
f : Fn2 → {−1, 1} satisfying ‖f‖U3 ≥ ε, outputs, with probability at least 1 − δ, a function
q ∈ Q such that 〈f, q〉 ≥ η for some η = η(ε). In addition, assume that the running time of
A is poly(n, 1/η, log(1/δ)).

Then there exists an algorithm A′ which, given oracle access to a function f : Fn2 → [−B,B]
satisfying ‖f‖U3 ≥ ε, outputs, with probability at least 1−2δ, an element q ∈ Q satisfying 〈f, q〉 ≥ η′
for η′ = η′(ε,B). Moreover, the running time of A′ is poly(n, 1/η′, log(1/δ)).

Proof: Consider a random Boolean function f̃ : Fn2 → {−1, 1} such that f̃(x) is 1 with probability
(1 + f(x)/B)/2 and −1 otherwise. A′ simply calls A with the function f̃ and parameters ε/2B, δ.
This means that whenever A queries the value of the function at x, A′ generates it independently
of all other points by looking at f(x). It then outputs the q given by A.

If ‖f̃‖U3 ≥ ε/2B, then A outputs a q satisfying 〈f̃ , q〉 ≥ η(ε/2B). If for the same q we also
have 〈f, q〉 ≥ B · η(ε/2B)/2 = η′(ε,B), then the output of A′ is as desired. However, ‖f̃‖U3 is
a polynomial of degree 8 and the correlation with any q is a linear polynomial in the 2n random
variables {f̃(x)}x∈Fn

2
. Thus, by Lemma 2.2, the probability that ‖f̃‖U3 < ‖f‖U3 /B − ε/2B, or

〈f̃ , q〉 ≥ 〈f, q〉 /B − η(ε/2B)/2 for any q ∈ Q, is at most exp (−Ωε,B (−|Q| · 2n)) ≤ δ.

Thus, to compute the required decomposition into quadratic phases, one only needs to give an
algorithm for finding a phase q = (−1)q satisfying 〈f, (−1)q〉 ≥ η when f : Fn2 → {−1, 1} is a
Boolean function satisfying ‖f‖U3 ≥ ε.

4 Finding correlated quadratic phases over Fn2

In this section, we show how to obtain an algorithm for finding a quadratic phase which has good
correlation with a given function Boolean f : Fn2 → {−1, 1} (if one exists). For an f satisfying
‖f‖U3 ≥ ε, we want to find a quadratic form q such that 〈f, (−1)q〉 ≥ η(ε). The following theorem
provides such a guarantee.

9

Theorem 4.1 Given ε, δ > 0, there exists η = exp(−1/εC) and a randomized algorithm
Find-Quadratic running in time O(n4 log n · poly(1/ε, 1/η, log(1/δ))) which, given oracle access
to a function f : Fn2 → {−1, 1}, either outputs a quadratic phase (−1)q(x) or ⊥. The algorithm
satisfies the following guarantee.

• If ‖f‖U3 ≥ ε, then with probability at least 1 − δ it finds a quadratic form q such that
〈f, (−1)q〉 ≥ η.

• The probability that the algorithm outputs a quadratic form q with 〈f, (−1)q〉 ≤ η/2 is at most
δ.

The fact that ‖f‖U3 ≥ ε implies the existence of a quadratic phase (−1)q with 〈f, (−1)q〉 ≥ η was
proven by Samorodnitsky [Sam07]. We give an algorithmic version of his proof, starting with the
proofs of the results from additive combinatorics contained therein.

Note that ‖f‖8U3 is simply the expected value of the product
∏
ω∈{0,1}3 f(x + ω · h) for random

x, h1, h2, h3 ∈ Fn2 . Hence, Lemma 2.1 implies that ‖f‖U3 can be easily estimated by sampling
sufficiently many values of x, h1, h2, h3 and taking the average of the products for the samples.

Corollary 4.2 By making O((1/γ2) · log(1/δ)) queries to f , one can obtain an estimate Û such
that

P
[
| ‖f‖U3 − Û | > γ

]
≤ δ.

The main algorithm begins by checking if Û ≥ 3ε/4 and rejects if this is not the case. If Û ≥ 3ε/4,
then the above claim implies that ‖f‖U3 ≥ ε/2 with high probability. So our algorithm will actually
return a q with correlation η(ε′) with ε′ = ε/2. We shall ignore this and just use ε in the sequel for
the sake of readability.

4.1 Picking large Fourier coefficients in derivatives

The first step of the proof in [Sam07] is to find a choice function ϕ : Fn2 → Fn2 which is “somewhat
linear”. The choice function is used to pick a Fourier coefficient for the derivative fy. The intuition
is that if f were indeed a quadratic phase of the form (−1)〈x,Mx〉, then

fy(x) = f(x)f(x+ y) = (−1)〈x,(M+MT)y〉 · (−1)〈y,My〉 .

Thus, the largest Fourier coefficient (with absolute value 1) would be f̂y((M+MT)y). Hence, there

is a function ϕ(y)
def
= (M +MT)y, which is given by multiplying y by a symmetric matrix M +MT ,

which selects a large Fourier coefficient for fy. The proof attempts to construct such a symmetric
matrix for any f with ‖f‖U3 ≥ ε.
Expanding the U3 norm and using Hölder’s inequality gives the following lemma.

Lemma 4.3 (Corollary 6.6 [Sam07]) Suppose that f : Fn2 → {−1, 1} is such that ‖f‖U3 ≥ ε.
Then

E
x,y

∑
α,β

f̂x
2
(α) · f̂y

2
(β) · f̂x+y

2
(α+ β)

 ≥ ε16.

10

Choosing a random function ϕ(x) = α with probability f̂x
2
(α) satisfies

P
x,y

[ϕ(x) + ϕ(y) = ϕ(x+ y)] =
∑
α,β

f̂x
2
(α) · f̂y

2
(β) · f̂x+y

2
(α+ β).

Thus, when ‖f‖U3 ≥ ε , the above lemma gives that

P
ϕ,x,y

[ϕ(x) + ϕ(y) = ϕ(x+ y)] = E
x,y

∑
α,β

f̂x
2
(α) · f̂y

2
(β) · f̂x+y

2
(α+ β)

 ≥ ε16.

The proof in [Sam07] works with a random function ϕ as described above. We define a slightly
different random function ϕ, since we need its value at any input x to be samplable in time
polynomial in n. Thus, we will only sample α for which the corresponding Fourier coefficients are
sufficiently large. In particular, we need an algorithmic version of the decomposition of a function
into linear phases, which follows from the Goldreich-Levin theorem.

Theorem 4.4 (Goldreich-Levin [GL89]) Let γ, δ > 0. There is a randomized algorithm
Linear-Decomposition, which, given oracle access to a function f : Fn2 → {−1, 1}, runs in time
O(n2 log n · poly(1/γ, log(1/δ))) and outputs a decomposition

f =
k∑
i=1

ci · (−1)〈αi,x〉 + f ′

with the following guarantee:

• k = O(1/γ2).

• P
[
∃i |ci − f̂(αi)| > γ/2

]
≤ δ.

• P
[
∀α such that |f̂(α)| ≥ γ, ∃i αi = α

]
≥ 1− δ.

Remark 4.5 Note that the above is a slightly non-standard version of the Goldreich-Levin theorem.
The usual one makes O(n log n·poly(1/γ, log(1/δ))) queries to f (where each query takes O(n) time
to write down) and guarantees that for any specific α such that |f̂(α)| ≥ γ, there exists an i with
αi = α, with probability at least 1− δ. By repeating the algorithm O(log(1/γ)) times, we can take
a union bound over all α as in the last property guaranteed by the above theorem.

It follows that in order to sample ϕ(x), instead of sampling from all Fourier coefficients of fx, we
only sample from the large Fourier coefficients using the above decomposition. We shall denote the
quantity ε16/4 that appears below by ρ.

Lemma 4.6 There exists a distribution over functions ϕ : Fn2 → Fn2 such that ϕ(x) is independently
chosen for each x ∈ Fn2 , and is samplable in time O(n3 log n · poly(1/ε)) given oracle access to f .
Moreover, if ‖f‖U3 ≥ ε, then we have

P
ϕ

[
P
x,y

[ϕ(x) + ϕ(y) = ϕ(x+ y)] ≥ ε16/4

]
≥ ε16/4.

11

Proof: We sample ϕ(x) at each input x as follows. We run Linear-Decomposition for fx with
γ = δ = ε16/18 and sample ϕ(x) to be αi with probability c2

i . If
∑
c2
i < 1, we answer arbitrarily

with the remaining probability. By Theorem 4.4, with probability at least 1 − 2γ over the run
of Linear-Decomposition, each α ∈ Fn2 with |f̂x(α)| ≥ γ is sampled with probability at least

(f̂x(α)− γ/2)2 ≥ f̂x
2
(α)− γ. Let [z]0 denote max{0, z}. We have

P
ϕ,x,y

[ϕ(x) + ϕ(y) = ϕ(x+ y)] ≥ E
x,y

∑
α,β

(1− 2γ)3
[
f̂x

2
(α)− γ

]
0

[
f̂y

2
(β)− γ

]
0

[
f̂x+y

2
(α+ β)− γ

]
0


≥ ε16 − 9γ,

which by our choice of parameters is at least ε16/2. This immediately implies that
Pϕ
[
Px,y [ϕ(x) + ϕ(y) = ϕ(x+ y)] ≥ ε16/4

]
≥ ε16/4.

Thus, with probability ρ = ε16/4 one gets a good ϕ which is somewhat linear. This ϕ is then
used to recover an appropriate quadratic phase. We will actually delay sampling the function on
all points and only query ϕ(x) when needed in the construction of the quadratic phase (which we
show can be done by querying ϕ on polynomially many points). Consequently, the construction
procedures that follow will only work with a small probability, i.e. when we are actually working
with a good ϕ. However, we can test the quadratic phase we obtain in the end and repeat the
entire process if the phase does not correlate well with f . Also, note that we store the (x, ϕ(x))
already sampled in a data structure and re-use them if and when the same x is queried again.

4.2 Applying the Balog-Szemerédi-Gowers theorem

The next step of the proof uses ϕ to obtain a linear choice function Dx for some matrix D. This
step uses certain results from additive combinatorics, for which we develop algorithmic versions
below. In particular, it applies the Balog-Szemerédi-Gowers (BSG) theorem to the set

Aϕ
def
=
{

(x, ϕ(x)) : |f̂x(ϕ(x))| ≥ γ
}
,

where we will choose γ = O(ε16) as in Lemma 4.6.

For any set A ∈ {0, 1}n that is somewhat linear, the Balog-Szemerédi-Gowers theorem allows us to
find a subset A′ ⊆ A which is large and does not grow too much when added to itself. We state
the following version from [BS94], which is particularly suited to our application.

Theorem 4.7 (Balog-Szemerédi-Gowers Theorem [BS94]) Let A ⊆ Fn2 be such that
Pa1,a2∈A [a1 + a2 ∈ A] ≥ ρ. Then there exists A′ ⊆ A, |A|′ ≥ ρ|A| such that |A′ +A′| ≤ (2/ρ)8|A|.

We are interested in finding the set A′ϕ which results from applying the above theorem to the set
Aϕ. However, since the set A′ϕ is of exponential size, we do not have time to write down the entire
set (even if we can find it). Instead, we will need an efficient algorithm for testing membership in
the set. To get the required algorithmic version, we follow the proof by Sudakov, Szemerédi and
Vu [SSV05] and the presentation by Viola [Vio07].

In this proof one actually constructs a graph on the set Aϕ and then selects a subset of the
neighborhood of a random vertex as A′ϕ, after removing certain problematic vertices. It can be
deduced that the set A′ϕ can be found in time polynomial in the size of the graph. However, as

12

discussed above, this is still exponential in n and hence inadequate for our purposes. Below, we
develop a test to check if a certain element (x, ϕ(x)) is in A′ϕ.

We first define a (random) graph on the vertex set 1 {(x, ϕ(x)) | x ∈ Fn2} and edge set Eγ for γ > 0,
defined as

Eγ
def
=

(x, ϕ(x)), (y, ϕ(y))

∣∣∣∣∣∣
ϕ(x) + ϕ(y) = ϕ(x+ y)

and

|f̂x(ϕ(x))|, |f̂y(ϕ(y))|, |f̂x+y(ϕ(x+ y))| ≥ γ

 .

