
Hard instances of algorithms and proof systems

Yijia Chen1, Jörg Flum2, and Moritz Müller3

1 Shanghai Jiaotong University, China,yijia.chen@cs.sjtu.edu.cn
2 Universität Freiburg, Germany,joerg.flum@math.uni-freiburg.de

3 Centre de Recerca Matemàtica, Barcelona, Spain,mmueller@crm.cat

Abstract. Assuming that the class TAUT of tautologies of propositional logic has
no almost optimal algorithm, we show that every algorithmA deciding TAUT has
a polynomial time computable sequence witnessing thatA is not almost optimal.
The result extends to everyΠp

t -complete problem witht ≥ 1; however, we show
that assuming the Measure Hypothesis there is a problem which has no almost
optimal algorithm but has an algorithm without hard sequences.

1. Introduction

Let A be an algorithm deciding a problemQ. A sequence (xs)s∈N of strings inQ is
hard forA if it is computable in polynomial time and the sequence (tA(xs)s∈N) is not
polynomially bounded ins.4 Here,tA(x) denotes the number of steps the algorithmA

takes on inputx. Clearly, ifA is polynomial time, thenA has no hard sequences. Fur-
thermore, an almost optimal algorithm forQ has no hard sequences either. Recall that
an algorithmA is almost optimal forQ if for every inputx ∈ Q the running time
tA(x) is polynomially bounded intB(x) for any other algorithmB decidingQ. In fact,
if (xs)s∈N is a hard sequence for an algorithm, then one can polynomially speed up it
on{xs | s ∈ N}, so it cannot be almost optimal.

Central to this paper is the question: To what extent can we show that algorithms
which are not almost optimal have hard sequences? Our main result states:

(a) If a coNP-complete problemQ has no almost optimal algorithm, then every algo-
rithm decidingQ has hard sequences.

Perhaps one would expect that one can strengthen (a) and showthat even if a coNP-
complete problemQ has an almost optimal algorithm, then every algorithm, which is
not almost optimal and decidesQ, has a hard sequence. However, we show:

If the Measure Hypothesis holds, then everycoNP-complete problem with padding
and with an almost optimal algorithm has an algorithm which is not almost op-
timal but has no hard sequences.

Even though we can extend the result (a) toΠ
p
t -complete problems (witht ≥ 1), appar-

ently there are some limitations as we derive the following result:

If the Measure Hypothesis holds, then there is a problemQ which has no almost
optimal algorithm but has an algorithm without hard sequences.

4 All notions will be defined in a precise manner later.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 85 (2011)

In particular, there are algorithms deciding such aQ and polynomially speeding up a
given algorithm. That is, this notion of speeding up (e.g. considered in [13, 9]) differs
from our notion of the existence of a hard sequence.

Assume that a coNP-complete problemQ has no almost optimal algorithm. Can
we even effectively assign to every algorithm decidingQ a hard sequence? We believe
that under reasonable complexity-theoretic assumptions one should be able to show that
such an effective procedure or at least a polynomial time procedure does not exist, but
we were not able to show it. However, recall that by a result due to McCreight and
Meyer [9] and redicovered by Messner [11] we know:

For everyEXP-hard problemQ there is a polynomial time effective procedure
assigning to every algorithm solvingQ a sequence hard for it.

Hence, if EXP = NP, then for every NP-hard (and hence for everycoNP-hard) prob-
lemQ there is a polynomial time effective procedure assigning a hard sequence to every
algorithm decidingQ.

Our proof of (a) generalizes to nondeterministic algorithms. This “nondeterministic
statement” yields a version of a result due to Krajı́c̆ek which he derived for non-optimal
propositional proof systems: If TAUT, the set of tautologies of propositional logic, has
no optimal proof system, then for every propositional proofsystemP there is a polyno-
mial time computable sequence (αs)s∈N of propositional tautologiesαs with s ≤ |αs|
which only have superpolynomialP-proofs. While it is well-known that nondetermin-
istic algorithms for TAUT and propositional proof systems are more or less the same
(so that the nondeterministic version of (a) essentially isKrajı́c̆ek’s result), the relation-
ship between deterministic algorithms deciding TAUT and propositional proof systems
is more subtle. Nevertheless, we are able to use (a) to derivea statement on hard se-
quences for propositional proof systems in case that TAUT has nopolynomiallyoptimal
proof system.

As a byproduct, we obtain results in “classical terms” for which we do not know
proofs avoiding the machinery we develop here; for example,we get:

LetQ becoNP-complete. Then,Q has an almost optimal algorithm if and only
if Q has a polynomially optimal proof system.

If TAUT has no almost optimal algorithm, then everycoNP-hard problem has
no almost optimal algorithm.

It is still open whether there exist problems outside of NP with optimal proof sys-
tems. We show their existence (in NE) assuming the Measure Hypothesis. Krajı́c̆ek and
Pudlák [7] proved that E = NE implies that TAUT has an optimal proof system.

If for an algorithmA deciding a problemQ we have a hard sequence (xs)s∈N sat-
isfying s ≤ |xs|, then{xs | s ∈ N} is a hard set forA, that is, a polynomial time
decidable subset ofQ on whichA is not polynomial time. Messner [11] has shown for
anyQ with padding that all algorithms decidingQ have hard sets if and only ifQ has
no polynomially optimal proof system. We show for arbitraryQ that the existence of
hard sets for all algorithms is equivalent to the existence of an effective enumeration

2

of all polynomial time decidable subsets ofQ, a property which has turned out to be
useful in various contexts (cf. [12, 2, 3]). We analyze what Messner’s result means for
proof systems.

The content of the sections is the following. In Section 2 we recall some concepts.
We deal with hard sequences for algorithms in Section 3 and for proof systems in Sec-
tion 4. Section 5 is devoted to hard sets and Section 6 contains the results and the
examples of problems with special properties obtained assuming that the Measure Hy-
pothesis holds. Finally Section 7 gives an effective procedure yielding hard sequences
for nondeterministic algorithms for coNEXP-hard problems.

2. Preliminaries

We denote byΣ the alphabet{0, 1} and by |x| the length of a stringx ∈ Σ
∗. We

identify problems with subsets ofΣ∗. In this paper we always assume thatQ denotes a
decidable and nonempty problem.

We denote by P (NP) the class of problemsQ such thatx ∈ Q is solvable by a deter-
ministic (nondeterministic) Turing machine in|x|O(1) steps (formally,nO(1) denotes the
class of polynomially bounded functions on the natural numbers). A problemQ ⊆ Σ

∗

has paddingif there is a functionpad : Σ∗×Σ∗ → Σ
∗ computable in logarithmic space

having the following properties:

– For anyx, y ∈ Σ
∗, |pad(x, y)| > |x| + |y| and

(

pad(x, y) ∈ Q ⇐⇒ x ∈ Q
)

.
– There is a logspace algorithm which, givenpad(x, y) recoversy.

