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Abstract. Assuming that the classaTT of tautologies of propositional logic has
no almost optimal algorithm, we show that every algorithrdeciding TAUT has

a polynomial time computable sequence witnessing4hiatnot almost optimal.
The result extends to evefyy-complete problem with > 1; however, we show
that assuming the Measure Hypothesis there is a problemhwitasis no almost
optimal algorithm but has an algorithm without hard segesnc

1. Introduction

Let A be an algorithm deciding a proble@. A sequencex,)scn of strings inQ is
hard for A if it is computable in polynomial time and the sequeng€;)scn) is not
polynomially bounded irs.* Here,t, (z) denotes the number of steps the algorithm
takes on input:. Clearly, if A is polynomial time, the\ has no hard sequences. Fur-
thermore, an almost optimal algorithm f@rhas no hard sequences either. Recall that
an algorithmA is almost optimal forQ if for every inputz € @ the running time
ta(z) is polynomially bounded ing(x) for any other algorithnB® deciding@. In fact,
if (xs)sen IS @ hard sequence for an algorithm, then one can polyngnsipéied up it
on{z, | s € N}, so it cannot be almost optimal.

Central to this paper is the question: To what extent can e that algorithms
which are not almost optimal have hard sequences? Our nsiit states:

(a) If a coNPcomplete problend) has no almost optimal algorithm, then every algo-
rithm deciding@ has hard sequences.

Perhaps one would expect that one can strengthen (a) andtshbeven if a cONP-
complete problend) has an almost optimal algorithm, then every algorithm, Wwhsc
not almost optimal and decidés has a hard sequence. However, we show:

If the Measure Hypothesis holds, then eveR.complete problem with padding
and with an almost optimal algorithm has an algorithm whisimot almost op-
timal but has no hard sequences.

Even though we can extend the result (a)lfecomplete problems (with > 1), appar-
ently there are some limitations as we derive the followiegpit:

If the Measure Hypothesis holds, then there is a prolewhich has no almost
optimal algorithm but has an algorithm without hard sequesic

4 All notions will be defined in a precise manner later.
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In particular, there are algorithms deciding suc and polynomially speeding up a
given algorithm. That is, this notion of speeding up (e.gqisidered in [13, 9]) differs
from our notion of the existence of a hard sequence.

Assume that a coNP-complete problépmhas no almost optimal algorithm. Can
we even effectively assign to every algorithm decidipg@ hard sequence? We believe
that under reasonable complexity-theoretic assumptinashbould be able to show that
such an effective procedure or at least a polynomial timegutare does not exist, but
we were not able to show it. However, recall that by a resuét tuMcCreight and
Meyer [9] and redicovered by Messner [11] we know:

For everyEXP-hard problem( there is a polynomial time effective procedure
assigning to every algorithm solving@ a sequence hard for it.

Hence, if EXP = NP, then for every NP-hard (and hence for egefyP-hard) prob-
lem @ there is a polynomial time effective procedure assigningrd Bequence to every
algorithm deciding).

Our proof of (a) generalizes to nondeterministic algorishirhis “nondeterministic
statement” yields a version of a result due to Krajicekahithie derived for non-optimal
propositional proof systems: IfADT, the set of tautologies of propositional logic, has
no optimal proof system, then for every propositional pmaftemP there is a polyno-
mial time computable sequence,|;cy of propositional tautologies; with s < |as|
which only have superpolynomi&tproofs. While it is well-known that nondetermin-
istic algorithms for RuT and propositional proof systems are more or less the same
(so that the nondeterministic version of (a) essentialkragicek’s result), the relation-
ship between deterministic algorithms decidimguT and propositional proof systems
is more subtle. Nevertheless, we are able to use (a) to darstatement on hard se-
quences for propositional proof systems in case thatrThas ngpolynomiallyoptimal
proof system.

As a byproduct, we obtain results in “classical terms” forighhwe do not know
proofs avoiding the machinery we develop here; for exanvpdeget:

Let@ becoNP-complete. Ther) has an almost optimal algorithm if and only
if @ has a polynomially optimal proof system.

If TAUT has no almost optimal algorithm, then evegNR-hard problem has
no almost optimal algorithm.

It is still open whether there exist problems outside of NRhvaptimal proof sys-
tems. We show their existence (in NE) assuming the Measupetigsis. Krajicek and
Pudlak [7] proved that E = NE implies thanUT has an optimal proof system.

If for an algorithmA deciding a problend) we have a hard sequence,)scn sat-
isfying s < |zg|, then{zs | s € N} is ahard set forA, that is, a polynomial time
decidable subset @ on whichA is not polynomial time. Messner [11] has shown for
any Q with padding that all algorithms deciding@ have hard sets if and only @ has
no polynomially optimal proof system. We show for arbitra@pythat the existence of
hard sets for all algorithms is equivalent to the existerfcanoeffective enumeration



of all polynomial time decidable subsets @f a property which has turned out to be
useful in various contexts (cf. [12, 2, 3]). We analyze whatssher’s result means for
proof systems.

The content of the sections is the following. In Section 2 e&ail some concepts.
We deal with hard sequences for algorithms in Section 3 angrfmf systems in Sec-
tion 4. Section 5 is devoted to hard sets and Section 6 canthi results and the
examples of problems with special properties obtainedrasgythat the Measure Hy-
pothesis holds. Finally Section 7 gives an effective pracegielding hard sequences
for nondeterministic algorithms for coNEXP-hard problems

2. Preliminaries

We denote by the alphabef0,1} and by|z| the length of a string: € X*. We
identify problems with subsets a&f*. In this paper we always assume tliatdenotes a
decidable and nonempty problem.

We denote by P (NP) the class of problefhsuch that: € @ is solvable by a deter-
ministic (nondeterministic) Turing machine [in| °® steps (formallyp®® denotes the
class of polynomially bounded functions on the natural nerap A problen C »*
has paddindf there is a functiopad: ¥* x ¥* — ¥* computable in logarithmic space
having the following properties:

— Foranyz,y € ©*, |padz,y)| > |z| +|y| and (padz,y) € Q < z € Q).
— There is a logspace algorithm which, giyesd(z, y) recoversy.