Lemma 4.6 implies that over the choice of ϕ, with probability at least ρ = ε16/4, the graph defined
with γ = ε16/18, has density at least ρ. However, if a ϕ is good for a certain value of γ, then it is
also good for all values γ′ ≤ γ (as the density of the graph can only increase). For the remaining
argument, we will assume that we have sampled ϕ completely and that it is good. We will later
choose γ ∈ [ε16/180, ε16/18].

Since we will be examining the properties of certain neighborhoods in this graph, we first write a
procedure to test if two vertices in the graph have an edge between them.

Edge-Test (u,v,γ)

- Let u = (x, ϕ(x)) and v = (y, ϕ(y)).

- Estimate |f̂x(ϕ(x))|, |f̂y(ϕ(y))| and |f̂x+y(ϕ(x+ y))| using t samples for each.

- Answer 1 if ϕ(x)+ϕ(y) = ϕ(x+y) and all estimates are at least γ, and 0 otherwise.

Unfortunately, since we are only estimating the Fourier coefficients, we will only be able to test
if two vertices have an edge between them with a slight error in the threshold γ, and with high
probability. Thus, if the estimate is at least γ, we can only say that with high probability, the
Fourier coefficient must be at least γ−γ′ for a small error γ′. This leads to the following guarantee
on Edge-Test.

Claim 4.8 Given γ′, δ > 0, the output of Edge-Test (u, v, γ) with t = O(1/γ′2 · log(1/δ)) queries,
satisfies the following guarantee with probability at least 1− δ.

• Edge-Test(u, v, γ) = 1 =⇒ (u, v) ∈ Eγ−γ′.

• Edge-Test(u, v, γ) = 0 =⇒ (u, v) /∈ Eγ+γ′.

Proof: The claim follows immediately from Lemma 2.1 and the definitions of Eγ−γ′ , Eγ+γ′ .

The approximate nature of the above test introduces a subtle issue. Note that the outputs 1 and 0
of the test correspond to the presence or absence of edges in different graphs with edge sets Eγ−γ′

and Eγ+γ′ . The edge sets of the two graphs are related as Eγ+γ′ ⊆ Eγ−γ′ . But the proof of Theorem
4.7 uses somewhat more complicated subsets of vertices, which are defined using both upper and
lower bounds on the sizes of certain neighborhoods. Since the upper and lower bounds estimated
using the above test will hold for slightly different graphs, we need to be careful in analyzing any
algorithm that uses Edge-Test as a primitive.

1Since ϕ is random, the vertex set of the graph as defined is random. However, since ϕ is a function, the vertex
set is isomorphic to Fn

2 and one may think of the graph as being defined on a fixed set of vertices with edges chosen
according to a random process.

13

We now return to the argument as presented in [SSV05]. It considers the neighborhood of a random
vertex u and removes vertices that have too few neighbors in common with other vertices in the
graph. Let the size of the vertex set be N = 2n. For a vertex u, we define the following sets:

N(u)
def
= {v : (u, v) ∈ Eγ}

S(u)
def
=

{
v ∈ N(u) : P

v1

[
v1 ∈ N(u) and |N(v) ∩N(v1)| ≤ ρ3N

]
≥ ρ2

}
=

{
v ∈ N(u) : P

v1

[
v1 ∈ N(u) and P

v2
[v2 ∈ N(v) ∩N(v1)] ≤ ρ3

]
> ρ2

}
T (u)

def
= N(u) \ S(u)

=

{
v ∈ N(u) : P

v1

[
v1 ∈ N(u) and P

v2
[v2 ∈ N(v) ∩N(v1)] ≤ ρ3

]
≤ ρ2

}
It is shown in [SSV05] (see also [Vio07]) that if the graph has density ρ, then picking A′ϕ = T (u)
for a random vertex u is a good choice2.

Lemma 4.9 Let the graph with edge set Eγ have density at least ρ and let A′ϕ = T (u) for a random
vertex u. Then, with probability at least ρ/2 over the choice of u, the set A′ϕ satisfies∣∣A′ϕ∣∣ ≥ ρN and

∣∣A′ϕ +A′ϕ
∣∣ ≤ (2/ρ)8N.

We now translate the condition for membership in the set T (u) into an algorithm. Note that we
perform different edge tests with different thresholds, the values of which will be chosen later.

BSG-Test (u, v, γ1, γ2, γ3, ρ1, ρ2) (Approximate test to check if v ∈ T (u))

- Let u = (x, ϕ(x)) and v = (y, ϕ(y)).

- Sample (z1, ϕ(z1)), . . . , (zr, ϕ(zr)).

- For each i ∈ [r], sample (w
(i)
1 , ϕ(w

(i)
1)), . . . , (w

(i)
s , ϕ(w

(i)
s)).

- If Edge-Test (u,v,γ1) = 0, then output 0.

- For i ∈ [r], j ∈ [s], let

Xi = Edge-Test ((x, ϕ(x)), (zi, ϕ(zi)), γ2)

Yij = Edge-Test
(

(y, ϕ(y)),
(
w

(i)
j , ϕ

(
w

(i)
j

))
, γ3

)
Zij = Edge-Test

(
(zi, ϕ(zi)),

(
w

(i)
j , ϕ

(
w

(i)
j

))
, γ3

)
- For each i, take Bi = 1 if 1

s

∑
j Yij · Zij ≤ ρ1 and 0 otherwise.

- Answer 1 if 1
r

∑
iXi ·Bi ≤ ρ2 and 0 otherwise.

2Note that here we are choosing A′ϕ to be the neighborhood of any vertex in the graph, instead of vertices in Aϕ.
However, this is not a problem since the only vertices with non-empty neighborhoods are the ones in Aϕ.

14

Choice of parameters for BSG-Test: We shall choose the parameters for the above test as
follows. Recall that ρ = ε16/4. We take ρ1 = 21ρ3/20 and ρ2 = 19ρ2/20. Given an error parameter
δ, we take r and s to be poly(1/ρ, log(1/δ)), so that with probability at least 1 − δ, the error in
the last two estimates is at most ρ3/100. Also, by using poly(1/ρ, log(1/δ)) samples in each call to
Edge-Test, we can assume that the error in all estimates used by Edge-Test is at most ρ3/100.

To choose γ1, γ2, γ3, we divide the interval [ε16/180, ε16/18] into 4/ρ2 consecutive sub-intervals of
size ρ3/20 each. We then randomly choose a sub-interval and choose positive parameters γ, µ so
that γ − µ and γ + µ are endpoints of this interval. We set γ1 = γ3 = γ + µ/2 and γ2 = γ − µ/2.

To analyze BSG-Test, we “sandwich” the elements on which it answers 1 between a large set and
a set with small doubling.

Lemma 4.10 Let δ > 0 and parameters ρ1, ρ2, r, s be chosen as above. Then for every u = (x, ϕ(x))

and every choice of γ1, γ2, γ3 as above, there exist two sets A
(1)
ϕ (u) ⊆ A(2)

ϕ (u), such that the output
of BSG-Test satisfies the following with probability at least 1− δ.

• BSG-Test(u, v, γ1, γ2, γ3, ρ1, ρ2) = 1 =⇒ v ∈ A(2)
ϕ (u).

• BSG-Test(u, v, γ1, γ2, γ3, ρ1, ρ2) = 0 =⇒ v /∈ A(1)
ϕ (u).

Moreover, with probability ρ3/24 over the choice of u and γ1, γ2, γ3, we have

|A(1)
ϕ (u)| ≥ (ρ/6) ·N and |A(2)

ϕ (u) +A(2)
ϕ (u)| ≤ (2/ρ)8 ·N.

Proof: To deal with the approximate nature of Edge-Test, we define the following sets:

Nγ(u)
def
= {v : (u, v) ∈ Eγ}

T (u, γ1, γ2, γ3, ρ1, ρ2)
def
=

{
v ∈ Nγ1(u) : P

v1

[
v1 ∈ Nγ2(u) & P

v2
[v2 ∈ Nγ3(v) ∩Nγ3(v1)] ≤ ρ1

]
≤ ρ2

}
Going through the definitions and recalling that Eγ ⊆ Eγ−γ′ for γ′ > 0, it can be checked
that the sets T (u, γ1, γ2, γ3, ρ1, ρ2) are monotone in the various parameters. In particular, for
γ′1, γ

′
2, γ
′
3, ρ
′
1, ρ
′
2 > 0

T (u, γ1, γ2, γ3, ρ1, ρ2) ⊆ T (u, γ1 − γ′1, γ2 + γ′2, γ3 − γ′3, ρ1 − ρ′1, ρ2 + ρ′2).

Recall that we have γ1 = γ3 = γ + µ/2 and γ2 = γ − µ/2, where [γ − µ, γ + µ] is a sub-interval of
[ε16/180, ε16/18] of length ρ3/20.

We define the sets A
(1)
ϕ (u) and A

(2)
ϕ (u) as below.

A(1)
ϕ (u)

def
= T (u, γ + µ, γ − µ, γ + µ, 11ρ3/10, 9ρ2/10)

A(2)
ϕ (u)

def
= T (u, γ, γ, γ, ρ3, ρ2)

By the monotonicity property noted above, we have that A
(1)
ϕ (u) ⊆ A(2)

ϕ (u). Also, by the choice of
parameters r, s and the number of samples in Edge-Test, we know that with probability 1 − δ,
the error in all estimates used in BSG-Test is at most ρ3/100. Hence, we get that with probability

at least 1 − δ, if BSG-Test answers 1, then the input is in A
(2)
ϕ and if BSG-Test answers 0, then

it is not in A
(1)
ϕ . It remains to prove the bounds on the size and doubling of these sets.

15

By our choice of parameters, A
(2)
ϕ (u) is the same set as the one defined in Sudakov et al. [SSV05].

They show that if u is such that |A(2)
ϕ (u)| ≥ 3 · (ρ/2)2N , then |A(2)

ϕ (u) +A
(2)
ϕ (u)| ≤ (2/ρ)8 ·N (see

Lemma 3.2 in [Vio07] for a simplified proof of the version mentioned here). To show the lower

bound on the size of A
(2)
ϕ (u), we will show that in fact with probability at least ρ3/24 over the

choice of u and γ1, γ2, γ3, we will have |A(1)
ϕ (u)| ≥ (ρ/6) ·N . Since A

(1)
ϕ (u) ⊆ A

(2)
ϕ (u), this suffices

for the proof.

We consider a slight modification of the argument of [SSV05], showing an upper bound on the
expected size of the set S′(u) defined as

S′(u)
def
= Nγ+µ(u) \ T (u, γ + µ, γ − µ, γ + µ, 11ρ3/10, 9ρ2/10)

=

{
v ∈ Nγ+µ(u) : P

v1

[
v1 ∈ Nγ−µ(u) & P

v2
[v2 ∈ Nγ+µ(v) ∩Nγ+µ(v1)] ≤ 11ρ3/10

]
≥ 9ρ2/10

}
.

We know from Lemma 4.6 that since γ + µ ≤ ε16/18, the quantity Eu [|Nγ+µ(u)|], which is the
average degree of the graph, is at least ρN (assuming that we are working with a good function
ϕ). Combining this with an upper bound on Eu [|S′(u)|] will give the required lower bound on the

size of A
(1)
ϕ (u) = T (u, γ + µ, γ − µ, γ + µ, 11ρ3/10, 9ρ2/10).

We call a pair (v, v1) bad if |Nγ+µ(v) ∩Nγ+µ(v)| ≤ 11ρ3N/10. We need the following bound.

Claim 4.11 There exists a choice for the sub-interval [γ − µ, γ + µ] of length ρ3/20 in
[ε16/180, ε16/18] such that

E
u

[# {bad pairs (v, v1) : v ∈ Nγ+µ(u) & v1 ∈ Nγ−µ(u)}] ≤ 3ρ3N2/5

We first prove Lemma 4.10 assuming the claim. From the definition of S′(u),

#{bad pairs (v, v1) : v ∈ Nγ+µ(u) & v1 ∈ Nγ−µ(u)} ≥ |S′(u)| · (9ρ2N/10).

Claim 4.11 gives Eu [|S′(u)|] ≤ (3ρ3N2/5)/(9ρ2N/10) = (2ρ/3)N , for at least one choice of the
interval [γ−µ, γ+µ]. Since there are 4/ρ2 choices for the sub-interval, this happens with probability
at least ρ2/4.

For this choice of γ and µ (and hence of γ1, γ2, γ3), we also have Eu [|Nγ+µ(u)|] ≥ ρN . Since

S′(u) = Nγ+µ(u)\A(1)
ϕ , we get that Eu

[
|A(1)

ϕ |
]
≥ ρN−(2ρ/3)N = (ρ/3)N . Hence, with probability

at least ρ/6 over the choice of u, |A(1)
ϕ | ≥ (ρ/6)N . Thus, we obtain the desired outcome with

probability at least ρ3/24 over the choice of u and γ1, γ2, γ3.