By 〈. . . , . . .〉 we denote some standard logspace computable tupling function with
logspace computable inverses.

If A is a deterministic or nondeterministic algorithm andA accepts the stringx, then
we denote bytA(x) the minimum number of steps of an accepting run ofA onx; if A
does not acceptx, thentA(x) is not defined. ByL(A) we denote the language accepted
byA. We use deterministic and nondeterministic Turing machines withΣ as alphabet as
our basic computational model for algorithms (and we often use the notions “algorithm”
and “Turing machine” synonymously). If necessary we will not distinguish between a
Turing machine and its code, a string inΣ∗. By default, algorithms are deterministic. If
an algorithmA on inputx eventually halts and outputs a value, we denote it byA(x).

3. Hard sequences for algorithms

In this section we derive the results concerning the existence of hard sequences for
coNP-complete problems.

Let Q ⊆ Σ
∗. A deterministic (nondeterministic) algorithmA deciding (accepting)

Q is almost optimalif for every deterministic (nondeterministic) algorithmB deciding
(accepting)Q we have

tA(x) ≤
(

tB(x) + |x|
)O(1)

for all x ∈ Q. Note that nothing is required forx /∈ Q.
Clearly, every problem in P has an almost optimal algorithm and every problem

in NP has an almost optimal nondeterministic algorithm. There are problems outside P

3

with an almost optimal algorithm (see Messner[11, Corollary 3.33]; we slightly improve
his result in Section 6). However, it is not known whether there are problems outside NP
having an almost optimal nondeterministic algorithm and itis not known whether there
are problems with padding outside P having an almost optimalalgorithm. We show in
Section 6 that the former is true if the Measure Hypothesis holds.

We introduce the notion of hard sequence.

Definition 1. Let Q ⊆ Σ
∗.

(1) Let A be a deterministic (nondeterministic) algorithm deciding(accepting)Q. A
sequence (xs)s∈N is hard for A if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is
computable in polynomial time, andtA(xs) is not polynomially bounded ins.

(2) The problemQ has hard sequences for algorithmsif every algorithm decidingQ
has a hard sequence.

(3) The problemQ has hard sequences for nondeterministic algorithmsif every non-
deterministic algorithm acceptingQ has a hard sequence.

The proof of the following lemma is straightforward; it shows that if (xs)s∈N is hard
for an algorithmA, thenA can be polynomially speeded up on{xs | s ∈ N}; thusA
can’t be almost optimal.

Lemma 2. Let A be a deterministic (nondeterministic) algorithm deciding(accept-
ing)Q. If A has a hard sequence, thenA is not almost optimal.

Proof. We prove the deterministic case, the nondeterministic caseis obtained by the ob-
vious modifications. So assume that the algorithmA decidesQ and has a hard sequence
(xs)s∈N; in particular,

tA(xs) is not polynomially bounded ins. (1)

LetG be a polynomial time algorithm computing the function 1s 7→ xs. The following
algorithmG∗ accepts the set{xs | s ∈ N} and forx = xs runs in time polynomial ins.

G∗ // x ∈ Σ
∗

1. ℓ← 0
2. for s = 0 to ℓ
3. simulate the (ℓ− s)th step ofG on 1s

4. if this simulation outputsy andy = x then accept and halt
5. ℓ← ℓ + 1
6. goto 2.

We consider the algorithmA‖G∗ that on inputx runsA andG∗ in parallel, both on
inputx, and halts, when the first of these algorithms halts, then answering in the same
way. Hence,A‖G∗ acceptsQ andtA‖G∗ (xs) is polynomially bounded ins. As |xs| ≤
sO(1), by (1) we see thattA(xs) is not polynomially bounded intA‖G∗ (xs) + |xs|; thus
A‖G∗ witnesses thatA is not an almost optimal algorithm. 2

4

We state the main result of this section (Remark 7 contains extensions of the result to
further classes of problemsQ). As already remarked in the Introduction part (b) of this
theorem is a straightforward consequence of the corresponding result for propositional
proof systems due to Krajı́c̆ek.

Theorem 3. LetQ be acoNP-complete problem. Then:

(a) Q has no almost optimal algorithm⇐⇒ Q has hard sequences for algorithms.
(b) Q has no almost optimal nondeterministic algorithm⇐⇒ Q has hard sequences

for nondeterministic algorithms.

The proofs of the implications from right to left are clear bythe previous lemma. The
following considerations will yield a proof of the conversedirection. For a nondeter-
ministic algorithmA ands ∈ N let As be the algorithm that rejects allx ∈ Σ

∗ with
|x| > s. If |x| ≤ s, then it simulatess steps ofA on inputx; if this simulation halts and
accepts, thenAs accepts; otherwise it rejects.

Recall that byL(A) we denote the language accepted byA. ForQ ⊆ Σ
∗ we consider

thedeterministic (nondeterministic) algorithm subset problemDAS(Q) (NAS(Q))

DAS(Q)
Instance:A deterministic algorithmA and 1s with s ∈ N.
Question:L(As) ⊆ Q ?

NAS(Q)
Instance:A nondeterministic algorithmA and 1s with s ∈ N.
Question:L(As) ⊆ Q ?

The following two lemmas relate the equivalent statements in Theorem 3 (a) (in Theo-
rem 3 (b)) to a statement concerning the complexity of DAS(Q) (of NAS(Q)).

Lemma 4. (a) If 〈A, 1s〉 ∈ DAS(Q) is solvable in timesf (A) for some functionf , then
Q has an almost optimal algorithm.

(b) If there is a nondeterministic algorithmV acceptingNAS(Q) such that for all
〈A, 1s〉 ∈ NAS(Q) we havetV(〈A, 1s〉) ≤ sf (A) for some functionf , thenQ has an
almost optimal nondeterministic algorithm.

Proof. Again we only prove (a). LetV be an algorithm deciding〈A, 1s〉 ∈ DAS(Q)
in time sf (A) for some functionf . Further letQ be an algorithm decidingQ and let
A0,A1, . . . be an effective enumeration of all algorithms. Consider thefollowing algo-
rithmA decidingQ.

5

A // x ∈ Σ
∗

1. simulateQ onx and in parallel do the following
2. for i = 0 to |x| do in parallel
3. simulateAi onx
4. if Ai acceptsthen
5. s← max{|x|, length of the run acceptingx}
6. if V accepts〈Ai, 1s〉 then accept and halt
7. elsenever halt
8. elsenever halt
9. if Q stops firstthen answer accordingly and halt.