By (...,...) we denote some standard logspace computable tupling éunetith
logspace computable inverses.

If A is a deterministic or nondeterministic algorithm ahdccepts the string, then
we denote by, (x) the minimum number of steps of an accepting ru\adn x; if A
does not accept, thent, (x) is not defined. By.(A) we denote the language accepted
by A. We use deterministic and nondeterministic Turing machwni¢h 3 as alphabet as
our basic computational model for algorithms (and we ofathe notions “algorithm”
and “Turing machine” synonymously). If necessary we wilt dstinguish between a
Turing machine and its code, a stringdiri. By default, algorithms are deterministiié
an algorithmA on inputz eventually halts and outputs a value, we denote ii\fy).

3. Hard sequences for algorithms

In this section we derive the results concerning the existesf hard sequences for
coNP-complete problems.

Let @ C >¥*. A deterministic (hondeterministic) algorithf deciding (accepting)
@ is almost optimalf for every deterministic (nondeterministic) algoritHindeciding

(accepting)? we have
o
ta(z) < (tg(z) + |2 @
for all z € Q. Note that nothing is required far ¢ Q.
Clearly, every problem in P has an almost optimal algorithrd avery problem
in NP has an almost optimal nondeterministic algorithm.r&tee problems outside P



with an almost optimal algorithm (see Messner[11, CorglBaB3]; we slightly improve
his result in Section 6). However, it is not known whetheréhare problems outside NP
having an almost optimal nondeterministic algorithm ans itot known whether there
are problems with padding outside P having an almost optiigalrithm. We show in
Section 6 that the former is true if the Measure Hypothesidsho

We introduce the notion of hard sequence.

Definition 1. Let@Q C ¥*.

(1) Let A be a deterministic (hondeterministic) algorithm decid{agcepting)@. A
sequencexs)sen is hard for A if {z, | s € N} C @, the function T — z; is
computable in polynomial time, and(z ;) is not polynomially bounded is.

(2) The problent) has hard sequences for algorithrifigvery algorithm deciding)
has a hard sequence.

(3) The problenm) has hard sequences for nondeterministic algorithinesery non-
deterministic algorithm acceptin@ has a hard sequence.

The proof of the following lemma is straightforward; it shethat if (z,) < is hard
for an algorithmA, thenA can be polynomially speeded up ¢n; | s € N}; thusA
can’t be almost optimal.

Lemma 2. Let A be a deterministic (nondeterministic) algorithm decidifagcept-
ing) Q. If A has a hard sequence, thénis not almost optimal.

Proof. We prove the deterministic case, the nondeterministicisasatained by the ob-
vious modifications. So assume that the algorithisecides) and has a hard sequence
(zs)sen; in particular,

ta(zs) is not polynomially bounded is. (1)

Let G be a polynomial time algorithm computing the function-% z,. The following
algorithmG* accepts the s€tz; | s € N} and forz = x4 runs in time polynomial irs.

G* lHzeX*
1. /<0
2. for s=0to¢
3. simulate the { — s)th step ofG on 1°
4. if this simulation outputg andy = x then accept and halt
5. 0+ (+1
6. goto 2.

We consider the algorithm.||G* that on inputz runs A andG* in parallel, both on
inputz, and halts, when the first of these algorithms halts, thewarisg in the same
way. HenceA||G* accepts) andt, g~ (z5) is polynomially bounded is. As |z | <
s9®, by (1) we see thaty(z,) is not polynomially bounded ity - (2) + |z;|; thus
AJ|G* witnesses thah is not an almost optimal algorithm. ad



We state the main result of this section (Remark 7 contaitensions of the result to
further classes of problendg). As already remarked in the Introduction part (b) of this
theorem is a straightforward consequence of the correspgmnesult for propositional
proof systems due to Krajicek.

Theorem 3. Let( be acoNRcomplete problem. Then:

(&) @ has no almost optimal algorithm=>- @ has hard sequences for algorithms.
(b) @ has no almost optimal nondeterministic algorithea=- @ has hard sequences
for nondeterministic algorithms.

The proofs of the implications from right to left are clearthy previous lemma. The
following considerations will yield a proof of the converdigection. For a nondeter-
ministic algorithmA ands € N let A® be the algorithm that rejects all € >¥* with
|z] > s. If |x] < s, then it simulates steps ofA on inputz; if this simulation halts and
accepts, thed* accepts; otherwise it rejects.

Recall that byl.(A) we denote the language accepted\byror C ¥* we consider
thedeterministic (hondeterministic) algorithm subset parhDAS(Q) (NAS(Q))

DAS(Q)
Instance:A deterministic algorithmh and ¥ with s € N.
Question:L(A®) C @ ?

NAS(Q)
Instance:A nondeterministic algorithmh and ¥ with s € N.
Question:L(A%) C @ ?

The following two lemmas relate the equivalent statemenfieorem 3 (a) (in Theo-
rem 3 (b)) to a statement concerning the complexity as@)) (of NAS(Q)).

Lemma 4. (a) If (A, 1°) € DAS(Q) is solvable in times/*) for some functiory, then
@ has an almost optimal algorithm.

(b) If there is a nondeterministic algorithi acceptingNAs(Q) such that for all
(A, 1°) € NAS(Q) we havery((A, 1%)) < s7® for some functiorf, then@ has an
almost optimal nondeterministic algorithm.

Proof. Again we only prove (a). Le¥ be an algorithm decidingA, 1°) € DAS(Q)
in time s7® for some functionf. Further letQ be an algorithm deciding and let
Ao, A1, ... be an effective enumeration of all algorithms. Considerftfiewing algo-
rithm A deciding@.