Proof of Claim 4.11: We begin by observing that the expected number of bad pairs (v, v1)
such that v ∈ Nγ+µ(u) & v1 ∈ Nγ−µ(u) is equal to

Eu [# {bad pairs (v, v1) : v ∈ Nγ+µ(u) & v1 ∈ Nγ+µ(u)}]
+Eu [# {bad pairs (v, v1) : v ∈ Nγ+µ(u) & v1 ∈ Nγ−µ(u) \Nγ+µ(u)}] .

Note that for each of the
(
N
2

)
choices for v, v1, if they form a bad pair, then each u is in Nγ+µ(v)∩

Nγ+µ(v1) with probability at most 11ρ3/10. Hence, the first term is at most (11ρ3/20)N2. Also,
the second term is at most

N · E
u

[|Nγ−µ(u) \Nγ+µ(u)|] = N ·
(
E
u

[|Nγ−µ(u)|]− E
u

[|Nγ+µ(u)|]
)

We know that Eu [|Nγ(u)|] is monotonically decreasing in γ. Since it is at most N for γ = ε16/180,
there is at least one interval of size ρ3/20 in [ε16/180, ε16/18], where the change is at most ρ3N/20.
Taking γ + µ and γ − µ to be the endpoints of this interval finishes the proof.

16

4.3 Obtaining a linear choice function

Using the subset given by the Balog-Szemerédi-Gowers theorem, one can use the somewhat linear
choice function ϕ to find an linear transformation x 7→ Tx which also selects large Fourier coeffi-

cients in derivatives. In particular, it satisfies Ex
[
f̂x

2
(Tx)

]
≥ η for some η = η(ε). This map T

can then be used to find an appropriate quadratic phase.

In this subsection, we give an algorithm for finding such a transformation, using the procedure
BSG-Test developed above. In the lemma below, we assume as before that ϕ is a good function
satisfying the guarantee in Lemma 4.6. We also assume that we have chosen a good vertex u and
parameters γ1, γ2, γ3 satisfying the guarantee in Lemma 4.10.

Lemma 4.12 Let ϕ be as above and δ > 0. Then there exists an η = exp(−1/εC) and an algorithm
which makes O(n2 log n · poly(1/η, log(1/δ))) calls to BSG-Test and uses additional running time
O(n3) to output a linear map T or the symbol ⊥. If BSG-Test is defined using a good u and
parameters γ1, γ2, γ3 as above, then with probability at least 1 − δ the algorithm outputs a map T

satisfying Ex
[
f̂x

2
(Tx)

]
≥ η.

Proof: Let t = 4n2 + log(10/δ). We proceed by first sampling K = 100t/ρ elements (x, ϕ(x))
and running BSG-Test (u, ·) on each of them with parameters as in Lemma 4.10 and δ′ = δ/(5K).
We retain only the points (x, ϕ(x)) on which BSG-Test outputs 1. Since δ′ = δ/(5K), BSG-Test
does not satisfy the guarantee of Lemma 4.10 on some query with probability at most δ/5. We
assume this does not happen for any of the points we sampled.

If BSG-Test outputs 1 on fewer than t of the queries, we stop and output ⊥. The following claim
shows that the probability of this happening is at most δ/5. In fact, the claim shows that with

probability 1 − δ/5 there must be at least t samples from A
(1)
ϕ itself, on which we assumed that

BSG-Test outputs 1.

Claim 4.13 With probability at least 1 − δ/5, the sampled points contain at least t samples from

A
(1)
ϕ .

Proof: Since |A(1)
ϕ | ≥ ρN/6, the expected number of samples from A

(1)
ϕ is at least ρK/6. By a

Hoeffding bound, the probability that this number is less than t is at most exp(−Ω(ρK)) ≤ δ/5 if
ρK = Ω(log(1/δ)).

Note that conditioned on being in A
(1)
ϕ , the sampled points are in fact uniformly distributed in

A
(1)
ϕ . We show that then they must span a subspace of large dimension, and that their span must

cover at least half of A
(1)
ϕ .

Claim 4.14 Let z1, . . . , zt ∈ A(1)
ϕ be uniformly sampled points. Then for t ≥ 4n2 + O(log(1/δ)) it

is true with probability 1− δ/5 that

• | < z1, . . . , zt > ∩A(1)
ϕ | ≥ (1/2)|A(1)

ϕ |

• dim(< z1, . . . , zt >) ≥ n− log(12/ρ).

17

Proof: For the first part, we consider the span < z1, . . . , zt >, which is a subspace of Fn2 . The

probability that it has small intersection with A
(1)
ϕ is∑

|S∩A(1)
ϕ |≤|A

(1)
ϕ |/2

P [z1, . . . , zt ∈ S] · P [< z1, . . . , zt > = S | z1, . . . , zt ∈ S] ,

where the sum is taken over all subspaces S of Fn2 . Since |S ∩ A(1)
ϕ | ≤ |A(1)

ϕ |/2, we have that
P [z1, . . . , zt ∈ S] ≤ (1/2)t. Thus, the required probability bounded above by∑

|S∩A(1)
ϕ |≤|A

(1)
ϕ |/2

(1/2)t · 1 ≤ 2−tO(24n2
).

The last bound uses the fact that the number of subspaces of F2n
2 is O(24n2

). Thus, for t =
4n2 + log(10/δ), the probability is at most δ/10.

We now bound the probability that the sampled points z1, . . . , zt span a subspace of dimension at

most n − k. The probability that a random of A
(1)
ϕ lies in a specific subspace of dimension n − k

is at most (2−k/(ρ/6)). Hence, the probability that all t points lie in any subspace of dimension
n− k is bounded above by(

2−k

ρ/6

)t
·#{subspaces of dim n− k} ≤

(
2−k

ρ/6

)t
· 2n(n−k).

For t ≥ n2 +O(log(1/δ)) and k = log(12/ρ), this probability is at most δ/10. Hence the dimension
of the span of the sampled vectors is at least n− log(12/ρ) with high probability.

Next, we upper bound the dimension of the span of the retained points (on which BSG-Test

answered 1). By the assumed correctness of BSG-Test, we get that all the points must lie inside

A
(2)
ϕ . Applying the Freiman-Ruzsa Theorem (Theorem 2.4), it follows that

| < A(2)
ϕ > | ≤ exp(1/ρC)N.

The above implies that all the points are inside a space of dimension at most n+ log(1/ν), where
we have written ν = exp(−1/ρC). From here, we can proceed in a similar fashion to [Sam07].

Let V denote the span of the retained points and let v1, . . . , vr be a basis for V . We can add
vectors to complete it to v1, . . . , vs so that the projection onto the first n coordinates has full rank.
Let V ′ =< v1, . . . , vs >. We can also assume, by a change of basis, that for i ≤ n we have the
coordinate vectors vi = (ei, ui). This can all be implemented by performing Gaussian elimination,
which takes time O(n3).

Consider the 2n × s matrix with v1, . . . , vs as columns. By the previous discussion, this matrix is
of the form

P =

(
I 0
T U

)
,

where I is the n×n identity matrix, and T and U are n×n and n× (s−n) matrices, respectively.

By Claim 4.14, we know that v′ contains |A(1)
ϕ |/2 ≥ (ρ/12)N vectors of the form (x, ϕ(x))T . For

each such vector, there exists a w ∈ Fs2 such that P · w = (x, ϕ(x))T . Because of the form of P ,
we must have that w = (x, z) for z ∈ Fs−n2 . Thus, we get that for each vector (x, ϕ(x)), we in fact
have ϕ(x) = Tx+ Uz for some z ∈ Fs−n2 .

18

Therefore, for at least one z0 ∈ Fs−n2 and y0 = Uz0 we find that

P
x∈Fn

2

[ϕ(x) = Tx+ y0] ≥ (ρ/12) · 2−(s−n).

We next upper bound s − n. Note that s ≤ r + k since by Claim 4.14, V had dimension at least

n − k for k = log(12/ρ). Also, we know that r ≤ n + log(1/ν) by the bound on | < A
(2)
ϕ > |,

implying that s ≤ n+ log(12/ρ) + log(1/ν). We conclude that 2−(s−n) ≥ (ρ/12)ν.

Moreover, for each element of the form (x, ϕ(x)) ∈ A(1)
ϕ , we know that |f̂x(ϕ(x))| ≥ γ ≥ ε16/180.

This implies that

E
x∈Fn

2

[
f̂x

2
(Tx+ y0)

]
≥ γ2 · (ρ/12) · (ρν/12).

Samorodnitsky shows that we can in fact take y0 to be 0. In fact, he shows the following general
claim.

Claim 4.15 (Consequence of Lemma 6.10 [Sam07]) For any matrix T and y ∈ Fn2 ,

Ex∈Fn
2

[
f̂x

2
(Tx+ y)

]
≤ Ex∈Fn

2

[
f̂x

2
(Tx)

]
.

Thus, we simply output the matrix T constructed as above. For η = γ2ρ2ν/144, it satisfies

Ex∈Fn
2

[
f̂x

2
(Tx)

]
≥ η. Finally, we calculate the probability that the algorithm outputs ⊥ or outputs

a T not satisfying this guarantee. This can happen only when the guarantee on BSG-Test is not
satisfied for one of the sampled points, or when the guarantees in Claims 4.13 and 4.14 are not
satisfied. Since each of these happen with probability at most δ/5, the probability of error is at
most 3δ/5 < δ.

4.4 Finding a quadratic phase function

Once we have identified the linear map T above, the remaining argument is identical to the one in
[Sam07].

Equipped with T , one can find a symmetric matrix B with zero diagonal that satisfies a slightly
weaker guarantee. This step is usually referred to as the symmetry argument, and we shall encounter
a modification of it in Section 5. The only algorithmic steps used in the process are Gaussian
elimination and finding a basis for a subspace, which can both be done in time O(n3).

Lemma 4.16 (Proof of Theorem 2.3 [Sam07]) Let T be as above. Then in time O(n3) one

can find a symmetric matrix B with zero diagonal such that Ex∈Fn
2

[
f̂x

2
(Bx)

]
≥ η2.

Now that we have correlation of the derivative fx of the function with a truly linear map, it remains
to “integrate” this relationship to obtain that f itself correlates with a quadratic map. Following
Green and Tao, we shall henceforth refer to this part of the argument as the integration step.

Having obtained B above, we can find a matrix M such that M +MT = B. We take the quadratic
part of the phase function to be h(x) = (−1)〈x,Mx〉. The following claim helps establish the linear
part.

Lemma 4.17 (Corollary 6.4 [Sam07]) Let B and h be as above. Then there exists α ∈ Fn2 such

that |f̂h(α)| ≥ η2.

19

An appropriate α can be found using the algorithm Linear-Decomposition with parameter γ′ = η2

(by picking any element from the list it outputs). We take q(x) = 〈x,Mx〉+ 〈α, x〉+ c where (−1)c

is the sign of the coefficient for (−1)〈α,x〉 in the linear decomposition. The running time of this
step is O(n3 log n ·poly(1/η, log(1/δ))), where δ is the probability of error we want to allow for this
invocation of Linear-Decomposition.

Note that of all the steps involved in finding a quadratic phase, finding the linear part of the phase
is the only step for which running time depends exponentially on ε (since η = exp(−1/εΩ(1))). The
running time of all other steps depends polynomially on 1/ε.

4.5 Putting things together

We are now ready to finish the proof of Theorem 4.1.

Proof of Theorem 4.1: For the procedure Find-Quadratic the function ϕ(x) will be sampled
using Lemma 4.6 as required. We start with a random u = (x, ϕ(x)) and a random choice for the
parameters γ1, γ2, γ3 as described in the analysis of BSG-Test. We run the algorithm in Lemma
4.12 using BSG-Test with the above parameters and with error parameter 1/2.

If the algorithm outputs a quadratic form q(x), we estimate |〈f, (−1)q〉| using O((1/η4) · log2(ρ/δ))
samples. If the estimate is less than η2/2, or if the algorithm stopped with output ⊥ we discard q
and repeat the entire process. For a M to be chosen later, if we do not find a quadratic phase in
M attempts, we stop and output ⊥.