It is easy to see thatA decidesQ. We show it is almost optimal. LetB be any algorithm
decidingQ. We chooseiB ∈ N such thatB = AiB . Note thatV accepts〈B, 1s〉 for all s.
Hence for inputsx ∈ Q with |x| ≥ iB the algorithmA, for i = iB, acceptsx in Line 6
if it was not already accepted earlier. Thus,tA(x) is polynomially bounded in

|x| + tB(x) + tV

(

〈B, 1max{|x|,tB(x)}〉
)

,

where the termtB(x) takes care of line 3. Hence, by assumption, it is polynomially

bounded in|x| + max{|x|, tB(x)}f (B). Altogether,tA(x) ≤
(

|x| + tB(x)
)O(1)

. 2

If Q is coNP-complete, then the problem NAS(Q) and hence the problem DAS(Q)
are in coNP, too (this is the reason why 1s and not justs is part of the input of NAS(Q)
and of DAS(Q)). Thus, together with Lemma 4 the following lemma yields the remain-
ing claims of Theorem 3.

Lemma 5. (a) Assume thatDAS(Q) ≤p Q, that is, thatDAS(Q) is polynomial time re-
ducible toQ. If 〈A, 1s〉 ∈ DAS(Q) is not solvable in timesf (A) for some functionf ,
thenQ has hard sequences for algorithms.

(b) Assume thatNAS(Q) ≤p Q. If there is no nondeterministic algorithmV accepting
NAS(Q) such that for all〈A, 1s〉 ∈ NAS(Q) we havetV(〈A, 1s〉) ≤ sf (A) for some
functionf , thenQ has hard sequences for nondeterministic algorithms.

Proof. Again we only prove part (a).

Claim.Assume that〈A, 1s〉 ∈ DAS(Q) is not solvable in timesf (A) for some functionf .
Then there is no algorithmW deciding DAS(Q) such that for all algorithmsA with
L(A) ⊆ Q there is acA ∈ N such that for alls ∈ N we havetW(〈A, 1s〉) ≤ scA .

Proof of the Claim.By contradiction, assume that such aW exists. LetV be the algo-
rithm that, on an arbitrary input〈A, 1s〉, in parallel runsW on 〈A, 1s〉 and computes

rA := the leastr such thatL(Ar) 6⊆ Q

by systematically checking forr = 0, 1, . . .whetherL(Ar) 6⊆ Q (this is done by running
for all xwith |x| ≤ r the algorithmA at mostr steps on inputx and a decision procedure
for Q on x). Note thatrA is not defined ifL(A) ⊆ Q. If W stops first,V answers

6

accordingly; ifrA is obtained first, thenV accepts ifs < rA and otherwise it rejects.
It should be clear that the algorithmV decides〈A, 1s〉) ∈ DAS(Q) in ≤ sf (A) steps for
some functionf . ⊣

By assumption, there is a polynomial time reductionS from DAS(Q) to Q. Let B be
an arbitrary algorithm decidingQ. Then the algorithmB ◦ S, which on inputx first
simulatesS onx and thenB onS(x), decides DAS(Q). Hence, by the Claim, there exists
an algorithmA with L(A) ⊆ Q such thattB◦S(〈A, 1s〉) is not polynomially bounded
in s. For s ∈ N we setxs := S(〈A, 1s〉). Thenxs ∈ Q for all s and the function
1s 7→ xs is polynomial time computable. Furthermore

tB◦S(〈A, 1s〉) ≤ O
(

tS(〈A, 1s〉) + tB(S(〈A, 1s〉))
)

≤ sO(1) + O
(

tB(xs)
)

.

As the left hand side is not polynomially bounded ins, neither istB(xs). Hence (xs)s∈N

is hard forB. 2

Remark 6. Assume thatQ is coNP-complete and has padding (the set TAUT is an
example of such aQ). If Q has no almost optimal algorithm, then every algorithmB
decidingQ has a hard sequence (xs)s∈N with s ≤ |xs|. Then, in particular

{xs | s ∈ N} ∈ P and B is not polynomial time on{xs | s ∈ N}.

In fact, it is well-known that forQ with padding we can replace any polynomial time
reduction toQ by a length-increasing one. Hence, in the previous proof we may assume
thatS is length-increasing and therefores ≤ |xs|.

Remark 7. In the proof of Theorem 3 we used the assumption thatQ is coNP-complete
only to ensure that NAS(Q) ≤p Q (cf. Lemma 5). This condition is also fulfilled for
everyQ complete, say, in one of the classesΠ

p
t with t ≥ 1, E or PSPACE. Thus the

statements of Theorem 3 hold for suchQ.

The argument in the last part of Lemma 5 shows (an instance of)the following simple
lemma. Nevertheless, note that it is important that we do notrequires ≤ |xs| in our
definition of hard sequence.

Lemma 8. Assume thatS is a polynomial time reduction fromQ to Q′ and letB be a
(nondeterministic) algorithm deciding (accepting)Q′. If (xs)s∈N is a hard sequence for
B ◦ S, then(S(xs))s∈N is a hard sequence forB.

Therefore, ifQ ≤p Q′ andQ has hard sequences for (nondeterministic) algorithms
then so doesQ′.

We do not know proofs of the following results not using the machinery developed here.

Theorem 9. LetQ becoNP-complete. Then,TAUT has an almost optimal algorithm if
and only ifQ has an almost optimal algorithm.

Proof. Immediate by the previous lemma and Theorem 3. 2

We remark that the implication from left to right in the previous result was already
known [7] (see also Theorem 12 below).

7

Theorem 10. Assume thatTAUT has no almost optimal algorithm. Then everycoNP-
hard problem has no almost optimal algorithm.

Proof. By assumption and Theorem 3, TAUT has hard sequences for algorithms and so
does every coNP-hardQ by Lemma 8. Now the claim follows from Lemma 2. 2

4. Hard sequences for proof systems

In this section we translate the results on hard sequences from algorithms to proof sys-
tems. We first recall some basic definitions.

A proof system forQ is a polynomial time algorithmP computing a function fromΣ∗

ontoQ. If P(w) = x, we say thatw is aP-proof of x. Often we introduce proof systems
implicitly by defining the corresponding function; then this definition will suggest a
corresponding algorithm.

Definition 11. Let P andP′ be proof systems forQ. An algorithmT is a translation
from P′ into P if P(T(w′)) = P′(w′) for everyw′ ∈ Σ

∗. Note that translations always
exist. A translation ispolynomialif it runs in polynomial time.

A proof systemP for Q is p-optimalor polynomially optimalif for every proof sys-
temP′ for Q there is a polynomial translation fromP′ into P. A proof systemP for Q
is optimal if for every proof systemP′ for Q and everyw′ ∈ Σ

∗ there is aw ∈ Σ
∗

such thatP(w) = P′(w′) and|w| ≤ |w′|O(1). Clearly, every p-optimal proof system is
optimal.

We often will make use of the following relationship betweenthe optimality notions
for algorithms and that for proof systems (see [7, 11]).