A NlzekX*

1. simulateQ onz and in parallel do the following

2 for i = 0to |z| doin parallel

3 simulated; onz

4. if A; acceptgdhen

5. s + max{|z|, length of the run accepting}
6 if V acceptgA,, 1%) then accept and halt
7 elsenever halt
8. elsenever halt
9. if Q stops firsthen answer accordingly and halt.

Itis easy to see that decides). We show it is almost optimal. L& be any algorithm
deciding@. We chooseég € N such thaiB = A;,. Note thatV acceptgB, 1°) for all s.
Hence for inputs: € Q with |z| > ip the algorithmA, for i = i, acceptse in Line 6
if it was not already accepted earlier. Thtgx) is polynomially bounded in

|| +tr(z) +ty ((IB%, 1maX{‘””‘=tB(””)}>) :

where the terntg(z) takes care of line 3. Hence, by assumption, it is polyndsnial
bounded irjz| + max{ |z, ts(x)}'®. Altogetheri () < (jz| + tz(z)) ™. 0

If Q is coNP-complete, then the problemad{Q) and hence the problemA3(Q)
are in coNP, too (this is the reason whydnd not just is part of the input of Ms(Q)
and of DAs(Q)). Thus, together with Lemma 4 the following lemma yields thmain-
ing claims of Theorem 3.

Lemma 5. (a) Assume thaDAsS(Q) <, @, thatis, thatDAS(Q) is polynomial time re-
ducible toQ. If (A, 1°) € DAS(Q) is not solvable in tima/*) for some functiory,
then@ has hard sequences for algorithms.

(b) Assume thalAs(Q) <, Q. If there is no nondeterministic algorithii accepting
NAS(Q) such that for all(A, 1°) € NAS(Q) we havety((A, 1%)) < s/® for some
function f, then@ has hard sequences for nondeterministic algorithms.

Proof. Again we only prove part (a).

Claim.Assume thatA, 1°) € DAS(Q) is not solvable in time/(*) for some functiory.
Then there is no algorithriWV deciding Das(@) such that for all algorithmg. with
L(A) C Q there is acy, € N such that for alk € N we havetyw ((A, 1%)) < s%.

Proof of the ClaimBy contradiction, assume that suchaexists. LetV be the algo-
rithm that, on an arbitrary inpyt\, 1°), in parallel runsW on (A, 1°) and computes
ra = the least such thatL.(A") Z Q

by systematically checking fer= 0,1, ... whetherL(A") € Q (thisis done by running
for all z with |z| < r the algorithmA at most- steps on input and a decision procedure
for @ on z). Note thatr, is not defined ifL(A) C @. If W stops first,V answers



accordingly; ifr, is obtained first, thefV accepts ifs < r, and otherwise it rejects.
It should be clear that the algorithihdecides/A, 1°)) € DAs(Q) in < s/ steps for
some functionf. —

By assumption, there is a polynomial time reduct®from DAS(Q) to Q. Let B be
an arbitrary algorithm decidin@. Then the algorithn® o S, which on inputz first
simulatess onz and therB onS(x), decides Bs(Q). Hence, by the Claim, there exists
an algorithmA with L(A) C @ such thatig.s((A, 1°)) is not polynomially bounded
in s. Fors € N we setz, = S((A, 1%)). Thenz, € @ for all s and the function
1% — x4 is polynomial time computable. Furthermore

tos((4, 1)) < O(ts((A, 1)) + t(S((A, 1)) < 57D+ O(ta(a,)).

As the left hand side is not polynomially boundedjmeither istg(z). Hence ;) sen
is hard forB. a

Remark 6. Assume that) is coNP-complete and has padding (the sevT is an
example of such &). If Q has no almost optimal algorithm, then every algoritBm
deciding@ has a hard sequence,jsen with s < |z;|. Then, in particular

{zs|seN}eP and  Bis not polynomial time o{z; | s € N}.

In fact, it is well-known that for) with padding we can replace any polynomial time
reduction to) by a length-increasing one. Hence, in the previous proof ag assume
thatS is length-increasing and therefore< |x|.

Remark 7. Inthe proof of Theorem 3 we used the assumptiondhestcoNP-complete
only to ensure that Ns(Q) <, @ (cf. Lemma 5). This condition is also fulfilled for
everyQ complete, say, in one of the clasdd8 with ¢ > 1, E or PSPACE Thus the
statements of Theorem 3 hold for sugh

The argument in the last part of Lemma 5 shows (an instanadefpllowing simple
lemma. Nevertheless, note that it is important that we dorequires < |z,| in our
definition of hard sequence.

Lemma 8. Assume tha$ is a polynomial time reduction fro to @’ and letB be a
(nondeterministic) algorithm deciding (acceptin@). If (x;)sc is a hard sequence for
B oS, then(S(x,))sen is a hard sequence fds.

Therefore, ifQ <, @’ and@ has hard sequences for (nondeterministic) algorithms
then so does)’.

We do not know proofs of the following results not using thechiaery developed here.

Theorem 9. LetQ becoNRcomplete. Then[AUT has an almost optimal algorithm if
and only if@ has an almost optimal algorithm.

Proof. Immediate by the previous lemma and Theorem 3. |

We remark that the implication from left to right in the preus result was already
known [7] (see also Theorem 12 below).



Theorem 10. Assume thaTAUT has no almost optimal algorithm. Then evegNP
hard problem has no almost optimal algorithm.

Proof. By assumption and Theorem 30T has hard sequences for algorithms and so
does every coNP-hag by Lemma 8. Now the claim follows from Lemma 2. O

4. Hard sequences for proof systems

In this section we translate the results on hard sequenoesdigorithms to proof sys-
tems. We first recall some basic definitions.

A proof system fo€) is a polynomial time algorithri? computing a function fronx.*
ontoQ. If P(w) = z, we say thatv is aP-proof of z. Often we introduce proof systems
implicitly by defining the corresponding function; thendghdefinition will suggest a
corresponding algorithm.