With probability ρ/2, all samples of ϕ(x) (sampled with error 1/n5) correspond to a good function
ϕ. Conditioned on this, we have a good choice of u and γ1, γ2, γ3 for BSG-Test with probability
ρ3/24. Conditioned on both the above, the algorithm in Lemma 4.12 finds a good transformation
with probability 1/2. Thus, for M = O((1/ρ4) · log(1/δ)), the algorithm stops in M attempts with
probability at least 1 − δ/2. By choice of the number of samples above, the probability that we
estimate |〈f, (−1)q〉| incorrectly at any step is at most δ/2M . Thus, with probability at least 1− δ,
we output a good quadratic phase.

One call to the algorithm in Lemma 4.12 requires O(n2) calls to BSG-Test, which in turn requires
poly(1/ε) calls to Linear-Decomposition, each taking time O(n2 log n). This dominates the
running time of the algorithm, which is O(n4 log n · poly(1/ε, 1/η, log(1/δ))).

5 A refinement of the inverse theorem

In this section we shall work with a number of refinements of the inverse theorem as stated in
Theorem 2.6. For the purposes of the preliminary discussion we shall think of p being any prime,
and later specialize to the case p = 2.

It was observed (but not exploited) by Green and Tao [GT08] that a slightly stronger form of the
inverse theorem holds. If V is a subspace of Fnp and y ∈ Fnp , then one can define a seminorm
‖.‖u3(y+V) on functions from Fnp to C by setting

‖f‖u3(y+V) = sup
q
|Ex∈y+V f(x)ω−q(x)|,

where the supremum is taken over all quadratic forms q on y+V and ω denotes a pth root of unity.
This semi-norm measures the correlation over a coset of the subspace V . We shall be interested in

20

the co-dimension of the subspace, which we shall denote by codV . With this notation, the inverse
theorem in [GT08] can be stated as follows.

Theorem 5.1 (Local Inverse Theorem for U3 [GT08]) Let p > 2, and let f : Fnp → C be a
function such that ‖f‖∞ ≤ 1 and ‖f‖U3 ≥ ε. Then there exists a subspace V of Fnp such that

codV ≤ ε−C and
Ey∈V ∗‖f‖u3(y+V) ≥ εC .

Here we have denoted the set of coset representatives of V by V ∗, so that V ⊕ V ∗ = Fn2 . Actually,
the theorem as usually stated involves an averages over the whole of Fnp as opposed to just V ∗,
but the result can be obtained with this modification without difficulty by averaging over coset
representatives throughout the proof.

One can deduce the usual inverse theorem from this version without too much effort: by an aver-
aging argument, there must exist y such that f correlates well on y+V with some quadratic phase
function ωq; this function can be extended to a function on the whole of Fnp in many different ways,
and a further averaging argument yields the usual bounds. However, extending the quadratic phase
results in an exponential loss in correlation. (See, for example, Proposition 3.2 in [GT08].)

It turns out that, as Green and Tao remark, an even more precise theorem holds. The result as
stated tells us that for each y we can find a local quadratic phase function ωqy defined on y + V
such that the average of |Ex∈y+V f(x)ωqy(x)| is at least εC . However, it is actually possible to do
this in such a way that the quadratic parts of the quadratic phase functions qy are the same. More
precisely, it can be done in such a way that each qy(x) has the form q(x− y) + ly(x− y) for a single
quadratic function q : V → Fp (that is independent of y) and some Freiman 2-homomorphisms
ly : V → Fp.
This parallel correlation was heavily exploited by Gowers and the second author [GW10a, GW10b]
in a series of papers on what they called the true complexity of a system of linear equations, leading
to radically improved bounds compared with the original approach in [GW10c], which was based
on an ergodic-style decomposition theorem due to Green and Tao [Gre07].

For p = 2, the equivalent of Theorem 5.1 follows directly neither from Green and Tao’s nor Samorod-
nitsky’s approach but instead requires a merging of the two. The Green-Tao approach is not directly
applicable since the so-called symmetry argument in that paper uses division by 2, while Samorod-
nitsky’s approach loses the local information after an application of Freiman’s theorem. Section 5
is dedicated to showing how to obtain this local correlation3 in the case where the characteristic is
equal to 2. We shall therefore restrict our attention to this case for the remainder of the discussion,
bearing in mind that it applies almost verbatim to general p.

In order to be able to refer to the parallel correlation property more concisely, we shall use the
concept of quadratic averages introduced in [GW10a]. As explained above, for each coset y+V, y ∈
V ∗, we can specify a quadratic phase qy(x) = q(x− y) + ly(x− y). We extend the definition of qy
to all y ∈ Fnp by setting them equal to qŷ where ŷ ∈ V ∗ is such that y ∈ ŷ + V . Now we can define
a quadratic average via the formula

Q(x) = Ey∈x−V (−1)qy(x).

3The term “local correlation” may be slightly confusing. It is often used to refer to the fact that in Z/NZ, no global
quadratic correlation with a quadratic phase can be guaranteed. Indeed, such a phase function must be restricted to
a Bohr set, or the correlation assumed to only take place on a long arithmetic progression, as in Gowers’s original
work. However, in Fn

p , the setting we are working in here, there should be no ambiguity.

21

Notice that the qy are the same whenever the y lie in the same coset of V . So in fact, since all the
qys occurring here are such that y ∈ x+ V , they are all identical. Thus the value of the quadratic
average only depends on the coset of V that x lies in. More precisely, we can write

Q(x) =
∑
y∈V ∗

1y+V (x)(−1)qy(x).

This tells us that at most |V ∗| many linear phases are needed to specify the quadratic average.

Combining the Green-Tao approach with Samorodnitsky’s symmetry argument in characteristic
2, we shall obtain an algorithmic version of the analogue of the Local Inverse Theorem (Theorem
5.1) for p = 2. In order to use this result in our decomposition algorithm Theorem 3.1, we in fact
state it as an algorithm for finding a quadratic average Q(x) =

∑
y∈V ∗ 1y+V (x)(−1)qy(x), which has

correlation poly(ε) with the given function. Using this, Theorem 3.1 will then yield a decomposition
into poly(1/ε) quadratic averages.

Following [GW10c], we shall call the codimension of V the complexity of the quadratic average.
We will find quadratic averages with complexity poly(1/ε). Note that while this means that the
description of a quadratic average is still of size exp(1/ε), the different quadratic forms appearing
in a quadratic average only differ in the linear part.

Theorem 5.2 Given ε, δ > 0 and n ∈ N, there exist K,C = O(1) and a randomized algorithm
Find-QuadraticAverage running in time O(n4 log2 n · exp(1/εK) · log(1/δ)), which, given oracle
access to a function f : Fn2 → {−1, 1}, either outputs a quadratic average Q(x) of complexity
O(ε−C), or the symbol ⊥. The algorithm satisfies the following guarantee:

• If ‖f‖U3 ≥ ε, then with probability at least 1− δ it finds a quadratic average Q of complexity
O(ε−C) such that 〈f,Q〉 ≥ εC .

• The probability that the algorithm outputs a Q which has 〈f,Q〉 ≤ εC/2 is at most δ.

We briefly outline the key modifications in the proof that allow us to obtain this result. Recall that
in the previous section we only obtained correlation η = exp(1/εC) because we applied the Freiman-

Ruzsa theorem to the set A
(2)
ϕ : we were only able to assert that | < A

(2)
ϕ > | ≤ exp(1/εC)|A(2)

ϕ |.
Because we had correlation poly(ε) over A

(2)
ϕ , we obtained correlation exp(−1/εC) with the linear

function we defined on < A
(2)
ϕ >.

They key difference in the new argument, which borrows heavily from Green and Tao [GT08], is

that instead of looking for a subspace containing A
(2)
ϕ , which we previously used to find a linear

function, we will look for a subspace inside 4A
(2)
ϕ . Given the properties of A

(2)
ϕ , we will be able to

find such a subspace by an application of Bogolyubov’s lemma (described in more detail below),
with the property that the co-dimension of the subspace is poly(1/ε). We will also find a quadratic
form such that restricted to inputs from this subspace, it has correlation poly(1/ε) with the function
f . We shall then show (Lemma 5.18) how to extend this quadratic form to all the cosets of the
subspace, by adding a different linear form for each coset so that the correlation of the resulting
quadratic average is still poly(1/ε).

We begin by developing algorithmic version of some of the new ingredients in the proof.

22

5.1 An algorithmic version of Bogolyubov’s lemma

We follow Green and Tao in using a form of Bogolyubov’s lemma, which has become a standard
tool in arithmetic combinatorics. Bogolyubov’s lemma as it is usually stated allows one to find a
large subspace inside the 4-fold sumset of any given set of large size. We briefly remind the reader
of the relationship between sumsets and convolutions, which is used in the proof of the lemma.

For functions h1, h2 : Fn2 → R, we define their convolution as h1 ∗ h2(x)
def
= Ey [h1(y)h2(x− y)].

The Fourier transform diagonalizes the convolution operator, that is, ĥ1 ∗ h2(α) = ĥ1(α)ĥ2(α) for
any two functions h1, h2 and any α ∈ Fn2 , which is easy to verify from the definition. Also, if 1A is
the indicator function for a set A ⊆ Fn2 , then

1A ∗ 1A(x) = E
y

[1A(y) · 1A(x− y)] = |{(y1, y2) : y1, y2 ∈ A and y1 + y2 = x}| /2n.

In particular, 1A ∗ 1A is supported only on A+ A and gives the number of representations of x as
the sum of two elements in A. In general, the k-fold convolution is supported on the k-fold sumset.

The proof of Bogolyubov’s lemma constructs an explicit subspace by looking at the large Fourier
coefficients (using the Goldreich-Levin theorem) and shows that the 4-fold convolution is positive
on this subspace. Since we will actually apply this lemma not to a subset but to the output of a
randomized algorithm, we state it for an arbitrary function h and its convolution.

We will output a subspace V ⊆ Fn2 by specifying a basis for the space V ⊥
def
= {x : xT y = 0 ∀y ∈ V }.

Since (V ⊥)
⊥

= V , this will also give us a way of checking if x ∈ V : we simply test if xT y = 0 for
all basis vectors y of V ⊥.

Lemma 5.3 (Bogolyubov’s Lemma) There exists a randomized algorithm Bogolyubov with
parameters ρ and δ which, given oracle access to a function h : Fn2 → {0, 1} with Eh ≥ ρ, outputs
a subspace V 6 Fn2 (by giving a basis for V ⊥) of codimension at most O(ρ−3) such that with
probability at least 1− δ, we have h ∗ h ∗ h ∗ h(x) > ρ4/2 for all x ∈ V . The algorithm runs in time
n2 log n · poly(1/ρ, log(1/δ)).

Proof: We shall use the Goldreich-Levin algorithm Linear-Decomposition for the function h
with parameter γ = ρ3/2/4 and error δ to produce a list K = {α1, . . . , αk} of length k = O(γ−2) =
O(ρ−3). We take V to be the subspace {x ∈ Fn2 : 〈α, x〉 = 0 ∀α ∈ K} and output 〈K〉. Clearly
cod(V) ≤ |K|. We next consider the convolution

h ∗ h ∗ h ∗ h(x) =
∑
α

|ĥ(α)|4(−1)〈α,x〉 =
∑
α∈K
|ĥ(α)|4(−1)〈α,x〉 +

∑
α 6∈K
|ĥ(α)|4(−1)〈α,x〉.

If x ∈ V , then ∑
α∈K
|ĥ(α)|4(−1)〈α,x〉 +

∑
α 6∈K
|ĥ(α)|4(−1)〈α,x〉 ≥ |ĥ(0)|4 − sup

α/∈K
|ĥ(α)|2 · ρ

The final part of the guarantee in Theorem 4.4 states that the probability of a Fourier coefficient
being larger than γ and not being on our list K is at most δ. We conclude that with probability
at least 1− δ, the expression h ∗ h ∗ h ∗ h(x) is bounded below, for all x ∈ V , by

ρ4 − ρ · ρ3/2 ≥ ρ4/2,

and thus strictly positive.

23

We will, in fact, need a further twist of the above lemma. The function h to which will apply
Lemma 5.3 will be defined by the output of a randomized algorithm. Thus, h can be thought of
as a random variable, where we choose the value h(x) on each input x by running the randomized
algorithm. As in the case of BSG-Test, we will have the guarantee that there exist two sets
A(1) ⊆ A(2) and δ′ > 0 such that for each input x, with probability 1 − δ′ (over the choice of
h(x)) we have 1A(1)(x) ≤ h(x) ≤ 1A(2)(x). We will want to use this to conclude that for the entire
subspace V given by the algorithm Bogolyubov, V ⊆ 4A(2).

To argue this, it will be useful to consider the function h′ defined as h′
def
= min{1A(2) ,max{h, 1A(1)}}.