Theorem 12. (1) For everyQ we have (a)⇒ (b) and (b)⇒ (c); moreover (a), (b), and
(c) are all equivalent ifQ has padding. Here
(a) Q has a p-optimal proof system.
(b) Q has an almost optimal algorithm.
(c) There is an algorithm that decidesQ and runs in polynomial time on every

subsetX ofQ with X ∈ P.
(2) For everyQ we have (a)⇐⇒ (b), (b)⇒ (c), and (c)⇒ (d); moreover (a)–(d) are

all equivalent ifQ has padding. Here
(a) Q has an optimal proof system.
(b) Q has an almost optimal nondeterministic algorithm.
(c) There is a nondeterministic algorithm that acceptsQ and runs in polynomial

time on every subsetX of Q with X ∈ NP.
(d) There is a nondeterministic algorithm that acceptsQ and runs in polynomial

time on every subsetX of Q with X ∈ P.

We use our results of Section 3 to extend the equivalence between (a) and (b) of part (1)
to arbirary coNP-complete problems:

Theorem 13. LetQ becoNP-complete. Then:

Q has a p-optimal proof system⇐⇒ Q has an almost optimal algorithm.

8

Proof. By Theorem 12 (1) the left side implies the right side. Now assume thatQ has
an almost optimal algorithm. AsQ×Σ

∗ is coNP-complete too, it has an almost optimal
algorithm (by Theorem 9). AsQ × Σ

∗ has padding, it has a p-optimal proof systemP
(cf. Theorem 12 (1)). Now it is routine to show that the algorithmP′ that on inputw
computesP(w) and outputs its first component is a p-optimal proof system forQ. 2

We already mentioned that for everyQ ⊆ Σ
∗ there is a well-known and straightfor-

ward correspondence between proof systems and nondeterministic algorithms preserv-
ing the optimality notions, so that the proof of the equivalence between (a) and (b) in
Theorem 12 (2) is immediate, In fact, ifP is a proof system forQ, then the nondeter-
ministic algorithmA(P) acceptsQ, whereA(P) on inputx ∈ Σ

∗ guesses a stringw and
accepts ifP(w) = x. Conversely, ifA is a nondeterministic algorithm acceptingQ, then
for every fixedx0 ∈ Q a proof systemPA for Q is defined by

PA(w) :=

{

x, if w is a computation ofA acceptingx

x0, otherwise.

The proof of the corresponding equivalence in Theorem 12 (1)is more involved and
mostly, more or less explicitly, it is based on a theorem due to Levin on inverters. As
we need this result, too, we recall it.

Let F be an algorithm computing a function fromΣ∗ to Σ
∗. An inverter ofF is

an algorithmI that giveny in the range ofF halts with some outputI(y) such that
F(I(y)) = y. On inputs not in the range ofF, the algorithmI may do whatever it wants.
Levin [8] proved the following result.

Theorem 14. LetF be an algorithm computing a function fromΣ∗ intoΣ
∗. Then there

is an optimal inverter that is, an inverterOF ofF such that for every inverterI ofF and
all y in the range ofF we have

tOF
(y) ≤

(

tI(y) + tF(I(y)) + |y|
)O(1)

.

Furthermore,OF does not halt on inputsy not in the range ofF.

We turn to hard sequences for proof systems.

Definition 15. Let P be a proof systems forQ. A sequence (xs)s∈N is hard (length-
hard) forP if {xs | s ∈ N} ⊆ Q, the function 1s 7→ xs is computable in polynomial
time, and there is no polynomial time (nondeterministic) algorithmW with P(W(1s)) =
xs for all s ∈ N.

For nondeterministicW by the unusual notationP(W(1s)) = xs we mean that for every
run ofW on 1s outputting a stringw we haveP(w) = xs and that there is at least one
run that outputs a string. In more conventional terms, instead of “there is no polynomial
time nondeterministic algorithmW with P(W(1s)) = xs,” we equivalently could require
that the function mapping 1s to the minimum length in unary of aP-proof ofxs is not
polynomially bounded.

Definition 16. The problemQ has hard (length-hard) sequences for proof systemsif
every proof system forQ has a hard (length-hard) sequence.

9

As already remarked in the Introduction part (b) of the following result is due to
Krajı́c̆ek [6] who proved it by quite different means. Part (a) is already known forQ =
TAUT (see e.g. the survey [1, Section 11]). We give a new proof thatworks for any, not
necessarily paddable coNP-complete problemQ.

Theorem 17. LetQ be acoNP-complete problem. Then:
(a) Q has no p-optimal proof system iffQ has hard sequences for proof systems.
(b) Q has no optimal proof system iffQ has a length-hard sequence for proof systems.

Proof. First we present a proof of the directions from right to left.Let P be any proof
system forQ. By our assumption onQ there is a hard (length-hard) sequence (xs)s∈N

for P. We consider the proof systemP′ for Q by

P′(w′) := P(w), if w′ = 0w; P′(w′) := xs, if w′ = 1s;

andP′(w′) := z0 for some fixed elementz0 of Q otherwise. By hardness (length-
hardness) no translation fromP′ into P is polynomial (polynomially bounded): In fact,
assume that (xs)s∈N is, say, length-hard forP and by contradiction that the trans-
lation T from P′ into P is polynomially bounded. Letq be a polynomial such that
|T(w′)| ≤ q(|w′|) for all w′. Then, the nondeterministic algorithmW that on input 1s

guesses a stringw of length≤ q(s) and outputs it in caseP(w) = xs runs in polynomial
time.

Now we present a proof of the direction from left to right; we do that only for (a)
as that for (b) follows immediately from the result for algorithms by the simple corre-
spondence between proof systems and nondeterministic algorithms mentioned above.
So, assume thatQ has no p-optimal proof system. By Theorem 13,Q has no almost
optimal algorithm and hence has hard sequences for algorithms by Theorem 3.

Let P be any proof system forQ. By Theorem 14, we have an inverterOP of P
which is optimal, that is, for every inverterI of P andx ∈ Q we have

tOP
(x) ≤

(

tI(x) + tP(I(x)) + |x|
)O(1)

≤ (tI(x) + |x|)O(1), (2)

where the second inequality holds astP(w) ≤ |w|O(1) and hencetP(I(x)) ≤ |I(x))|O(1) ≤
tI(x)O(1). Moreover, forx /∈ Q the algorithmOP will not halt on inputx.

We choose an arbitrary algorithmQ that decidesQ and consider the algorithmS
that on inputx in parallel simulatesQ andOP, both on inputx. If Q halts first, then it
answers accordingly and ifQP halts first, then it accepts. ObviouslyS decidesQ and
for everyx ∈ Q we have

tS(x) ≤ O
(

tOP
(x)

)

. (3)

As Q has hard sequences for algorithms, there is a polynomial time computable algo-
rithm G generating a hard sequence forS, that is,G on input 1s computesxs ∈ Q in
polynomial time such that

tS(xs) is not polynomially bounded ins. (4)

LetG+ be the variant of the algorithmG∗ in the proof of Lemma 2 obtained by replacing
Line 4 by

if this simulation outputsy andy = x then output 1s and halt.