Definition 11. Let P and®’ be proof systems fof). An algorithmT is atranslation
from P’ into P if P(T(w’)) = P'(w’) for everyw’ € X*. Note that translations always
exist. A translation igpolynomialif it runs in polynomial time.

A proof systemP for (Q is p-optimalor polynomially optimalf for every proof sys-
temP’ for ) there is a polynomial translation frof#f into P. A proof systeni? for Q

is optimalif for every proof systen® for Q and everyw’ € X* there is aw € ¥*
such thafP(w) = P'(w’) and|w| < |u’|°®. Clearly, every p-optimal proof system is
optimal.

We often will make use of the following relationship betwelea optimality notions
for algorithms and that for proof systems (see [7, 11]).

Theorem 12. (1) For every@ we have (a}= (b) and (b)=- (c); moreover (a), (b), and
(c) are all equivalentif) has padding. Here
(@) Q has a p-optimal proof system.
(b) @ has an almost optimal algorithm.
(c) There is an algorithm that decidé€g and runs in polynomial time on every
subsetX of Q with X € P.
(2) Forevery@ we have (a)<=- (b), (b)= (c), and (c)= (d); moreover (a)—(d) are
all equivalent if@) has padding. Here
(a) @ has an optimal proof system.
(b) @ has an almost optimal nondeterministic algorithm.
(c) There is a nondeterministic algorithm that acce@tsnd runs in polynomial
time on every subséf of Q with X € NP.
(d) There is a nondeterministic algorithm that acce@t&nd runs in polynomial
time on every subsé of Q with X € P.

We use our results of Section 3 to extend the equivalencedeetga) and (b) of part (1)
to arbirary coNP-complete problems:

Theorem 13. Let@ becoNRcomplete. Then:

@ has a p-optimal proof systema—- @ has an almost optimal algorithm.



Proof. By Theorem 12 (1) the left side implies the right side. Nowuass that) has
an almost optimal algorithm. AQ x >* is coNP-complete too, it has an almost optimal
algorithm (by Theorem 9). AQ x ¥* has padding, it has a p-optimal proof systBm
(cf. Theorem 12 (1)). Now it is routine to show that the algfom P’ that on inputw
computed(w) and outputs its first componentis a p-optimal proof systend)f. O

We already mentioned that for eveyC X* there is a well-known and straightfor-
ward correspondence between proof systems and nondetgtiahgorithms preserv-
ing the optimality notions, so that the proof of the equivale between (a) and (b) in
Theorem 12 (2) is immediate, In fact,Bfis a proof system fo€), then the nondeter-
ministic algorithmA (IP) accepts), whereA(P) on inputz € ¥* guesses a string and
accepts ifP(w) = 2. Conversely, ifA is a nondeterministic algorithm acceptifg then
for every fixedzy € @ a proof systenf, for ) is defined by

xz, if wisacomputation of acceptinge
g, Otherwise.

PA(U}) = {

The proof of the corresponding equivalence in Theorem 12s(f)ore involved and
mostly, more or less explicitly, it is based on a theorem dukdvin on inverters. As
we need this result, too, we recall it.

Let F be an algorithm computing a function froli* to ¥*. An inverter ofF is
an algorithml that giveny in the range off halts with some outpui(y) such that
F(I(y)) = y. On inputs not in the range &, the algorithml may do whatever it wants.
Levin [8] proved the following result.

Theorem 14. LetF be an algorithm computing a function front into ¥*. Then there
is an optimal inverter that is, an invertébr of F such that for every invertdrof F and
all y in the range off" we have

toe(y) < (tiy) + tr(I(y)) + |y|)o(1)'

Furthermore O does not halt on inputg not in the range ofF.
We turn to hard sequences for proof systems.

Definition 15. Let P be a proof systems fap. A sequencex;)scn is hard (Ilength-
hard) forP if {zs | s € N} C @, the function ¥ — =z, is computable in polynomial
time, and there is no polynomial time (nondeterministigpaithmW with P(W(1%)) =
zs forall s € N.

For nondeterministi®V by the unusual notatioB(W(1°%)) = z, we mean that for every
run of W on 1° outputting a stringo we haveP(w) = x, and that there is at least one
run that outputs a string. In more conventional terms, aste “there is no polynomial
time nondeterministic algorith with P(W(1°)) = x,,” we equivalently could require
that the function mapping®lto the minimum length in unary of B-proof of z; is not
polynomially bounded.

Definition 16. The problem@ has hard (length-hard) sequences for proof systéms
every proof system fof) has a hard (length-hard) sequence.



As already remarked in the Introduction part (b) of the failog result is due to
Krajicek [6] who proved it by quite different means. Pa} {s already known fo€) =
TAUT (see e.g. the survey [1, Section 11]). We give a new proofitiaks for any, not
necessarily paddable coNP-complete probigm

Theorem 17. Let @ be acoNRcomplete problem. Then:
(8) @ has no p-optimal proof system ¢ff has hard sequences for proof systems.
(b) @ has no optimal proof system @f has a length-hard sequence for proof systems.

Proof. First we present a proof of the directions from right to |e&t P be any proof
system forQ). By our assumption o) there is a hard (length-hard) sequeneg) {cn
for IP. We consider the proof systef for @ by

P(w') = P(w), if w = O0w; P(w') =z, if w =17,

andP’(w’) = 2o for some fixed elementy of @ otherwise. By hardness (length-
hardness) no translation frof into IP is polynomial (polynomially bounded): In fact,
assume thata(;)sen is, say, length-hard foP and by contradiction that the trans-
lation T from P’ into PP is polynomially bounded. Lef be a polynomial such that
|T(w")| < g(Jw'|) for all w’. Then, the nondeterministic algorithW that on input
guesses a string of length< ¢(s) and outputs it in casB(w) = x, runs in polynomial
time.

Now we present a proof of the direction from left to right; we tthat only for (a)
as that for (b) follows immediately from the result for algboms by the simple corre-
spondence between proof systems and nondeterministiathlygs mentioned above.
So, assume thap has no p-optimal proof system. By Theorem &Bhas no almost
optimal algorithm and hence has hard sequences for algwitly Theorem 3.