By definition, we always have that 1A(1)(x) ≤ h′(x) ≤ 1A(2)(x). Also, if for each x, we have with
probability 1− δ′ 1A(1)(x) ≤ h(x) ≤ 1A(2)(x), this means that for each x, P [h(x) 6= h′(x)] ≤ δ′. The
following claim gives the desired conclusion for the subspace given by the algorithm Bogolyubov.

Claim 5.4 Let h be a random function such that for δ′ > 0 and for sets A(1) ⊆ A(2) ⊆ Fn2 ,
we have that for every x with probability at least 1 − δ′, 1A(1)

(x) ≤ h(x) ≤ 1A(2)(x). Also, let
E1A(1) ≥ ρ. Let h′ = min{1A(2) ,max{h, 1A(1)}} Let V be the subspace returned by the algorithm
Bogolyubov when run with oracle access to h and error parameter δ. Then with probability at least
1− δ − δ′ · n2 log n · poly(1/ρ, log(1/δ)), we have that for all x ∈ V , 1A(2) ∗ 1A(2) ∗ 1A(2) ∗ 1A(2)(x) ≥
h′ ∗ h′ ∗ h′ ∗ h′(x) > ρ4/2. In particular, with above probability, V ⊆ 4A(2).

Proof: Consider the behavior of the algorithm Bogolyubov when run with oracle access to h′

instead of h. Since it is always true that h′ ≤ 1A(2) and E [h′] ≥ E [1A(1)] ≥ ρ, the algorithm outputs,
with probability 1 − δ, a subspace V such that for every x ∈ V , 1A(2) ∗ 1A(2) ∗ 1A(2) ∗ 1A(2)(x) ≥
h′ ∗h′ ∗h′ ∗h′(x) > ρ4/2. Thus, with probability 1−δ, it outputs a subspace V such that V ⊆ 4A(2).

Finally, we observe that the probability that the algorithm outputs different subspaces when run
with oracle access to h and h′ is small. The probability of having different outputs is at most the
probability that h and h′ differ on any of inputs queried by the algorithm Bogolyubov. Since it runs
in time n2 log n·poly(1/ρ, log(1/δ)), this probability is at most δ′·n2 log n·poly(1/ρ, log(1/δ)). Thus,
even when run with oracle access to h, with probability at least 1−δ−δ′·n2 log n·poly(1/ρ, log(1/δ)),
the algorithm Bogolyubov outputs a subspace V ⊆ 4A(2).

Next we require a version of Plünnecke’s inequality in order to deal with the size of iterated sumsets.
For a proof we refer the interested reader to [TV06], or the recent short and elegant proof by Petridis
[Pet11].

Lemma 5.5 (Plünnecke’s Inequality) Let B ⊆ Fn2 be such that |B + B| ≤ K|B| for some
K > 1. Then for any positive integer k, we have |kB| ≤ Kk|B|.

5.2 Finding a good model set

Again, as in Section 4 we may assume that ϕ is a good function satisfying the guarantee in Lemma
4.6. Recall that Aϕ = {(x, ϕ(x)) : x ∈ A}, where A was defined to be A = {x : |f̂x(ϕ(x))| ≥ γ}. We
will use the routine BSG-Test described in Section 4. We assume we have chosen a good vertex u
and parameters γ1, γ2, γ3 satisfying the guarantee in Lemma 4.10 for BSG-Test.

We will need to restrict the sets A
(1)
ϕ and A

(2)
ϕ given by Lemma 4.10 a bit more before we can apply

Bogolyubov’s lemma to find an appropriate subspace. Because the subspace sits inside the sumset

4A
(2)
ϕ , an element of the subspace is of the form (x1 +x2 +x3 +x4, ϕ(x1) +ϕ(x2) +ϕ(x3) +ϕ(x4)).

24

However, unlike tuples of the form (x, ϕ(x)), the second half of the tuple (ϕ(x1) +ϕ(x2) +ϕ(x3) +
ϕ(x4)) may not uniquely depend on the first (x1 + x2 + x3 + x4).

Since we will require this uniqueness property from our subspace, we restrict our sets to get new

sets A
′(1)
ϕ ⊆ A

′(2)
ϕ . These restrictions will satisfy the following property: for all tuples x1, x2, x3, x4

and x′1, x
′
2, x
′
3, x
′
4 satisfying x1+x2+x3+x4 = x′1+x′2+x′3+x′4, we also have ϕ(x1)+ϕ(x2)+ϕ(x3)+

ϕ(x4) = ϕ(x′1) + ϕ(x′2) + ϕ(x′3) + ϕ(x4)′. In other words, ϕ is a Freiman 4-homomorphism on the

first n coordinates of A
′(2)
ϕ . We will, in fact, need to ensure that it is a Freiman 8-homomorphism

in order to obtain a truly linear map.

We shall obtain these restrictions by intersecting the original sets with a subspace, which will
be defined using a random linear map Γ : Fn2 → Fm2 and a random element c ∈ Fm2 (for m =
O(log(1/ε))). This step is often called finding a good model, and appears (in non-algorithmic
form) as Lemma 6.2 in [GT08]. We shall apply the restriction Γ(ϕ(x)) = c to the elements v =
(x, ϕ(x)) on which BSG-Test outputs 1. Since we assume we have already chosen good parameters
u, ρ1, ρ2, γ1, γ2, γ3 for the routine BSG-Test, we hide these parameters in the description of the
procedure below.

Model-Test (v, Γ, c)

- Let v = (y, ϕ(y)).

- Answer 1 if BSG-Test returns 1 on v and Γ(ϕ(y)) = c, and 0 otherwise.

We shall first show that there exist good choices of Γ and c for our purposes. Let A
(2)
ϕ be the set

provided by Lemma 4.10 for a good choice of parameters. Let B ⊆ Fn2 \ {0} be the set of all t such

that (0, t) ∈ 16A
(2)
ϕ .

Claim 5.6 Let θ′ = ε2448/2487. The set B has size at most θ′−1.

Proof: Write (0, B) for the set of all (0, b), b ∈ B. Since A
(2)
ϕ is of the form (x, ϕ(x)) for some

function ϕ, we have |A(2)
ϕ + (0, B)| = |A(2)

ϕ ||B|, but at the same time A
(2)
ϕ + (0, B) ⊆ 17A

(2)
ϕ . By

Lemma 5.5 we have |17A
(2)
ϕ | ≤ (3(2/ρ)9)17|A(2)

ϕ | ≤ (2181/ρ153)|A(2)
ϕ | since A

(2)
ϕ has small sumset,

and therefore |B| ≤ 2181/ρ153 = θ′−1, since ρ = ε16/4.

Claim 5.7 Let m = 2dlog2 θ
′−1e. Then with probability at least 1/2 a random linear map Γ : Fn2 →

Fm2 is non-zero on all of B.

Proof: Let Γ : Fn2 → Fm2 be a randomly chosen linear transformation. Let Et be the event that
Γ(t) = 0. Clearly P(Et) ≤ 2−m for each t ∈ B, and thus the probability that Γ is non-zero on all
of B is P(∩t(ECt)) = P((∪tEt)C) = 1 − P(∪tEt) ≥ 1 −

∑
t P(Et) ≥ 1 − |B|2−m ≥ 1/2 by choice of

m. So with probability at least 1/2 we have a map Γ that is non-zero on B.

Claim 5.8 Let θ = θ′2ρ/12, where θ′ is the constant obtained in Claim 5.6, that is, we set θ =
ε4912/(3 · 2977). Fix a map Γ as in Claim 5.7. Then with probability at least θ a randomly chosen
element c ∈ Fm2 is such that the set

A′(1)
ϕ

def
= {(x, ϕ(x)) ∈ A(1)

ϕ : Γ(ϕ(x)) = c}

has size at least θN .

25

Proof: The expected size of this set is at least |A(1)
ϕ |/2m ≥ (ρN/6)/(θ′−2) ≥ (θ′2ρ/6)N , so with

probability θ we can get it to be of size at least θN .

We shall of course also define

A′(2)
ϕ

def
= {(x, ϕ(x)) ∈ A(2)

ϕ : Γ(ϕ(x)) = c},

and since A
(1)
ϕ ⊆ A

(2)
ϕ , we have a similar containment for the new subsets, immediately giving a

similar lower bound on the size of A
′(2)
ϕ .

We summarize the above claims in the following refinement of Lemma 4.10.

Lemma 5.9 Let the calls to BSG-Test in Model-Test be with a good choice of parameters

u, ρ1, ρ2, γ1, γ2, γ3 and with error parameter δ > 0. Then, there exist two sets A
′(1)
ϕ ⊆ A

′(2)
ϕ , the

output of Model-Test on input v = (y, ϕ(y)) satisfies the following with probability 1− δ.

• Model-Test(v,Γ, c) = 1 =⇒ v ∈ A′(2)
ϕ .

• Model-Test(v,Γ, c) = 0 =⇒ v /∈ A′(1)
ϕ .

Moreover, with probability θ/2 over the choice of Γ and c , we have

|A′(1)
ϕ | ≥ θN and ϕ is a Freiman 8-homomorphism on A(2),

where we denote the projection of A
′(2)
ϕ onto the first n coordinates by A(2).

Proof: If Model-Test outputs 1, then v = (y, ϕ(y)) ∈ A(2)
ϕ with probability 1−δ and Γ(ϕ(y)) = c,

so v ∈ A′(2)
ϕ . Similarly, if Model-Test outputs 0 then either BSG-Test gave 0 or Γ(ϕ(y)) 6= c, so

in any case v 6∈ A′(1)
ϕ .

By Claims 5.8 and 5.7, with probability at least θ/2 over the choice of Γ and c, |A′(1)
ϕ | ≥ θN and Γ

is non-zero on all of B. It remains to verify that ϕ is a Freiman 8-homomorphism on A(2) in this
case.

For any (0, t) ∈ 16A
′(2)
ϕ , we have t 6= 0 ⇒ t ∈ B by definition. Also Γ(t) = 16c = 0 by linearity of

Γ. Since Γ is non-zero on all of B, we must have t = 0. We also have 16A
′(2)
ϕ = 8A

′(2)
ϕ + 8A

′(2)
ϕ , and

so if we take (0, t) = (x1 + · · ·+ x8 + x′1 + . . . x′8, ϕ(x1) + · · ·+ ϕ(x8) + ϕ(x′1) + . . . ϕ(x′8)), we have
that x1 + · · ·+ x8 + x′1 + . . . x′8 = 0 implies ϕ(x1) + · · ·+ ϕ(x8) + ϕ(x′1) + . . . ϕ(x′8) = 0, making ϕ
a Freiman 8-homomorphism on A(2).

5.3 Obtaining a linear choice function on a subspace

As before, we now identify a linear transform (actually, an affine transform) that selects large Fourier
coefficients in derivatives. However, as opposed to Section 4 where we defined a linear transform on
the whole of Fn2 , here we will just define it on a coset a subspace V such that cod(V) = poly(1/ε).

In particular, we will prove the following local version of Lemma 4.12.

Lemma 5.10 Let ϕ be as above and let the parameters for BSG-Test and Model-Test be so that
they satisfy the guarantees of lemmas 4.10 and 5.9. Let δ > 0 and ε be as above. Then there exists

26

an algorithm running in time O(n4 log2 n · exp(1/εK) · log2(1/δ)) which outputs with probability at
least 1 − δ a subspace V of codimension at most ε−C as well as a linear linear map x 7→ Tx and

c1, c2 ∈ Fn2 satisfying Ex∈V+c1

[
f̂x

2
(Tx+ Tc1 + c2)

]
≥ εC .

Throughout the argument that follows, we shall assume that we have already chosen good param-
eters for BSG-Test and Model-Test so that the conclusions of Lemmas 4.10 and 5.9 hold. We
also assume we have access to a good function ϕ as given by Lemma 4.6.

To find the subspace V we will apply Bogolyubov’s lemma to the set identified by the procedure
Model-Test. We shall look at the second half of the tuples in this subspace (coordinates n+ 1 to
2n) to find a linear choice function.

Let h : Fn2 → {0, 1} be the (random) function defined by h(y) = 1 if Model-Test(u, (y, ϕ(y)),Γ, c) =
1 and 0 otherwise. The error parameter δ′ for Model-Test is taken to be δ/n3. We shall apply the
algorithm Bogolyubov from Lemma 5.3 with queries to h and with error parameter δ1 = δ/20.

Note that the function h is defined on points in Fn2 . Let A(1) and A(2) denote projection on the

first n coordinates of the sets A
′(1)
ϕ and A

′(2)
ϕ given by Lemma 5.9.