10

Of course, on inputx = xs the algorithmG+ runs in time polynomial ins. We show that
(xs)s∈N is a hard sequence forP. So by contradiction, assume thatW is a polynomial
time algorithm withP(W(1s)) = xs for all s ∈ N. We consider the inverterI of P that on
inputx in parallel simulatesOP andG+, both on inputx. If OP halts, then it outputs the
output ofOP and halts; ifG+ halts, then it simulatesW onG+(x), outputsW(G+(x)),
and halts.

By definition ofG+ the algorithmI runs on inputxs in time polynomial ins, hence
so doesOP by (2) as|xs| ≤ sO(1). But then by (3), the same holds for the algorithmS
contradicting (4). 2

In the previous proof the hard (length-hard) sequence (xs)s∈N constructed for a
proof system forQ was the hard sequence of a suitable (nondeterministic) algorithm
for Q. Hence, by Remark 6, forQ with padding, we can require in Theorem 17 that for
the claimed hard sequence (xs)s∈N we haves ≤ |xs|.

5. Hard subsets

As already remarked in the Introduction, if for an algorithmA deciding a problemQ we
have a hard sequence (xs)s∈N satisfyings ≤ |xs|, then{xs | s ∈ N} is a polynomial
time decidable subset ofQ on whichA is not polynomial time. We then speak of a hard
set forA even if its elements cannot be generated in polynomial time.More precisely:

Definition 18. LetQ ⊆ Σ
∗.

(1) LetA be a deterministic or nondeterministic algorithm acceptingQ. A subsetX of
Q is hard forA if X ∈ P andA is not polynomial time onX .

(2) The problemQ has hard sets for algorithmsif every algorithm decidingQ has a
hard set.

(3) The problemQ has hard sets for nondeterministic algorithmsif every nondeter-
ministic algorithm acceptingQ has a hard set.

Using these notions the equivalences (a)⇔ (c) in Theorem 12 can be expressed in the
following way:

Assume thatQ has padding. Then

(1) Q has no almost optimal algorithm⇐⇒ Q has hard sets for algorithms.
(2) Q has no almost optimal nondeterministic algorithm⇐⇒ Q has hard

sets for nondeterministic algorithms.

Hence, we get (we leave the nondeterministic variant to the reader):

Corollary 19. AssumeQ has padding.
(a) If Q has hard sequences for algorithms, thenQ has hard sets for algorithms.
(b) If in additionQ is coNP-complete, then

Q has hard sequences for algorithms⇐⇒

Q has hard sets for algorithms.

11

Proof. (a) If Q has hard sequences for algorithms, then, by Lemma 2,Q has no almost
optimal algorithm and thus, by the previous remark,Q has hard sets for algorithms.

Again the previous remark together with Theorem 3 yields (b). 2

Assume thatQ has an almost optimal algorithm. Then, in general, one cannot show
that every algorithm decidingQ, which is not almost optimal, has a hard set. In fact,
Messner [11, Corollary 3.33] has presented a P-immuneQ0 with an almost optimal
algorithm. Of course, no algorithm decidingQ0 has a hard set.

For an arbitrary problemQ the existence of hard subsets is equivalent to a (non-)-
listing property. We introduce this property.

Let C be the complexity class P or NP. A setX is a C-subset ofQ if X ⊆ Q and
X ∈ C. Let C′ be also one of the classes P or NP. We write List(C, Q,C′) and say that
there is alisting of theC-subsets ofQ byC′-machinesif there is an algorithm that, once
having been started, lists Turing machinesM1,M2, . . . of type C′ such that

{L(Mi) | i ≥ 1} = {X ⊆ Q | X ∈ C}.

ForQ with padding the equivalences in the following propositionwere known [12].

Proposition 20. (1) Q has hard sets for algorithms⇐⇒ notList(P, Q,P).
(2) Every nondeterministic algorithmA acceptingQ is not polynomial on at least one

subsetX ofQ with X ∈ NP ⇐⇒ notList(NP, Q,NP).

Proof. We only prove the first claim as the second one can be obtained along the same
lines. First we assume that not List(P, Q,P). LetA be an algorithm decidingQ. For
d ∈ N, by A(d) we denote the algorithm that on inputx simulatesA on inputx but
rejects if the simulation exceeds time|x|d.

We show that there is a P-subsetX of Q such that

for all d: X 6⊆ A(d)

Of course, then thisX is hard forA.
Otherwise, we fix an effective enumerationD1,D2, . . . of all polynomial time Tur-

ing machines. Then (Di(A(j))i,j≥1 is a listing of the P-subsets ofQ, whereDi(A(j))
on inputx, first simulatesA(j) on x and if this algorithm accepts, then it simulates
Di on input x and answers accordingly. In fact, asA(j) has to acceptx, we have
L(Di(A(j))) ⊆ Q. And if X is a P-subset ofQ accepted byDi, we choose ad such that
X ⊆ A(d). ThenL(Di(A(d))) = X .

Conversely, assume thatQ has hard sets for algorithms. By contradiction assume
thatL is a listing witnessing List(P, Q,P). LetQ be an algorithm decidingQ. Consider
the algorithmA that on inputx simulatesQ onx and in parallel fori = 1, 2, . . . does
the following:

– performs theith step ofL;
– if M1, . . . ,Ms are the machines listed byL so far, it performs an additional step of

each of theMjs onx; if one of these accepts it accepts.

12

If Q halts first, it answers accordingly.
It should be clear thatA acceptsQ. By assumption, there is a setX hard forA.

Let Mi0 acceptX . By definition ofA it should be clear thatA is polynomial onX , a
contradiction. 2

We close this section by introducing hard subsets for proof systems and stating the
corresponding result.

Definition 21. (1) Let P be a proof system forQ. A subsetX of Q is hard (length-
hard) forP if X ∈ P and there is no polynomial time (nondeterministic) algorithm
W such thatP(W(x)) = x for all x ∈ X (cf. the remark after Definition 15 for the
precise meaning of this last condition in the nondeterministic case).

(2) Q has hard (length-hard) sets for proof systemsif every proof system forQ has a
hard (length-hard) set.

The following result can be obtained along the lines of the proof of Theorem 17. Again,
due to the close relationship between nondeterministic algorithms and proof systems,
part (b) can be viewed as a reformulation of the result for algorithms.

Theorem 22. LetQ be a problem with padding. Then:
(a) Q has no p-optimal proof system if and only ifQ has hard sets for proof systems.
(b) Q has no optimal proof system if and only ifQ has length-hard sets for proof

systems.

6. Assuming the Measure Hypothesis

In this section we present some examples of problems with special properties, some
yield limitations to possible extensions of results mentioned in this paper. Most are
proven assuming the Measure Hypothesis.