Let P be any proof system fof). By Theorem 14, we have an invert®p of P
which is optimal, that is, for every invertéof P andz € @ we have

to,(x) < (ta(e) + te(U@)) + [2]) “D < (ta(a) + |2])°@, 2)

where the second inequality holdstaw) < |w|°® and hencep(I(z)) < [I(z))|°® <
t1(2)°®. Moreover, forz ¢ Q the algorithmOp will not halt on inputz.

We choose an arbitrary algorith@ that decideg) and consider the algorith
that on inpute in parallel simulate§) andQp, both on inpute. If Q halts first, then it
answers accordingly and @p halts first, then it accepts. Obviouslydecides) and
for everyx € @ we have

ts(z) < O(to.(z)). 3)
As @ has hard sequences for algorithms, there is a polynomial ¢tmamputable algo-
rithm G generating a hard sequence $rthat is,G on input ¥ computese, € @ in
polynomial time such that

ts(zs) is not polynomially bounded is. (4)

LetG* be the variant of the algorithf* in the proof of Lemma 2 obtained by replacing
Line 4 by

if this simulation outputg andy = = then output ¥ and halt.

10



Of course, on input = x the algorithmG* runs in time polynomial irs. We show that
(zs)sen is a hard sequence fi. So by contradiction, assume tHatis a polynomial
time algorithm withP(W(1°)) = x, for all s € N. We consider the invertérof P that on
inputz in parallel simulate€)p andG*, both on inputz. If Op halts, then it outputs the
output ofQOp and halts; ifG* halts, then it simulate8V on G*(z), outputsW(G*(x)),
and halts.

By definition of G* the algorithmi runs on inputr, in time polynomial ins, hence
so doeDp by (2) as|z,| < s°D). But then by (3), the same holds for the algoritBm
contradicting (4). ]

In the previous proof the hard (length-hard) sequencgg.{n constructed for a
proof system for) was the hard sequence of a suitable (nondeterministicyittigo
for Q. Hence, by Remark 6, fap with padding, we can require in Theorem 17 that for
the claimed hard sequence,J;cn we haves < |z;|.

5. Hard subsets

As already remarked in the Introduction, if for an algorithrdeciding a problend) we
have a hard sequence,j;cn satisfyings < |z,|, then{z, | s € N} is a polynomial
time decidable subset ¢f on whichA is not polynomial time. We then speak of a hard
set forA even if its elements cannot be generated in polynomial thWtare precisely:

Definition 18. Let@Q C X*.

(1) LetA be adeterministic or nondeterministic algorithm acceapthn A subsetX of
Q ishard for A if X € P andA is not polynomial time orX.

(2) The problemy has hard sets for algorithmi§ every algorithm deciding) has a
hard set.

(3) The problen) has hard sets for nondeterministic algorithmgvery nondeter-
ministic algorithm acceptin@ has a hard set.

Using these notions the equivalences«<a)c) in Theorem 12 can be expressed in the
following way:

Assume thaf) has padding. Then

(1) @ has no almost optimal algorithm=> @ has hard sets for algorithms.
(2) @ has no almost optimal nondeterministic algorithee=- @ has hard
sets for nondeterministic algorithms.

Hence, we get (we leave the nondeterministic variant toeader):

Corollary 19. Assume) has padding.

(a) If Q has hard sequences for algorithms, th@ias hard sets for algorithms.
(b) Ifin addition@ is coNPcomplete, then

@ has hard sequences for algorithms=-
@ has hard sets for algorithms.

11



Proof. (a) If @ has hard sequences for algorithms, then, by Lemndal2as no almost
optimal algorithm and thus, by the previous rema&pkyas hard sets for algorithms.
Again the previous remark together with Theorem 3 yields (b) o

Assume that) has an almost optimal algorithm. Then, in general, one dastraw
that every algorithm decidin@, which is not almost optimal, has a hard set. In fact,
Messner [11, Corollary 3.33] has presented a P-immygevith an almost optimal
algorithm. Of course, no algorithm decidiggy has a hard set.

For an arbitrary problen the existence of hard subsets is equivalent to a (non-)-
listing property. We introduce this property.

Let C be the complexity class P or NP. A sétis a C-subset of) if X C @ and
X € C. Let C be also one of the classes P or NP. We write Lisff0OC’) and say that
there is disting of theC-subsets of) by C'-machinesf there is an algorithm that, once
having been started, lists Turing machifég, Mo, . . . of type C such that

{LM;) | i>1}={X CQ| X €C}.
For @ with padding the equivalences in the following propositregre known [12].

Proposition 20. (1) @ has hard sets for algorithms—> notList(P, @, P).
(2) Every nondeterministic algorithrh accepting? is not polynomial on at least one
subsetX of @ with X € NP <= notList(NP, Q, NP).

Proof. We only prove the first claim as the second one can be obtaload the same
lines. First we assume that not List(®, P). LetA be an algorithm decidin@. For
d € N, by A(d) we denote the algorithm that on inputsimulatesA on inputz but
rejects if the simulation exceeds tirg®.

We show that there is a P-subsétof ) such that

for all d: X Z A(d)

Of course, then thiX is hard forA.

Otherwise, we fix an effective enumeratibn, Dy, . . . of all polynomial time Tur-
ing machines. Thenl{;(A(j));,;>1 is a listing of the P-subsets @}, whereD;(A(j))
on inputz, first simulatesA(j) on x and if this algorithm accepts, then it simulates
D; on inputz and answers accordingly. In fact, 4¢;) has to accept, we have
L(D;(A()))) € Q. And if X is a P-subset af) accepted b);, we choose d such that
X C A(d). ThenL(D;(A(Q))) = X.