Since the last n coordinates are a function (namely ϕ) of the first n coordinates, we also have

|A′(1)
ϕ | ≥ θN , for θ a function of ε as defined in Claim 5.8. Also, with probability 1 − δ′ for each

input x, the inequality 1A(1)(x) ≤ h(x) ≤ 1A(2)(x) holds.

By Claim 5.4, we obtain a subspace V0 of codimension θ−3 such that with probability at least
1 − δ1 − δ′ · n2 log n · poly(1/θ, log(1/δ1)) > 1 − δ/10 , we have V0 ⊆ 4A(2). Thus, each element
x ∈ V0 can we written as x1 + x2 + x3 + x4 for x1, x2, x3, x4 ∈ A(2). We next show that the set

Z0
def
=

{
(x1 + x2 + x3 + x4, ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4))

∣∣∣∣ x1 + x2 + x3 + x4 ∈ V0,

x1, x2, x3, x4 ∈ A(2)

}
is also a subspace of F2n

2 . Observe that the value of ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) is uniquely
determined by x1 + x2 + x3 + x4.

Claim 5.11 There exists a linear map ζ : V0 → Fn2 satisfying for any x1, x2, x3, x4 ∈ A(2) such
that x1 + x2 + x3 + x4 ∈ V0, we have ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) = ζ(x1 + x2 + x3 + x4). Thus,
the set Z0 can be written as Z0 = {(x, ζ(x)) : x ∈ V0} and is a subspace of Fn2 .

Proof: We first show that the value of ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) is uniquely determined
by x1 + x2 + x3 + x4. By Lemma 5.9, we know that ϕ is a Freiman 8-homomorphism on A(2)

and hence it is also a Freiman 4-homomorphism. In particular, if for x1, x2, x3, x4 ∈ A(2) and
x′1, x

′
2, x
′
3, x
′
4 ∈ A(2), we have that x1 + x2 + x3 + x4 = x′1 + x′2 + x′3 + x′4, then it also holds that

ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) = ϕ(x′1) + ϕ(x′2) + ϕ(x′3) + ϕ(x′4). Thus, we can write the set Z0

as {(x, ζ(x)) : x ∈ V0}, where ζ if some function on V . We next show that ζ must be a linear
function.

We first show that ζ(0) = 0. Since 0 ∈ V0, we must have elements x1, x2, x3, x4 ∈ A(2) with
the property that x1 + x2 + x3 + x4 = 0, in other words, x1 + x2 = x3 + x4. But since ϕ is
also a Freiman 2-homomorphism, we get that ϕ(x1) + ϕ(x2) = ϕ(x3) + ϕ(x4), which implies that
ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) = ζ(0) = 0.

Since ϕ is a Freiman 8-homomorphism on A(2) and V0 ⊆ 4A(2), it follows that ζ is a Freiman 2-
homomorphism on V0. Since V0 is closed under addition, for x, y ∈ V0 we can write x+y = 0+(x+y)
with all four summands in V0. Since ζ is 2-homomorphic, we get that ζ(x)+ζ(y) = ζ(0)+ζ(x+y) =
ζ(x+ y).

27

We would like to use the linear map ζ to obtain the choice function on a coset of the space
V0. However, the problem is that we do not know the function ζ. We get around this obstacle by
generating random tuples (x1+x2+x3+x4, ϕ(x1)+ϕ(x2)+ϕ(x3)+ϕ(x4)) such that x1+x2+x3+x4

and each xi ∈ A(2). We show that for sufficiently many samples, the sampled points span a large
subspace V of V0. Since ϕ(x1) + ϕ(x2) + ϕ(x3) + ϕ(x4) = ζ(x1 + x2 + x3 + x4) on V0, we will be
able to obtain the desired linear map on the subspace V .

We sample a point as follows. For the jth sample, we generate four pairs (xj1, ϕ(xj1)), . . . , (xj4, ϕ(xj4)).

We accept the sample if all four pairs are accepted by Model-Test and if xj1 +xj2 +xj3 +xj4 ∈ V . If a

sample is accepted, we store the point yj = xj1+xj2+xj3+xj4 and ζ(yj) = ϕ(xj1)+ϕ(xj2)+ϕ(xj3)+ϕ(xj4).

Note that membership in V0 can be tested efficiently since we know the basis for V ⊥0 . We first
estimate the probability that a point (y, ζ(y)) for y ∈ V0 is accepted by the above test. This also
gives a bound on the number of samples to be tried so that at least t = O(n2) samples are accepted.

Claim 5.12 For a y ∈ V0, the probability that a sample is accepted by the above procedure and the
stored pair is equal to (y, ζ(y)) is at least θ4/4N . Moreover, for some sufficiently large constant C,
the probability that out of C exp(1/θ3) · (1/θ4) · t · log(10/δ) samples fewer than t are accepted is at
most δ/10.

Proof: Since the function h(x) = 1 exactly when Model-Test accepts (x, ϕ(x)), the probability
that a sample (x1, ϕ(x1)), . . . , (x4, ϕ(x4)) is accepted and that x1 + x2 + x3 + x4 = y, is equal to

P

[
4∧
i=1

(h(xi) = 1) ∧ (x1 + x2 + x3 + x4 = y)

]
= (1/N) · E

h,x1+x2+x3+x4=y
[h(x1)h(x2)h(x3)h(x4)]

As in Claim 5.4, we define the function h′ = max{1A(1) ,min{h, 1A(2)}}. As before, we have that
for each x, P [h(x) 6= h′(x)] ≤ δ′, and that h′ ∗ h′ ∗ h′ ∗ h′(x) > θ4/2 for each x ∈ V0. We can now
estimate the above expectation as

E
h,x1+x2+x3+x=y

[h(x1)h(x2)h(x3)h(x4)]

≥ P
h,x1+x2+x3+x4=y

[
∧4
i=1(h(xi) = h′(xi))

]
· E
h,x1,x2,x3

[
h′(x1)h′(x2)h′(x3)h′(y + x1 + x2 + x3)

]
≥ (1− 4δ′) · h′ ∗ h′ ∗ h′ ∗ h′(y)

≥ (1− 4δ′) · (θ4/2) ≥ θ4/4.

The last inequality exploited the fact that h′ ∗ h′ ∗ h′ ∗ h′(y) ≥ θ4/2 for y ∈ V0.

The probability that a sample is accepted is equal to the probability that one selects a pair (y, ζ(y))
for some y ∈ V0. This is least (|V0|/N) ·(θ4/2) = exp(−1/θ3) ·(θ4/2). The bound on the probability
of accepting fewer than t samples is then given by a Hoeffding bound.

Let (y1, ζ(y1)), . . . , (yt, ζ(yt)) be t stored points corresponding to t samples accepted by the above
procedure. The following claim analogous to Claim 4.14 shows that for t = O(n2), the projection
on the first n coordinates of these points must span a large subspace of V0.

Claim 5.13 Let (y1, ζ(y1)), . . . , (yt, ζ(yt)) be t points stored according to the above procedure. For
t = n2 + log(10/δ), the probability that cod(< y1, . . . , yt >) ≥ cod(V0) + log(4/θ4) is at most δ/10.

28

Proof: Let k = cod(V0)+4 log(4/θ) and let S be any subspace of codimension k. The probability
that a sample (x1, ϕ(x1)), . . . , (x4, ϕ(x4)) is accepted and has x1 + x2 + x3 + x4 = y for a specific
y ∈ S is at most 1/N . Thus, the probability that an accepted sample (yj , ζ(yj)) has yj ∈ S,
conditioned on being accepted, is at most (|S|/N)/((|V0|/N) · (θ4/2)). Thus, the probability that
all t stored points lie in any subspace of co-dimension k is at most(

|S|/N
(|V0|/N) · (θ4/2)

)t
·#{suspaces of co-dimension k} =

(
θ4/4

θ4/2

)t
· 2n(n−k) ≤ 2−t · 2n2

,

which is at most δ/10 for t = n2 + log(10/δ).

Let V =< y1, . . . , yt >. The above claim shows that with high probability, the codimension
of V satisfies cod(V) = exp(1/θ3). From the way the samples were generated, we also know
ζ(y1), . . . , ζ(yt). Since ζ is a linear function by Claim 5.11, we can extend it to a linear transform
x 7→ Tx such that ∀x ∈ V , Tx = ζ(x) (as in Section 4).

We now show that there is a coset of V on which Tx identifies large Fourier coefficients of the

derivative fx. We define the set Z
def
= {(x, Tx) : x ∈ V }. We will find a coset of Z such that a

significant fraction of points in this coset are of the form (x, ϕ(x)) ∈ A
′(2)
ϕ . Recall that a point

(x, ϕ(x)) in A
′(2)
ϕ satisfies |f̂x(ϕ(x))| ≥ γ = O(ε16). Thus, Tx will be a linear function selecting

large Fourier coefficients for a significant fraction of points in this coset.

The following claim shows the existence of such a coset.

Claim 5.14 The sets Z + A
′(1)
ϕ and Z + A

′(2)
ϕ both consist of at most (1/θ) · (N/ |Z|) cosets of Z.

Hence, for some c ∈ A′(1)
ϕ we have |(Z + c) ∩A′(2)

ϕ | ≥ |(Z + c) ∩A′(1)
ϕ | ≥ θ2 · |Z|.

Proof: Since Z ⊆ 4A
′(2)
ϕ and A

′(1)
ϕ ⊆ A′(2)

ϕ , we have that

Z +A′(1)
ϕ ⊆ Z +A′(2)

ϕ ⊆ 5A′(2)
ϕ ⊆ 5A(2)

ϕ .

The last inclusion follows from the fact that A
′(2)
ϕ was obtained by intersecting A

′(2)
ϕ (given by

Lemma 4.10) with a subspace.

We know from Lemma 4.10 that |A(2)
ϕ + A

(2)
ϕ | ≤ (2/ρ)8 · N ≤ (2/ρ)8 · (6/ρ) · |A(2)

ϕ |. Lemma 5.5

(Plünnecke’s inequality) then gives that |5A(2)
ϕ | ≤ (6/ρ)45 · |A(2)

ϕ | ≤ (1/θ) · |A(2)
ϕ | ≤ (1/θ) ·N . Thus,

|Z +A
′(2)
ϕ | ≤ (1/θ) ·N and it is the union of at most (1/θ) · (N/|Z|) cosets.

Since A
′(1)
ϕ ⊆ Z +A

′(1)
ϕ , there must exist at least one coset Z + c for c ∈ A′(1)

ϕ , such that

∣∣∣(Z + c) ∩A′(1)
ϕ

∣∣∣ ≥ |A′(1)
ϕ |

(1/θ) · (N/|Z|)
≥ θ2 · |Z|,

where the last inequality used the fact that |A′(1)
ϕ | ≥ θN , as guaranteed by Lemma 5.9.

We now show how to computationally identify this coset of Z. We will simply sample a sufficiently
large number of points on which Model-Test answers 1. We will then divide the points into
different cosets of Z and pick the coset with the most number of elements. The following claim
shows that this procedure succeeds in finding the desired coset with high probability.

29

Claim 5.15 Let s = C · (N/|Z|) · (log(1/δ)/θ5) ≤ C · exp(1/θ3) · (log(1/δ)/θ5) for a sufficiently
large constant C. There exists an algorithm which runs in time O(n3 ·s2) and finds, with probability

at least 1− δ/5, a point c ∈ A′(2)
ϕ such that |(Z + c) ∩A′(2)

ϕ | ≥ (θ2/2) · |Z|.

Proof: We sample s independent elements of the form (x, ϕ(x)) and reject all the ones on which
Model-Test outputs 0, where we run Model-Test with error parameter δ′ = δ/(10s). For some
r ≤ s, let (x1, ϕ(x1)), . . . , (xr, ϕ(xr)) be the accepted elements.

For each i, j ≤ r, we test if (xi, ϕ(xi)) and (xj , ϕ(xj)) lie in the same coset of Z, by checking
if (xi − xj , ϕ(xi) − ϕ(xj)) ∈ Z. This takes time O(n3) for each i, j as we need to check if (xi −
xj , ϕ(xi)−ϕ(xj)) can be expressed as a linear combination of the basis vectors for Z, which requires
solving a system of linear equations.

Lying in the same coset is an equivalence relation, which divides the points
(x1, ϕ(x1)), . . . , (xr, ϕ(xr)) into equivalence classes. We pick the class with the maximum
number of elements. Since (0, 0) ∈ Z, for any element (xi, ϕ(xi)) in this class, we can write the
coset as Z + (xi, ϕ(xi)). We thus pick an arbitrary element of the form (xi, ϕ(xi)) in the largest
class and output c = (xi, ϕ(xi)).