6.1. Complex sets with optimal algorithms and with optimal proof systems. For
everyQ ∈ NP, say, accepted by the polynomial time nondeterministic algorithm A,
the proof systemP is optimal, whereP(w) := x if w is an accepting computation ofA
on inputx; and otherwise,P(w) := z0 for some fixed elementz0 of Q. The question
whether there are sets outside of NP with optimal proof systems was stated by Krajı́c̆ek
and Pudlák [7] and is still open. As already mentioned they proved that TAUT has an
optimal proof system if E = NE.

We prove that there are problems in NE and outside of NP with optimal proof sys-
tems if the Measure Hypothesis holds. As a byproduct we get that there exist problems
in E and outside of P with optimal algorithms (thereby we do not need the Measure Hy-
pothesis). Here an algorithmA decidingQ is optimalif for every algorithmB deciding
Q we have

tA(x) ≤ (tB(x) + |x|)O(1)

for all x ∈ Σ
∗. Clearly, every problem in P has an optimal algorithm.

Let C be a class of problems. Recall that a problemQ is C-immuneif no infinite
subset ofQ is in C; and it is C-bi-immuneif Q and its complementΣ∗ \ Q are C-
immune. For a functiont : N → N we denote by DTIME0(t) and DTIME(t) the class

13

of problems decidable by a Turing machineM with tM(x) ≤ t(x) for all x ∈ Σ
∗ and

tM(x) ≤ c · t(x) for all x ∈ Σ
∗ and some constantc ∈ N. The nondeterministic classes

NTIME0(t) and NTIME(t) are defined accordingly. Hence E =
⋃

d∈N DTIME(2d·n) and
NE =

⋃

d∈N NTIME(2d·n).

Lemma 23. Let ℓ ∈ N with ℓ ≥ 1.
(a) If Q ∈ E is a DTIME0(2ℓ·n)-bi-immune problem, thenQ has an optimal algorithm.
(b) If Q ∈ NE is a NTIME0(2ℓ·n)-immune problem, thenQ has an almost optimal

nondeterministic algorithm.

Proof. We prove (a); part (b) is obtained by the obvious modifications. Assume that the
Turing machineM decides the DTIME0(2ℓ·n)-bi-immune problemQ in timec · 2d·n for
somec, d ∈ N. We claim thatM is optimal.

Assume otherwise, then there is a machineM′ decidingQ and witnessing thatM is
not optimal. Then for everyi ∈ N there exists anxi such that

tM(xi) >
(

tM′ (xi) + |xi|
)i
.

It follows that for everyi ∈ N

c · 2d·|xi| ≥ tM(xi) > tM′ (xi)i

Thus tM′ (xi) ≤ 2ℓ·|xi|/2 for all sufficiently largei ∈ N. Of course, infinitely many
of thesexi’s are inQ, or they are inΣ∗ \ Q. In the first case consider the following
machine:

M′′ // x ∈ Σ
∗

1. simulateM′ onx for at most 2ℓ·|x|/2 steps
2. if the simulation halts and acceptsthen acceptelsereject.

It accepts an infinite subset ofQ in time 2ℓ·n. This contradicts our immunity assump-
tion. The second case is handled similarly. 2

We use the following result due to Mayordomo [10]. Statement(b) of it uses the
Measure Hypothesis[5], that is, the assumption

NP does not have measure 0 in E.

For the corresponding notion of measure we refer to [10]. This hypothesis is sometimes
used in the theory of resource bounded measures.

Theorem 24. Let ℓ ≥ 1.
(a) The class ofDTIME0(2ℓ·n)-bi-immune problems has measure 1 inE. In particular,

the classE containsDTIME0(2ℓ·n)-bi-immune problems.
(b) If the Measure Hypothesis holds, thenNP∩ E containsDTIME0(2ℓ·n)-bi-immune

problems.

From the previous lemma and theorem we get:

14

Corollary 25. (1) There exist problems inE \ P with optimal algorithms.
(2) If the Measure Hypothesis holds, then there exist problems inNP\ P with optimal

algorithms.

We already remarked that Messner [11] showed the existence of problems in E\P with
almostoptimal algorithms.

Theorem 26. If the Measure Hypothesis holds, then there exist problems in NE \ NP
with optimal proof systems.

Proof. It suffices to show that there is aQ ∈ NE which is NTIME0(2n)-immune. Then,
by Lemma 23, such aQ has an almost optimal nondeterministic algorithm and hence,
an optimal proof system by Theorem 12.

By Theorem 24 (b) there is aQ0 ∈ NP which is DTIME0(22n)-bi-immune problem.
We choosed ≥ 1 such thatQ0 ∈ NTIME(nd). We set

Q :=
{

1m | m ∈ N and 12
m

∈ Q0

}

.

ThenQ ∈ NE. Furthermore,Q is infinite as otherwise the set{12m | m ∈ N and 12
m

/∈
Q0} would be an infinite subset ofΣ∗ \Q0 in P contradicting the bi-immunity property
of Q0. Finally we show thatQ is NTIME0(2n)-immune. By contradiction assume that
there is an infiniteS ⊆ Q accepted by a nondeterministic algorithmS in time 2n. Then
the set

S∗ := {1n | n = 2m for somem ∈ N and 1m ∈ S}

is an infinite subset ofQ0. The algorithm that first computesm from 1n and then deter-
ministically simulates all possible runs ofS on 1m runs in time

nO(1) + O(22m) = nO(1) + O(2n) ≤ 22n

for sufficiently largen. This contradicts the DTIME0(22n)-immunity ofQ0. 2

6.2. Non-optimal algorithms without hard sequences.In this final part we show that,
assuming the Measure Hypothesis,

– every problem with padding and with an almost optimal algorithm has an algorithm
which is not almost optimal but has no hard sequence

– there is a problem without almost optimal algorithm havingan algorithm without
hard sequence.

Our proofs are based on the following proposition.

Proposition 27. If the Measure Hypothesis holds, then there is a problemQ0 ∈ P such
that
(a) there is an algorithmB decidingQ0 which is not almost optimal (or, equivalently,

is not polynomial time) but has no hard sequences;
(b) every algorithmA decidingQ0 with

tA(x) ≤ 2e·(log |x|)2

for everyx ∈ Σ
∗ and some constante ≥ 1 has no hard sequences;

15

(c) there is a proof system forQ0 which is not optimal but has no hard sequences.

In the proof we shall use:

Lemma 28. LetA be an algorithm deciding a problemQ0 with

tA(x) ≤ 2e·(log |x|)2

(5)

for all x ∈ Σ
∗ and somee ≥ 1. Assume that(xs)s∈N is a hard sequence forA. Then

there is a sequences0 < s1 < s2 < . . . such that

lim
i→∞

log si
(log |xsi |)2

= 0 i.e., si = 2o((log |xsi
|)2).

In particular, the set{xsi | i ∈ N} is infinite.