Conversely, assume thé@t has hard sets for algorithms. By contradiction assume
thatlL is a listing witnessing List(RY, P). LetQ be an algorithm deciding@. Consider
the algorithmA that on inputz simulatesQ onz and in parallel fori = 1,2, ... does
the following:

— performs théth step ofL;
— if My, ..., M, are the machines listed fiyso far, it performs an additional step of
each of theV;s onz; if one of these accepts it accepts.

12



If Q halts first, it answers accordingly.

It should be clear thah accepts). By assumption, there is a sat hard for A.
Let M;, acceptX. By definition of A it should be clear that is polynomial onX, a
contradiction. a

We close this section by introducing hard subsets for prgstesns and stating the
corresponding result.

Definition 21. (1) LetP be a proof system fof). A subsetX of @ is hard (Ilength-
hard) forP if X € P and there is no polynomial time (nondeterministic) aldponi
W such thafP(W(z)) = = for all z € X (cf. the remark after Definition 15 for the
precise meaning of this last condition in the nondeterrtimease).

(2) @ has hard (length-hard) sets for proof systeifnsvery proof system fof) has a
hard (length-hard) set.

The following result can be obtained along the lines of trepof Theorem 17. Again,
due to the close relationship between nondeterministiorilgns and proof systems,
part (b) can be viewed as a reformulation of the result fooaigms.

Theorem 22. Let@ be a problem with padding. Then:

(a) @ has no p-optimal proof system if and onlyjfhas hard sets for proof systems.

(b) @ has no optimal proof system if and only@¥ has length-hard sets for proof
systems.

6. Assuming the Measure Hypothesis

In this section we present some examples of problems withiapgroperties, some
yield limitations to possible extensions of results mem¢id in this paper. Most are
proven assuming the Measure Hypothesis.

6.1. Complex sets with optimal algorithms and with optimal poof systems. For
every(@ € NP, say, accepted by the polynomial time nondeterminidjorahm A,
the proof systent® is optimal, wheréP(w) := z if w is an accepting computation &f
on inputz; and otherwiselP(w) = zo for some fixed elementy of Q). The question
whether there are sets outside of NP with optimal proof syst@as stated by Krajicek
and Pudlak [7] and is still open. As already mentioned thewed that BuT has an
optimal proof system if E = NE.

We prove that there are problems in NE and outside of NP wittmab proof sys-
tems if the Measure Hypothesis holds. As a byproduct we getliere exist problems
in E and outside of P with optimal algorithms (thereby we dbomed the Measure Hy-
pothesis). Here an algorithta deciding( is optimalif for every algorithmB deciding
Q we have

ta(x) < (ts(@) + |z))°®

for all z € X*. Clearly, every problem in P has an optimal algorithm.

Let C be a class of problems. Recall that a probt@ris C-immuneif no infinite
subset of@ is in C; and it is Ghi-immuneif @ and its complement* \ @ are C-
immune. For a function : N — N we denote by DIME(t) and DriME(t) the class
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of problems decidable by a Turing machiewith ¢y;(x) < ¢(x) for all x € ¥* and
tym(x) < c-t(zx) for all x € ¥* and some constante N. The nondeterministic classes
NTIMEo(t) and NTIME(t) are defined accordingly. Hence E[ ;. DTIME(2¢™) and
NE = en NTIME(24™).

Lemma 23. Let/ € Nwith ¢ > 1.

(@) If Q € Eis aDTIME(2¢™)-bi-immune problem, the@ has an optimal algorithm.

(b) If @ € NE is a NTIME(2¢™)-immune problem, thefp has an almost optimal
nondeterministic algorithm.

Proof. We prove (a); part (b) is obtained by the obvious modificatigkssume that the
Turing machinéVl decides the BIME (2 ™)-bi-immune problen) in time ¢ - 2™ for
somec, d € N. We claim thatM is optimal.

Assume otherwise, then there is a machiffedeciding and witnessing tha¥l is
not optimal. Then for every € N there exists an; such that

() > (b () + |£Cz'|)l-
It follows that for everyi € N
¢ 241m > () > by (2)’

Thusty (z;) < 2¢1#:1/2 for all sufficiently largei € N. Of course, infinitely many
of thesex;’s are inQ, or they are in=* \ Q. In the first case consider the following
machine:

M Iz eX”

1. simulateM’ onz for at most 2'1#1/2 steps
2. if the simulation halts and acceplt®n acceptlsereject.

It accepts an infinite subset 6f in time 2. This contradicts our immunity assump-
tion. The second case is handled similarly. |

We use the following result due to Mayordomo [10]. Statenm{bhtof it uses the
Measure Hypothesi$], that is, the assumption

NP does not have measure O in E

For the corresponding notion of measure we refer to [10]s Filgpothesis is sometimes
used in the theory of resource bounded measures.

Theorem 24. Let? > 1.

(@) The class oDTIMEq(2"™)-bi-immune problems has measure 16nin particular,
the classE containsDTIME o(2¢™)-bi-immune problems.

(b) If the Measure Hypothesis holds, thii® N E containsDTIME(2°™)-bi-immune
problems.

From the previous lemma and theorem we get:

14



Corollary 25. (1) There exist problems i \ P with optimal algorithms.
(2) If the Measure Hypothesis holds, then there exist prableaNP \ P with optimal
algorithms.

We already remarked that Messner [11] showed the existdmrelblems in E\ P with
almostoptimal algorithms.

Theorem 26. If the Measure Hypothesis holds, then there exist probleniE \ NP
with optimal proof systems.

Proof. It suffices to show that there is@ € NE which is NTIME(2™)-immune. Then,
by Lemma 23, such @ has an almost optimal nondeterministic algorithm and hence
an optimal proof system by Theorem 12.

By Theorem 24 (b) there is@y € NP which is DriME(22")-bi-immune problem.
We choosel > 1 such that)y € NTIME(n?). We set

Q:={1m|meNandfmer}.