The running time of the above algorithm isO(s2·n3). We need to argue that with probability at least

1−δ/5, the coset Z+c with the maximum number of samples satisfies |(Z+c)∩A′(2)
ϕ | ≥ (θ2/2) · |Z|.

With probability at least 1− δ′ · s = 1− δ/10, Model-Test answers 1 on all elements in A
′(1)
ϕ and

0 on all elements outside A
′(2)
ϕ . For any coset of the form Z + c, let N(Z + c) be the number of

samples that land in the coset. Conditioned on the correctness of Model-Test, we have that for
any coset of the form Z + c,

s · |(Z + c) ∩A′(1)
ϕ |

N
≤ E [N(Z + c)] ≤ s · |(Z + c) ∩A′(2)

ϕ |
N

,

which by definition of s implies that

C · log(1/δ)

θ5
· |(Z + c) ∩A′(1)

ϕ |
|Z|

≤ E [N(Z + c)] ≤ C · log(1/δ)

θ5
· |(Z + c) ∩A′(2)

ϕ |
|Z|

.

By a Hoeffding bound, the probability that N(Z + c) deviates by an additive (C/4) · (log(1/δ)/θ3)
from the expectation is at most δ · exp(−C ′(1/θ3)) for any fixed coset. Since the number of cosets
is at most (1/θ) · exp(1/θ3) by Claim 5.14, the probability that on any coset N(Z + c) deviates
from the expectation by the above amount is at most δ · exp(−C ′(1/θ3)) · (1/θ) · exp(1/θ3) < δ/10
for an appropriate value of C ′.

By Claim 5.14, we know that there is a coset Z + c with |(Z + c) ∩ A′(1)
ϕ | ≥ θ2|Z| and hence

E [N(Z + c)] ≥ C · (log(1/δ)/θ3). By the above deviation bound, we should have that N(Z + c) ≥
(3C/4) · (log(1/δ)/θ3) for this coset. Thus, the coset with the maximum number of samples, say
Z+c′, will certainly also satisfy N(Z+c′) ≥ (3C/4) ·(log(1/δ)/θ3). Again, by the deviation bound,

it must be true that E [N(Z + c′)] ≥ (C/2) · (log(1/δ)/θ3), and hence |(Z+ c)∩A′(2)
ϕ | ≥ θ2|Z|/2.

We can now combine the previous argument to prove Lemma 5.10.

Proof of Lemma 5.10: We follow the steps described above to find the subspace V0, and
subsequently the subspace V together with the transformation T . This immediately yields the

30

subspace Z = {(x, Tx) : x ∈ V }. Claim 5.15 finds c = (c1, c2) ∈ Fn2 such that a fraction of
at least θ2/2 of points (y + c1, Ty + c2) in the coset Z + (c1, c2) are of the form (x, ϕ(x)) for

(x, ϕ(x)) ∈ A′(2)
ϕ , and so |f̂x

2
(ϕ(x))| ≥ γ = O(ε16). Since (y, Ty + c2) = (x + c1, ϕ(x)) for these

points, we have T (x+ c1) + c2 = ϕ(x). This implies

E
x∈c1+V

[
f̂x

2
(Tx+ Tc1 + c2)

]
≥ (θ2/2) · γ2 ≥ εC . (3)

The errors in the application of Bogolyubov’s lemma and in Claims 5.12, 5.13 and 5.15 add up to
δ/2 < δ. The running time is dominated by the C exp(1/θ3)·(1/θ4)·t·log(10/δ) calls to Model-Test

in Claim 5.12 for t = O(n2). Since each call to Model-Test takes O(n2 log n ·poly(1/ε) · log(δ/n3))
time, the total running time is O(n4 log2 n · exp(O(1/θ3)) · log2(1/δ)).

Fourier analysis over a subspace

To begin with we collect some basic facts about Fourier analysis over a subspace of Fn2 , which will
be required for the remaining part of the argument. Let f : Fn2 → R be a function and let W ⊆ Fn2
be a subspace. We define the Fourier coefficients of f with respect to the subspace as the correlation
with a linear phase over the subspace.

As in the case of Fourier analysis over Fn2 , it is easy to verify that the functions {χα}α∈W with

χα(x)
def
= (−1)〈α,x〉 form an orthonormal basis for functions from W to R with respect to the inner

product 〈f1, f2〉W
def
= Ex∈W [f1(x)f2(x)]. Thus the dual group Ŵ of these basis functions is

isomorphic to W . As in the case of Fn2 , we have Parseval’s identity saying that
∑

α∈W 〈f, χα〉
2
W =

Ex∈W
[
f2(x)

]
.

It is easy to modify the proof of the Goldreich-Levin theorem so that it can be used to identify
the linear functions χα for α ∈ W that have large correlation with a Boolean function f over a
subspace W . We omit the details.

Theorem 5.16 (Goldreich-Levin theorem for a subspace) Let γ, δ > 0 and W ⊆ Fn2 be a
given subspace. There is a randomized algorithm which, given oracle access to a function f : Fn2 →
{−1, 1}, runs in time O(n2 log n ·poly(1/γ, log(1/δ))) and outputs a list L = {α1, . . . , αk} with each
αi ∈W such that

• k = O(1/γ2).

• P
[
∃αi ∈ L |〈f, χαi〉W | ≤ γ/2

]
≤ δ.

• P
[
∃α /∈ L |〈f, χαi〉W | ≥ γ

]
≤ δ.

5.4 Finding a quadratic phase on a subspace

In order to deduce the refined inverse theorem (Theorem 5.1) for p = 2, we need to redo the
symmetry argument and integration phase with this local expression obtained in Lemma 5.10.
The modifications to Samorodnitsky’s approach are relatively minor but we give complete proofs
nonetheless. One significant difference is that we will need to take Fourier transforms relative to
subspaces.

We begin by obtaining a subspace W 6 V on which the matrix T obtained in the previous step is
symmetric, thereby providing the “local” analogue of Lemma 4.16.

31

Lemma 5.17 (Symmetry Argument) Given a subspace V and a linear map T with the property
that

Ex∈c1+V f̂x
2
(Tx+ zc) ≥ εC ,

we can output a subspace W 6 V of codimension at most log(ε−C) inside V together with a
symmetric matrix B on W with zero diagonal such that

Ex∈c1+W f̂x
2
(Bx+ zc) ≥ εC

in time O(n3).

Proof: We let g(x) = (−1)〈x,Tx+zc〉 and F (x) = f̂x
2
(Tx + zc), and begin by noting that by

Lemma 6.11 in [Sam07], we have that g(x) = −1 implies F (x) = 0. Therefore we have

εC ≤ Ex∈c1+V f̂x
2
(Tx+ zc) = Ex∈c1+V g(x)F (x) = Ex∈V gc1(x)F c1(x),

we have written hy(x) for the shift h(x+ y). Taking the Fourier transform relative to the subspace
V , we obtain

εC ≤ (
∑
α∈V̂

ĝc1(α)F̂ c1(α))2,

and by the Cauchy-Schwarz inequality and Parseval’s theorem this is bounded above by∑
α∈V̂

ĝc1(α)2
∑
α∈V̂

F̂ c1(α)2 ≤ Ex∈V gc1 ∗V gc1(x).

The latter (local) convolution can easily be computed:

gc1 ∗V gc1(x) = Ey∈V (−1)〈x+y+c1,T (x+y)+c2〉(−1)〈y+c1,T y+c2〉 = gc1(x)(−1)〈c1,c2〉Ey∈V (−1)〈(T+TT)x,y〉.

The final expectation gives the indicator function of the subspace

W ′ = {x ∈ V : 〈(T + T T)x, y〉 = 0 for all y ∈ V },

that is, W ′ is a linear subspace on which T is symmetric. Note that W ′ is the space of solutions
of a linear system of equations, a basis of which can be computed by Gaussian elimination in time
O(n3).

We denote the map that takes x to Tx for x ∈W ′ by B. We have just shown that

|Ex∈V 1W ′(x)gc1(x)| ≥ εC ,

and in particular since g is bounded, we quickly observe that W ′ has density at least εC inside
V . This means the codimension can have gone up by at most log(ε−C), which is negligible in the
grand scheme of things.

It remains to ensure that B has zero diagonal. Again this can be rectified in a small number of
steps. Denote this diagonal by v ∈ Fn2 . Let W = W ′∩ < v + zc >

⊥ if 〈c1, c2〉 = 0, otherwise
intersect W ′ with the (unique) coset of < v + zc >

⊥. Since 〈x,Bx〉 = 〈x, v〉 over F2, we have that
〈x + c1, v + zc〉 = 〈x,Bx + zc〉 + 〈c1, c2〉, and thus by Lemma 6.11 in [Sam07] if x + c1 ∈ W ′ but

/∈W , that is, x+ c1 /∈< v + zc >
⊥, then f̂x

2
(Bx+ zc) = 0.

Hence we obtain
2Ex∈c1+W f̂x

2
(Bx+ zc) = Ex∈c1+W ′ f̂x

2
(Bx+ zc),

which yields the desired conclusion.

32

Finally, we need to perform the integration. The procedure is very similar to Lemma 4.17, but
again we have to work relative to a subspace.

Lemma 5.18 (Integration Step) Let f : Fn2 → [−1, 1]. Let B be a symmetric n × n matrix

with zero diagonal such that Ex∈c1+W f̂x
2
(Bx + zc) ≥ εC . Let A ∈ Fn×n2 be a matrix such that

B = A+AT . Then there exist, for every y ∈ Fn2 , a vector ry ∈W such that

Ey∈W ∗ |Ex∈y+W f(x)(−1)〈x,Ax〉+〈By,x〉+〈ry ,x〉| ≥ εC .

Proof: Consider the quadratic phase g(x) = (−1)〈x,Ax〉 and the linear phase l(z) = (−1)〈z,zc〉.
(Note that this is where we require B to have zero diagonal.) We shall first prove that

Ex∈c1+W f̂x
2
(Bx+ zc) = Ex∈c1+W (Ey∈W ∗〈fx, gxl〉y+W)2 ≤ Ey∈W ∗

∑
α∈Ŵ

(̂fgl)y
2
(α)(̂fg)y

2
(α),

where again we have written hy(x) for the shift h(x + y) and the final Fourier transform is taken
with respect to W . The equality follows from the fact that

f̂x(Bx+ zc) = Eyfx(y)(−1)〈y,Bx+zc〉 = Ey∈W ∗Ez∈y+W fx(z)(−1)〈z,Bx+zc〉

and so

(−1)〈x,Ax〉f̂x(Bx+ zc) = Ey∈W ∗Ez∈y+W fx(z)(−1)〈z+x,A(z+x)〉+〈z,Az〉l(z) = Ey∈W ∗〈fx, gxl〉y+W ,

where the inner product is taken over the translate y +W . For the inequality write

Ex∈c1+W (Ey∈W ∗〈fx, gxl〉y+W)2 ≤ Ey∈W ∗Ex∈c1+W 〈fx, gxl〉2y+W ,

which equals

Ey∈W ∗Ex∈c1+W (Ez∈y+W fgl(z)fg(z + x))2 = Ey∈W ∗Ex∈W (Ez∈y+W fgl(z)fg(z + x+ c1))2,

which in turn can be reexpressed as

Ey∈W ∗Ex∈W (Ez∈W (fgl)y(z)(fg)y(z + x+ c1))2 = Ey∈W ∗Ex∈W ((fgl)y ∗W (fg)y)(x+ c1)2.

Taking the Fourier transform with respect to W , it can be seen that the latter expression equals

Ey∈W ∗
∑
α∈Ŵ

(̂fgl)y
2
(α)(̂fg)y

2
(α),

completing the proof of the claim from the beginning. But since all functions involved are bounded,

Ey∈W ∗
∑
α∈Ŵ

(̂fgl)y
2
(α)(̂fg)y

2
(α) ≤ Ey∈W ∗ sup

α∈Ŵ
|(̂fg)y(α)|.

Now for each y ∈W ∗, we fix a αy ∈ Ŵ such that the supremum is attained. Then we have shown
that

εC ≤ Ey∈W ∗ |(̂fg)y(αy)| = Ey∈W ∗ |Ex∈W f(x+ y)(−1)〈x+y,A(x+y)〉+〈αy ,x〉|,

which, after some rearranging of the phase, completes the proof.

33

5.5 Obtaining a quadratic average

Finally, we use the subspace W from Section 5.4 to obtain the required quadratic average.