Proof. Assume otherwise that for someε > 0 and somen ∈ N and alls ≥ n

log s

(log |xs|)2
≥ ε,

or equivalently,s ≥ 2ε·(log |xs|)
2
; thens ≥ tA(xs)ε/e by assumption. This contradicts

the hardness of (xs)s∈N. 2

Proof of Proposition 27. (a) and (b): By the Measure Hypothesis there is a DTIME0(2n)-
bi-immuneQ1 ∈ NP. In particular, there exists a nondeterministic Turing machineM
with binary nondeterminism and ad ∈ N such that for ally ∈ Σ

∗ (with |y| ≥ 2) the
machineM decides whethery ∈ Q1 in ≤ |y|d steps. Thus fory ∈ Σ

∗ every string
x ∈ {0, 1}|y|

d

determines a unique run ofM ony. We set

Q0 :=
{

x ∈ {0, 1}∗
∣

∣

∣
for somen ∈ N we have|x| = nd

andx determines an accepting run ofM on input 1n
}

.

ThenQ0 is infinite, as otherwise the set{1n ∈ Q1 | n ∈ N} would be finite contra-
dicting the DTIME0(2n)-bi-immunity ofQ1. ClearlyQ0 ∈ P. LetA0 be an algorithm
decidingQ0 in polynomial time and letB be the algorithm decidingQ0 by first simu-
latingA, and then making an appropriate number of dummy steps such that for some
e ≥ 1 and ally ∈ Σ

∗

tB(y) = 2e·(log |y|)2

. (6)

ThenA0 witnesses thatB is not almost optimal.
We finish our proof by showing that for every algorithmA decidingQ0 such that

for somee ≥ 1 and ally ∈ Σ
∗

tA(y) ≤ 2e·(log |y|)2

.

16

has no hard sequences. Towards a contradiction assumeA has a hard sequence (xs)s∈N.
We set

L0 := {1n | for somes ∈ N, |xs| = nd andxs determines an accepting run ofM on 1n}.

Clearly,L0 ⊆ Q1. We choose a polynomial time algorithmG computing the function
1s 7→ xs. The following algorithmC acceptsL0.

C // y ∈ Σ
∗

1. n← |y|
2. if y 6= 1n then reject
3. ℓ← 0
4. for s = 0 to ℓ
5. simulate the (ℓ− s)th step ofG on 1s

6. if the simulation outputsx with |x| = nd then accept
7. ℓ← ℓ + 1
8. goto 3.

By (6) we can apply Lemma 28 toA and get a sequences0 < s1 < s2 < Fori ∈ N

we let
ni := d

√

|xsi |. (7)

Hence,xsi is an accepting run ofM on input 1ni . We show that

tC(1ni) = 2o((log ni)2). (8)

In fact, asG runs in polynomial time, we have|xsi | ≤ |si|
O(1), and by (7) therefore,

|ni| ≤ |si|
O(1). Now one easily sees thatC accepts 1ni in time polynomial insi, too.

By Lemma 28
si = 2o((log |xsi

|)2).

Thus (7) implies that
si = 2o((log ni)2).

Hence, we get (8).
Finally, we consider the algorithmC∗ that on inputy simulatesC for 2|y| steps

and accepts if the simulation accepts. By (8),C∗ accepts an infinite subset ofL0. As
L0 ⊆ Q1, this contradicts the DTIME0(2n)-bi-immunity ofQ1.

(c) LetQ0 andB be as in part (a). We leave it to the reader to show that the following
proof systemP for Q0 is not optimal but has no hard sequence. Forw ∈ Σ

∗ let

P(w) := x, if w is a computation ofB acceptingx

andP(w) := z0 for some fixedz0 ∈ Q0 otherwise. 2

Theorem 29. LetQ be a problem with padding and with an almost optimal algorithm.
If the Measure Hypothesis holds, then there is an algorithm decidingQ, which is not
optimal, has hard sets but does not have hard sequences.

17

Proof. Let pad andO be a padding function and an almost optimal algorithm forQ,
respectively. With Proposition 27 (a) choose aQ0 ∈ P and an algorithmB deciding
Q0 which is not almost optimal but has no hard sequences. Fixz0 ∈ Q and letA be
the algorithm decidingQ that on inputx first checks (in polynomial time) whetherx =
pad(z0, y) with y ∈ Q0 (using the properties of the padding function and a polynomial
time algorithm decidingQ0); if so, it simulatesB ony; otherwise it simulatesO onx.

Clearly,A is not almost optimal as it can be speeded up on the set{pad(z0, y) | y ∈
Q0}, a hard set ofA. By contradiction, assume (xs)s∈N is a hard sequence forA and let
y0 ∈ Q0. Fors ≥ 1 we set

ys :=

{

y, if xs = pad(z0, y) with y ∈ Q0

ys−1, otherwise

and

zs :=

{

zs−1, if xs = pad(z0, y) with y ∈ Q0

xs, otherwise.

Then either (ys)s∈N is a hard sequence forB or (zs)s∈N is a hard sequence forO, in
both cases a contradiction. 2

Corollary 30. If the Measure Hypothesis holds, then the following are equivalent:
(i) EverycoNP-complete problem has no almost optimal algorithm.
(ii) Every non-almost optimal algorithm deciding acoNP-complete problem has hard

sequences.

Proof. We already know that (i) implies (ii) by Theorem 3 (a). Assume(ii) and by
contradiction, suppose thatQ is a coNP-complete problem with an almost optimal al-
gorithm. By Theorem 9, we may assume thatQ has padding. Then, by the previous
theorem, there is a non-almost optimal algorithm decidingQ without hard sequences,
contradicting (ii). 2

The following example shows that the padding hypothesis is necessary in Theo-
rem 29.

Example 1.Let Q := {1n | n ∈ N}. As Q ∈ P, it has an almost algorithm. However,
the setQ itself is a hard set and (1s)s∈N a hard sequence for every non-optimal (that is,
for every superpolynomial) algorithm decidingQ.

Finally, we show that also problemswithout almost optimal algorithm may have
algorithms without hard sequences:

Theorem 31. If the Measure Hypothesis holds, there is a problem which hashard sets
for algorithms (and hence has no almost optimal algorithm) but has algorithms without
hard sequences.

Proof. LetQ0 ∈ P be a problem with the properties stated in Proposition 27. We fix an
effective enumeration

A0,A1, . . . , (9)

18

of all algorithms such that there is an universal algorithmU which on every input〈1i, x〉
simulates the algorithmAi on input〈1i, x〉 in such a way that

tU
(

〈1i, x〉
)

≤ (i + 1) · tAi
(〈i, x〉)2. (10)

For everyi ∈ N we let

Si :=
{

〈1i, x〉
∣

∣

∣
x ∈ Q0 andAi doesnot accept〈1i, x〉 in ≤ 2(log |x|)2

steps
}

. (11)

Finally, we set
Q :=

⋃

i∈N

Si.

and show thatQ is a problem with the properties mentioned in the theorem.