Then@ € NE. Furthermoreg is infinite as otherwise the sé1?” | m € Nand 2" ¢
Qo} would be an infinite subset af* \ Qo in P contradicting the bi-immunity property
of Qo. Finally we show that) is NTIMEy(2"")-immune. By contradiction assume that
there is an infiniteS' C ) accepted by a nondeterministic algoritSrmm time 2*. Then
the set

S*:={1" | n=2"forsomem € Nand I" € S}
is an infinite subset af). The algorithm that first computes from 1" and then deter-
ministically simulates all possible runs $fon 1™ runs in time

TLO(]') + O(sz) - nO(l) + O(zn) < 22n
for sufficiently largen. This contradicts the DIME(22")-immunity of Qo. o

6.2. Non-optimal algorithms without hard sequenceslIn this final part we show that,
assuming the Measure Hypothesis,

— every problem with padding and with an almost optimal athar has an algorithm
which is not almost optimal but has no hard sequence

— there is a problem without almost optimal algorithm hawvémgalgorithm without
hard sequence.

Our proofs are based on the following proposition.

Proposition 27. If the Measure Hypothesis holds, then there is a prollgne P such

that

(a) there is an algorithnB decidingQo which is not almost optimal (or, equivalently,
is not polynomial time) but has no hard sequences;

(b) every algorithmA decidingQo with

ta(x) < 2¢(0g |z)?

for everyz € ¥* and some constart> 1 has no hard sequences;
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(c) there is a proof system f@po which is not optimal but has no hard sequences.
In the proof we shall use:
Lemma 28. Let A be an algorithm deciding a proble®, with
ta(z) < 20000 1<) ©

for all z € ¥* and some= > 1. Assume thafz;)sen is @ hard sequence fak. Then
there is a sequencg < s; < s2 < ... such that

lim 1295 g e, s = 20000 el
1—>00 (lOg |I51|)

In particular, the sefx, | i € N} is infinite.
Proof. Assume otherwise that for some> 0 and some: € N and alls > n

log s S
(log [z,)Z = ©

or equivalently,s > 25009 [2:0%; thens > ¢,(x5)5/¢ by assumption. This contradicts
the hardness ofi(;)sen- O

Proof of Proposition 27(a) and (b): By the Measure Hypothesis there istan o(2")-
bi-immune@1 € NP. In particular, there exists a nondeterministic TurirachineM
with binary nondeterminism and& e N such that for ally € ¥* (with |y| > 2) the
machineM decides whethey € Qi in < |y|¢ steps. Thus foy € X* every string

€ {0,1}1v" determines a unique run df ony. We set

for somen € N we havelz| = n?

Qo = {x e {0,1}*

andx determines an accepting runlidf on input f}.

ThenQo is infinite, as otherwise the s¢l” € @1 | n € N} would be finite contra-
dicting the DriMEq(2")-bi-immunity of Q;. ClearlyQo € P. LetAg be an algorithm
deciding@y in polynomial time and leB be the algorithm decidin@, by first simu-
lating A, and then making an appropriate number of dummy steps satlicthsome
e>landally € ¥*

tr(y) = 2¢:000 ), (6)

ThenAp witnesses thdb is not almost optimal.
We finish our proof by showing that for every algorithindeciding@o such that
for somee > 1 and ally € X*

ta(y) < 20008 lul’,
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has no hard sequences. Towards a contradiction as&umse a hard sequence;jscn.
We set

Lo :={1" | for somes € N, |z,| = n? andzx, determines an accepting runidfon 1"}.

Clearly, Ly € Q1. We choose a polynomial time algorithGrcomputing the function
1°* — z,. The following algorithnC acceptd.o.

C Iy e ¥*

n <« [yl
if y # 1" thenreject
{+0
for s=0to ¢
simulate the { — s)th step ofG on 1°
if the simulation outputs with |z| = n¢ then accept
{+—1(+1
goto 3.

© NG~ wWN R

By (6) we can apply Lemma 28 th and get a sequeneg < s1 < s2 < ....Fori € N

we let
n; = V/|vs, |- (7)

Hencex,, is an accepting run ¥l on input I*:. We show that

te(1m) = 20((og m)’) (8)

In fact, asG runs in polynomial time, we havie:,| < |s;|°®, and by (7) therefore,
Ini| < |5:|°Y. Now one easily sees th@taccepts T in time polynomial ins;, too.
By Lemma 28

s; = 2009 ;1)

Thus (7) implies that
s; = 20(log n:)?).
Hence, we get (8).
Finally, we consider the algorithiS* that on inputy simulatesC for 2¥! steps

and accepts if the simulation accepts. By (8}, accepts an infinite subset @f. As
Lo C @1, this contradicts the DIME(2")-bi-immunity of Q1.

(c) LetQo andB be as in part (a). We leave it to the reader to show that theviatig
proof systen® for Qg is not optimal but has no hard sequence.#&ar X* let

P(w) :=z, if wisacomputation o acceptinge

andP(w) := zo for some fixetkg € Qo otherwise. O

Theorem 29. Let@ be a problem with padding and with an almost optimal algarith
If the Measure Hypothesis holds, then there is an algorittetiding @, which is not
optimal, has hard sets but does not have hard sequences.
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Proof. Let padandO be a padding function and an almost optimal algorithmdor
respectively. With Proposition 27 (a) choos&)a € P and an algorithn® deciding
Qo which is not almost optimal but has no hard sequenceszdiz @ and letA be
the algorithm deciding) that on inputz first checks (in polynomial time) whether=
padzo, y) with y € Qo (using the properties of the padding function and a poly@bmi
time algorithm deciding)o); if so, it simulatesB ony; otherwise it simulate® on x.

Clearly,A is not almost optimal as it can be speeded up on théplz0,y) | y €
Qo}, a hard set of\. By contradiction, assume:{) ¢y is a hard sequence fdrand let
Yo € Qo. Fors > 1 we set

— Y, If Ts = padZ(), y) Wlth Yy S QO
Ys = .
ys—1, Otherwise

and

po= Zs—1, If Ts = pad207 y) Wlth Yy € QO
)z, otherwise.