Lemma 5.19 Let W 6 Fn2 be a subspace with cod(V) ≤ (1/εC). Let A ∈ Fn×n2 and B = A + AT

be such that there exist vectors ry ∈W for each y ∈W ∗ satisfying

E
y∈W ∗

[∣∣∣∣ E
x∈y+W

[
f(x)(−1)〈x,Ax〉+〈By,x〉+〈ry ,x〉

]∣∣∣∣] ≥ σ.
Then for δ > 0, one can find in time n2 log n · |W ∗| · poly(1/σ, log(1/δ)) a quadratic average with a
vector ly and a constant cy for each y ∈W ∗ satisfying

E
y∈W ∗

[
E

x∈y+W

[
f(x)(−1)〈x,Ax〉+〈ly ,x〉+cy

]]
≥ σ2/10.

Proof: Let hy(x)
def
= f(x)(−1)〈x,Ax〉+〈x,By〉. By assumption we immediately find that

E
y∈W ∗

[∣∣∣∣ E
x∈y+W

[
hy(x)(−1)〈ry ,x〉

]∣∣∣∣] = E
y∈W ∗

[∣∣∣∣ E
x∈W

[
hyy(x)(−1)〈ry ,x〉

]∣∣∣∣] ≥ σ.

Here hyy(x) = hy(x + y) as before. Without loss of generality, we may assume that the vectors ry
maximize the above expression. Thus, we know that on average (over y), the functions hyy have a
large Fourier coefficient (that is, significant correlation with some vector ry ∈W) over the subspace
W . For every y ∈ W ∗, we will use Theorem 5.16 to find this Fourier coefficient when it is indeed
large. For those y for which the expression

∣∣Ex∈W [hyy(x)(−1)〈ry ,x〉
]∣∣ is small for all ry ∈W , we will

simply pick an arbitrary phase.

Let us describe this procedure in more detail. First, by an averaging argument we know that

E
y∈W ∗

[∣∣∣∣ E
x∈W

[
hyy(x)(−1)〈ry ,x〉

]∣∣∣∣] ≥ σ ⇒ P
y∈W ∗

[∣∣∣∣ E
x∈W

[
hyy(x)(−1)〈ry ,x〉

]∣∣∣∣ ≥ σ/2] ≥ σ/2.

Let S
def
= {y ∈ W ∗ :

∣∣Ex∈W [hyy(x)(−1)〈ry ,x〉
]∣∣ ≥ σ/2}. The above inequality shows that |S| ≥

(σ/2) ·W ∗. Now for each y ∈W ∗, we run the Goldreich-Levin algorithm for the subspace W from
Theorem 5.16 with the function hyy, the parameter γ = σ/2 and error probability δ2/2.

For each y ∈ S the algorithm finds, with probability 1 − δ2, an r′y ∈ W and a cy ∈ F2 satisfying

Ex∈W
[
hyy(x)(−1)〈r′y ,x〉+cy

]
≥ σ/4. Thus, with probability 1− δ/2, it finds such an r′y for at least

a 1− δ fraction of y ∈ S. For y /∈ S, that is for those y for which the algorithm fails to find a good
linear phase, we choose an r′y arbitrarily. If we can force the contribution of terms for y /∈ S to be
non-negative, then we have that with probability 1− δ/2

E
y∈W ∗

[
1S(y) · E

x∈W

[
hyy(x)(−1)〈r′y ,x〉+cy

]]
≥ (1− δ) · (σ/2) · (σ/8) ≥ σ2/9.

It remains to choose constants cy for y /∈ S in such a way that their contribution to the average is
non-negative. Consider the two potential assignments cy = 0 ∀y /∈ S and cy = 1 ∀y /∈ S. Clearly
the contribution of the terms for y /∈ S must be non-negative for at least one of the aforementioned
assignments, in which case we obtain

E
y∈W ∗

[
E

x∈W

[
hyy(x)(−1)〈r′y ,x〉+cy

]]
≥ σ2/9.

34

In order to determine which of the two assignments works, we can try both sets of signs and estimate
the corresponding quadratic average using O((1/σ4) · log(1/δ)) samples, and choose the set of signs
for which the estimate is larger. By Lemma 2.1, with probability at least 1 − δ/2, we select a set
of values cy such that

E
y∈W ∗

[
E

x∈y+W

[
f(x)(−1)〈x,Ax〉+〈x,By〉+〈x,r′y〉+cy

]]
= E

y∈W ∗

[
E

x∈W

[
hyy(x)(−1)〈r′y ,x〉+cy

]]
≥ σ2/10.

Choosing ly = By + r′y then completes the proof.

5.6 Putting things together

We now give the proof of Theorem 5.2.

Proof of Theorem 5.2: For the procedure Find-QuadraticAverage the function ϕ(x) will be
sampled using Lemma 4.6 as required. We start with a random u = (x, ϕ(x)) and a random choice
of the parameters γ1, γ2, γ3 as described in the analysis of BSG-Test. We also choose the map Γ
and the value c randomly for Model-Test. We run the algorithm in Lemma 5.10 using BSG-Test

and Model-Test with the above parameters, and with error parameter 1/4.

Given a coset of the subspace V and the map T , we find a subspace W ⊆ V and a symmetric
matrix B with zero diagonal, using Lemma 5.17. We then use the algorithm in Lemma 5.19 to
obtain the required quadratic average, with probability 1/4.

Given a quadratic average Q(x), we estimate |〈f,Q〉| using O((1/σ4) · log2(θ/δ)) samples. If the
estimate is less than σ2/20, we discard Q and repeat the entire process. For a M to be chosen
later, if we do not find a quadratic average in M attempts, we stop and output ⊥.

With probability ρ/2, all samples of ϕ(x) (sampled with error 1/n5) correspond to a good function
ϕ. Conditioned on this, we have a good choice of u and γ1, γ2, γ3 for BSG-Test with probability
ρ3/24. Also, we have a good choice of the map Γ and c for Model-Test with probability at least
θ/2 = εO(1). Conditioned on the above, the algorithm in Lemma 5.10 finds a good transformation
with probability 3/4 and thus the output of the algorithm in Lemma 5.19 is a good quadratic
average with probability at least 1/2.

Thus, for M = O((1/ρ4) · (1/θ) log(1/δ)), the algorithm stops in M attempts with probability
at least 1 − δ/2. By choice of the number of samples above, the probability that we estimate
|〈f, (−1)q〉| incorrectly at any step is at most δ/2M . Therefore we output a good quadratic average
with probability at least 1− δ.
The complexity of the quadratic average obtained, which is equal to the co-dimension of the space
W , is at O(1/θ3) = O(1/εC). The running time of each of the M steps is dominated by that of the
algorithm in Lemma 5.10, which is O(n4 log2 n · exp(1/εK)). We conclude that the total running
time is O(n4 log2 n · exp(1/εK) · log(1/δ)).

6 Discussion

One way in which one might want extend the results in this paper is to consider the cyclic group of
integers modulo of prime ZN . A (linear) Goldreich-Levin algorithm exists in this context [AGS03],
and some quadratic decomposition theorems have been proven (see for example [GW10b]). How-
ever, strong quantitative results involving the U3 norm require a significant amount of effort to
even state.

35

For example, the role of the subspace relative to which the quadratic averages are defined will be
played by so-called Bohr sets, which act as approximate subgroups in ZN . Moreover, it is no longer
true that the inverse theorem can guarantee the existence of a globally defined quadratic phase
with which the function correlates; instead, this correlation may be forced to be (and remain) local.

Since there is an informal dictionary for translating analytic arguments from Fnp to ZN , it seems
plausible that many of our arguments could be extended to this setting, at the cost of adding a
significant layer of (largely technical) complexity to the current presentation.

7 Acknowledgements

The authors would like to thank Tim Gowers, Swastik Kopparty, Tom Sanders and Luca Trevisan
for helpful conversations.

References

[AGS03] Adi Akavia, Shafi Goldwasser, and Shmuel Safra, Proving hard-core predicates using list
decoding, FOCS, 2003, pp. 146–.

[BS94] A. Balog and E. Szemerédi, A statistical theorem of set addition, Combinatorica 14
(1994), 263–268, 10.1007/BF01212974.

[BTZ10] V. Bergelson, T. Tao, and T. Ziegler, An inverse theorem for the uniformity seminorms
associated with the action of Fω, Geom. Funct. Anal. 16 (2010), no. 6, 1539–1596.

[BV10] Andrej Bogdanov and Emanuele Viola, Pseudorandom bits for polynomials, SIAM J.
Comput. 39 (2010), no. 6, 2464–2486.

[Can10] P. Candela, On the structure of steps of three-term arithmetic progressions in a dense set
of integers, Bull. Lond. Math. Soc. 42 (2010), no. 1, 1–14. MR 2586962 (2011a:11017)

[FK99] A. M. Frieze and R. Kannan, Quick approximation to matrices and applications, Combi-
natorica 19 (1999), no. 2, 175–220.

[GKZ08] P. Gopalan, A.R. Klivans, and D. Zuckerman, List-decoding Reed-Muller codes over small
fields, STOC, 2008, pp. 265–274.

[GL89] O. Goldreich and L. Levin, A hard-core predicate for all one-way functions, Proceedings
of the 21st ACM Symposium on Theory of Computing, 1989, pp. 25–32.

[Gop10] P. Gopalan, A Fourier-analytic approach to Reed-Muller decoding, FOCS, 2010, pp. 685–
694.

[Gow98] W.T. Gowers, A new proof of Szemerédi’s theorem for arithmetic progressions of length
four, Geom. Func. Anal. 8 (1998), no. 3, 529–551.

[Gre07] B.J. Green, Montréal notes on quadratic Fourier analysis, Additive combinatorics, CRM
Proc. Lecture Notes, vol. 43, Amer. Math. Soc., Providence, RI, 2007, pp. 69–102. MR
2359469 (2008m:11047)

36

[GT08] B.J. Green and T. Tao, An inverse theorem for the Gowers U3(G) norm, Proc. Edinb.
Math. Soc. (2) 51 (2008), no. 1, 73–153. MR 2391635 (2009g:11012)

[GW10a] W.T. Gowers and J. Wolf, Linear forms and quadratic uniformity for functions on Fnp ,
To appear, Mathematika. doi:10.1112/S0025579311001264, arXiv:1002.2209 (2010).

[GW10b] , Linear forms and quadratic uniformity for functions on ZN , To appear, J. Anal.
Math., arXiv:1002.2210 (2010).

[GW10c] , The true complexity of a system of linear equations, Proc. Lond. Math. Soc. (3)
100 (2010), no. 1, 155–176. MR 2578471 (2011a:11019)

[HL11] Hamed Hatami and Shachar Lovett, Correlation testing for affine invariant properties
on Fnp in the high error regime, 2011.

[O’D08] R. O’Donnell, Some topics in analysis of Boolean functions, STOC, 2008, pp. 569–578.

[Pet11] G. Petridis, Plünnecke’s Inequality, Preprint, arXiv:1101.2532 (2011).

[Ruz99] I.Z. Ruzsa, An analog of Freiman’s theorem in groups, Astérisque (1999), no. 258, xv,
323–326, Structure theory of set addition. MR 1701207 (2000h:11111)

[Sam07] A. Samorodnitsky, Low-degree tests at large distances, Proceedings of the 39th ACM
Symposium on Theory of Computing, 2007, pp. 506–515.

[SSV05] B. Sudakov, E. Szemerédi, and V.H. Vu, On a question of Erdös and Moser, Duke
Mathematical Jounal 129 (2005), no. 1, 129–155.

[ST06] Alex Samorodnitsky and Luca Trevisan, Gowers uniformity, influence of variables, and
PCPs, STOC, 2006, pp. 11–20.

[TTV09] L. Trevisan, M. Tulsiani, and S. Vadhan, Boosting, regularity and efficiently simulating
every high-entropy distribution, Proceedings of the 24th IEEE Conference on Computa-
tional Complexity, 2009.

[TV06] T. Tao and V. Vu, Additive combinatorics, Cambridge University Press, 2006.

[TZ10] T. Tao and T. Ziegler, The inverse conjecture for the Gowers norm over finite fields via
the correspondence principle, Analysis and PDE 3 (2010), 1–20.

[Vio07] E. Viola, Selected results in additive combinatorics: An exposition (preliminary version),
2007.

[VW07] Emanuele Viola and Avi Wigderson, Norms, XOR lemmas, and lower bounds for GF(2)
polynomials and multiparty protocols, IEEE Conference on Computational Complexity,
2007.

37

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