Claim 1.Let k ∈ N. If Ak

(

see (9)
)

decidesQ, thenSk = {〈1k, x〉 | x ∈ Q0}.

Proof of Claim 1.Otherwise, there exists anx0 ∈ Q0 with 〈1k, x0〉 /∈ Sk. It follows that

x0 ∈ Q0 with 〈1k, x0〉 /∈ Sk =⇒ Ak accepts〈1k, x0〉 in ≤ 2(log |x|)2
steps (by (11))

=⇒ Ak accepts〈1k, x0〉
=⇒ 〈1k, x0〉 ∈ Q (asAk decidesQ)
=⇒ 〈1k, x0〉 ∈ Sk (since allSi’s are disjoint).

This is a contraction. ⊣

Claim 2.Q has hard sets for algorithms.

Proof of Claim 2.Assume thatAk decidesQ. By Claim 1,Sk = {〈1k, x〉 | x ∈ Q0}
and by (11) for everyx ∈ Q0,

tAk

(

〈1k, x〉
)

> 2(log |x|)2

.

AsQ0 ∈ P, thusSk is a hard set forAk. ⊣

Claim 3.For all sufficiently larged ∈ N there is an algorithmQd decidingQ such that

tQd

(

〈1i, x〉
)

= (i + 1) · 2d·(log |x|)2

for everyi ∈ N andx ∈ Σ
∗.

Proof of Claim 3. By (10) and (11) asQ0 ∈ P. ⊣

Now we choose a sufficiently larged ∈ N and consider the algorithmQd of Claim 3.
Assume thatQd has a hard sequence

(

〈1is , xs〉
)

s∈N
.

By (11) everyxs is in Q0 and by hardness,

tQd

(

〈1is , xs〉
)

= (is + 1) · 2d·(log |xs|)
2

19

is superpolynomial ins. Since the mapping 1s 7→ 〈1is , xs〉 is computable in polynomial
time, we have|is| ≤ |s|O(1). Therefore,

2d·(log |xs|)
2

is superpolynomial ins. (12)

AsQ0 is decidable in polynomial time andd is sufficiently large, we have an algorithm
A decidingQ0 in time 2d·(log |x|)2

on every instancex ∈ Σ
∗. Then (12) implies that

(xs)s∈N is a hard sequence forA, which contradicts Proposition 27 (b). 2

7. Getting hard sequences in an effective way

We have mentioned in the Introduction that McCreight and Meyer [9] have shown that
for every EXP-hard problemQ there is a polynomial time procedure assigning to every
algorithm decidingQ a hard sequence. Based on their proof we derive a “nondetermin-
istic” version.

Theorem 32. LetQ be acoNEXP-hard problem. Then there is a polynomial time com-
putable functiong : Σ∗×{1}∗ → Σ

∗ such that for every nondeterministic algorithmA
acceptingQ the sequence

(

g(A, 1s)
)

s∈N
is hard forA.

Proof. Consider the problem

Q0

Instance:A nondeterministic algorithmA.
Question:Is it true thatA does not acceptA in at most

2|A| steps?

Claim 1.If B is a nondeterministic algorithm acceptingQ0, thenB ∈ Q0 and therefore,
tB(B) > 2|B|.

Proof of Claim 1.Assume thatB /∈ Q0. Therefore,B does not acceptB. Then, by the
definition ofQ0, we haveB ∈ Q0, a contradiction. ⊣

To every nondeterministic algorithmA and everys ∈ N we can assign in time
polynomial inA ands a nondeterministic algorithmAs with

|As| ≥ s, L(As) = L(A), and tAs
= tA (13)

(say, by addings new “dummy” states).

Claim 2. If A is a nondeterministic algorithm acceptingQ0, then (As)s∈N is a hard
sequence forA.

Proof of Claim 2.It suffices to verify for alls ∈ N

As ∈ Q0 (14)

tA(As) > 2s. (15)

20

By (13) we know thatL(As) = L(A). Hence, (14) holds by Claim 1, which also shows
the first inequality in

tA(As) = tAs
(As) > 2|As| ≥ 2s,

the second one and the equality holding by (13). ⊣

Now let Q be coNEXP-hard. SinceQ0 ∈ coNEXP there is a polynomial time re-
ductionS from Q0 to Q. Again, for a nondeterministic algorithmA let A ◦ S be the
nondeterministic algorithm that on inputx ∈ Σ

∗ first runsS onx and then runsA on
S(x).

For a nondeterministic algorithmA ands ∈ N we define

g(A, 1s) := S((A ◦ S)s).

Clearly, g is polynomial time computable. IfA decidesQ, thenA ◦ S decidesQ0;
therefore, ((A ◦ S)s)s∈N is a hard sequence forA ◦ S by Claim 2. Hence,

(

g(A, 1s)
)

s∈N

is a hard sequence forA by Lemma 8. 2

Acknowledgements.The authors wish to thank the John Templeton Foundation for its
support under Grant #13152,The Myriad Aspects of Infinity. This research also has been
partially supported by the National Nature Science Foundation of China (60970011),
the Sino-German Center for Research Promotion (GZ584). Yijia Chen is affiliated with
BASICS and MOE-MS Key Laboratory for Intelligent Computingand Intelligent Sys-
tems which is supported by National Nature Science Foundation of China (61033002).

References

1. O. Beyersdorff. On the correspondence between arithmetic theories and propositional proof
systems - a survey.Mathematical Logic Quarterly, 55(2):116–137, 2009.

2. Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. InProceedings of
the 37th International Colloquium on Automata, Languages and Programming (ICALP’10,
Track B), volume 6199 ofLecture Notes in Computer Science, pp. 321–322, 2010.

3. Y. Chen and J. Flum. Listings and logics. Electronic Colloquium on Computational Com-
plexity (ECCC), TR11-020, 2011.

4. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.The
Journal of Symbolic Logic, 44:36–50, 1979.

5. J.M. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit com-
plexity. InProceedings of the 24th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’04), 336-347, 2004.

6. J. Krajı́c̆ek. Bounded arithmetic, propositional logic, and complexity theory. Cambridge
University Press, 1995.

7. J. Krajı́c̆ek and P. Pudlák. Propositional proof systems, the consistency of first order theories
and the complexity of computations.The Journal of Symbolic Logic, 54:1063–1088, 1989.

8. L. Levin. Universal search problems.Problems of Information Transmission, 9(3):265-266,
1973.

9. A. Meyer. A supervisor’s reminiscence what we were thinking. Talk at the Stockmeyer-
Symposium, 2005.

10. E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Com-
puter Science, 136(2): 487-506, 1994.

21

11. J. Messner. On the simulation order of proof systems. PhDThesis, University of Erlangen,
2000.

12. Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets of
TAUT. Theoretical Computer Science, 288(1):181–193, 2002.

13. L. Stockmeyer. The Complexity of Decision Problems in Automata Theory.PhD. Thesis,
MIT 1974.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