Then either {;)sen IS @ hard sequence fa@ or (z;)scn iS @ hard sequence fdb, in
both cases a contradiction. ]

Corollary 30. If the Measure Hypothesis holds, then the following are emjent:

(i) EverycoNPcomplete problem has no almost optimal algorithm.

(i) Every non-almost optimal algorithm decidingcaNP-complete problem has hard
sequences.

Proof. We already know that (i) implies (ii) by Theorem 3 (a). Assufiigand by
contradiction, suppose thét is a coNP-complete problem with an almost optimal al-
gorithm. By Theorem 9, we may assume tigahas padding. Then, by the previous
theorem, there is a non-almost optimal algorithm decidhgithout hard sequences,
contradicting (ii). |

The following example shows that the padding hypothesisisessary in Theo-
rem 29.

Example 1.LetQ := {1" | n € N}. AsQ € P, it has an almost algorithm. However,
the set() itself is a hard set and {L¢cn a hard sequence for every non-optimal (that is,
for every superpolynomial) algorithm decidigy

Finally, we show that also problemgthout almost optimal algorithm may have
algorithms without hard sequences:

Theorem 31. If the Measure Hypothesis holds, there is a problem whichhizad sets
for algorithms (and hence has no almost optimal algoritho)Has algorithms without
hard sequences.

Proof. Let Qo € P be a problem with the properties stated in Proposition 2/fiX\an
effective enumeration
Ag,Aq, ..., (9)
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of all algorithms such that there is an universal algorittimhich on every inputl?, z)
simulates the algorithm,; on input(1?, z) in such a way that

to (1, 2)) < (i + 1) ta, (G, 7)) (10)

For everyi € N we let
S; = {<1i,:c> ‘ z € Qo andA, doesnotaccept(1’, z) in < 2009 [=)” step%. (11)

Finally, we set

Q=Js:.

i€N
and show thaf) is a problem with the properties mentioned in the theorem.
Claim 1.Letk € N. If A;, (see (9) decides, thenS, = {(1*,z) | z € Qo}.

Proof of Claim 1 Otherwise, there exists an € Qo with (1%, 20) ¢ Sy. It follows that

20 € Qo With (1¥, z0) ¢ Sj, = Ay, accepts1¥, o) in < 2009 12)° steps  (by (11))
= A, acceptg1*, zo)

= (1% x0) € Q (asA;, decidesR)
== (1% z0) € S}, (since allS;’s are disjoint).
This is a contraction. -

Claim 2.Q has hard sets for algorithms.

Proof of Claim 2.Assume that\; decides). By Claim 1,5, = {(1¥,z) | = € Qo}
and by (11) for every: € Qo,

i, (14, 2)) > 2081,

As Qo € P, thusSy is a hard set foA . .
Claim 3.For all sufficiently largel € N there is an algorithn®, deciding@ such that

tQ, (<1i, x)) =@ +1)- 2d-(log |z])?

for everyi € Nandz € ¥*.
Proof of Claim 3 By (10) and (11) ag)o € P. -

Now we choose a sufficiently largkc N and consider the algorithf@, of Claim 3.
Assume thaf),; has a hard sequence

(<1i8’$5>)s€N'

By (11) everyz, is in Qo and by hardness,

tau (U, 24)) = (is + 1) 24008 2l
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is superpolynomialis. Since the mapping®l— (1%, z,) is computable in polynomial
time, we havei,| < |s|°®. Therefore,

24-00g |2+ js superpolynomial is. (12)

As () is decidable in polynomial time antlis sufficiently large, we have an algorithm
A decidingQyo in time 2+-(091=)* on every instance € ¥*. Then (12) implies that
(zs)sen is a hard sequence fdy, which contradicts Proposition 27 (b). ]

7. Getting hard sequences in an effective way

We have mentioned in the Introduction that McCreight and &4¢9] have shown that
for every EXP-hard probler® there is a polynomial time procedure assigning to every
algorithm deciding? a hard sequence. Based on their proof we derive a “nondeatermi
istic” version.

Theorem 32. Let@ be acoNEXRhard problem. Then there is a polynomial time com-
putable functiory : ¥* x {1}* — X* such that for every nondeterministic algorithim
accepting( the sequencgy(A, 1°)) __ is hard forA.

Proof. Consider the problem

Qo
Instance:A nondeterministic algorithra.
Question:ls it true thatA does not accept in at most
2/41 steps?

Claim 1.1f B is a nondeterministic algorithm accepti@g, thenB € Qo and therefore,
tB(B) > 2/Bl,

Proof of Claim 1.Assume thaB ¢ Qo. ThereforeB does not accef®. Then, by the
definition of Qo, we haveB € @, a contradiction. -

To every nondeterministic algorithih and everys € N we can assign in time
polynomial inA ands a nondeterministic algorithi, with

|[Ag| > s, L(As)=L(A), and ¢y, =ta (13)

(say, by adding new “dummy” states).

Claim 2.1f A is a nondeterministic algorithm acceptidly, then A;)scn is a hard
sequence foA.

Proof of Claim 2.t suffices to verify for alls € N

AS S Qo (14)
ta(Ag) > 2°. (15)
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By (13) we know that.(A;) = L(A). Hence, (14) holds by Claim 1, which also shows
the first inequality in
ta(As) = ta, (Ag) > 218l > 29

the second one and the equality holding by (13). -

Now let @ be coNEXP-hard. Sinc€o € coNEXP there is a polynomial time re-
ductionS from Qo to Q. Again, for a nondeterministic algorithe let A o S be the
nondeterministic algorithm that on inpute X* first runsS on z and then rung\ on
S(z).

For a nondeterministic algorithéh ands € N we define

g(A, 1%) := S((A 0 S),).

Clearly, g is polynomial time computable. IA decidesQ, thenA o S decidesQy;
therefore, ( o S),)sen is a hard sequence faro S by Claim 2. Hence(g(A, 1))
is a hard sequence fér by Lemma 8. O
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